1 // SPDX-License-Identifier: GPL-2.0
3 * R9A06G032 clock driver
5 * Copyright (C) 2018 Renesas Electronics Europe Limited
10 #include <linux/clk.h>
11 #include <linux/clk-provider.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
18 #include <linux/of_address.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_clock.h>
22 #include <linux/pm_domain.h>
23 #include <linux/slab.h>
24 #include <linux/soc/renesas/r9a06g032-sysctrl.h>
25 #include <linux/spinlock.h>
26 #include <dt-bindings/clock/r9a06g032-sysctrl.h>
28 #define R9A06G032_SYSCTRL_DMAMUX 0xA0
30 struct r9a06g032_gate {
31 u16 gate, reset, ready, midle,
35 /* This is used to describe a clock for instantiation */
36 struct r9a06g032_clkdesc {
41 uint32_t source : 8; /* source index + 1 (0 == none) */
42 /* these are used to populate the bitsel struct */
44 struct r9a06g032_gate gate;
47 unsigned int div_min : 10, div_max : 10, reg: 10;
50 /* For fixed-factor ones */
57 u16 sel, g1, r1, g2, r2;
62 #define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) \
63 { .gate = _clk, .reset = _rst, \
64 .ready = _rdy, .midle = _midle, \
65 .scon = _scon, .mirack = _mirack, .mistat = _mistat }
66 #define D_GATE(_idx, _n, _src, ...) \
67 { .type = K_GATE, .index = R9A06G032_##_idx, \
68 .source = 1 + R9A06G032_##_src, .name = _n, \
69 .gate = I_GATE(__VA_ARGS__) }
70 #define D_MODULE(_idx, _n, _src, ...) \
71 { .type = K_GATE, .index = R9A06G032_##_idx, \
72 .source = 1 + R9A06G032_##_src, .name = _n, \
73 .managed = 1, .gate = I_GATE(__VA_ARGS__) }
74 #define D_ROOT(_idx, _n, _mul, _div) \
75 { .type = K_FFC, .index = R9A06G032_##_idx, .name = _n, \
76 .div = _div, .mul = _mul }
77 #define D_FFC(_idx, _n, _src, _div) \
78 { .type = K_FFC, .index = R9A06G032_##_idx, \
79 .source = 1 + R9A06G032_##_src, .name = _n, \
80 .div = _div, .mul = 1}
81 #define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) \
82 { .type = K_DIV, .index = R9A06G032_##_idx, \
83 .source = 1 + R9A06G032_##_src, .name = _n, \
84 .reg = _reg, .div_min = _min, .div_max = _max, \
85 .div_table = { __VA_ARGS__ } }
86 #define D_UGATE(_idx, _n, _src, _g, _g1, _r1, _g2, _r2) \
87 { .type = K_DUALGATE, .index = R9A06G032_##_idx, \
88 .source = 1 + R9A06G032_##_src, .name = _n, \
89 .dual = { .group = _g, \
90 .g1 = _g1, .r1 = _r1, .g2 = _g2, .r2 = _r2 }, }
92 enum { K_GATE = 0, K_FFC, K_DIV, K_BITSEL, K_DUALGATE };
94 /* Internal clock IDs */
95 #define R9A06G032_CLKOUT 0
96 #define R9A06G032_CLKOUT_D10 2
97 #define R9A06G032_CLKOUT_D16 3
98 #define R9A06G032_CLKOUT_D160 4
99 #define R9A06G032_CLKOUT_D1OR2 5
100 #define R9A06G032_CLKOUT_D20 6
101 #define R9A06G032_CLKOUT_D40 7
102 #define R9A06G032_CLKOUT_D5 8
103 #define R9A06G032_CLKOUT_D8 9
104 #define R9A06G032_DIV_ADC 10
105 #define R9A06G032_DIV_I2C 11
106 #define R9A06G032_DIV_NAND 12
107 #define R9A06G032_DIV_P1_PG 13
108 #define R9A06G032_DIV_P2_PG 14
109 #define R9A06G032_DIV_P3_PG 15
110 #define R9A06G032_DIV_P4_PG 16
111 #define R9A06G032_DIV_P5_PG 17
112 #define R9A06G032_DIV_P6_PG 18
113 #define R9A06G032_DIV_QSPI0 19
114 #define R9A06G032_DIV_QSPI1 20
115 #define R9A06G032_DIV_REF_SYNC 21
116 #define R9A06G032_DIV_SDIO0 22
117 #define R9A06G032_DIV_SDIO1 23
118 #define R9A06G032_DIV_SWITCH 24
119 #define R9A06G032_DIV_UART 25
120 #define R9A06G032_DIV_MOTOR 64
121 #define R9A06G032_CLK_DDRPHY_PLLCLK_D4 78
122 #define R9A06G032_CLK_ECAT100_D4 79
123 #define R9A06G032_CLK_HSR100_D2 80
124 #define R9A06G032_CLK_REF_SYNC_D4 81
125 #define R9A06G032_CLK_REF_SYNC_D8 82
126 #define R9A06G032_CLK_SERCOS100_D2 83
127 #define R9A06G032_DIV_CA7 84
129 #define R9A06G032_UART_GROUP_012 154
130 #define R9A06G032_UART_GROUP_34567 155
132 #define R9A06G032_CLOCK_COUNT (R9A06G032_UART_GROUP_34567 + 1)
134 static const struct r9a06g032_clkdesc r9a06g032_clocks[] = {
135 D_ROOT(CLKOUT, "clkout", 25, 1),
136 D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
137 D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
138 D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
139 D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
140 D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
