1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
5 * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
7 * This code is more or less generated from another driver, please
8 * excuse some codingstyle oddities.
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/i2c.h>
16 #include <linux/mutex.h>
18 #include <media/dvb_frontend.h>
21 #include "dibx000_common.h"
24 module_param(debug, int, 0644);
25 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
27 #define dprintk(fmt, arg...) do { \
29 printk(KERN_DEBUG pr_fmt("%s: " fmt), \
33 #define CONFIG_SYS_DVBT
34 #define CONFIG_SYS_ISDBT
35 #define CONFIG_BAND_CBAND
36 #define CONFIG_BAND_VHF
37 #define CONFIG_BAND_UHF
38 #define CONFIG_DIB0090_USE_PWM_AGC
40 #define EN_LNA0 0x8000
41 #define EN_LNA1 0x4000
42 #define EN_LNA2 0x2000
43 #define EN_LNA3 0x1000
44 #define EN_MIX0 0x0800
45 #define EN_MIX1 0x0400
46 #define EN_MIX2 0x0200
47 #define EN_MIX3 0x0100
48 #define EN_IQADC 0x0040
53 #define EN_BIAS 0x0001
55 #define EN_IQANA 0x0002
56 #define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */
57 #define EN_CRYSTAL 0x0002
65 /* Calibration defines */
69 #define CAPTRIM_CAL 0x8
71 #define KROSUS_PLL_LOCKED 0x800
74 /* Use those defines to identify SOC version */
76 #define SOC_7090_P1G_11R1 0x82
77 #define SOC_7090_P1G_21R1 0x8a
78 #define SOC_8090_P1G_11R1 0x86
79 #define SOC_8090_P1G_21R1 0x8e
81 /* else use thos ones to check */
88 #define MP001 0x1 /* Single 9090/8096 */
89 #define MP005 0x4 /* Single Sband */
90 #define MP008 0x6 /* Dual diversity VHF-UHF-LBAND */
91 #define MP009 0x7 /* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */
93 #define pgm_read_word(w) (*w)
95 struct dc_calibration;
97 struct dib0090_tuning {
98 u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
109 u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */
116 struct dib0090_identity {
123 struct dib0090_state {
124 struct i2c_adapter *i2c;
125 struct dvb_frontend *fe;
126 const struct dib0090_config *config;
129 enum frontend_tune_state tune_state;
133 s16 wbd_target; /* in dB */
135 s16 rf_gain_limit; /* take-over-point: where to split between bb and rf gain */
136 s16 current_gain; /* keeps the currently programmed gain */
137 u8 agc_step; /* new binary search */
139 u16 gain[2]; /* for channel monitoring */
144 /* for the software AGC ramps */
149 /* for the captrim/dc-offset search */
157 const struct dc_calibration *dc;
160 const struct dib0090_tuning *current_tune_table_index;
161 const struct dib0090_pll *current_pll_table_index;
166 struct dib0090_identity identity;
176 u8 wbd_calibration_gain;
177 const struct dib0090_wbd_slope *current_wbd_table;
180 /* for the I2C transfer */
181 struct i2c_msg msg[2];
182 u8 i2c_write_buffer[3];
183 u8 i2c_read_buffer[2];
184 struct mutex i2c_buffer_lock;
187 struct dib0090_fw_state {
188 struct i2c_adapter *i2c;
189 struct dvb_frontend *fe;
190 struct dib0090_identity identity;
191 const struct dib0090_config *config;
193 /* for the I2C transfer */
195 u8 i2c_write_buffer[2];
196 u8 i2c_read_buffer[2];
197 struct mutex i2c_buffer_lock;
200 static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg)
204 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
205 dprintk("could not acquire lock\n");
209 state->i2c_write_buffer[0] = reg;
211 memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
212 state->msg[0].addr = state->config->i2c_address;
213 state->msg[0].flags = 0;
214 state->msg[0].buf = state->i2c_write_buffer;
215 state->msg[0].len = 1;
216 state->msg[1].addr = state->config->i2c_address;
217 state->msg[1].flags = I2C_M_RD;
218 state->msg[1].buf = state->i2c_read_buffer;
219 state->msg[1].len = 2;
221 if (i2c_transfer(state->i2c, state->msg, 2) != 2) {
222 pr_warn("DiB0090 I2C read failed\n");
225 ret = (state->i2c_read_buffer[0] << 8)
226 | state->i2c_read_buffer[1];
228 mutex_unlock(&state->i2c_buffer_lock);
232 static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
236 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
237 dprintk("could not acquire lock\n");
241 state->i2c_write_buffer[0] = reg & 0xff;
242 state->i2c_write_buffer[1] = val >> 8;
243 state->i2c_write_buffer[2] = val & 0xff;
245 memset(state->msg, 0, sizeof(struct i2c_msg));
246 state->msg[0].addr = state->config->i2c_address;
247 state->msg[0].flags = 0;
248 state->msg[0].buf = state->i2c_write_buffer;
249 state->msg[0].len = 3;
251 if (i2c_transfer(state->i2c, state->msg, 1) != 1) {
252 pr_warn("DiB0090 I2C write failed\n");
257 mutex_unlock(&state->i2c_buffer_lock);
261 static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg)
265 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
266 dprintk("could not acquire lock\n");
270 state->i2c_write_buffer[0] = reg;
272 memset(&state->msg, 0, sizeof(struct i2c_msg));
273 state->msg.addr = reg;
274 state->msg.flags = I2C_M_RD;
275 state->msg.buf = state->i2c_read_buffer;
277 if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
278 pr_warn("DiB0090 I2C read failed\n");
281 ret = (state->i2c_read_buffer[0] << 8)
282 | state->i2c_read_buffer[1];
284 mutex_unlock(&state->i2c_buffer_lock);
288 static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val)
292 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
293 dprintk("could not acquire lock\n");
297 state->i2c_write_buffer[0] = val >> 8;
298 state->i2c_write_buffer[1] = val & 0xff;
300 memset(&state->msg, 0, sizeof(struct i2c_msg));
301 state->msg.addr = reg;
302 state->msg.flags = 0;
303 state->msg.buf = state->i2c_write_buffer;
305 if (i2c_transfer(state->i2c, &state->msg, 1) != 1) {
306 pr_warn("DiB0090 I2C write failed\n");
311 mutex_unlock(&state->i2c_buffer_lock);
315 #define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0)
316 #define ADC_TARGET -220
320 static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c)
323 dib0090_write_reg(state, r++, *b++);
327 static int dib0090_identify(struct dvb_frontend *fe)
329 struct dib0090_state *state = fe->tuner_priv;
331 struct dib0090_identity *identity = &state->identity;
333 v = dib0090_read_reg(state, 0x1a);
336 identity->in_soc = 0;
338 dprintk("Tuner identification (Version = 0x%04x)\n", v);
340 /* without PLL lock info */
341 v &= ~KROSUS_PLL_LOCKED;
343 identity->version = v & 0xff;
344 identity->product = (v >> 8) & 0xf;
346 if (identity->product != KROSUS)
347 goto identification_error;
349 if ((identity->version & 0x3) == SOC) {
350 identity->in_soc = 1;
351 switch (identity->version) {
352 case SOC_8090_P1G_11R1:
353 dprintk("SOC 8090 P1-G11R1 Has been detected\n");
356 case SOC_8090_P1G_21R1:
357 dprintk("SOC 8090 P1-G21R1 Has been detected\n");
360 case SOC_7090_P1G_11R1:
361 dprintk("SOC 7090 P1-G11R1 Has been detected\n");
364 case SOC_7090_P1G_21R1:
365 dprintk("SOC 7090 P1-G21R1 Has been detected\n");
369 goto identification_error;
372 switch ((identity->version >> 5) & 0x7) {
374 dprintk("MP001 : 9090/8096\n");
377 dprintk("MP005 : Single Sband\n");
380 dprintk("MP008 : diversity VHF-UHF-LBAND\n");
383 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND\n");
386 goto identification_error;
389 switch (identity->version & 0x1f) {
391 dprintk("P1G_21R2 detected\n");
395 dprintk("P1G detected\n");
399 dprintk("P1D/E/F detected\n");
402 dprintk("P1C detected\n");
405 dprintk("P1-A/B detected: driver is deactivated - not available\n");
406 goto identification_error;
409 goto identification_error;
415 identification_error:
419 static int dib0090_fw_identify(struct dvb_frontend *fe)
421 struct dib0090_fw_state *state = fe->tuner_priv;
422 struct dib0090_identity *identity = &state->identity;
424 u16 v = dib0090_fw_read_reg(state, 0x1a);
426 identity->in_soc = 0;
428 dprintk("FE: Tuner identification (Version = 0x%04x)\n", v);
430 /* without PLL lock info */
431 v &= ~KROSUS_PLL_LOCKED;
433 identity->version = v & 0xff;
434 identity->product = (v >> 8) & 0xf;
