2 * Copyright © 2015-2016 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
29 * DOC: i915 Perf Overview
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
51 * DOC: i915 Perf History and Comparison with Core Perf
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
106 * - The perf based OA PMU driver broke some significant design assumptions:
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
198 #include "gem/i915_gem_context.h"
199 #include "gem/i915_gem_pm.h"
200 #include "gt/intel_lrc_reg.h"
202 #include "i915_drv.h"
203 #include "i915_oa_hsw.h"
204 #include "i915_oa_bdw.h"
205 #include "i915_oa_chv.h"
206 #include "i915_oa_sklgt2.h"
207 #include "i915_oa_sklgt3.h"
208 #include "i915_oa_sklgt4.h"
209 #include "i915_oa_bxt.h"
210 #include "i915_oa_kblgt2.h"
211 #include "i915_oa_kblgt3.h"
212 #include "i915_oa_glk.h"
213 #include "i915_oa_cflgt2.h"
214 #include "i915_oa_cflgt3.h"
215 #include "i915_oa_cnl.h"
216 #include "i915_oa_icl.h"
218 /* HW requires this to be a power of two, between 128k and 16M, though driver
219 * is currently generally designed assuming the largest 16M size is used such
220 * that the overflow cases are unlikely in normal operation.
222 #define OA_BUFFER_SIZE SZ_16M
224 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
227 * DOC: OA Tail Pointer Race
229 * There's a HW race condition between OA unit tail pointer register updates and
230 * writes to memory whereby the tail pointer can sometimes get ahead of what's
231 * been written out to the OA buffer so far (in terms of what's visible to the
234 * Although this can be observed explicitly while copying reports to userspace
235 * by checking for a zeroed report-id field in tail reports, we want to account
236 * for this earlier, as part of the oa_buffer_check to avoid lots of redundant
239 * In effect we define a tail pointer for reading that lags the real tail
240 * pointer by at least %OA_TAIL_MARGIN_NSEC nanoseconds, which gives enough
241 * time for the corresponding reports to become visible to the CPU.
243 * To manage this we actually track two tail pointers:
244 * 1) An 'aging' tail with an associated timestamp that is tracked until we
245 * can trust the corresponding data is visible to the CPU; at which point
246 * it is considered 'aged'.
247 * 2) An 'aged' tail that can be used for read()ing.
249 * The two separate pointers let us decouple read()s from tail pointer aging.
251 * The tail pointers are checked and updated at a limited rate within a hrtimer
252 * callback (the same callback that is used for delivering EPOLLIN events)
254 * Initially the tails are marked invalid with %INVALID_TAIL_PTR which
255 * indicates that an updated tail pointer is needed.
257 * Most of the implementation details for this workaround are in
258 * oa_buffer_check_unlocked() and _append_oa_reports()
260 * Note for posterity: previously the driver used to define an effective tail
261 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
262 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
263 * This was flawed considering that the OA unit may also automatically generate
264 * non-periodic reports (such as on context switch) or the OA unit may be
265 * enabled without any periodic sampling.
267 #define OA_TAIL_MARGIN_NSEC 100000ULL
268 #define INVALID_TAIL_PTR 0xffffffff
270 /* frequency for checking whether the OA unit has written new reports to the
271 * circular OA buffer...
273 #define POLL_FREQUENCY 200
274 #define POLL_PERIOD (NSEC_PER_SEC / POLL_FREQUENCY)
276 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
277 static u32 i915_perf_stream_paranoid = true;
279 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
280 * of the 64bit timestamp bits to trigger reports from) but there's currently
281 * no known use case for sampling as infrequently as once per 47 thousand years.
283 * Since the timestamps included in OA reports are only 32bits it seems
284 * reasonable to limit the OA exponent where it's still possible to account for
285 * overflow in OA report timestamps.
287 #define OA_EXPONENT_MAX 31
289 #define INVALID_CTX_ID 0xffffffff
291 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
292 #define OAREPORT_REASON_MASK 0x3f
293 #define OAREPORT_REASON_SHIFT 19
294 #define OAREPORT_REASON_TIMER (1<<0)
295 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
296 #define OAREPORT_REASON_CLK_RATIO (1<<5)
299 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
301 * The highest sampling frequency we can theoretically program the OA unit
302 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
304 * Initialized just before we register the sysctl parameter.
306 static int oa_sample_rate_hard_limit;
308 /* Theoretically we can program the OA unit to sample every 160ns but don't
309 * allow that by default unless root...
311 * The default threshold of 100000Hz is based on perf's similar
312 * kernel.perf_event_max_sample_rate sysctl parameter.
314 static u32 i915_oa_max_sample_rate = 100000;
316 /* XXX: beware if future OA HW adds new report formats that the current
317 * code assumes all reports have a power-of-two size and ~(size - 1) can
318 * be used as a mask to align the OA tail pointer.
320 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
321 [I915_OA_FORMAT_A13] = { 0, 64 },
322 [I915_OA_FORMAT_A29] = { 1, 128 },
323 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
324 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
325 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
326 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
327 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
328 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
331 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
332 [I915_OA_FORMAT_A12] = { 0, 64 },
333 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
334 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
335 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
338 #define SAMPLE_OA_REPORT (1<<0)
341 * struct perf_open_properties - for validated properties given to open a stream
342 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
343 * @single_context: Whether a single or all gpu contexts should be monitored
344 * @ctx_handle: A gem ctx handle for use with @single_context
345 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
346 * @oa_format: An OA unit HW report format
347 * @oa_periodic: Whether to enable periodic OA unit sampling
348 * @oa_period_exponent: The OA unit sampling period is derived from this
350 * As read_properties_unlocked() enumerates and validates the properties given
351 * to open a stream of metrics the configuration is built up in the structure
352 * which starts out zero initialized.
354 struct perf_open_properties {
357 u64 single_context:1;
360 /* OA sampling state */
364 int oa_period_exponent;
367 static void free_oa_config(struct drm_i915_private *dev_priv,
368 struct i915_oa_config *oa_config)
370 if (!PTR_ERR(oa_config->flex_regs))
371 kfree(oa_config->flex_regs);
372 if (!PTR_ERR(oa_config->b_counter_regs))
373 kfree(oa_config->b_counter_regs);
374 if (!PTR_ERR(oa_config->mux_regs))
375 kfree(oa_config->mux_regs);
379 static void put_oa_config(struct drm_i915_private *dev_priv,
380 struct i915_oa_config *oa_config)
382 if (!atomic_dec_and_test(&oa_config->ref_count))
385 free_oa_config(dev_priv, oa_config);
388 static int get_oa_config(struct drm_i915_private *dev_priv,
390 struct i915_oa_config **out_config)
394 if (metrics_set == 1) {
395 *out_config = &dev_priv->perf.oa.test_config;
396 atomic_inc(&dev_priv->perf.oa.test_config.ref_count);
400 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
404 *out_config = idr_find(&dev_priv->perf.metrics_idr, metrics_set);
408 atomic_inc(&(*out_config)->ref_count);
410 mutex_unlock(&dev_priv->perf.metrics_lock);
415 static u32 gen8_oa_hw_tail_read(struct drm_i915_private *dev_priv)
417 return I915_READ(GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
420 static u32 gen7_oa_hw_tail_read(struct drm_i915_private *dev_priv)
422 u32 oastatus1 = I915_READ(GEN7_OASTATUS1);
424 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
428 * oa_buffer_check_unlocked - check for data and update tail ptr state
429 * @dev_priv: i915 device instance
431 * This is either called via fops (for blocking reads in user ctx) or the poll
432 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
433 * if there is data available for userspace to read.
435 * This function is central to providing a workaround for the OA unit tail
436 * pointer having a race with respect to what data is visible to the CPU.