141 D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
142 D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
143 D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
144 D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
145 D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
146 D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
147 D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
148 D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
149 D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
150 D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
151 D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
152 D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
153 D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
154 D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
155 D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
156 D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
157 D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
158 D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
159 D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
160 D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
161 D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, 0x749, 0x74a, 0x74b, 0, 0xae3, 0, 0),
162 D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, 0x74c, 0x74d, 0x74e, 0, 0xae4, 0, 0),
163 D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, 0x74f, 0x750, 0x751, 0, 0xae5, 0, 0),
164 D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, 0x752, 0x753, 0x754, 0, 0xae6, 0, 0),
165 D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, 0x755, 0x756, 0x757, 0, 0xae7, 0, 0),
166 D_GATE(CLK_ADC, "clk_adc", DIV_ADC, 0x1ea, 0x1eb, 0, 0, 0, 0, 0),
167 D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, 0x405, 0, 0, 0, 0, 0, 0),
168 D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, 0x483, 0, 0, 0, 0, 0, 0),
169 D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, 0x1e6, 0x1e7, 0, 0, 0, 0, 0),
170 D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, 0x1e8, 0x1e9, 0, 0, 0, 0, 0),
171 D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, 0x342, 0, 0, 0, 0, 0, 0),
172 D_GATE(CLK_NAND, "clk_nand", DIV_NAND, 0x284, 0x285, 0, 0, 0, 0, 0),
173 D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, 0x774, 0x775, 0, 0, 0, 0, 0),
174 D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, 0x862, 0x863, 0, 0, 0, 0, 0),
175 D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, 0x864, 0x865, 0, 0, 0, 0, 0),
176 D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, 0x866, 0x867, 0, 0, 0, 0, 0),
177 D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, 0x824, 0x825, 0, 0, 0, 0, 0),
178 D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, 0x826, 0x827, 0, 0, 0, 0, 0),
179 D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, 0x8a0, 0x8a1, 0x8a2, 0, 0xb60, 0, 0),
180 D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, 0x8a3, 0x8a4, 0x8a5, 0, 0xb61, 0, 0),
181 D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, 0x8a6, 0x8a7, 0x8a8, 0, 0xb62, 0, 0),
182 D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, 0x8a9, 0x8aa, 0x8ab, 0, 0xb63, 0, 0),
183 D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, 0xe6, 0, 0, 0, 0, 0, 0),
184 D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, 0x2a4, 0x2a5, 0, 0, 0, 0, 0),
185 D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, 0x484, 0x485, 0, 0, 0, 0, 0),
186 D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, 0x340, 0, 0, 0, 0, 0, 0),
187 D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, 0x341, 0, 0, 0, 0, 0, 0),
188 D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, 0x64, 0, 0, 0, 0, 0, 0),
189 D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, 0x644, 0, 0, 0, 0, 0, 0),
190 D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, 0x425, 0, 0, 0, 0, 0, 0),
191 D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, 0x860, 0x861, 0, 0, 0, 0, 0),
192 D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, 0x7e0, 0x7e1, 0, 0, 0, 0, 0),
193 D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, 0x7e2, 0x7e3, 0, 0, 0, 0, 0),