436 if (identity->product != KROSUS)
437 goto identification_error;
439 if ((identity->version & 0x3) == SOC) {
440 identity->in_soc = 1;
441 switch (identity->version) {
442 case SOC_8090_P1G_11R1:
443 dprintk("SOC 8090 P1-G11R1 Has been detected\n");
446 case SOC_8090_P1G_21R1:
447 dprintk("SOC 8090 P1-G21R1 Has been detected\n");
450 case SOC_7090_P1G_11R1:
451 dprintk("SOC 7090 P1-G11R1 Has been detected\n");
454 case SOC_7090_P1G_21R1:
455 dprintk("SOC 7090 P1-G21R1 Has been detected\n");
459 goto identification_error;
462 switch ((identity->version >> 5) & 0x7) {
464 dprintk("MP001 : 9090/8096\n");
467 dprintk("MP005 : Single Sband\n");
470 dprintk("MP008 : diversity VHF-UHF-LBAND\n");
473 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND\n");
476 goto identification_error;
479 switch (identity->version & 0x1f) {
481 dprintk("P1G_21R2 detected\n");
485 dprintk("P1G detected\n");
489 dprintk("P1D/E/F detected\n");
492 dprintk("P1C detected\n");
495 dprintk("P1-A/B detected: driver is deactivated - not available\n");
496 goto identification_error;
499 goto identification_error;
505 identification_error:
509 static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
511 struct dib0090_state *state = fe->tuner_priv;
515 dib0090_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
519 dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */
520 /* adcClkOutRatio=8->7, release reset */
521 dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
522 if (cfg->clkoutdrive != 0)
523 dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
524 | (cfg->clkoutdrive << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
526 dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
527 | (7 << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0));
529 /* Read Pll current config * */
530 PllCfg = dib0090_read_reg(state, 0x21);
532 /** Reconfigure PLL if current setting is different from default setting **/
533 if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && (!cfg->in_soc)
534 && !cfg->io.pll_bypass) {
536 /* Set Bypass mode */
538 dib0090_write_reg(state, 0x21, PllCfg);
541 PllCfg &= ~(1 << 13);
542 dib0090_write_reg(state, 0x21, PllCfg);
544 /*** Set new Pll configuration in bypass and reset state ***/
545 PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
546 dib0090_write_reg(state, 0x21, PllCfg);
548 /* Remove Reset Pll */
550 dib0090_write_reg(state, 0x21, PllCfg);
552 /*** Wait for PLL lock ***/
555 v = !!(dib0090_read_reg(state, 0x1a) & 0x800);
561 dprintk("Pll: Unable to lock Pll\n");
565 /* Finally Remove Bypass mode */
566 PllCfg &= ~(1 << 15);
567 dib0090_write_reg(state, 0x21, PllCfg);
570 if (cfg->io.pll_bypass) {
571 PllCfg |= (cfg->io.pll_bypass << 15);
572 dib0090_write_reg(state, 0x21, PllCfg);
576 static int dib0090_fw_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
578 struct dib0090_fw_state *state = fe->tuner_priv;
583 dprintk("fw reset digital\n");
586 dib0090_fw_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL);
587 dib0090_fw_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */
589 dib0090_fw_write_reg(state, 0x20,
590 ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg->data_tx_drv << 4) | cfg->ls_cfg_pad_drv);
592 v = (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 9) | (0 << 8) | (cfg->clkouttobamse << 4) | (0 << 2) | (0);
593 if (cfg->clkoutdrive != 0)
594 v |= cfg->clkoutdrive << 5;
599 dib0090_fw_write_reg(state, 0x23, v);
601 /* Read Pll current config * */
602 PllCfg = dib0090_fw_read_reg(state, 0x21);
604 /** Reconfigure PLL if current setting is different from default setting **/
605 if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && !cfg->io.pll_bypass) {
607 /* Set Bypass mode */
609 dib0090_fw_write_reg(state, 0x21, PllCfg);
612 PllCfg &= ~(1 << 13);
613 dib0090_fw_write_reg(state, 0x21, PllCfg);
615 /*** Set new Pll configuration in bypass and reset state ***/
616 PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv);
617 dib0090_fw_write_reg(state, 0x21, PllCfg);
619 /* Remove Reset Pll */
621 dib0090_fw_write_reg(state, 0x21, PllCfg);
623 /*** Wait for PLL lock ***/
626 v = !!(dib0090_fw_read_reg(state, 0x1a) & 0x800);
632 dprintk("Pll: Unable to lock Pll\n");
636 /* Finally Remove Bypass mode */
637 PllCfg &= ~(1 << 15);
638 dib0090_fw_write_reg(state, 0x21, PllCfg);
641 if (cfg->io.pll_bypass) {
642 PllCfg |= (cfg->io.pll_bypass << 15);
643 dib0090_fw_write_reg(state, 0x21, PllCfg);
646 return dib0090_fw_identify(fe);
649 static int dib0090_wakeup(struct dvb_frontend *fe)
651 struct dib0090_state *state = fe->tuner_priv;
652 if (state->config->sleep)
653 state->config->sleep(fe, 0);
655 /* enable dataTX in case we have been restarted in the wrong moment */
656 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
660 static int dib0090_sleep(struct dvb_frontend *fe)
662 struct dib0090_state *state = fe->tuner_priv;
663 if (state->config->sleep)
664 state->config->sleep(fe, 1);
668 void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast)
670 struct dib0090_state *state = fe->tuner_priv;
672 dib0090_write_reg(state, 0x04, 0);
674 dib0090_write_reg(state, 0x04, 1);
677 EXPORT_SYMBOL(dib0090_dcc_freq);
679 static const u16 bb_ramp_pwm_normal_socs[] = {
680 550, /* max BB gain in 10th of dB */
681 (1<<9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
683 (4 << 9) | 0, /* BB_RAMP3 = 26dB */
684 (0 << 9) | 208, /* BB_RAMP4 */
685 (4 << 9) | 208, /* BB_RAMP5 = 29dB */
686 (0 << 9) | 440, /* BB_RAMP6 */
689 static const u16 rf_ramp_pwm_cband_7090p[] = {
690 280, /* max RF gain in 10th of dB */
691 18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
692 504, /* ramp_max = maximum X used on the ramp */
693 (29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */
694 (0 << 10) | 504, /* RF_RAMP6, LNA 1 */
695 (60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */
696 (0 << 10) | 364, /* RF_RAMP8, LNA 2 */
697 (34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */
698 (0 << 10) | 228, /* GAIN_4_2, LNA 3 */
699 (37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */
700 (0 << 10) | 109, /* RF_RAMP4, LNA 4 */
703 static const u16 rf_ramp_pwm_cband_7090e_sensitivity[] = {
704 186, /* max RF gain in 10th of dB */
705 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
706 746, /* ramp_max = maximum X used on the ramp */
707 (10 << 10) | 345, /* RF_RAMP5, LNA 1 = 10dB */
708 (0 << 10) | 746, /* RF_RAMP6, LNA 1 */
709 (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
710 (0 << 10) | 0, /* RF_RAMP8, LNA 2 */
711 (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
712 (0 << 10) | 345, /* GAIN_4_2, LNA 3 */
713 (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
714 (0 << 10) | 200, /* RF_RAMP4, LNA 4 */
717 static const u16 rf_ramp_pwm_cband_7090e_aci[] = {
718 86, /* max RF gain in 10th of dB */
719 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
720 345, /* ramp_max = maximum X used on the ramp */
721 (0 << 10) | 0, /* RF_RAMP5, LNA 1 = 8dB */ /* 7.47 dB */
722 (0 << 10) | 0, /* RF_RAMP6, LNA 1 */
723 (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */
724 (0 << 10) | 0, /* RF_RAMP8, LNA 2 */
725 (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */
726 (0 << 10) | 345, /* GAIN_4_2, LNA 3 */
727 (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */
728 (0 << 10) | 200, /* RF_RAMP4, LNA 4 */
731 static const u16 rf_ramp_pwm_cband_8090[] = {
732 345, /* max RF gain in 10th of dB */
733 29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
734 1000, /* ramp_max = maximum X used on the ramp */
735 (35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */
736 (0 << 10) | 1000, /* RF_RAMP4, LNA 1 */
737 (58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */
738 (0 << 10) | 772, /* RF_RAMP6, LNA 2 */
739 (27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */
740 (0 << 10) | 496, /* RF_RAMP8, LNA 3 */