437 * It is responsible for reading tail pointers from the hardware and giving
438 * the pointers time to 'age' before they are made available for reading.
439 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
441 * Besides returning true when there is data available to read() this function
442 * also has the side effect of updating the oa_buffer.tails[], .aging_timestamp
443 * and .aged_tail_idx state used for reading.
445 * Note: It's safe to read OA config state here unlocked, assuming that this is
446 * only called while the stream is enabled, while the global OA configuration
449 * Returns: %true if the OA buffer contains data, else %false
451 static bool oa_buffer_check_unlocked(struct drm_i915_private *dev_priv)
453 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
455 unsigned int aged_idx;
456 u32 head, hw_tail, aged_tail, aging_tail;
459 /* We have to consider the (unlikely) possibility that read() errors
460 * could result in an OA buffer reset which might reset the head,
461 * tails[] and aged_tail state.
463 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
465 /* NB: The head we observe here might effectively be a little out of
466 * date (between head and tails[aged_idx].offset if there is currently
467 * a read() in progress.
469 head = dev_priv->perf.oa.oa_buffer.head;
471 aged_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
472 aged_tail = dev_priv->perf.oa.oa_buffer.tails[aged_idx].offset;
473 aging_tail = dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset;
475 hw_tail = dev_priv->perf.oa.ops.oa_hw_tail_read(dev_priv);
477 /* The tail pointer increases in 64 byte increments,
478 * not in report_size steps...
480 hw_tail &= ~(report_size - 1);
482 now = ktime_get_mono_fast_ns();
484 /* Update the aged tail
486 * Flip the tail pointer available for read()s once the aging tail is
487 * old enough to trust that the corresponding data will be visible to
490 * Do this before updating the aging pointer in case we may be able to
491 * immediately start aging a new pointer too (if new data has become
492 * available) without needing to wait for a later hrtimer callback.
494 if (aging_tail != INVALID_TAIL_PTR &&
495 ((now - dev_priv->perf.oa.oa_buffer.aging_timestamp) >
496 OA_TAIL_MARGIN_NSEC)) {
499 dev_priv->perf.oa.oa_buffer.aged_tail_idx = aged_idx;
501 aged_tail = aging_tail;
503 /* Mark that we need a new pointer to start aging... */
504 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset = INVALID_TAIL_PTR;
505 aging_tail = INVALID_TAIL_PTR;
508 /* Update the aging tail
510 * We throttle aging tail updates until we have a new tail that
511 * represents >= one report more data than is already available for
512 * reading. This ensures there will be enough data for a successful
513 * read once this new pointer has aged and ensures we will give the new
514 * pointer time to age.
516 if (aging_tail == INVALID_TAIL_PTR &&
517 (aged_tail == INVALID_TAIL_PTR ||
518 OA_TAKEN(hw_tail, aged_tail) >= report_size)) {
519 struct i915_vma *vma = dev_priv->perf.oa.oa_buffer.vma;
520 u32 gtt_offset = i915_ggtt_offset(vma);
522 /* Be paranoid and do a bounds check on the pointer read back
523 * from hardware, just in case some spurious hardware condition
524 * could put the tail out of bounds...
526 if (hw_tail >= gtt_offset &&
527 hw_tail < (gtt_offset + OA_BUFFER_SIZE)) {
528 dev_priv->perf.oa.oa_buffer.tails[!aged_idx].offset =
529 aging_tail = hw_tail;
530 dev_priv->perf.oa.oa_buffer.aging_timestamp = now;
532 DRM_ERROR("Ignoring spurious out of range OA buffer tail pointer = %u\n",
537 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
539 return aged_tail == INVALID_TAIL_PTR ?
540 false : OA_TAKEN(aged_tail, head) >= report_size;
544 * append_oa_status - Appends a status record to a userspace read() buffer.
545 * @stream: An i915-perf stream opened for OA metrics
546 * @buf: destination buffer given by userspace
547 * @count: the number of bytes userspace wants to read
548 * @offset: (inout): the current position for writing into @buf
549 * @type: The kind of status to report to userspace
551 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
552 * into the userspace read() buffer.
554 * The @buf @offset will only be updated on success.
556 * Returns: 0 on success, negative error code on failure.
558 static int append_oa_status(struct i915_perf_stream *stream,
562 enum drm_i915_perf_record_type type)
564 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
566 if ((count - *offset) < header.size)
569 if (copy_to_user(buf + *offset, &header, sizeof(header)))
572 (*offset) += header.size;
578 * append_oa_sample - Copies single OA report into userspace read() buffer.
579 * @stream: An i915-perf stream opened for OA metrics
580 * @buf: destination buffer given by userspace
581 * @count: the number of bytes userspace wants to read
582 * @offset: (inout): the current position for writing into @buf
583 * @report: A single OA report to (optionally) include as part of the sample
585 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
586 * properties when opening a stream, tracked as `stream->sample_flags`. This
587 * function copies the requested components of a single sample to the given
590 * The @buf @offset will only be updated on success.
592 * Returns: 0 on success, negative error code on failure.
594 static int append_oa_sample(struct i915_perf_stream *stream,
600 struct drm_i915_private *dev_priv = stream->dev_priv;
601 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
602 struct drm_i915_perf_record_header header;
603 u32 sample_flags = stream->sample_flags;
605 header.type = DRM_I915_PERF_RECORD_SAMPLE;
607 header.size = stream->sample_size;
609 if ((count - *offset) < header.size)
613 if (copy_to_user(buf, &header, sizeof(header)))
615 buf += sizeof(header);
617 if (sample_flags & SAMPLE_OA_REPORT) {
618 if (copy_to_user(buf, report, report_size))
622 (*offset) += header.size;
628 * Copies all buffered OA reports into userspace read() buffer.
629 * @stream: An i915-perf stream opened for OA metrics
630 * @buf: destination buffer given by userspace
631 * @count: the number of bytes userspace wants to read
632 * @offset: (inout): the current position for writing into @buf
634 * Notably any error condition resulting in a short read (-%ENOSPC or
635 * -%EFAULT) will be returned even though one or more records may
636 * have been successfully copied. In this case it's up to the caller
637 * to decide if the error should be squashed before returning to
640 * Note: reports are consumed from the head, and appended to the
641 * tail, so the tail chases the head?... If you think that's mad
642 * and back-to-front you're not alone, but this follows the
643 * Gen PRM naming convention.
645 * Returns: 0 on success, negative error code on failure.
647 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
652 struct drm_i915_private *dev_priv = stream->dev_priv;
653 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
654 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
655 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
656 u32 mask = (OA_BUFFER_SIZE - 1);
657 size_t start_offset = *offset;
659 unsigned int aged_tail_idx;
664 if (WARN_ON(!stream->enabled))
667 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
669 head = dev_priv->perf.oa.oa_buffer.head;
670 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
671 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
673 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
676 * An invalid tail pointer here means we're still waiting for the poll
677 * hrtimer callback to give us a pointer
679 if (tail == INVALID_TAIL_PTR)
683 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
684 * while indexing relative to oa_buf_base.
690 * An out of bounds or misaligned head or tail pointer implies a driver
691 * bug since we validate + align the tail pointers we read from the
692 * hardware and we are in full control of the head pointer which should
693 * only be incremented by multiples of the report size (notably also
694 * all a power of two).
696 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
697 tail > OA_BUFFER_SIZE || tail % report_size,
698 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
704 (taken = OA_TAKEN(tail, head));
705 head = (head + report_size) & mask) {
706 u8 *report = oa_buf_base + head;
707 u32 *report32 = (void *)report;
712 * All the report sizes factor neatly into the buffer
713 * size so we never expect to see a report split
714 * between the beginning and end of the buffer.