194 D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, 0x7e4, 0x7e5, 0, 0, 0, 0, 0),
195 D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, 0x7e6, 0x7e7, 0, 0, 0, 0, 0),
196 D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, 0x820, 0x821, 0, 0, 0, 0, 0),
197 D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, 0x822, 0x823, 0, 0, 0, 0, 0),
198 D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, 0x982, 0x983, 0, 0, 0, 0, 0),
199 D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
200 D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, 0x400, 0x401, 0, 0x402, 0, 0x440, 0x441),
201 D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, 0x740, 0x741, 0x742, 0, 0xae0, 0, 0),
202 D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, 0x420, 0x422, 0, 0x421, 0, 0x460, 0x461),
203 D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, 0x8c3, 0x8c4, 0x8c5, 0, 0xb41, 0, 0),
204 D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, 0x8c6, 0x8c7, 0x8c8, 0, 0xb42, 0, 0),
205 D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, 0x8c9, 0x8ca, 0x8cb, 0, 0xb43, 0, 0),
206 D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, 0x743, 0x744, 0x745, 0, 0xae1, 0, 0),
207 D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, 0x746, 0x747, 0x748, 0, 0xae2, 0, 0),
208 D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, 0xe3, 0, 0, 0xe4, 0, 0x102, 0x103),
209 D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, 0xe0, 0xe1, 0, 0xe2, 0, 0x100, 0x101),
210 D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, 0xe5, 0, 0, 0, 0, 0, 0),
211 D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, 0x78c, 0x78d, 0, 0x78e, 0, 0xb04, 0xb05),
212 D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, 0x789, 0x78a, 0x78b, 0, 0xb03, 0, 0),
213 D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
214 D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
215 D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
216 D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
217 D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
218 D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
219 D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
220 D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, 0x783, 0x784, 0x785, 0, 0xb01, 0, 0),
221 D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, 0x786, 0x787, 0x788, 0, 0xb02, 0, 0),
222 D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, 0x1ef, 0x1f0, 0x1f1, 0, 0, 0, 0),
223 D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, 0x1ec, 0x1ed, 0x1ee, 0, 0, 0, 0),
224 D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, 0x780, 0x781, 0x782, 0, 0xb00, 0, 0),
225 D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, 0x1e0, 0x1e1, 0x1e2, 0, 0, 0, 0),
226 D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, 0x1e3, 0x1e4, 0x1e5, 0, 0, 0, 0),
227 D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
228 D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, 0xba0, 0xba1, 0, 0xba2, 0, 0xbc0, 0xbc1),
229 D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, 0x323, 0x324, 0, 0, 0, 0, 0),
230 D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, 0x403, 0x404, 0, 0, 0, 0, 0),
231 D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, 0x484, 0x485, 0, 0, 0, 0, 0),
232 D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, 0xc60, 0xc61, 0, 0, 0, 0, 0),
233 D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, 0x424, 0x423, 0, 0, 0, 0, 0),
234 D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, 0x1af, 0x1b0, 0x1b1, 0, 0, 0, 0),
235 D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, 0xc20, 0xc21, 0xc22, 0, 0, 0, 0),
236 D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, 0x123, 0x124, 0x125, 0, 0x142, 0, 0),
237 D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, 0x120, 0x121, 0, 0x122, 0, 0x140, 0x141),
238 D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, 0x320, 0x322, 0, 0x321, 0, 0x3a0, 0x3a1),
239 D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, 0x260, 0x261, 0x262, 0x263, 0x2c0, 0x2c1, 0x2c2),
240 D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, 0x264, 0x265, 0x266, 0x267, 0x2c3, 0x2c4, 0x2c5),