741 (40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */
742 (0 << 10) | 200, /* GAIN_4_2, LNA 4 */
745 static const u16 rf_ramp_pwm_uhf_7090[] = {
746 407, /* max RF gain in 10th of dB */
747 13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
748 529, /* ramp_max = maximum X used on the ramp */
749 (23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
750 (0 << 10) | 176, /* RF_RAMP4, LNA 1 */
751 (63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */
752 (0 << 10) | 529, /* RF_RAMP6, LNA 2 */
753 (48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */
754 (0 << 10) | 400, /* RF_RAMP8, LNA 3 */
755 (29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */
756 (0 << 10) | 316, /* GAIN_4_2, LNA 4 */
759 static const u16 rf_ramp_pwm_uhf_8090[] = {
760 388, /* max RF gain in 10th of dB */
761 26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
762 1008, /* ramp_max = maximum X used on the ramp */
763 (11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
764 (0 << 10) | 369, /* RF_RAMP4, LNA 1 */
765 (41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */
766 (0 << 10) | 1008, /* RF_RAMP6, LNA 2 */
767 (27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */
768 (0 << 10) | 809, /* RF_RAMP8, LNA 3 */
769 (14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */
770 (0 << 10) | 659, /* GAIN_4_2, LNA 4 */
773 /* GENERAL PWM ramp definition for all other Krosus */
774 static const u16 bb_ramp_pwm_normal[] = {
775 500, /* max BB gain in 10th of dB */
776 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
778 (2 << 9) | 0, /* BB_RAMP3 = 21dB */
779 (0 << 9) | 168, /* BB_RAMP4 */
780 (2 << 9) | 168, /* BB_RAMP5 = 29dB */
781 (0 << 9) | 400, /* BB_RAMP6 */
785 /* Currently unused */
786 static const u16 bb_ramp_pwm_boost[] = {
787 550, /* max BB gain in 10th of dB */
788 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
790 (2 << 9) | 0, /* BB_RAMP3 = 26dB */
791 (0 << 9) | 208, /* BB_RAMP4 */
792 (2 << 9) | 208, /* BB_RAMP5 = 29dB */
793 (0 << 9) | 440, /* BB_RAMP6 */
797 static const u16 rf_ramp_pwm_cband[] = {
798 314, /* max RF gain in 10th of dB */
799 33, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
800 1023, /* ramp_max = maximum X used on the ramp */
801 (8 << 10) | 743, /* RF_RAMP3, LNA 1 = 0dB */
802 (0 << 10) | 1023, /* RF_RAMP4, LNA 1 */
803 (15 << 10) | 469, /* RF_RAMP5, LNA 2 = 0dB */
804 (0 << 10) | 742, /* RF_RAMP6, LNA 2 */
805 (9 << 10) | 234, /* RF_RAMP7, LNA 3 = 0dB */
806 (0 << 10) | 468, /* RF_RAMP8, LNA 3 */
807 (9 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
808 (0 << 10) | 233, /* GAIN_4_2, LNA 4 */
811 static const u16 rf_ramp_pwm_vhf[] = {
812 398, /* max RF gain in 10th of dB */
813 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
814 954, /* ramp_max = maximum X used on the ramp */
815 (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
816 (0 << 10) | 290, /* RF_RAMP4, LNA 1 */
817 (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
818 (0 << 10) | 954, /* RF_RAMP6, LNA 2 */
819 (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
820 (0 << 10) | 699, /* RF_RAMP8, LNA 3 */
821 (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
822 (0 << 10) | 580, /* GAIN_4_2, LNA 4 */
825 static const u16 rf_ramp_pwm_uhf[] = {
826 398, /* max RF gain in 10th of dB */
827 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
828 954, /* ramp_max = maximum X used on the ramp */
829 (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */
830 (0 << 10) | 290, /* RF_RAMP4, LNA 1 */
831 (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */
832 (0 << 10) | 954, /* RF_RAMP6, LNA 2 */
833 (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */
834 (0 << 10) | 699, /* RF_RAMP8, LNA 3 */
835 (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */
836 (0 << 10) | 580, /* GAIN_4_2, LNA 4 */
840 /* Currently unused */
841 static const u16 rf_ramp_pwm_sband[] = {
842 253, /* max RF gain in 10th of dB */
843 38, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
845 (4 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.1dB */
846 (0 << 10) | 508, /* RF_RAMP4, LNA 1 */
847 (9 << 10) | 508, /* RF_RAMP5, LNA 2 = 11.2dB */
848 (0 << 10) | 961, /* RF_RAMP6, LNA 2 */
849 (0 << 10) | 0, /* RF_RAMP7, LNA 3 = 0dB */
850 (0 << 10) | 0, /* RF_RAMP8, LNA 3 */
851 (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
852 (0 << 10) | 0, /* GAIN_4_2, LNA 4 */
860 static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val)
865 for (i = 0; i < num; i++) {
866 if (val > slopes[i].range)
867 rest = slopes[i].range;
870 ret += (rest * slopes[i].slope) / slopes[i].range;
876 static const struct slope dib0090_wbd_slopes[3] = {
877 {66, 120}, /* -64,-52: offset - 65 */
878 {600, 170}, /* -52,-35: 65 - 665 */
879 {170, 250}, /* -45,-10: 665 - 835 */
882 static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd)
885 if (wbd < state->wbd_offset)
888 wbd -= state->wbd_offset;
889 /* -64dB is the floor */
890 return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd);
893 static void dib0090_wbd_target(struct dib0090_state *state, u32 rf)
897 /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
899 if (state->current_band == BAND_VHF)
901 #ifndef FIRMWARE_FIREFLY
902 if (state->current_band == BAND_VHF)
903 offset = state->config->wbd_vhf_offset;
904 if (state->current_band == BAND_CBAND)
905 offset = state->config->wbd_cband_offset;
908 state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset);
909 dprintk("wbd-target: %d dB\n", (u32) state->wbd_target);
912 static const int gain_reg_addr[4] = {
913 0x08, 0x0a, 0x0f, 0x01
916 static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force)
919 u16 i, v, gain_reg[4] = { 0 }, gain;
922 if (top_delta < -511)
928 top_delta *= (1 << WBD_ALPHA);
929 gain_delta *= (1 << GAIN_ALPHA);
932 if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit)) /* overflow */
933 state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
935 state->rf_gain_limit += top_delta;
937 if (state->rf_gain_limit < 0) /*underflow */
938 state->rf_gain_limit = 0;
940 /* use gain as a temporary variable and correct current_gain */
941 gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA;
942 if (gain_delta >= ((s16) gain - state->current_gain)) /* overflow */
943 state->current_gain = gain;
945 state->current_gain += gain_delta;
946 /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
947 if (state->current_gain < 0)
948 state->current_gain = 0;
950 /* now split total gain to rf and bb gain */
951 gain = state->current_gain >> GAIN_ALPHA;
953 /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
954 if (gain > (state->rf_gain_limit >> WBD_ALPHA)) {
955 rf = state->rf_gain_limit >> WBD_ALPHA;
957 if (bb > state->bb_ramp[0])
958 bb = state->bb_ramp[0];
959 } else { /* high signal level -> all gains put on RF */
968 /* Start with RF gains */
969 g = state->rf_ramp + 1; /* point on RF LNA1 max gain */
971 for (i = 0; i < 7; i++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
972 if (g[0] == 0 || ref < (g[1] - g[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
973 v = 0; /* force the gain to write for the current amp to be null */
974 else if (ref >= g[1]) /* Gain to set is higher than the high working point of this amp */
975 v = g[2]; /* force this amp to be full gain */
976 else /* compute the value to set to this amp because we are somewhere in his range */
977 v = ((ref - (g[1] - g[0])) * g[2]) / g[0];
979 if (i == 0) /* LNA 1 reg mapping */
981 else if (i == 1) /* LNA 2 reg mapping */
982 gain_reg[0] |= v << 7;
983 else if (i == 2) /* LNA 3 reg mapping */
985 else if (i == 3) /* LNA 4 reg mapping */
986 gain_reg[1] |= v << 7;
987 else if (i == 4) /* CBAND LNA reg mapping */
988 gain_reg[2] = v | state->rf_lt_def;
989 else if (i == 5) /* BB gain 1 reg mapping */
990 gain_reg[3] = v << 3;