716 * Given the initial alignment check a misalignment
717 * here would imply a driver bug that would result
720 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
721 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
726 * The reason field includes flags identifying what
727 * triggered this specific report (mostly timer
728 * triggered or e.g. due to a context switch).
730 * This field is never expected to be zero so we can
731 * check that the report isn't invalid before copying
734 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
735 OAREPORT_REASON_MASK);
737 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
738 DRM_NOTE("Skipping spurious, invalid OA report\n");
742 ctx_id = report32[2] & dev_priv->perf.oa.specific_ctx_id_mask;
745 * Squash whatever is in the CTX_ID field if it's marked as
746 * invalid to be sure we avoid false-positive, single-context
749 * Note: that we don't clear the valid_ctx_bit so userspace can
750 * understand that the ID has been squashed by the kernel.
752 if (!(report32[0] & dev_priv->perf.oa.gen8_valid_ctx_bit))
753 ctx_id = report32[2] = INVALID_CTX_ID;
756 * NB: For Gen 8 the OA unit no longer supports clock gating
757 * off for a specific context and the kernel can't securely
758 * stop the counters from updating as system-wide / global
761 * Automatic reports now include a context ID so reports can be
762 * filtered on the cpu but it's not worth trying to
763 * automatically subtract/hide counter progress for other
764 * contexts while filtering since we can't stop userspace
765 * issuing MI_REPORT_PERF_COUNT commands which would still
766 * provide a side-band view of the real values.
768 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
769 * to normalize counters for a single filtered context then it
770 * needs be forwarded bookend context-switch reports so that it
771 * can track switches in between MI_REPORT_PERF_COUNT commands
772 * and can itself subtract/ignore the progress of counters
773 * associated with other contexts. Note that the hardware
774 * automatically triggers reports when switching to a new
775 * context which are tagged with the ID of the newly active
776 * context. To avoid the complexity (and likely fragility) of
777 * reading ahead while parsing reports to try and minimize
778 * forwarding redundant context switch reports (i.e. between
779 * other, unrelated contexts) we simply elect to forward them
782 * We don't rely solely on the reason field to identify context
783 * switches since it's not-uncommon for periodic samples to
784 * identify a switch before any 'context switch' report.
786 if (!dev_priv->perf.oa.exclusive_stream->ctx ||
787 dev_priv->perf.oa.specific_ctx_id == ctx_id ||
788 (dev_priv->perf.oa.oa_buffer.last_ctx_id ==
789 dev_priv->perf.oa.specific_ctx_id) ||
790 reason & OAREPORT_REASON_CTX_SWITCH) {
793 * While filtering for a single context we avoid
794 * leaking the IDs of other contexts.
796 if (dev_priv->perf.oa.exclusive_stream->ctx &&
797 dev_priv->perf.oa.specific_ctx_id != ctx_id) {
798 report32[2] = INVALID_CTX_ID;
801 ret = append_oa_sample(stream, buf, count, offset,
806 dev_priv->perf.oa.oa_buffer.last_ctx_id = ctx_id;
810 * The above reason field sanity check is based on
811 * the assumption that the OA buffer is initially
812 * zeroed and we reset the field after copying so the
813 * check is still meaningful once old reports start
819 if (start_offset != *offset) {
820 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
823 * We removed the gtt_offset for the copy loop above, indexing
824 * relative to oa_buf_base so put back here...
828 I915_WRITE(GEN8_OAHEADPTR, head & GEN8_OAHEADPTR_MASK);
829 dev_priv->perf.oa.oa_buffer.head = head;
831 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
838 * gen8_oa_read - copy status records then buffered OA reports
839 * @stream: An i915-perf stream opened for OA metrics
840 * @buf: destination buffer given by userspace
841 * @count: the number of bytes userspace wants to read
842 * @offset: (inout): the current position for writing into @buf
844 * Checks OA unit status registers and if necessary appends corresponding
845 * status records for userspace (such as for a buffer full condition) and then
846 * initiate appending any buffered OA reports.
848 * Updates @offset according to the number of bytes successfully copied into
849 * the userspace buffer.
851 * NB: some data may be successfully copied to the userspace buffer
852 * even if an error is returned, and this is reflected in the
855 * Returns: zero on success or a negative error code
857 static int gen8_oa_read(struct i915_perf_stream *stream,
862 struct drm_i915_private *dev_priv = stream->dev_priv;
866 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
869 oastatus = I915_READ(GEN8_OASTATUS);
872 * We treat OABUFFER_OVERFLOW as a significant error:
874 * Although theoretically we could handle this more gracefully
875 * sometimes, some Gens don't correctly suppress certain
876 * automatically triggered reports in this condition and so we
877 * have to assume that old reports are now being trampled
880 * Considering how we don't currently give userspace control
881 * over the OA buffer size and always configure a large 16MB
882 * buffer, then a buffer overflow does anyway likely indicate
883 * that something has gone quite badly wrong.
885 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
886 ret = append_oa_status(stream, buf, count, offset,
887 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
891 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
892 dev_priv->perf.oa.period_exponent);
894 dev_priv->perf.oa.ops.oa_disable(stream);
895 dev_priv->perf.oa.ops.oa_enable(stream);
898 * Note: .oa_enable() is expected to re-init the oabuffer and
899 * reset GEN8_OASTATUS for us
901 oastatus = I915_READ(GEN8_OASTATUS);
904 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
905 ret = append_oa_status(stream, buf, count, offset,
906 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
909 I915_WRITE(GEN8_OASTATUS,
910 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
913 return gen8_append_oa_reports(stream, buf, count, offset);
917 * Copies all buffered OA reports into userspace read() buffer.
918 * @stream: An i915-perf stream opened for OA metrics
919 * @buf: destination buffer given by userspace
920 * @count: the number of bytes userspace wants to read
921 * @offset: (inout): the current position for writing into @buf
923 * Notably any error condition resulting in a short read (-%ENOSPC or
924 * -%EFAULT) will be returned even though one or more records may
925 * have been successfully copied. In this case it's up to the caller
926 * to decide if the error should be squashed before returning to
929 * Note: reports are consumed from the head, and appended to the
930 * tail, so the tail chases the head?... If you think that's mad
931 * and back-to-front you're not alone, but this follows the
932 * Gen PRM naming convention.
934 * Returns: 0 on success, negative error code on failure.
936 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
941 struct drm_i915_private *dev_priv = stream->dev_priv;
942 int report_size = dev_priv->perf.oa.oa_buffer.format_size;
943 u8 *oa_buf_base = dev_priv->perf.oa.oa_buffer.vaddr;
944 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
945 u32 mask = (OA_BUFFER_SIZE - 1);
946 size_t start_offset = *offset;
948 unsigned int aged_tail_idx;
953 if (WARN_ON(!stream->enabled))
956 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
958 head = dev_priv->perf.oa.oa_buffer.head;
959 aged_tail_idx = dev_priv->perf.oa.oa_buffer.aged_tail_idx;
960 tail = dev_priv->perf.oa.oa_buffer.tails[aged_tail_idx].offset;
962 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
964 /* An invalid tail pointer here means we're still waiting for the poll
965 * hrtimer callback to give us a pointer
967 if (tail == INVALID_TAIL_PTR)
970 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
971 * while indexing relative to oa_buf_base.
976 /* An out of bounds or misaligned head or tail pointer implies a driver
977 * bug since we validate + align the tail pointers we read from the
978 * hardware and we are in full control of the head pointer which should
979 * only be incremented by multiples of the report size (notably also
980 * all a power of two).
982 if (WARN_ONCE(head > OA_BUFFER_SIZE || head % report_size ||
983 tail > OA_BUFFER_SIZE || tail % report_size,
984 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
990 (taken = OA_TAKEN(tail, head));
991 head = (head + report_size) & mask) {
992 u8 *report = oa_buf_base + head;
993 u32 *report32 = (void *)report;
995 /* All the report sizes factor neatly into the buffer
996 * size so we never expect to see a report split
997 * between the beginning and end of the buffer.