241 D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, 0x360, 0x361, 0x362, 0x363, 0x3c0, 0x3c1, 0x3c2),
242 D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, 0x380, 0x381, 0x382, 0x383, 0x3e0, 0x3e1, 0x3e2),
243 D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, 0x212, 0x213, 0x214, 0, 0, 0, 0),
244 D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, 0x215, 0x216, 0x217, 0, 0, 0, 0),
245 D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, 0x229, 0x22a, 0x22b, 0, 0, 0, 0),
246 D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, 0x480, 0x482, 0, 0x481, 0, 0x4c0, 0x4c1),
247 D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, 0x1a9, 0x1aa, 0x1ab, 0, 0, 0, 0),
248 D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, 0x1ac, 0x1ad, 0x1ae, 0, 0, 0, 0),
249 D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, 0x7a0, 0x7a1, 0x7a2, 0, 0xb20, 0, 0),
250 D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, 0x164, 0x165, 0x166, 0, 0x183, 0, 0),
251 D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, 0x160, 0x161, 0x162, 0x163, 0x180, 0x181, 0x182),
252 D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, 0x280, 0x281, 0x282, 0x283, 0x2e0, 0x2e1, 0x2e2),
253 D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, 0x7ac, 0x7ad, 0, 0x7ae, 0, 0xb24, 0xb25),
254 D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, 0x22c, 0x22d, 0x22e, 0, 0, 0, 0),
255 D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, 0x22f, 0x230, 0x231, 0, 0, 0, 0),
256 D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, 0x7a6, 0x7a7, 0x7a8, 0, 0xb22, 0, 0),
257 D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, 0x7a9, 0x7aa, 0x7ab, 0, 0xb23, 0, 0),
258 D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, 0x2a0, 0x2a1, 0x2a2, 0x2a3, 0x300, 0x301, 0x302),
259 D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, 0x480, 0x481, 0x482, 0x483, 0x4c0, 0x4c1, 0x4c2),
260 D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, 0xaa0, 0xaa1, 0xaa2, 0, 0xb80, 0, 0),
261 D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, 0xa00, 0xa03, 0, 0xa02, 0, 0, 0),
262 D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, 0x60, 0x61, 0x62, 0x63, 0x80, 0x81, 0x82),
263 D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, 0x640, 0x641, 0x642, 0x643, 0x660, 0x661, 0x662),
264 D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, 0x7a3, 0x7a4, 0x7a5, 0, 0xb21, 0, 0),
265 D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, 0x200, 0x201, 0x202, 0, 0, 0, 0),
266 D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, 0x203, 0x204, 0x205, 0, 0, 0, 0),
267 D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, 0x206, 0x207, 0x208, 0, 0, 0, 0),
268 D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, 0x209, 0x20a, 0x20b, 0, 0, 0, 0),
269 D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, 0x20c, 0x20d, 0x20e, 0, 0, 0, 0),
270 D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, 0x20f, 0x210, 0x211, 0, 0, 0, 0),
271 D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, 0x980, 0, 0x981, 0, 0, 0, 0),
272 D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, 0xc40, 0xc41, 0xc42, 0, 0, 0, 0),
273 D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, 0x1a0, 0x1a1, 0x1a2, 0, 0, 0, 0),
274 D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, 0x1a3, 0x1a4, 0x1a5, 0, 0, 0, 0),
275 D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, 0x1a6, 0x1a7, 0x1a8, 0, 0, 0, 0),
276 D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, 0x218, 0x219, 0x21a, 0, 0, 0, 0),
277 D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, 0x21b, 0x21c, 0x21d, 0, 0, 0, 0),
278 D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, 0x220, 0x221, 0x222, 0, 0, 0, 0),
279 D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, 0x223, 0x224, 0x225, 0, 0, 0, 0),
280 D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, 0x226, 0x227, 0x228, 0, 0, 0, 0),
282 * These are not hardware clocks, but are needed to handle the special
283 * case where we have a 'selector bit' that doesn't just change the
284 * parent for a clock, but also the gate it's supposed to use.