991 else if (i == 6) /* BB gain 2 reg mapping */
992 gain_reg[3] |= v << 8;
994 g += 3; /* go to next gain bloc */
996 /* When RF is finished, start with BB */
998 g = state->bb_ramp + 1; /* point on BB gain 1 max gain */
1002 gain_reg[3] |= state->bb_1_def;
1003 gain_reg[3] |= ((bb % 10) * 100) / 125;
1006 dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x\n", rf, bb, rf + bb,
1007 gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]);
1010 /* Write the amplifier regs */
1011 for (i = 0; i < 4; i++) {
1013 if (force || state->gain_reg[i] != v) {
1014 state->gain_reg[i] = v;
1015 dib0090_write_reg(state, gain_reg_addr[i], v);
1020 static void dib0090_set_boost(struct dib0090_state *state, int onoff)
1022 state->bb_1_def &= 0xdfff;
1023 state->bb_1_def |= onoff << 13;
1026 static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg)
1028 state->rf_ramp = cfg;
1031 static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg)
1033 state->rf_ramp = cfg;
1035 dib0090_write_reg(state, 0x2a, 0xffff);
1037 dprintk("total RF gain: %ddB, step: %d\n", (u32) cfg[0], dib0090_read_reg(state, 0x2a));
1039 dib0090_write_regs(state, 0x2c, cfg + 3, 6);
1040 dib0090_write_regs(state, 0x3e, cfg + 9, 2);
1043 static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg)
1045 state->bb_ramp = cfg;
1046 dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
1049 static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg)
1051 state->bb_ramp = cfg;
1053 dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */
1055 dib0090_write_reg(state, 0x33, 0xffff);
1056 dprintk("total BB gain: %ddB, step: %d\n", (u32) cfg[0], dib0090_read_reg(state, 0x33));
1057 dib0090_write_regs(state, 0x35, cfg + 3, 4);
1060 void dib0090_pwm_gain_reset(struct dvb_frontend *fe)
1062 struct dib0090_state *state = fe->tuner_priv;
1063 const u16 *bb_ramp = bb_ramp_pwm_normal; /* default baseband config */
1064 const u16 *rf_ramp = NULL;
1065 u8 en_pwm_rf_mux = 1;
1068 if (state->config->use_pwm_agc) {
1069 if (state->current_band == BAND_CBAND) {
1070 if (state->identity.in_soc) {
1071 bb_ramp = bb_ramp_pwm_normal_socs;
1072 if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
1073 rf_ramp = rf_ramp_pwm_cband_8090;
1074 else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) {
1075 if (state->config->is_dib7090e) {
1076 if (state->rf_ramp == NULL)
1077 rf_ramp = rf_ramp_pwm_cband_7090e_sensitivity;
1079 rf_ramp = state->rf_ramp;
1081 rf_ramp = rf_ramp_pwm_cband_7090p;
1084 rf_ramp = rf_ramp_pwm_cband;
1087 if (state->current_band == BAND_VHF) {
1088 if (state->identity.in_soc) {
1089 bb_ramp = bb_ramp_pwm_normal_socs;
1090 /* rf_ramp = &rf_ramp_pwm_vhf_socs; */ /* TODO */
1092 rf_ramp = rf_ramp_pwm_vhf;
1093 } else if (state->current_band == BAND_UHF) {
1094 if (state->identity.in_soc) {
1095 bb_ramp = bb_ramp_pwm_normal_socs;
1096 if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
1097 rf_ramp = rf_ramp_pwm_uhf_8090;
1098 else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
1099 rf_ramp = rf_ramp_pwm_uhf_7090;
1101 rf_ramp = rf_ramp_pwm_uhf;
1104 dib0090_set_rframp_pwm(state, rf_ramp);
1105 dib0090_set_bbramp_pwm(state, bb_ramp);
1107 /* activate the ramp generator using PWM control */
1109 dprintk("ramp RF gain = %d BAND = %s version = %d\n",
1111 (state->current_band == BAND_CBAND) ? "CBAND" : "NOT CBAND",
1112 state->identity.version & 0x1f);
1114 if (rf_ramp && ((state->rf_ramp && state->rf_ramp[0] == 0) ||
1115 (state->current_band == BAND_CBAND &&
1116 (state->identity.version & 0x1f) <= P1D_E_F))) {
1117 dprintk("DE-Engage mux for direct gain reg control\n");
1120 dprintk("Engage mux for PWM control\n");
1122 dib0090_write_reg(state, 0x32, (en_pwm_rf_mux << 12) | (en_pwm_rf_mux << 11));
1124 /* Set fast servo cutoff to start AGC; 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast*/
1125 if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1)
1126 dib0090_write_reg(state, 0x04, 3);
1128 dib0090_write_reg(state, 0x04, 1);
1129 dib0090_write_reg(state, 0x39, (1 << 10)); /* 0 gain by default */
1132 EXPORT_SYMBOL(dib0090_pwm_gain_reset);
1134 void dib0090_set_dc_servo(struct dvb_frontend *fe, u8 DC_servo_cutoff)
1136 struct dib0090_state *state = fe->tuner_priv;
1137 if (DC_servo_cutoff < 4)
1138 dib0090_write_reg(state, 0x04, DC_servo_cutoff);
1140 EXPORT_SYMBOL(dib0090_set_dc_servo);
1142 static u32 dib0090_get_slow_adc_val(struct dib0090_state *state)
1144 u16 adc_val = dib0090_read_reg(state, 0x1d);
1145 if (state->identity.in_soc)
1150 int dib0090_gain_control(struct dvb_frontend *fe)
1152 struct dib0090_state *state = fe->tuner_priv;
1153 enum frontend_tune_state *tune_state = &state->tune_state;
1157 u8 apply_gain_immediatly = 1;
1158 s16 wbd_error = 0, adc_error = 0;
1160 if (*tune_state == CT_AGC_START) {
1161 state->agc_freeze = 0;
1162 dib0090_write_reg(state, 0x04, 0x0);
1164 #ifdef CONFIG_BAND_SBAND
1165 if (state->current_band == BAND_SBAND) {
1166 dib0090_set_rframp(state, rf_ramp_sband);
1167 dib0090_set_bbramp(state, bb_ramp_boost);
1170 #ifdef CONFIG_BAND_VHF
1171 if (state->current_band == BAND_VHF && !state->identity.p1g) {
1172 dib0090_set_rframp(state, rf_ramp_pwm_vhf);
1173 dib0090_set_bbramp(state, bb_ramp_pwm_normal);
1176 #ifdef CONFIG_BAND_CBAND
1177 if (state->current_band == BAND_CBAND && !state->identity.p1g) {
1178 dib0090_set_rframp(state, rf_ramp_pwm_cband);
1179 dib0090_set_bbramp(state, bb_ramp_pwm_normal);
1182 if ((state->current_band == BAND_CBAND || state->current_band == BAND_VHF) && state->identity.p1g) {
1183 dib0090_set_rframp(state, rf_ramp_pwm_cband_7090p);
1184 dib0090_set_bbramp(state, bb_ramp_pwm_normal_socs);
1186 dib0090_set_rframp(state, rf_ramp_pwm_uhf);
1187 dib0090_set_bbramp(state, bb_ramp_pwm_normal);
1190 dib0090_write_reg(state, 0x32, 0);
1191 dib0090_write_reg(state, 0x39, 0);
1193 dib0090_wbd_target(state, state->current_rf);
1195 state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
1196 state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA;
1198 *tune_state = CT_AGC_STEP_0;
1199 } else if (!state->agc_freeze) {
1200 s16 wbd = 0, i, cnt;
1203 wbd_val = dib0090_get_slow_adc_val(state);
1205 if (*tune_state == CT_AGC_STEP_0)
1210 for (i = 0; i < cnt; i++) {
1211 wbd_val = dib0090_get_slow_adc_val(state);
1212 wbd += dib0090_wbd_to_db(state, wbd_val);
1215 wbd_error = state->wbd_target - wbd;
1217 if (*tune_state == CT_AGC_STEP_0) {
1218 if (wbd_error < 0 && state->rf_gain_limit > 0 && !state->identity.p1g) {
1219 #ifdef CONFIG_BAND_CBAND
1220 /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
1221 u8 ltg2 = (state->rf_lt_def >> 10) & 0x7;
1222 if (state->current_band == BAND_CBAND && ltg2) {
1224 state->rf_lt_def &= ltg2 << 10; /* reduce in 3 steps from 7 to 0 */
1228 state->agc_step = 0;
1229 *tune_state = CT_AGC_STEP_1;
1232 /* calc the adc power */
1233 adc = state->config->get_adc_power(fe);
1234 adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21; /* included in [0:-700] */
1236 adc_error = (s16) (((s32) ADC_TARGET) - adc);
1237 #ifdef CONFIG_STANDARD_DAB
1238 if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB)
1241 #ifdef CONFIG_STANDARD_DVBT
1242 if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT &&
1243 (state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16))
1246 #ifdef CONFIG_SYS_ISDBT
1247 if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count >
1250 ((state->fe->dtv_property_cache.layer[0].modulation ==
1252 || (state->fe->dtv_property_cache.
1253 layer[0].modulation == QAM_16)))
1255 ((state->fe->dtv_property_cache.layer[1].segment_count >
1258 ((state->fe->dtv_property_cache.layer[1].modulation ==
1260 || (state->fe->dtv_property_cache.
1261 layer[1].modulation == QAM_16)))
1263 ((state->fe->dtv_property_cache.layer[2].segment_count >
1266 ((state->fe->dtv_property_cache.layer[2].modulation ==
1268 || (state->fe->dtv_property_cache.