999 * Given the initial alignment check a misalignment
1000 * here would imply a driver bug that would result
1003 if (WARN_ON((OA_BUFFER_SIZE - head) < report_size)) {
1004 DRM_ERROR("Spurious OA head ptr: non-integral report offset\n");
1008 /* The report-ID field for periodic samples includes
1009 * some undocumented flags related to what triggered
1010 * the report and is never expected to be zero so we
1011 * can check that the report isn't invalid before
1012 * copying it to userspace...
1014 if (report32[0] == 0) {
1015 if (__ratelimit(&dev_priv->perf.oa.spurious_report_rs))
1016 DRM_NOTE("Skipping spurious, invalid OA report\n");
1020 ret = append_oa_sample(stream, buf, count, offset, report);
1024 /* The above report-id field sanity check is based on
1025 * the assumption that the OA buffer is initially
1026 * zeroed and we reset the field after copying so the
1027 * check is still meaningful once old reports start
1028 * being overwritten.
1033 if (start_offset != *offset) {
1034 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1036 /* We removed the gtt_offset for the copy loop above, indexing
1037 * relative to oa_buf_base so put back here...
1041 I915_WRITE(GEN7_OASTATUS2,
1042 ((head & GEN7_OASTATUS2_HEAD_MASK) |
1043 GEN7_OASTATUS2_MEM_SELECT_GGTT));
1044 dev_priv->perf.oa.oa_buffer.head = head;
1046 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1053 * gen7_oa_read - copy status records then buffered OA reports
1054 * @stream: An i915-perf stream opened for OA metrics
1055 * @buf: destination buffer given by userspace
1056 * @count: the number of bytes userspace wants to read
1057 * @offset: (inout): the current position for writing into @buf
1059 * Checks Gen 7 specific OA unit status registers and if necessary appends
1060 * corresponding status records for userspace (such as for a buffer full
1061 * condition) and then initiate appending any buffered OA reports.
1063 * Updates @offset according to the number of bytes successfully copied into
1064 * the userspace buffer.
1066 * Returns: zero on success or a negative error code
1068 static int gen7_oa_read(struct i915_perf_stream *stream,
1073 struct drm_i915_private *dev_priv = stream->dev_priv;
1077 if (WARN_ON(!dev_priv->perf.oa.oa_buffer.vaddr))
1080 oastatus1 = I915_READ(GEN7_OASTATUS1);
1082 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1083 * bits while the OA unit is enabled (while the tail pointer
1084 * may be updated asynchronously) so we ignore status bits
1085 * that have already been reported to userspace.
1087 oastatus1 &= ~dev_priv->perf.oa.gen7_latched_oastatus1;
1089 /* We treat OABUFFER_OVERFLOW as a significant error:
1091 * - The status can be interpreted to mean that the buffer is
1092 * currently full (with a higher precedence than OA_TAKEN()
1093 * which will start to report a near-empty buffer after an
1094 * overflow) but it's awkward that we can't clear the status
1095 * on Haswell, so without a reset we won't be able to catch
1098 * - Since it also implies the HW has started overwriting old
1099 * reports it may also affect our sanity checks for invalid
1100 * reports when copying to userspace that assume new reports
1101 * are being written to cleared memory.
1103 * - In the future we may want to introduce a flight recorder
1104 * mode where the driver will automatically maintain a safe
1105 * guard band between head/tail, avoiding this overflow
1106 * condition, but we avoid the added driver complexity for
1109 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1110 ret = append_oa_status(stream, buf, count, offset,
1111 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1115 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1116 dev_priv->perf.oa.period_exponent);
1118 dev_priv->perf.oa.ops.oa_disable(stream);
1119 dev_priv->perf.oa.ops.oa_enable(stream);
1121 oastatus1 = I915_READ(GEN7_OASTATUS1);
1124 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1125 ret = append_oa_status(stream, buf, count, offset,
1126 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1129 dev_priv->perf.oa.gen7_latched_oastatus1 |=
1130 GEN7_OASTATUS1_REPORT_LOST;
1133 return gen7_append_oa_reports(stream, buf, count, offset);
1137 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1138 * @stream: An i915-perf stream opened for OA metrics
1140 * Called when userspace tries to read() from a blocking stream FD opened
1141 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1142 * OA buffer and wakes us.
1144 * Note: it's acceptable to have this return with some false positives
1145 * since any subsequent read handling will return -EAGAIN if there isn't
1146 * really data ready for userspace yet.
1148 * Returns: zero on success or a negative error code
1150 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1152 struct drm_i915_private *dev_priv = stream->dev_priv;
1154 /* We would wait indefinitely if periodic sampling is not enabled */
1155 if (!dev_priv->perf.oa.periodic)
1158 return wait_event_interruptible(dev_priv->perf.oa.poll_wq,
1159 oa_buffer_check_unlocked(dev_priv));
1163 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1164 * @stream: An i915-perf stream opened for OA metrics
1165 * @file: An i915 perf stream file
1166 * @wait: poll() state table
1168 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1169 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1170 * when it sees data ready to read in the circular OA buffer.
1172 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1176 struct drm_i915_private *dev_priv = stream->dev_priv;
1178 poll_wait(file, &dev_priv->perf.oa.poll_wq, wait);
1182 * i915_oa_read - just calls through to &i915_oa_ops->read
1183 * @stream: An i915-perf stream opened for OA metrics
1184 * @buf: destination buffer given by userspace
1185 * @count: the number of bytes userspace wants to read
1186 * @offset: (inout): the current position for writing into @buf
1188 * Updates @offset according to the number of bytes successfully copied into
1189 * the userspace buffer.
1191 * Returns: zero on success or a negative error code
1193 static int i915_oa_read(struct i915_perf_stream *stream,
1198 struct drm_i915_private *dev_priv = stream->dev_priv;
1200 return dev_priv->perf.oa.ops.read(stream, buf, count, offset);
1203 static struct intel_context *oa_pin_context(struct drm_i915_private *i915,
1204 struct i915_gem_context *ctx)
1206 struct i915_gem_engines_iter it;
1207 struct intel_context *ce;
1210 err = i915_mutex_lock_interruptible(&i915->drm);
1212 return ERR_PTR(err);
1214 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1215 if (ce->engine->class != RENDER_CLASS)
1219 * As the ID is the gtt offset of the context's vma we
1220 * pin the vma to ensure the ID remains fixed.
1222 err = intel_context_pin(ce);
1224 i915->perf.oa.pinned_ctx = ce;
1228 i915_gem_context_unlock_engines(ctx);
1230 mutex_unlock(&i915->drm.struct_mutex);
1232 return ERR_PTR(err);
1234 return i915->perf.oa.pinned_ctx;
1238 * oa_get_render_ctx_id - determine and hold ctx hw id
1239 * @stream: An i915-perf stream opened for OA metrics
1241 * Determine the render context hw id, and ensure it remains fixed for the
1242 * lifetime of the stream. This ensures that we don't have to worry about
1243 * updating the context ID in OACONTROL on the fly.
1245 * Returns: zero on success or a negative error code
1247 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1249 struct drm_i915_private *i915 = stream->dev_priv;
1250 struct intel_context *ce;
1252 ce = oa_pin_context(i915, stream->ctx);
1256 switch (INTEL_GEN(i915)) {
1259 * On Haswell we don't do any post processing of the reports
1260 * and don't need to use the mask.