287 .index = R9A06G032_UART_GROUP_012,
288 .name = "uart_group_012",
290 .source = 1 + R9A06G032_DIV_UART,
291 /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
292 .dual.sel = ((0x34 / 4) << 5) | 30,
296 .index = R9A06G032_UART_GROUP_34567,
297 .name = "uart_group_34567",
299 .source = 1 + R9A06G032_DIV_P2_PG,
300 /* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
301 .dual.sel = ((0xec / 4) << 5) | 24,
304 D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0, 0x1b2, 0x1b3, 0x1b4, 0x1b5),
305 D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0, 0x1b6, 0x1b7, 0x1b8, 0x1b9),
306 D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0, 0x1ba, 0x1bb, 0x1bc, 0x1bd),
307 D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1, 0x760, 0x761, 0x762, 0x763),
308 D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1, 0x764, 0x765, 0x766, 0x767),
309 D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1, 0x768, 0x769, 0x76a, 0x76b),
310 D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1, 0x76c, 0x76d, 0x76e, 0x76f),
311 D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1, 0x770, 0x771, 0x772, 0x773),
314 struct r9a06g032_priv {
315 struct clk_onecell_data data;
316 spinlock_t lock; /* protects concurrent access to gates */
320 static struct r9a06g032_priv *sysctrl_priv;
322 /* Exported helper to access the DMAMUX register */
323 int r9a06g032_sysctrl_set_dmamux(u32 mask, u32 val)
329 return -EPROBE_DEFER;
331 spin_lock_irqsave(&sysctrl_priv->lock, flags);
333 dmamux = readl(sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
335 dmamux |= val & mask;
336 writel(dmamux, sysctrl_priv->reg + R9A06G032_SYSCTRL_DMAMUX);
338 spin_unlock_irqrestore(&sysctrl_priv->lock, flags);
342 EXPORT_SYMBOL_GPL(r9a06g032_sysctrl_set_dmamux);
344 /* register/bit pairs are encoded as an uint16_t */
346 clk_rdesc_set(struct r9a06g032_priv *clocks,
347 u16 one, unsigned int on)
349 u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
350 u32 val = readl(reg);
352 val = (val & ~(1U << (one & 0x1f))) | ((!!on) << (one & 0x1f));
357 clk_rdesc_get(struct r9a06g032_priv *clocks,
360 u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
361 u32 val = readl(reg);
363 return !!(val & (1U << (one & 0x1f)));
367 * This implements the R9A06G032 clock gate 'driver'. We cannot use the system's
368 * clock gate framework as the gates on the R9A06G032 have a special enabling
369 * sequence, therefore we use this little proxy.
371 struct r9a06g032_clk_gate {
373 struct r9a06g032_priv *clocks;
376 struct r9a06g032_gate gate;
379 #define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
381 static int create_add_module_clock(struct of_phandle_args *clkspec,
387 clk = of_clk_get_from_provider(clkspec);
391 error = pm_clk_create(dev);
397 error = pm_clk_add_clk(dev, clk);
406 static int r9a06g032_attach_dev(struct generic_pm_domain *pd,
409 struct device_node *np = dev->of_node;
410 struct of_phandle_args clkspec;
415 while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i,
417 if (clkspec.np != pd->dev.of_node)
420 index = clkspec.args[0];
421 if (index < R9A06G032_CLOCK_COUNT &&
422 r9a06g032_clocks[index].managed) {
423 error = create_add_module_clock(&clkspec, dev);
424 of_node_put(clkspec.np);
434 static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev)
436 if (!pm_clk_no_clocks(dev))
440 static int r9a06g032_add_clk_domain(struct device *dev)
442 struct device_node *np = dev->of_node;
443 struct generic_pm_domain *pd;
445 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
450 pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
451 GENPD_FLAG_ACTIVE_WAKEUP;
452 pd->attach_dev = r9a06g032_attach_dev;
453 pd->detach_dev = r9a06g032_detach_dev;
454 pm_genpd_init(pd, &pm_domain_always_on_gov, false);
456 of_genpd_add_provider_simple(np, pd);
461 r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
462 struct r9a06g032_gate *g, int on)
468 spin_lock_irqsave(&clocks->lock, flags);
469 clk_rdesc_set(clocks, g->gate, on);
470 /* De-assert reset */
472 clk_rdesc_set(clocks, g->reset, 1);
473 spin_unlock_irqrestore(&clocks->lock, flags);
475 /* Hardware manual recommends 5us delay after enabling clock & reset */
478 /* If the peripheral is memory mapped (i.e. an AXI slave), there is an
479 * associated SLVRDY bit in the System Controller that needs to be set
480 * so that the FlexWAY bus fabric passes on the read/write requests.