1269 layer[2].modulation == QAM_16)))
1275 if (*tune_state == CT_AGC_STEP_1) { /* quickly go to the correct range of the ADC power */
1276 if (abs(adc_error) < 50 || state->agc_step++ > 5) {
1278 #ifdef CONFIG_STANDARD_DAB
1279 if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) {
1280 dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
1281 dib0090_write_reg(state, 0x04, 0x0);
1285 dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
1286 dib0090_write_reg(state, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
1289 *tune_state = CT_AGC_STOP;
1292 /* everything higher than or equal to CT_AGC_STOP means tracking */
1293 ret = 100; /* 10ms interval */
1294 apply_gain_immediatly = 0;
1299 ("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
1300 (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
1301 (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA));
1306 if (!state->agc_freeze)
1307 dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly);
1311 EXPORT_SYMBOL(dib0090_gain_control);
1313 void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt)
1315 struct dib0090_state *state = fe->tuner_priv;
1317 *rf = state->gain[0];
1319 *bb = state->gain[1];
1321 *rf_gain_limit = state->rf_gain_limit;
1323 *rflt = (state->rf_lt_def >> 10) & 0x7;
1326 EXPORT_SYMBOL(dib0090_get_current_gain);
1328 u16 dib0090_get_wbd_target(struct dvb_frontend *fe)
1330 struct dib0090_state *state = fe->tuner_priv;
1331 u32 f_MHz = state->fe->dtv_property_cache.frequency / 1000000;
1332 s32 current_temp = state->temperature;
1333 s32 wbd_thot, wbd_tcold;
1334 const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
1336 while (f_MHz > wbd->max_freq)
1339 dprintk("using wbd-table-entry with max freq %d\n", wbd->max_freq);
1341 if (current_temp < 0)
1343 if (current_temp > 128)
1346 state->wbdmux &= ~(7 << 13);
1347 if (wbd->wbd_gain != 0)
1348 state->wbdmux |= (wbd->wbd_gain << 13);
1350 state->wbdmux |= (4 << 13);
1352 dib0090_write_reg(state, 0x10, state->wbdmux);
1354 wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6);
1355 wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6);
1357 wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7;
1359 state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold);
1360 dprintk("wbd-target: %d dB\n", (u32) state->wbd_target);
1361 dprintk("wbd offset applied is %d\n", wbd_tcold);
1363 return state->wbd_offset + wbd_tcold;
1365 EXPORT_SYMBOL(dib0090_get_wbd_target);
1367 u16 dib0090_get_wbd_offset(struct dvb_frontend *fe)
1369 struct dib0090_state *state = fe->tuner_priv;
1370 return state->wbd_offset;
1372 EXPORT_SYMBOL(dib0090_get_wbd_offset);
1374 int dib0090_set_switch(struct dvb_frontend *fe, u8 sw1, u8 sw2, u8 sw3)
1376 struct dib0090_state *state = fe->tuner_priv;
1378 dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xfff8)
1379 | ((sw3 & 1) << 2) | ((sw2 & 1) << 1) | (sw1 & 1));
1383 EXPORT_SYMBOL(dib0090_set_switch);
1385 int dib0090_set_vga(struct dvb_frontend *fe, u8 onoff)
1387 struct dib0090_state *state = fe->tuner_priv;
1389 dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x7fff)
1390 | ((onoff & 1) << 15));
1393 EXPORT_SYMBOL(dib0090_set_vga);
1395 int dib0090_update_rframp_7090(struct dvb_frontend *fe, u8 cfg_sensitivity)
1397 struct dib0090_state *state = fe->tuner_priv;
1399 if ((!state->identity.p1g) || (!state->identity.in_soc)
1400 || ((state->identity.version != SOC_7090_P1G_21R1)
1401 && (state->identity.version != SOC_7090_P1G_11R1))) {
1402 dprintk("%s() function can only be used for dib7090P\n", __func__);
1406 if (cfg_sensitivity)
1407 state->rf_ramp = rf_ramp_pwm_cband_7090e_sensitivity;
1409 state->rf_ramp = rf_ramp_pwm_cband_7090e_aci;
1410 dib0090_pwm_gain_reset(fe);
1414 EXPORT_SYMBOL(dib0090_update_rframp_7090);
1416 static const u16 dib0090_defaults[] = {
1456 EN_UHF | EN_CRYSTAL,
1464 static const u16 dib0090_p1g_additionnal_defaults[] = {
1479 static void dib0090_set_default_config(struct dib0090_state *state, const u16 * n)
1483 l = pgm_read_word(n++);
1485 r = pgm_read_word(n++);
1487 dib0090_write_reg(state, r, pgm_read_word(n++));
1490 l = pgm_read_word(n++);
1494 #define CAP_VALUE_MIN (u8) 9
1495 #define CAP_VALUE_MAX (u8) 40
1496 #define HR_MIN (u8) 25
1497 #define HR_MAX (u8) 40
1498 #define POLY_MIN (u8) 0
1499 #define POLY_MAX (u8) 8
1501 static void dib0090_set_EFUSE(struct dib0090_state *state)
1507 e2 = dib0090_read_reg(state, 0x26);
1508 e4 = dib0090_read_reg(state, 0x28);
1510 if ((state->identity.version == P1D_E_F) ||
1511 (state->identity.version == P1G) || (e2 == 0xffff)) {
1513 dib0090_write_reg(state, 0x22, 0x10);
1514 cal = (dib0090_read_reg(state, 0x22) >> 6) & 0x3ff;
1516 if ((cal < 670) || (cal == 1023))
1518 n = 165 - ((cal * 10)>>6) ;
1519 e2 = e4 = (3<<12) | (34<<6) | (n);
1523 e2 &= e4; /* Remove the redundancy */
1527 n = (e2 >> 12) & 0xf;
1528 h = (e2 >> 6) & 0x3f;
1530 if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN))
1534 if ((h >= HR_MAX) || (h <= HR_MIN))
1536 if ((n >= POLY_MAX) || (n <= POLY_MIN))
1539 dib0090_write_reg(state, 0x13, (h << 10));
1540 e2 = (n << 11) | ((h >> 2)<<6) | c;
1541 dib0090_write_reg(state, 0x2, e2); /* Load the BB_2 */
1545 static int dib0090_reset(struct dvb_frontend *fe)
1547 struct dib0090_state *state = fe->tuner_priv;
1549 dib0090_reset_digital(fe, state->config);
1550 if (dib0090_identify(fe) < 0)
1553 #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
1554 if (!(state->identity.version & 0x1)) /* it is P1B - reset is already done */
1558 if (!state->identity.in_soc) {
1559 if ((dib0090_read_reg(state, 0x1a) >> 5) & 0x2)
1560 dib0090_write_reg(state, 0x1b, (EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL));
1562 dib0090_write_reg(state, 0x1b, (EN_DIGCLK | EN_PLL | EN_CRYSTAL));
1565 dib0090_set_default_config(state, dib0090_defaults);
1567 if (state->identity.in_soc)
1568 dib0090_write_reg(state, 0x18, 0x2910); /* charge pump current = 0 */
1570 if (state->identity.p1g)
1571 dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults);
1573 /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/
1574 if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc))
1575 dib0090_set_EFUSE(state);
1577 /* Congigure in function of the crystal */
1578 if (state->config->force_crystal_mode != 0)
1579 dib0090_write_reg(state, 0x14,
1580 state->config->force_crystal_mode & 3);
1581 else if (state->config->io.clock_khz >= 24000)
1582 dib0090_write_reg(state, 0x14, 1);
1584 dib0090_write_reg(state, 0x14, 2);
1585 dprintk("Pll lock : %d\n", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1);
1587 state->calibrate = DC_CAL | WBD_CAL | TEMP_CAL; /* enable iq-offset-calibration and wbd-calibration when tuning next time */
1592 #define steps(u) (((u) > 15) ? ((u)-16) : (u))
1593 #define INTERN_WAIT 10
1594 static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1596 int ret = INTERN_WAIT * 10;
1598 switch (*tune_state) {
1599 case CT_TUNER_STEP_2:
1600 /* Turns to positive */
1601 dib0090_write_reg(state, 0x1f, 0x7);
1602 *tune_state = CT_TUNER_STEP_3;
1605 case CT_TUNER_STEP_3:
1606 state->adc_diff = dib0090_read_reg(state, 0x1d);
1608 /* Turns to negative */
1609 dib0090_write_reg(state, 0x1f, 0x4);
1610 *tune_state = CT_TUNER_STEP_4;
1613 case CT_TUNER_STEP_4:
1614 state->adc_diff -= dib0090_read_reg(state, 0x1d);
1615 *tune_state = CT_TUNER_STEP_5;
1626 struct dc_calibration {
1634 static const struct dc_calibration dc_table[] = {
1635 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1636 {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
1637 {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
1638 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1639 {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
1640 {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
1644 static const struct dc_calibration dc_p1g_table[] = {
1645 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1646 /* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
1647 {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1},
1648 {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0},
1649 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1650 {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1},
1651 {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0},
1655 static void dib0090_set_trim(struct dib0090_state *state)
1659 if (state->dc->addr == 0x07)
1664 *val &= ~(0x1f << state->dc->offset);
1665 *val |= state->step << state->dc->offset;
1667 dib0090_write_reg(state, state->dc->addr, *val);
1670 static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1675 switch (*tune_state) {
1676 case CT_TUNER_START:
1677 dprintk("Start DC offset calibration");
1679 /* force vcm2 = 0.8V */
1681 state->bb7 = 0x040d;
1683 /* the LNA AND LO are off */
1684 reg = dib0090_read_reg(state, 0x24) & 0x0ffb; /* shutdown lna and lo */
1685 dib0090_write_reg(state, 0x24, reg);
1687 state->wbdmux = dib0090_read_reg(state, 0x10);
1688 dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3);
1689 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
1691 state->dc = dc_table;
1693 if (state->identity.p1g)
1694 state->dc = dc_p1g_table;
1697 case CT_TUNER_STEP_0:
1698 dprintk("Start/continue DC calibration for %s path\n",
1699 (state->dc->i == 1) ? "I" : "Q");