1262 i915->perf.oa.specific_ctx_id = i915_ggtt_offset(ce->state);
1263 i915->perf.oa.specific_ctx_id_mask = 0;
1270 if (USES_GUC_SUBMISSION(i915)) {
1272 * When using GuC, the context descriptor we write in
1273 * i915 is read by GuC and rewritten before it's
1274 * actually written into the hardware. The LRCA is
1275 * what is put into the context id field of the
1276 * context descriptor by GuC. Because it's aligned to
1277 * a page, the lower 12bits are always at 0 and
1278 * dropped by GuC. They won't be part of the context
1279 * ID in the OA reports, so squash those lower bits.
1281 i915->perf.oa.specific_ctx_id =
1282 lower_32_bits(ce->lrc_desc) >> 12;
1285 * GuC uses the top bit to signal proxy submission, so
1288 i915->perf.oa.specific_ctx_id_mask =
1289 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1291 i915->perf.oa.specific_ctx_id_mask =
1292 (1U << GEN8_CTX_ID_WIDTH) - 1;
1293 i915->perf.oa.specific_ctx_id =
1294 upper_32_bits(ce->lrc_desc);
1295 i915->perf.oa.specific_ctx_id &=
1296 i915->perf.oa.specific_ctx_id_mask;
1301 i915->perf.oa.specific_ctx_id_mask =
1302 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32) |
1303 ((1U << GEN11_ENGINE_INSTANCE_WIDTH) - 1) << (GEN11_ENGINE_INSTANCE_SHIFT - 32) |
1304 ((1 << GEN11_ENGINE_CLASS_WIDTH) - 1) << (GEN11_ENGINE_CLASS_SHIFT - 32);
1305 i915->perf.oa.specific_ctx_id = upper_32_bits(ce->lrc_desc);
1306 i915->perf.oa.specific_ctx_id &=
1307 i915->perf.oa.specific_ctx_id_mask;
1312 MISSING_CASE(INTEL_GEN(i915));
1315 DRM_DEBUG_DRIVER("filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1316 i915->perf.oa.specific_ctx_id,
1317 i915->perf.oa.specific_ctx_id_mask);
1323 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1324 * @stream: An i915-perf stream opened for OA metrics
1326 * In case anything needed doing to ensure the context HW ID would remain valid
1327 * for the lifetime of the stream, then that can be undone here.
1329 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1331 struct drm_i915_private *dev_priv = stream->dev_priv;
1332 struct intel_context *ce;
1334 dev_priv->perf.oa.specific_ctx_id = INVALID_CTX_ID;
1335 dev_priv->perf.oa.specific_ctx_id_mask = 0;
1337 ce = fetch_and_zero(&dev_priv->perf.oa.pinned_ctx);
1339 mutex_lock(&dev_priv->drm.struct_mutex);
1340 intel_context_unpin(ce);
1341 mutex_unlock(&dev_priv->drm.struct_mutex);
1346 free_oa_buffer(struct drm_i915_private *i915)
1348 mutex_lock(&i915->drm.struct_mutex);
1350 i915_vma_unpin_and_release(&i915->perf.oa.oa_buffer.vma,
1351 I915_VMA_RELEASE_MAP);
1353 mutex_unlock(&i915->drm.struct_mutex);
1355 i915->perf.oa.oa_buffer.vaddr = NULL;
1358 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1360 struct drm_i915_private *dev_priv = stream->dev_priv;
1362 BUG_ON(stream != dev_priv->perf.oa.exclusive_stream);
1365 * Unset exclusive_stream first, it will be checked while disabling
1366 * the metric set on gen8+.
1368 mutex_lock(&dev_priv->drm.struct_mutex);
1369 dev_priv->perf.oa.exclusive_stream = NULL;
1370 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
1371 mutex_unlock(&dev_priv->drm.struct_mutex);
1373 free_oa_buffer(dev_priv);
1375 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1376 intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
1379 oa_put_render_ctx_id(stream);
1381 put_oa_config(dev_priv, stream->oa_config);
1383 if (dev_priv->perf.oa.spurious_report_rs.missed) {
1384 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1385 dev_priv->perf.oa.spurious_report_rs.missed);
1389 static void gen7_init_oa_buffer(struct drm_i915_private *dev_priv)
1391 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1392 unsigned long flags;
1394 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1396 /* Pre-DevBDW: OABUFFER must be set with counters off,
1397 * before OASTATUS1, but after OASTATUS2
1399 I915_WRITE(GEN7_OASTATUS2,
1400 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT); /* head */
1401 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1403 I915_WRITE(GEN7_OABUFFER, gtt_offset);
1405 I915_WRITE(GEN7_OASTATUS1, gtt_offset | OABUFFER_SIZE_16M); /* tail */
1407 /* Mark that we need updated tail pointers to read from... */
1408 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1409 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1411 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1413 /* On Haswell we have to track which OASTATUS1 flags we've
1414 * already seen since they can't be cleared while periodic
1415 * sampling is enabled.
1417 dev_priv->perf.oa.gen7_latched_oastatus1 = 0;
1419 /* NB: although the OA buffer will initially be allocated
1420 * zeroed via shmfs (and so this memset is redundant when
1421 * first allocating), we may re-init the OA buffer, either
1422 * when re-enabling a stream or in error/reset paths.
1424 * The reason we clear the buffer for each re-init is for the
1425 * sanity check in gen7_append_oa_reports() that looks at the
1426 * report-id field to make sure it's non-zero which relies on
1427 * the assumption that new reports are being written to zeroed
1430 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1432 /* Maybe make ->pollin per-stream state if we support multiple
1433 * concurrent streams in the future.
1435 dev_priv->perf.oa.pollin = false;
1438 static void gen8_init_oa_buffer(struct drm_i915_private *dev_priv)
1440 u32 gtt_offset = i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma);
1441 unsigned long flags;
1443 spin_lock_irqsave(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1445 I915_WRITE(GEN8_OASTATUS, 0);
1446 I915_WRITE(GEN8_OAHEADPTR, gtt_offset);
1447 dev_priv->perf.oa.oa_buffer.head = gtt_offset;
1449 I915_WRITE(GEN8_OABUFFER_UDW, 0);
1454 * "This MMIO must be set before the OATAILPTR
1455 * register and after the OAHEADPTR register. This is
1456 * to enable proper functionality of the overflow
1459 I915_WRITE(GEN8_OABUFFER, gtt_offset |
1460 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1461 I915_WRITE(GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1463 /* Mark that we need updated tail pointers to read from... */
1464 dev_priv->perf.oa.oa_buffer.tails[0].offset = INVALID_TAIL_PTR;
1465 dev_priv->perf.oa.oa_buffer.tails[1].offset = INVALID_TAIL_PTR;
1468 * Reset state used to recognise context switches, affecting which
1469 * reports we will forward to userspace while filtering for a single
1472 dev_priv->perf.oa.oa_buffer.last_ctx_id = INVALID_CTX_ID;
1474 spin_unlock_irqrestore(&dev_priv->perf.oa.oa_buffer.ptr_lock, flags);
1477 * NB: although the OA buffer will initially be allocated
1478 * zeroed via shmfs (and so this memset is redundant when
1479 * first allocating), we may re-init the OA buffer, either
1480 * when re-enabling a stream or in error/reset paths.
1482 * The reason we clear the buffer for each re-init is for the
1483 * sanity check in gen8_append_oa_reports() that looks at the
1484 * reason field to make sure it's non-zero which relies on
1485 * the assumption that new reports are being written to zeroed
1488 memset(dev_priv->perf.oa.oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1491 * Maybe make ->pollin per-stream state if we support multiple
1492 * concurrent streams in the future.