482 if (g->ready || g->midle) {
483 spin_lock_irqsave(&clocks->lock, flags);
485 clk_rdesc_set(clocks, g->ready, on);
486 /* Clear 'Master Idle Request' bit */
488 clk_rdesc_set(clocks, g->midle, !on);
489 spin_unlock_irqrestore(&clocks->lock, flags);
491 /* Note: We don't wait for FlexWAY Socket Connection signal */
494 static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
496 struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
498 r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
502 static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
504 struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
506 r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
509 static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
511 struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
513 /* if clock is in reset, the gate might be on, and still not 'be' on */
514 if (g->gate.reset && !clk_rdesc_get(g->clocks, g->gate.reset))
517 return clk_rdesc_get(g->clocks, g->gate.gate);
520 static const struct clk_ops r9a06g032_clk_gate_ops = {
521 .enable = r9a06g032_clk_gate_enable,
522 .disable = r9a06g032_clk_gate_disable,
523 .is_enabled = r9a06g032_clk_gate_is_enabled,
527 r9a06g032_register_gate(struct r9a06g032_priv *clocks,
528 const char *parent_name,
529 const struct r9a06g032_clkdesc *desc)
532 struct r9a06g032_clk_gate *g;
533 struct clk_init_data init = {};
535 g = kzalloc(sizeof(*g), GFP_KERNEL);
539 init.name = desc->name;
540 init.ops = &r9a06g032_clk_gate_ops;
541 init.flags = CLK_SET_RATE_PARENT;
542 init.parent_names = parent_name ? &parent_name : NULL;
543 init.num_parents = parent_name ? 1 : 0;
546 g->index = desc->index;
547 g->gate = desc->gate;
551 * important here, some clocks are already in use by the CM3, we
552 * have to assume they are not Linux's to play with and try to disable
553 * at the end of the boot!
555 if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
556 init.flags |= CLK_IS_CRITICAL;
557 pr_debug("%s was enabled, making read-only\n", desc->name);
560 clk = clk_register(NULL, &g->hw);
568 struct r9a06g032_clk_div {
570 struct r9a06g032_priv *clocks;
575 u16 table[8]; /* we know there are no more than 8 */
578 #define to_r9a06g032_div(_hw) \
579 container_of(_hw, struct r9a06g032_clk_div, hw)
582 r9a06g032_div_recalc_rate(struct clk_hw *hw,
583 unsigned long parent_rate)
585 struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
586 u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
587 u32 div = readl(reg);
591 else if (div > clk->max)
593 return DIV_ROUND_UP(parent_rate, div);
597 * Attempts to find a value that is in range of min,max,
598 * and if a table of set dividers was specified for this
599 * register, try to find the fixed divider that is the closest
600 * to the target frequency
603 r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
604 unsigned long rate, unsigned long prate)
606 /* + 1 to cope with rates that have the remainder dropped */
607 u32 div = DIV_ROUND_UP(prate, rate + 1);
615 for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
616 if (div >= clk->table[i] && div <= clk->table[i + 1]) {
617 unsigned long m = rate -
618 DIV_ROUND_UP(prate, clk->table[i]);
620 DIV_ROUND_UP(prate, clk->table[i + 1]) -
623 * select the divider that generates
624 * the value closest to the ideal frequency
626 div = p >= m ? clk->table[i] : clk->table[i + 1];
634 r9a06g032_div_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
636 struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
637 u32 div = DIV_ROUND_UP(req->best_parent_rate, req->rate);
639 pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
640 hw->clk, req->rate, req->best_parent_rate, div);
641 pr_devel(" min %d (%ld) max %d (%ld)\n",
642 clk->min, DIV_ROUND_UP(req->best_parent_rate, clk->min),
643 clk->max, DIV_ROUND_UP(req->best_parent_rate, clk->max));
645 div = r9a06g032_div_clamp_div(clk, req->rate, req->best_parent_rate);
647 * this is a hack. Currently the serial driver asks for a clock rate
648 * that is 16 times the baud rate -- and that is wildly outside the
649 * range of the UART divider, somehow there is no provision for that
650 * case of 'let the divider as is if outside range'.