1700 dib0090_write_reg(state, 0x01, state->dc->bb1);
1701 dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7));
1704 state->min_adc_diff = 1023;
1705 *tune_state = CT_TUNER_STEP_1;
1709 case CT_TUNER_STEP_1:
1710 dib0090_set_trim(state);
1711 *tune_state = CT_TUNER_STEP_2;
1714 case CT_TUNER_STEP_2:
1715 case CT_TUNER_STEP_3:
1716 case CT_TUNER_STEP_4:
1717 ret = dib0090_get_offset(state, tune_state);
1720 case CT_TUNER_STEP_5: /* found an offset */
1721 dprintk("adc_diff = %d, current step= %d\n", (u32) state->adc_diff, state->step);
1722 if (state->step == 0 && state->adc_diff < 0) {
1723 state->min_adc_diff = -1023;
1724 dprintk("Change of sign of the minimum adc diff\n");
1727 dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d\n", state->adc_diff, state->min_adc_diff, state->step);
1729 /* first turn for this frequency */
1730 if (state->step == 0) {
1731 if (state->dc->pga && state->adc_diff < 0)
1733 if (state->dc->pga == 0 && state->adc_diff > 0)
1737 /* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */
1738 if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) {
1739 /* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
1741 state->min_adc_diff = state->adc_diff;
1742 *tune_state = CT_TUNER_STEP_1;
1744 /* the minimum was what we have seen in the step before */
1745 if (abs(state->adc_diff) > abs(state->min_adc_diff)) {
1746 dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step\n", state->adc_diff, state->min_adc_diff);
1750 dib0090_set_trim(state);
1751 dprintk("BB Offset Cal, BBreg=%u,Offset=%d,Value Set=%d\n",
1752 state->dc->addr, state->adc_diff, state->step);
1755 if (state->dc->addr == 0) /* done */
1756 *tune_state = CT_TUNER_STEP_6;
1758 *tune_state = CT_TUNER_STEP_0;
1763 case CT_TUNER_STEP_6:
1764 dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008);
1765 dib0090_write_reg(state, 0x1f, 0x7);
1766 *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
1767 state->calibrate &= ~DC_CAL;
1776 static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
1779 const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
1781 switch (*tune_state) {
1782 case CT_TUNER_START:
1783 while (state->current_rf / 1000 > wbd->max_freq)
1785 if (wbd->wbd_gain != 0)
1786 wbd_gain = wbd->wbd_gain;
1789 #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
1790 if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND))
1795 if (wbd_gain == state->wbd_calibration_gain) { /* the WBD calibration has already been done */
1796 *tune_state = CT_TUNER_START;
1797 state->calibrate &= ~WBD_CAL;
1801 dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3));
1803 dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1)));
1804 *tune_state = CT_TUNER_STEP_0;
1805 state->wbd_calibration_gain = wbd_gain;
1806 return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
1808 case CT_TUNER_STEP_0:
1809 state->wbd_offset = dib0090_get_slow_adc_val(state);
1810 dprintk("WBD calibration offset = %d\n", state->wbd_offset);
1811 *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */
1812 state->calibrate &= ~WBD_CAL;
1821 static void dib0090_set_bandwidth(struct dib0090_state *state)
1825 if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000)
1827 else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000)
1829 else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000)
1834 state->bb_1_def &= 0x3fff;
1835 state->bb_1_def |= tmp;
1837 dib0090_write_reg(state, 0x01, state->bb_1_def); /* be sure that we have the right bb-filter */
1839 dib0090_write_reg(state, 0x03, 0x6008); /* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */
1840 dib0090_write_reg(state, 0x04, 0x1); /* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */
1841 if (state->identity.in_soc) {
1842 dib0090_write_reg(state, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */
1844 dib0090_write_reg(state, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f)); /* 22 = cap_value */
1845 dib0090_write_reg(state, 0x05, 0xabcd); /* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */
1849 static const struct dib0090_pll dib0090_pll_table[] = {
1850 #ifdef CONFIG_BAND_CBAND
1851 {56000, 0, 9, 48, 6},
1852 {70000, 1, 9, 48, 6},
1853 {87000, 0, 8, 32, 4},
1854 {105000, 1, 8, 32, 4},
1855 {115000, 0, 7, 24, 6},
1856 {140000, 1, 7, 24, 6},
1857 {170000, 0, 6, 16, 4},
1859 #ifdef CONFIG_BAND_VHF
1860 {200000, 1, 6, 16, 4},
1861 {230000, 0, 5, 12, 6},
1862 {280000, 1, 5, 12, 6},
1863 {340000, 0, 4, 8, 4},
1864 {380000, 1, 4, 8, 4},
1865 {450000, 0, 3, 6, 6},
1867 #ifdef CONFIG_BAND_UHF
1868 {580000, 1, 3, 6, 6},
1869 {700000, 0, 2, 4, 4},
1870 {860000, 1, 2, 4, 4},
1872 #ifdef CONFIG_BAND_LBAND
1873 {1800000, 1, 0, 2, 4},
1875 #ifdef CONFIG_BAND_SBAND
1876 {2900000, 0, 14, 1, 4},
1880 static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = {
1882 #ifdef CONFIG_BAND_CBAND
1883 {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1884 {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1885 {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1887 #ifdef CONFIG_BAND_UHF
1888 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1889 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1890 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1891 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1892 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1893 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1895 #ifdef CONFIG_BAND_LBAND
1896 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1897 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1898 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1900 #ifdef CONFIG_BAND_SBAND
1901 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1902 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1906 static const struct dib0090_tuning dib0090_tuning_table[] = {
1908 #ifdef CONFIG_BAND_CBAND
1909 {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
1911 #ifdef CONFIG_BAND_VHF
1912 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1913 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1914 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1916 #ifdef CONFIG_BAND_UHF
1917 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1918 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1919 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1920 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1921 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1922 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1924 #ifdef CONFIG_BAND_LBAND
1925 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1926 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1927 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1929 #ifdef CONFIG_BAND_SBAND
1930 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1931 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1935 static const struct dib0090_tuning dib0090_p1g_tuning_table[] = {
1936 #ifdef CONFIG_BAND_CBAND
1937 {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB},
1939 #ifdef CONFIG_BAND_VHF
1940 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1941 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1942 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
1944 #ifdef CONFIG_BAND_UHF
1945 {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1946 {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1947 {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1948 {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1949 {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1950 {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1951 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
1953 #ifdef CONFIG_BAND_LBAND
1954 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1955 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1956 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
1958 #ifdef CONFIG_BAND_SBAND
1959 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
1960 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
1964 static const struct dib0090_pll dib0090_p1g_pll_table[] = {
1965 #ifdef CONFIG_BAND_CBAND
1966 {57000, 0, 11, 48, 6},
1967 {70000, 1, 11, 48, 6},
1968 {86000, 0, 10, 32, 4},
1969 {105000, 1, 10, 32, 4},
1970 {115000, 0, 9, 24, 6},
1971 {140000, 1, 9, 24, 6},
1972 {170000, 0, 8, 16, 4},
1974 #ifdef CONFIG_BAND_VHF
1975 {200000, 1, 8, 16, 4},
1976 {230000, 0, 7, 12, 6},
1977 {280000, 1, 7, 12, 6},
1978 {340000, 0, 6, 8, 4},
1979 {380000, 1, 6, 8, 4},
1980 {455000, 0, 5, 6, 6},
1982 #ifdef CONFIG_BAND_UHF
1983 {580000, 1, 5, 6, 6},
1984 {680000, 0, 4, 4, 4},
1985 {860000, 1, 4, 4, 4},
1987 #ifdef CONFIG_BAND_LBAND
1988 {1800000, 1, 2, 2, 4},
1990 #ifdef CONFIG_BAND_SBAND
1991 {2900000, 0, 1, 1, 6},
1995 static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = {
1996 #ifdef CONFIG_BAND_CBAND
1997 {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
1998 {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
1999 {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB},
2001 #ifdef CONFIG_BAND_UHF
2002 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2003 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2004 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2005 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2006 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2007 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