1494 dev_priv->perf.oa.pollin = false;
1497 static int alloc_oa_buffer(struct drm_i915_private *dev_priv)
1499 struct drm_i915_gem_object *bo;
1500 struct i915_vma *vma;
1503 if (WARN_ON(dev_priv->perf.oa.oa_buffer.vma))
1506 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
1510 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1511 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1513 bo = i915_gem_object_create_shmem(dev_priv, OA_BUFFER_SIZE);
1515 DRM_ERROR("Failed to allocate OA buffer\n");
1520 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1522 /* PreHSW required 512K alignment, HSW requires 16M */
1523 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1528 dev_priv->perf.oa.oa_buffer.vma = vma;
1530 dev_priv->perf.oa.oa_buffer.vaddr =
1531 i915_gem_object_pin_map(bo, I915_MAP_WB);
1532 if (IS_ERR(dev_priv->perf.oa.oa_buffer.vaddr)) {
1533 ret = PTR_ERR(dev_priv->perf.oa.oa_buffer.vaddr);
1537 DRM_DEBUG_DRIVER("OA Buffer initialized, gtt offset = 0x%x, vaddr = %p\n",
1538 i915_ggtt_offset(dev_priv->perf.oa.oa_buffer.vma),
1539 dev_priv->perf.oa.oa_buffer.vaddr);
1544 __i915_vma_unpin(vma);
1547 i915_gem_object_put(bo);
1549 dev_priv->perf.oa.oa_buffer.vaddr = NULL;
1550 dev_priv->perf.oa.oa_buffer.vma = NULL;
1553 mutex_unlock(&dev_priv->drm.struct_mutex);
1557 static void config_oa_regs(struct drm_i915_private *dev_priv,
1558 const struct i915_oa_reg *regs,
1563 for (i = 0; i < n_regs; i++) {
1564 const struct i915_oa_reg *reg = regs + i;
1566 I915_WRITE(reg->addr, reg->value);
1570 static int hsw_enable_metric_set(struct i915_perf_stream *stream)
1572 struct drm_i915_private *dev_priv = stream->dev_priv;
1573 const struct i915_oa_config *oa_config = stream->oa_config;
1577 * OA unit is using “crclk” for its functionality. When trunk
1578 * level clock gating takes place, OA clock would be gated,
1579 * unable to count the events from non-render clock domain.
1580 * Render clock gating must be disabled when OA is enabled to
1581 * count the events from non-render domain. Unit level clock
1582 * gating for RCS should also be disabled.
1584 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
1585 ~GEN7_DOP_CLOCK_GATE_ENABLE));
1586 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) |
1587 GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1589 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1591 /* It apparently takes a fairly long time for a new MUX
1592 * configuration to be be applied after these register writes.
1593 * This delay duration was derived empirically based on the
1594 * render_basic config but hopefully it covers the maximum
1595 * configuration latency.
1597 * As a fallback, the checks in _append_oa_reports() to skip
1598 * invalid OA reports do also seem to work to discard reports
1599 * generated before this config has completed - albeit not
1602 * Unfortunately this is essentially a magic number, since we
1603 * don't currently know of a reliable mechanism for predicting
1604 * how long the MUX config will take to apply and besides
1605 * seeing invalid reports we don't know of a reliable way to
1606 * explicitly check that the MUX config has landed.
1608 * It's even possible we've miss characterized the underlying
1609 * problem - it just seems like the simplest explanation why
1610 * a delay at this location would mitigate any invalid reports.
1612 usleep_range(15000, 20000);
1614 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1615 oa_config->b_counter_regs_len);
1620 static void hsw_disable_metric_set(struct drm_i915_private *dev_priv)
1622 I915_WRITE(GEN6_UCGCTL1, (I915_READ(GEN6_UCGCTL1) &
1623 ~GEN6_CSUNIT_CLOCK_GATE_DISABLE));
1624 I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) |
1625 GEN7_DOP_CLOCK_GATE_ENABLE));
1627 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1632 * NB: It must always remain pointer safe to run this even if the OA unit
1633 * has been disabled.
1635 * It's fine to put out-of-date values into these per-context registers
1636 * in the case that the OA unit has been disabled.
1639 gen8_update_reg_state_unlocked(struct intel_context *ce,
1641 const struct i915_oa_config *oa_config)
1643 struct drm_i915_private *i915 = ce->gem_context->i915;
1644 u32 ctx_oactxctrl = i915->perf.oa.ctx_oactxctrl_offset;
1645 u32 ctx_flexeu0 = i915->perf.oa.ctx_flexeu0_offset;
1646 /* The MMIO offsets for Flex EU registers aren't contiguous */
1647 i915_reg_t flex_regs[] = {
1658 CTX_REG(reg_state, ctx_oactxctrl, GEN8_OACTXCONTROL,
1659 (i915->perf.oa.period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
1660 (i915->perf.oa.periodic ? GEN8_OA_TIMER_ENABLE : 0) |
1661 GEN8_OA_COUNTER_RESUME);
1663 for (i = 0; i < ARRAY_SIZE(flex_regs); i++) {
1664 u32 state_offset = ctx_flexeu0 + i * 2;
1665 u32 mmio = i915_mmio_reg_offset(flex_regs[i]);
1668 * This arbitrary default will select the 'EU FPU0 Pipeline
1669 * Active' event. In the future it's anticipated that there
1670 * will be an explicit 'No Event' we can select, but not yet...
1677 for (j = 0; j < oa_config->flex_regs_len; j++) {
1678 if (i915_mmio_reg_offset(oa_config->flex_regs[j].addr) == mmio) {
1679 value = oa_config->flex_regs[j].value;
1685 CTX_REG(reg_state, state_offset, flex_regs[i], value);
1689 CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1690 intel_sseu_make_rpcs(i915, &ce->sseu));
1694 * Manages updating the per-context aspects of the OA stream
1695 * configuration across all contexts.
1697 * The awkward consideration here is that OACTXCONTROL controls the
1698 * exponent for periodic sampling which is primarily used for system
1699 * wide profiling where we'd like a consistent sampling period even in
1700 * the face of context switches.
1702 * Our approach of updating the register state context (as opposed to
1703 * say using a workaround batch buffer) ensures that the hardware
1704 * won't automatically reload an out-of-date timer exponent even
1705 * transiently before a WA BB could be parsed.
1707 * This function needs to:
1708 * - Ensure the currently running context's per-context OA state is
1710 * - Ensure that all existing contexts will have the correct per-context
1711 * OA state if they are scheduled for use.
1712 * - Ensure any new contexts will be initialized with the correct
1713 * per-context OA state.
1715 * Note: it's only the RCS/Render context that has any OA state.
1717 static int gen8_configure_all_contexts(struct drm_i915_private *dev_priv,
1718 const struct i915_oa_config *oa_config)
1720 unsigned int map_type = i915_coherent_map_type(dev_priv);
1721 struct i915_gem_context *ctx;
1722 struct i915_request *rq;
1725 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1728 * The OA register config is setup through the context image. This image
1729 * might be written to by the GPU on context switch (in particular on
1730 * lite-restore). This means we can't safely update a context's image,
1731 * if this context is scheduled/submitted to run on the GPU.
1733 * We could emit the OA register config through the batch buffer but
1734 * this might leave small interval of time where the OA unit is
1735 * configured at an invalid sampling period.
1737 * So far the best way to work around this issue seems to be draining
1738 * the GPU from any submitted work.