651 * The serial driver *shouldn't* play with these clocks anyway, there's
652 * several uarts attached to this divider, and changing this impacts
655 if (clk->index == R9A06G032_DIV_UART ||
656 clk->index == R9A06G032_DIV_P2_PG) {
657 pr_devel("%s div uart hack!\n", __func__);
658 req->rate = clk_get_rate(hw->clk);
661 req->rate = DIV_ROUND_UP(req->best_parent_rate, div);
662 pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
663 req->best_parent_rate, div, req->rate);
668 r9a06g032_div_set_rate(struct clk_hw *hw,
669 unsigned long rate, unsigned long parent_rate)
671 struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
672 /* + 1 to cope with rates that have the remainder dropped */
673 u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
674 u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
676 pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
677 rate, parent_rate, div);
680 * Need to write the bit 31 with the divider value to
681 * latch it. Technically we should wait until it has been
683 * TODO: Find whether this callback is sleepable, in case
684 * the hardware /does/ require some sort of spinloop here.
686 writel(div | BIT(31), reg);
691 static const struct clk_ops r9a06g032_clk_div_ops = {
692 .recalc_rate = r9a06g032_div_recalc_rate,
693 .determine_rate = r9a06g032_div_determine_rate,
694 .set_rate = r9a06g032_div_set_rate,
698 r9a06g032_register_div(struct r9a06g032_priv *clocks,
699 const char *parent_name,
700 const struct r9a06g032_clkdesc *desc)
702 struct r9a06g032_clk_div *div;
704 struct clk_init_data init = {};
707 div = kzalloc(sizeof(*div), GFP_KERNEL);
711 init.name = desc->name;
712 init.ops = &r9a06g032_clk_div_ops;
713 init.flags = CLK_SET_RATE_PARENT;
714 init.parent_names = parent_name ? &parent_name : NULL;
715 init.num_parents = parent_name ? 1 : 0;
717 div->clocks = clocks;
718 div->index = desc->index;
719 div->reg = desc->reg;
720 div->hw.init = &init;
721 div->min = desc->div_min;
722 div->max = desc->div_max;
723 /* populate (optional) divider table fixed values */
724 for (i = 0; i < ARRAY_SIZE(div->table) &&
725 i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) {
726 div->table[div->table_size++] = desc->div_table[i];
729 clk = clk_register(NULL, &div->hw);
738 * This clock provider handles the case of the R9A06G032 where you have
739 * peripherals that have two potential clock source and two gates, one for
740 * each of the clock source - the used clock source (for all sub clocks)
741 * is selected by a single bit.
742 * That single bit affects all sub-clocks, and therefore needs to change the
743 * active gate (and turn the others off) and force a recalculation of the rates.
745 * This implements two clock providers, one 'bitselect' that
746 * handles the switch between both parents, and another 'dualgate'
747 * that knows which gate to poke at, depending on the parent's bit position.
749 struct r9a06g032_clk_bitsel {
751 struct r9a06g032_priv *clocks;
753 u16 selector; /* selector register + bit */
756 #define to_clk_bitselect(_hw) \
757 container_of(_hw, struct r9a06g032_clk_bitsel, hw)
759 static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
761 struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
763 return clk_rdesc_get(set->clocks, set->selector);
766 static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
768 struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
770 /* a single bit in the register selects one of two parent clocks */
771 clk_rdesc_set(set->clocks, set->selector, !!index);
776 static const struct clk_ops clk_bitselect_ops = {
777 .get_parent = r9a06g032_clk_mux_get_parent,
778 .set_parent = r9a06g032_clk_mux_set_parent,
782 r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
783 const char *parent_name,
784 const struct r9a06g032_clkdesc *desc)
787 struct r9a06g032_clk_bitsel *g;
788 struct clk_init_data init = {};
789 const char *names[2];
791 /* allocate the gate */
792 g = kzalloc(sizeof(*g), GFP_KERNEL);
796 names[0] = parent_name;
797 names[1] = "clk_pll_usb";
799 init.name = desc->name;
800 init.ops = &clk_bitselect_ops;
801 init.flags = CLK_SET_RATE_PARENT;
802 init.parent_names = names;
803 init.num_parents = 2;
806 g->index = desc->index;
807 g->selector = desc->dual.sel;
810 clk = clk_register(NULL, &g->hw);
818 struct r9a06g032_clk_dualgate {
820 struct r9a06g032_priv *clocks;
822 u16 selector; /* selector register + bit */