2009 #ifdef CONFIG_BAND_LBAND
2010 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2011 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2012 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
2014 #ifdef CONFIG_BAND_SBAND
2015 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
2016 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
2020 static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = {
2021 #ifdef CONFIG_BAND_CBAND
2022 {300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2023 {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2024 {570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2025 {858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB},
2029 static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_sensitivity[] = {
2030 #ifdef CONFIG_BAND_CBAND
2031 { 300000, 0 , 3, 0x8105, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2032 { 380000, 0 , 10, 0x810F, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2033 { 600000, 0 , 10, 0x815E, 0x280, 0x2d12, 0xb84e, EN_CAB },
2034 { 660000, 0 , 5, 0x85E3, 0x280, 0x2d12, 0xb84e, EN_CAB },
2035 { 720000, 0 , 5, 0x852E, 0x280, 0x2d12, 0xb84e, EN_CAB },
2036 { 860000, 0 , 4, 0x85E5, 0x280, 0x2d12, 0xb84e, EN_CAB },
2040 int dib0090_update_tuning_table_7090(struct dvb_frontend *fe,
2043 struct dib0090_state *state = fe->tuner_priv;
2044 const struct dib0090_tuning *tune =
2045 dib0090_tuning_table_cband_7090e_sensitivity;
2046 static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_aci[] = {
2047 { 300000, 0 , 3, 0x8165, 0x2c0, 0x2d12, 0xb84e, EN_CAB },
2048 { 650000, 0 , 4, 0x815B, 0x280, 0x2d12, 0xb84e, EN_CAB },
2049 { 860000, 0 , 5, 0x84EF, 0x280, 0x2d12, 0xb84e, EN_CAB },
2052 if ((!state->identity.p1g) || (!state->identity.in_soc)
2053 || ((state->identity.version != SOC_7090_P1G_21R1)
2054 && (state->identity.version != SOC_7090_P1G_11R1))) {
2055 dprintk("%s() function can only be used for dib7090\n", __func__);
2059 if (cfg_sensitivity)
2060 tune = dib0090_tuning_table_cband_7090e_sensitivity;
2062 tune = dib0090_tuning_table_cband_7090e_aci;
2064 while (state->rf_request > tune->max_freq)
2067 dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x8000)
2068 | (tune->lna_bias & 0x7fff));
2069 dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xf83f)
2070 | ((tune->lna_tune << 6) & 0x07c0));
2073 EXPORT_SYMBOL(dib0090_update_tuning_table_7090);
2075 static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tune_state *tune_state)
2083 u8 force_soft_search = 0;
2085 if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1)
2086 force_soft_search = 1;
2088 if (*tune_state == CT_TUNER_START) {
2089 dprintk("Start Captrim search : %s\n",
2090 (force_soft_search == 1) ? "FORCE SOFT SEARCH" : "AUTO");
2091 dib0090_write_reg(state, 0x10, 0x2B1);
2092 dib0090_write_reg(state, 0x1e, 0x0032);
2094 if (!state->tuner_is_tuned) {
2095 /* prepare a complete captrim */
2096 if (!state->identity.p1g || force_soft_search)
2097 state->step = state->captrim = state->fcaptrim = 64;
2099 state->current_rf = state->rf_request;
2100 } else { /* we are already tuned to this frequency - the configuration is correct */
2101 if (!state->identity.p1g || force_soft_search) {
2102 /* do a minimal captrim even if the frequency has not changed */
2104 state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f;
2107 state->adc_diff = 3000;
2108 *tune_state = CT_TUNER_STEP_0;
2110 } else if (*tune_state == CT_TUNER_STEP_0) {
2111 if (state->identity.p1g && !force_soft_search) {
2114 dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1);
2115 dib0090_read_reg(state, 0x40);
2119 dib0090_write_reg(state, 0x18, lo4 | state->captrim);
2121 if (state->identity.in_soc)
2124 *tune_state = CT_TUNER_STEP_1;
2126 } else if (*tune_state == CT_TUNER_STEP_1) {
2127 if (state->identity.p1g && !force_soft_search) {
2128 dib0090_write_reg(state, 0x40, 0x18c | (0 << 1) | 0);
2129 dib0090_read_reg(state, 0x40);
2131 state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7F;
2132 dprintk("***Final Captrim= 0x%x\n", state->fcaptrim);
2133 *tune_state = CT_TUNER_STEP_3;
2136 /* MERGE for all krosus before P1G */
2137 adc = dib0090_get_slow_adc_val(state);
2138 dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV\n", (u32) state->captrim, (u32) adc, (u32) (adc) * (u32) 1800 / (u32) 1024);
2140 if (state->rest == 0 || state->identity.in_soc) { /* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */
2145 if (adc >= adc_target) {
2149 adc = adc_target - adc;
2153 if (adc < state->adc_diff) {
2154 dprintk("CAPTRIM=%d is closer to target (%d/%d)\n", (u32) state->captrim, (u32) adc, (u32) state->adc_diff);
2155 state->adc_diff = adc;
2156 state->fcaptrim = state->captrim;
2159 state->captrim += step_sign * state->step;
2160 if (state->step >= 1)
2161 *tune_state = CT_TUNER_STEP_0;
2163 *tune_state = CT_TUNER_STEP_2;
2167 } else if (*tune_state == CT_TUNER_STEP_2) { /* this step is only used by krosus < P1G */
2168 /*write the final cptrim config */
2169 dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim);
2171 *tune_state = CT_TUNER_STEP_3;
2173 } else if (*tune_state == CT_TUNER_STEP_3) {
2174 state->calibrate &= ~CAPTRIM_CAL;
2175 *tune_state = CT_TUNER_STEP_0;
2181 static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tune_state *tune_state)
2186 switch (*tune_state) {
2187 case CT_TUNER_START:
2188 state->wbdmux = dib0090_read_reg(state, 0x10);
2189 dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3));
2191 state->bias = dib0090_read_reg(state, 0x13);
2192 dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8));
2194 *tune_state = CT_TUNER_STEP_0;
2195 /* wait for the WBDMUX to switch and for the ADC to sample */
2198 case CT_TUNER_STEP_0:
2199 state->adc_diff = dib0090_get_slow_adc_val(state);
2200 dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8));
2201 *tune_state = CT_TUNER_STEP_1;
2204 case CT_TUNER_STEP_1:
2205 val = dib0090_get_slow_adc_val(state);
2206 state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55;
2208 dprintk("temperature: %d C\n", state->temperature - 30);
2210 *tune_state = CT_TUNER_STEP_2;
2213 case CT_TUNER_STEP_2:
2214 dib0090_write_reg(state, 0x13, state->bias);
2215 dib0090_write_reg(state, 0x10, state->wbdmux); /* write back original WBDMUX */
2217 *tune_state = CT_TUNER_START;
2218 state->calibrate &= ~TEMP_CAL;
2219 if (state->config->analog_output == 0)
2220 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
2231 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2232 static int dib0090_tune(struct dvb_frontend *fe)
2234 struct dib0090_state *state = fe->tuner_priv;
2235 const struct dib0090_tuning *tune = state->current_tune_table_index;
2236 const struct dib0090_pll *pll = state->current_pll_table_index;
2237 enum frontend_tune_state *tune_state = &state->tune_state;
2239 u16 lo5, lo6, Den, tmp;
2240 u32 FBDiv, Rest, FREF, VCOF_kHz = 0;
2241 int ret = 10; /* 1ms is the default delay most of the time */
2244 /************************* VCO ***************************/
2245 /* Default values for FG */
2246 /* from these are needed : */
2247 /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */
2249 /* in any case we first need to do a calibration if needed */
2250 if (*tune_state == CT_TUNER_START) {
2251 /* deactivate DataTX before some calibrations */
2252 if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL))
2253 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14));
2255 /* Activate DataTX in case a calibration has been done before */
2256 if (state->config->analog_output == 0)
2257 dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14));
2260 if (state->calibrate & DC_CAL)
2261 return dib0090_dc_offset_calibration(state, tune_state);
2262 else if (state->calibrate & WBD_CAL) {
2263 if (state->current_rf == 0)
2264 state->current_rf = state->fe->dtv_property_cache.frequency / 1000;
2265 return dib0090_wbd_calibration(state, tune_state);
2266 } else if (state->calibrate & TEMP_CAL)
2267 return dib0090_get_temperature(state, tune_state);
2268 else if (state->calibrate & CAPTRIM_CAL)
2269 return dib0090_captrim_search(state, tune_state);
2271 if (*tune_state == CT_TUNER_START) {
2272 /* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */
2273 if (state->config->use_pwm_agc && state->identity.in_soc) {
2274 tmp = dib0090_read_reg(state, 0x39);
2275 if ((tmp >> 10) & 0x1)
2276 dib0090_write_reg(state, 0x39, tmp & ~(1 << 10));
2279 state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000);
2281 state->fe->dtv_property_cache.frequency / 1000 + (state->current_band ==
2282 BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->
2283 freq_offset_khz_vhf);
2285 /* in ISDB-T 1seg we shift tuning frequency */
2286 if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1
2287 && state->fe->dtv_property_cache.isdbt_partial_reception == 0)) {
2288 const struct dib0090_low_if_offset_table *LUT_offset = state->config->low_if;
2289 u8 found_offset = 0;
2290 u32 margin_khz = 100;
2292 if (LUT_offset != NULL) {
2293 while (LUT_offset->RF_freq != 0xffff) {
2294 if (((state->rf_request > (LUT_offset->RF_freq - margin_khz))
2295 && (state->rf_request < (LUT_offset->RF_freq + margin_khz)))