1740 ret = i915_gem_wait_for_idle(dev_priv,
1742 MAX_SCHEDULE_TIMEOUT);
1746 /* Update all contexts now that we've stalled the submission. */
1747 list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
1748 struct i915_gem_engines_iter it;
1749 struct intel_context *ce;
1751 for_each_gem_engine(ce,
1752 i915_gem_context_lock_engines(ctx),
1756 if (ce->engine->class != RENDER_CLASS)
1759 /* OA settings will be set upon first use */
1763 regs = i915_gem_object_pin_map(ce->state->obj,
1766 i915_gem_context_unlock_engines(ctx);
1767 return PTR_ERR(regs);
1770 ce->state->obj->mm.dirty = true;
1771 regs += LRC_STATE_PN * PAGE_SIZE / sizeof(*regs);
1773 gen8_update_reg_state_unlocked(ce, regs, oa_config);
1775 i915_gem_object_unpin_map(ce->state->obj);
1777 i915_gem_context_unlock_engines(ctx);
1781 * Apply the configuration by doing one context restore of the edited
1784 rq = i915_request_create(dev_priv->engine[RCS0]->kernel_context);
1788 i915_request_add(rq);
1793 static int gen8_enable_metric_set(struct i915_perf_stream *stream)
1795 struct drm_i915_private *dev_priv = stream->dev_priv;
1796 const struct i915_oa_config *oa_config = stream->oa_config;
1800 * We disable slice/unslice clock ratio change reports on SKL since
1801 * they are too noisy. The HW generates a lot of redundant reports
1802 * where the ratio hasn't really changed causing a lot of redundant
1803 * work to processes and increasing the chances we'll hit buffer
1806 * Although we don't currently use the 'disable overrun' OABUFFER
1807 * feature it's worth noting that clock ratio reports have to be
1808 * disabled before considering to use that feature since the HW doesn't
1809 * correctly block these reports.
1811 * Currently none of the high-level metrics we have depend on knowing
1812 * this ratio to normalize.
1814 * Note: This register is not power context saved and restored, but
1815 * that's OK considering that we disable RC6 while the OA unit is
1818 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
1819 * be read back from automatically triggered reports, as part of the
1822 if (IS_GEN_RANGE(dev_priv, 9, 11)) {
1823 I915_WRITE(GEN8_OA_DEBUG,
1824 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
1825 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
1829 * Update all contexts prior writing the mux configurations as we need
1830 * to make sure all slices/subslices are ON before writing to NOA
1833 ret = gen8_configure_all_contexts(dev_priv, oa_config);
1837 config_oa_regs(dev_priv, oa_config->mux_regs, oa_config->mux_regs_len);
1839 config_oa_regs(dev_priv, oa_config->b_counter_regs,
1840 oa_config->b_counter_regs_len);
1845 static void gen8_disable_metric_set(struct drm_i915_private *dev_priv)
1847 /* Reset all contexts' slices/subslices configurations. */
1848 gen8_configure_all_contexts(dev_priv, NULL);
1850 I915_WRITE(GDT_CHICKEN_BITS, (I915_READ(GDT_CHICKEN_BITS) &
1854 static void gen10_disable_metric_set(struct drm_i915_private *dev_priv)
1856 /* Reset all contexts' slices/subslices configurations. */
1857 gen8_configure_all_contexts(dev_priv, NULL);
1859 /* Make sure we disable noa to save power. */
1860 I915_WRITE(RPM_CONFIG1,
1861 I915_READ(RPM_CONFIG1) & ~GEN10_GT_NOA_ENABLE);
1864 static void gen7_oa_enable(struct i915_perf_stream *stream)
1866 struct drm_i915_private *dev_priv = stream->dev_priv;
1867 struct i915_gem_context *ctx = stream->ctx;
1868 u32 ctx_id = dev_priv->perf.oa.specific_ctx_id;
1869 bool periodic = dev_priv->perf.oa.periodic;
1870 u32 period_exponent = dev_priv->perf.oa.period_exponent;
1871 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1874 * Reset buf pointers so we don't forward reports from before now.
1876 * Think carefully if considering trying to avoid this, since it
1877 * also ensures status flags and the buffer itself are cleared
1878 * in error paths, and we have checks for invalid reports based
1879 * on the assumption that certain fields are written to zeroed
1880 * memory which this helps maintains.
1882 gen7_init_oa_buffer(dev_priv);
1884 I915_WRITE(GEN7_OACONTROL,
1885 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
1887 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
1888 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
1889 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
1890 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
1891 GEN7_OACONTROL_ENABLE);
1894 static void gen8_oa_enable(struct i915_perf_stream *stream)
1896 struct drm_i915_private *dev_priv = stream->dev_priv;
1897 u32 report_format = dev_priv->perf.oa.oa_buffer.format;
1900 * Reset buf pointers so we don't forward reports from before now.
1902 * Think carefully if considering trying to avoid this, since it
1903 * also ensures status flags and the buffer itself are cleared
1904 * in error paths, and we have checks for invalid reports based
1905 * on the assumption that certain fields are written to zeroed
1906 * memory which this helps maintains.
1908 gen8_init_oa_buffer(dev_priv);
1911 * Note: we don't rely on the hardware to perform single context
1912 * filtering and instead filter on the cpu based on the context-id
1915 I915_WRITE(GEN8_OACONTROL, (report_format <<
1916 GEN8_OA_REPORT_FORMAT_SHIFT) |
1917 GEN8_OA_COUNTER_ENABLE);
1921 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
1922 * @stream: An i915 perf stream opened for OA metrics
1924 * [Re]enables hardware periodic sampling according to the period configured
1925 * when opening the stream. This also starts a hrtimer that will periodically
1926 * check for data in the circular OA buffer for notifying userspace (e.g.
1927 * during a read() or poll()).
1929 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
1931 struct drm_i915_private *dev_priv = stream->dev_priv;
1933 dev_priv->perf.oa.ops.oa_enable(stream);
1935 if (dev_priv->perf.oa.periodic)
1936 hrtimer_start(&dev_priv->perf.oa.poll_check_timer,
1937 ns_to_ktime(POLL_PERIOD),
1938 HRTIMER_MODE_REL_PINNED);
1941 static void gen7_oa_disable(struct i915_perf_stream *stream)
1943 struct intel_uncore *uncore = &stream->dev_priv->uncore;
1945 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
1946 if (intel_wait_for_register(uncore,
1947 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
1949 DRM_ERROR("wait for OA to be disabled timed out\n");
1952 static void gen8_oa_disable(struct i915_perf_stream *stream)
1954 struct intel_uncore *uncore = &stream->dev_priv->uncore;
1956 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
1957 if (intel_wait_for_register(uncore,
1958 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
1960 DRM_ERROR("wait for OA to be disabled timed out\n");
1964 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
1965 * @stream: An i915 perf stream opened for OA metrics
1967 * Stops the OA unit from periodically writing counter reports into the
1968 * circular OA buffer. This also stops the hrtimer that periodically checks for
1969 * data in the circular OA buffer, for notifying userspace.
1971 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
1973 struct drm_i915_private *dev_priv = stream->dev_priv;
1975 dev_priv->perf.oa.ops.oa_disable(stream);
1977 if (dev_priv->perf.oa.periodic)
1978 hrtimer_cancel(&dev_priv->perf.oa.poll_check_timer);
1981 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
1982 .destroy = i915_oa_stream_destroy,
1983 .enable = i915_oa_stream_enable,
1984 .disable = i915_oa_stream_disable,
1985 .wait_unlocked = i915_oa_wait_unlocked,
1986 .poll_wait = i915_oa_poll_wait,
1987 .read = i915_oa_read,
1991 * i915_oa_stream_init - validate combined props for OA stream and init
1992 * @stream: An i915 perf stream
1993 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
1994 * @props: The property state that configures stream (individually validated)
1996 * While read_properties_unlocked() validates properties in isolation it
1997 * doesn't ensure that the combination necessarily makes sense.
1999 * At this point it has been determined that userspace wants a stream of
2000 * OA metrics, but still we need to further validate the combined
2001 * properties are OK.
2003 * If the configuration makes sense then we can allocate memory for
2004 * a circular OA buffer and apply the requested metric set configuration.
2006 * Returns: zero on success or a negative error code.