823 struct r9a06g032_gate gate[2];
826 #define to_clk_dualgate(_hw) \
827 container_of(_hw, struct r9a06g032_clk_dualgate, hw)
830 r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
832 u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
834 /* we always turn off the 'other' gate, regardless */
835 r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
836 r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
841 static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
843 struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
845 r9a06g032_clk_dualgate_setenable(gate, 1);
850 static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
852 struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
854 r9a06g032_clk_dualgate_setenable(gate, 0);
857 static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
859 struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
860 u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
862 return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
865 static const struct clk_ops r9a06g032_clk_dualgate_ops = {
866 .enable = r9a06g032_clk_dualgate_enable,
867 .disable = r9a06g032_clk_dualgate_disable,
868 .is_enabled = r9a06g032_clk_dualgate_is_enabled,
872 r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
873 const char *parent_name,
874 const struct r9a06g032_clkdesc *desc,
877 struct r9a06g032_clk_dualgate *g;
879 struct clk_init_data init = {};
881 /* allocate the gate */
882 g = kzalloc(sizeof(*g), GFP_KERNEL);
886 g->index = desc->index;
888 g->gate[0].gate = desc->dual.g1;
889 g->gate[0].reset = desc->dual.r1;
890 g->gate[1].gate = desc->dual.g2;
891 g->gate[1].reset = desc->dual.r2;
893 init.name = desc->name;
894 init.ops = &r9a06g032_clk_dualgate_ops;
895 init.flags = CLK_SET_RATE_PARENT;
896 init.parent_names = &parent_name;
897 init.num_parents = 1;
900 * important here, some clocks are already in use by the CM3, we
901 * have to assume they are not Linux's to play with and try to disable
902 * at the end of the boot!
904 if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
905 init.flags |= CLK_IS_CRITICAL;
906 pr_debug("%s was enabled, making read-only\n", desc->name);
909 clk = clk_register(NULL, &g->hw);
917 static void r9a06g032_clocks_del_clk_provider(void *data)
919 of_clk_del_provider(data);
922 static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
924 struct device *dev = &pdev->dev;
925 struct device_node *np = dev->of_node;
926 struct r9a06g032_priv *clocks;
930 u16 uart_group_sel[2];
933 clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
934 clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
936 if (!clocks || !clks)
939 spin_lock_init(&clocks->lock);
941 clocks->data.clks = clks;
942 clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
944 mclk = devm_clk_get(dev, "mclk");
946 return PTR_ERR(mclk);
948 clocks->reg = of_iomap(np, 0);
949 if (WARN_ON(!clocks->reg))
951 for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
952 const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
953 const char *parent_name = d->source ?
954 __clk_get_name(clocks->data.clks[d->source - 1]) :
955 __clk_get_name(mclk);
956 struct clk *clk = NULL;
960 clk = clk_register_fixed_factor(NULL, d->name,
965 clk = r9a06g032_register_gate(clocks, parent_name, d);
968 clk = r9a06g032_register_div(clocks, parent_name, d);
971 /* keep that selector register around */
972 uart_group_sel[d->dual.group] = d->dual.sel;
973 clk = r9a06g032_register_bitsel(clocks, parent_name, d);
976 clk = r9a06g032_register_dualgate(clocks, parent_name,
978 uart_group_sel[d->dual.group]);
981 clocks->data.clks[d->index] = clk;
983 error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
987 error = devm_add_action_or_reset(dev,
988 r9a06g032_clocks_del_clk_provider, np);
992 error = r9a06g032_add_clk_domain(dev);
996 sysctrl_priv = clocks;
998 error = of_platform_populate(np, NULL, NULL, dev);
1000 dev_err(dev, "Failed to populate children (%d)\n", error);
1005 static const struct of_device_id r9a06g032_match[] = {
1006 { .compatible = "renesas,r9a06g032-sysctrl" },
1010 static struct platform_driver r9a06g032_clock_driver = {
1012 .name = "renesas,r9a06g032-sysctrl",
1013 .of_match_table = r9a06g032_match,
1017 static int __init r9a06g032_clocks_init(void)
1019 return platform_driver_probe(&r9a06g032_clock_driver,
1020 r9a06g032_clocks_probe);
1023 subsys_initcall(r9a06g032_clocks_init);