2296 && LUT_offset->std == state->fe->dtv_property_cache.delivery_system) {
2297 state->rf_request += LUT_offset->offset_khz;
2305 if (found_offset == 0)
2306 state->rf_request += 400;
2308 if (state->current_rf != state->rf_request || (state->current_standard != state->fe->dtv_property_cache.delivery_system)) {
2309 state->tuner_is_tuned = 0;
2310 state->current_rf = 0;
2311 state->current_standard = 0;
2313 tune = dib0090_tuning_table;
2314 if (state->identity.p1g)
2315 tune = dib0090_p1g_tuning_table;
2317 tmp = (state->identity.version >> 5) & 0x7;
2319 if (state->identity.in_soc) {
2320 if (state->config->force_cband_input) { /* Use the CBAND input for all band */
2321 if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF
2322 || state->current_band & BAND_UHF) {
2323 state->current_band = BAND_CBAND;
2324 if (state->config->is_dib7090e)
2325 tune = dib0090_tuning_table_cband_7090e_sensitivity;
2327 tune = dib0090_tuning_table_cband_7090;
2329 } else { /* Use the CBAND input for all band under UHF */
2330 if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF) {
2331 state->current_band = BAND_CBAND;
2332 if (state->config->is_dib7090e)
2333 tune = dib0090_tuning_table_cband_7090e_sensitivity;
2335 tune = dib0090_tuning_table_cband_7090;
2339 if (tmp == 0x4 || tmp == 0x7) {
2340 /* CBAND tuner version for VHF */
2341 if (state->current_band == BAND_FM || state->current_band == BAND_CBAND || state->current_band == BAND_VHF) {
2342 state->current_band = BAND_CBAND; /* Force CBAND */
2344 tune = dib0090_tuning_table_fm_vhf_on_cband;
2345 if (state->identity.p1g)
2346 tune = dib0090_p1g_tuning_table_fm_vhf_on_cband;
2350 pll = dib0090_pll_table;
2351 if (state->identity.p1g)
2352 pll = dib0090_p1g_pll_table;
2354 /* Look for the interval */
2355 while (state->rf_request > tune->max_freq)
2357 while (state->rf_request > pll->max_freq)
2360 state->current_tune_table_index = tune;
2361 state->current_pll_table_index = pll;
2363 dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim));
2365 VCOF_kHz = (pll->hfdiv * state->rf_request) * 2;
2367 FREF = state->config->io.clock_khz;
2368 if (state->config->fref_clock_ratio != 0)
2369 FREF /= state->config->fref_clock_ratio;
2371 FBDiv = (VCOF_kHz / pll->topresc / FREF);
2372 Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF;
2376 else if (Rest < 2 * LPF)
2378 else if (Rest > (FREF - LPF)) {
2381 } else if (Rest > (FREF - 2 * LPF))
2382 Rest = FREF - 2 * LPF;
2383 Rest = (Rest * 6528) / (FREF / 10);
2386 /* external loop filter, otherwise:
2387 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
2398 else if (state->config->analog_output)
2404 if (state->identity.p1g) { /* Bias is done automatically in P1G */
2405 if (state->identity.in_soc) {
2406 if (state->identity.version == SOC_8090_P1G_11R1)
2414 lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */
2416 if (!state->config->io.pll_int_loop_filt) {
2417 if (state->identity.in_soc)
2419 else if (state->identity.p1g || (Rest == 0))
2424 lo6 = (state->config->io.pll_int_loop_filt << 3);
2429 lo6 |= (1 << 2) | 2;
2432 dib0090_write_reg(state, 0x15, (u16) FBDiv);
2433 if (state->config->fref_clock_ratio != 0)
2434 dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio);
2436 dib0090_write_reg(state, 0x16, (Den << 8) | 1);
2437 dib0090_write_reg(state, 0x17, (u16) Rest);
2438 dib0090_write_reg(state, 0x19, lo5);
2439 dib0090_write_reg(state, 0x1c, lo6);
2441 lo6 = tune->tuner_enable;
2442 if (state->config->analog_output)
2443 lo6 = (lo6 & 0xff9f) | 0x2;
2445 dib0090_write_reg(state, 0x24, lo6 | EN_LO | state->config->use_pwm_agc * EN_CRYSTAL);
2449 state->current_rf = state->rf_request;
2450 state->current_standard = state->fe->dtv_property_cache.delivery_system;
2453 state->calibrate = CAPTRIM_CAL; /* captrim search now */
2456 else if (*tune_state == CT_TUNER_STEP_0) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
2457 const struct dib0090_wbd_slope *wbd = state->current_wbd_table;
2459 while (state->current_rf / 1000 > wbd->max_freq)
2462 dib0090_write_reg(state, 0x1e, 0x07ff);
2463 dprintk("Final Captrim: %d\n", (u32) state->fcaptrim);
2464 dprintk("HFDIV code: %d\n", (u32) pll->hfdiv_code);
2465 dprintk("VCO = %d\n", (u32) pll->vco_band);
2466 dprintk("VCOF in kHz: %d ((%d*%d) << 1))\n", (u32) ((pll->hfdiv * state->rf_request) * 2), (u32) pll->hfdiv, (u32) state->rf_request);
2467 dprintk("REFDIV: %d, FREF: %d\n", (u32) 1, (u32) state->config->io.clock_khz);
2468 dprintk("FBDIV: %d, Rest: %d\n", (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17));
2469 dprintk("Num: %d, Den: %d, SD: %d\n", (u32) dib0090_read_reg(state, 0x17), (u32) (dib0090_read_reg(state, 0x16) >> 8),
2470 (u32) dib0090_read_reg(state, 0x1c) & 0x3);
2472 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2476 if (wbd->wbd_gain != 0)
2479 state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1));
2480 dib0090_write_reg(state, 0x10, state->wbdmux);
2482 if ((tune->tuner_enable == EN_CAB) && state->identity.p1g) {
2483 dprintk("P1G : The cable band is selected and lna_tune = %d\n", tune->lna_tune);
2484 dib0090_write_reg(state, 0x09, tune->lna_bias);
2485 dib0090_write_reg(state, 0x0b, 0xb800 | (tune->lna_tune << 6) | (tune->switch_trim));
2487 dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | tune->lna_bias);
2489 dib0090_write_reg(state, 0x0c, tune->v2i);
2490 dib0090_write_reg(state, 0x0d, tune->mix);
2491 dib0090_write_reg(state, 0x0e, tune->load);
2492 *tune_state = CT_TUNER_STEP_1;
2494 } else if (*tune_state == CT_TUNER_STEP_1) {
2495 /* initialize the lt gain register */
2496 state->rf_lt_def = 0x7c00;
2498 dib0090_set_bandwidth(state);
2499 state->tuner_is_tuned = 1;
2501 state->calibrate |= WBD_CAL;
2502 state->calibrate |= TEMP_CAL;
2503 *tune_state = CT_TUNER_STOP;
2505 ret = FE_CALLBACK_TIME_NEVER;
2509 static void dib0090_release(struct dvb_frontend *fe)
2511 kfree(fe->tuner_priv);
2512 fe->tuner_priv = NULL;
2515 enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe)
2517 struct dib0090_state *state = fe->tuner_priv;
2519 return state->tune_state;
2522 EXPORT_SYMBOL(dib0090_get_tune_state);
2524 int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
2526 struct dib0090_state *state = fe->tuner_priv;
2528 state->tune_state = tune_state;
2532 EXPORT_SYMBOL(dib0090_set_tune_state);
2534 static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency)
2536 struct dib0090_state *state = fe->tuner_priv;
2538 *frequency = 1000 * state->current_rf;
2542 static int dib0090_set_params(struct dvb_frontend *fe)
2544 struct dib0090_state *state = fe->tuner_priv;
2547 state->tune_state = CT_TUNER_START;
2550 ret = dib0090_tune(fe);
2551 if (ret == FE_CALLBACK_TIME_NEVER)
2555 * Despite dib0090_tune returns time at a 0.1 ms range,
2556 * the actual sleep time depends on CONFIG_HZ. The worse case
2557 * is when CONFIG_HZ=100. In such case, the minimum granularity
2558 * is 10ms. On some real field tests, the tuner sometimes don't
2559 * lock when this timer is lower than 10ms. So, enforce a 10ms
2560 * granularity and use usleep_range() instead of msleep().
2562 ret = 10 * (ret + 99)/100;
2563 usleep_range(ret * 1000, (ret + 1) * 1000);
2564 } while (state->tune_state != CT_TUNER_STOP);
2569 static const struct dvb_tuner_ops dib0090_ops = {
2571 .name = "DiBcom DiB0090",
2572 .frequency_min_hz = 45 * MHz,
2573 .frequency_max_hz = 860 * MHz,
2574 .frequency_step_hz = 1 * kHz,
2576 .release = dib0090_release,
2578 .init = dib0090_wakeup,
2579 .sleep = dib0090_sleep,
2580 .set_params = dib0090_set_params,
2581 .get_frequency = dib0090_get_frequency,
2584 static const struct dvb_tuner_ops dib0090_fw_ops = {
2586 .name = "DiBcom DiB0090",
2587 .frequency_min_hz = 45 * MHz,
2588 .frequency_max_hz = 860 * MHz,
2589 .frequency_step_hz = 1 * kHz,
2591 .release = dib0090_release,
2596 .get_frequency = NULL,
2599 static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = {
2600 {470, 0, 250, 0, 100, 4},
2601 {860, 51, 866, 21, 375, 4},
2602 {1700, 0, 800, 0, 850, 4},
2603 {2900, 0, 250, 0, 100, 6},
2604 {0xFFFF, 0, 0, 0, 0, 0},
2607 struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
2609 struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL);
2613 st->config = config;
2616 mutex_init(&st->i2c_buffer_lock);
2617 fe->tuner_priv = st;
2619 if (config->wbd == NULL)
2620 st->current_wbd_table = dib0090_wbd_table_default;
2622 st->current_wbd_table = config->wbd;
2624 if (dib0090_reset(fe) != 0)
2627 pr_info("DiB0090: successfully identified\n");
2628 memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops));
2633 fe->tuner_priv = NULL;
2637 EXPORT_SYMBOL(dib0090_register);
2639 struct dvb_frontend *dib0090_fw_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
2641 struct dib0090_fw_state *st = kzalloc(sizeof(struct dib0090_fw_state), GFP_KERNEL);
2645 st->config = config;
2648 mutex_init(&st->i2c_buffer_lock);
2649 fe->tuner_priv = st;
2651 if (dib0090_fw_reset_digital(fe, st->config) != 0)
2654 dprintk("DiB0090 FW: successfully identified\n");
2655 memcpy(&fe->ops.tuner_ops, &dib0090_fw_ops, sizeof(struct dvb_tuner_ops));
2660 fe->tuner_priv = NULL;
2663 EXPORT_SYMBOL(dib0090_fw_register);
2667 MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
2668 MODULE_LICENSE("GPL");