2008 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2009 struct drm_i915_perf_open_param *param,
2010 struct perf_open_properties *props)
2012 struct drm_i915_private *dev_priv = stream->dev_priv;
2016 /* If the sysfs metrics/ directory wasn't registered for some
2017 * reason then don't let userspace try their luck with config
2020 if (!dev_priv->perf.metrics_kobj) {
2021 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2025 if (!(props->sample_flags & SAMPLE_OA_REPORT)) {
2026 DRM_DEBUG("Only OA report sampling supported\n");
2030 if (!dev_priv->perf.oa.ops.enable_metric_set) {
2031 DRM_DEBUG("OA unit not supported\n");
2035 /* To avoid the complexity of having to accurately filter
2036 * counter reports and marshal to the appropriate client
2037 * we currently only allow exclusive access
2039 if (dev_priv->perf.oa.exclusive_stream) {
2040 DRM_DEBUG("OA unit already in use\n");
2044 if (!props->oa_format) {
2045 DRM_DEBUG("OA report format not specified\n");
2049 /* We set up some ratelimit state to potentially throttle any _NOTES
2050 * about spurious, invalid OA reports which we don't forward to
2053 * The initialization is associated with opening the stream (not driver
2054 * init) considering we print a _NOTE about any throttling when closing
2055 * the stream instead of waiting until driver _fini which no one would
2058 * Using the same limiting factors as printk_ratelimit()
2060 ratelimit_state_init(&dev_priv->perf.oa.spurious_report_rs,
2062 /* Since we use a DRM_NOTE for spurious reports it would be
2063 * inconsistent to let __ratelimit() automatically print a warning for
2066 ratelimit_set_flags(&dev_priv->perf.oa.spurious_report_rs,
2067 RATELIMIT_MSG_ON_RELEASE);
2069 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2071 format_size = dev_priv->perf.oa.oa_formats[props->oa_format].size;
2073 stream->sample_flags |= SAMPLE_OA_REPORT;
2074 stream->sample_size += format_size;
2076 dev_priv->perf.oa.oa_buffer.format_size = format_size;
2077 if (WARN_ON(dev_priv->perf.oa.oa_buffer.format_size == 0))
2080 dev_priv->perf.oa.oa_buffer.format =
2081 dev_priv->perf.oa.oa_formats[props->oa_format].format;
2083 dev_priv->perf.oa.periodic = props->oa_periodic;
2084 if (dev_priv->perf.oa.periodic)
2085 dev_priv->perf.oa.period_exponent = props->oa_period_exponent;
2088 ret = oa_get_render_ctx_id(stream);
2090 DRM_DEBUG("Invalid context id to filter with\n");
2095 ret = get_oa_config(dev_priv, props->metrics_set, &stream->oa_config);
2097 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2101 /* PRM - observability performance counters:
2103 * OACONTROL, performance counter enable, note:
2105 * "When this bit is set, in order to have coherent counts,
2106 * RC6 power state and trunk clock gating must be disabled.
2107 * This can be achieved by programming MMIO registers as
2108 * 0xA094=0 and 0xA090[31]=1"
2110 * In our case we are expecting that taking pm + FORCEWAKE
2111 * references will effectively disable RC6.
2113 stream->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2114 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
2116 ret = alloc_oa_buffer(dev_priv);
2118 goto err_oa_buf_alloc;
2120 ret = i915_mutex_lock_interruptible(&dev_priv->drm);
2124 stream->ops = &i915_oa_stream_ops;
2125 dev_priv->perf.oa.exclusive_stream = stream;
2127 ret = dev_priv->perf.oa.ops.enable_metric_set(stream);
2129 DRM_DEBUG("Unable to enable metric set\n");
2133 mutex_unlock(&dev_priv->drm.struct_mutex);
2138 dev_priv->perf.oa.exclusive_stream = NULL;
2139 dev_priv->perf.oa.ops.disable_metric_set(dev_priv);
2140 mutex_unlock(&dev_priv->drm.struct_mutex);
2143 free_oa_buffer(dev_priv);
2146 put_oa_config(dev_priv, stream->oa_config);
2148 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
2149 intel_runtime_pm_put(&dev_priv->runtime_pm, stream->wakeref);
2153 oa_put_render_ctx_id(stream);
2158 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
2159 struct intel_context *ce,
2162 struct i915_perf_stream *stream;
2164 if (engine->class != RENDER_CLASS)
2167 stream = engine->i915->perf.oa.exclusive_stream;
2169 gen8_update_reg_state_unlocked(ce, regs, stream->oa_config);
2173 * i915_perf_read_locked - &i915_perf_stream_ops->read with error normalisation
2174 * @stream: An i915 perf stream
2175 * @file: An i915 perf stream file
2176 * @buf: destination buffer given by userspace
2177 * @count: the number of bytes userspace wants to read
2178 * @ppos: (inout) file seek position (unused)
2180 * Besides wrapping &i915_perf_stream_ops->read this provides a common place to
2181 * ensure that if we've successfully copied any data then reporting that takes
2182 * precedence over any internal error status, so the data isn't lost.
2184 * For example ret will be -ENOSPC whenever there is more buffered data than
2185 * can be copied to userspace, but that's only interesting if we weren't able
2186 * to copy some data because it implies the userspace buffer is too small to
2187 * receive a single record (and we never split records).
2189 * Another case with ret == -EFAULT is more of a grey area since it would seem
2190 * like bad form for userspace to ask us to overrun its buffer, but the user
2193 * http://yarchive.net/comp/linux/partial_reads_writes.html
2195 * Returns: The number of bytes copied or a negative error code on failure.
2197 static ssize_t i915_perf_read_locked(struct i915_perf_stream *stream,
2203 /* Note we keep the offset (aka bytes read) separate from any
2204 * error status so that the final check for whether we return
2205 * the bytes read with a higher precedence than any error (see
2206 * comment below) doesn't need to be handled/duplicated in
2207 * stream->ops->read() implementations.
2210 int ret = stream->ops->read(stream, buf, count, &offset);
2212 return offset ?: (ret ?: -EAGAIN);
2216 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2217 * @file: An i915 perf stream file
2218 * @buf: destination buffer given by userspace
2219 * @count: the number of bytes userspace wants to read
2220 * @ppos: (inout) file seek position (unused)
2222 * The entry point for handling a read() on a stream file descriptor from
2223 * userspace. Most of the work is left to the i915_perf_read_locked() and
2224 * &i915_perf_stream_ops->read but to save having stream implementations (of
2225 * which we might have multiple later) we handle blocking read here.
2227 * We can also consistently treat trying to read from a disabled stream
2228 * as an IO error so implementations can assume the stream is enabled
2231 * Returns: The number of bytes copied or a negative error code on failure.
2233 static ssize_t i915_perf_read(struct file *file,
2238 struct i915_perf_stream *stream = file->private_data;
2239 struct drm_i915_private *dev_priv = stream->dev_priv;
2242 /* To ensure it's handled consistently we simply treat all reads of a
2243 * disabled stream as an error. In particular it might otherwise lead
2244 * to a deadlock for blocking file descriptors...
2246 if (!stream->enabled)
2249 if (!(file->f_flags & O_NONBLOCK)) {
2250 /* There's the small chance of false positives from
2251 * stream->ops->wait_unlocked.
2253 * E.g. with single context filtering since we only wait until
2254 * oabuffer has >= 1 report we don't immediately know whether
2255 * any reports really belong to the current context
2258 ret = stream->ops->wait_unlocked(stream);
2262 mutex_lock(&dev_priv->perf.lock);
2263 ret = i915_perf_read_locked(stream, file,
2265 mutex_unlock(&dev_priv->perf.lock);
2266 } while (ret == -EAGAIN);
2268 mutex_lock(&dev_priv->perf.lock);
2269 ret = i915_perf_read_locked(stream, file, buf, count, ppos);
2270 mutex_unlock(&dev_priv->perf.lock);
2273 /* We allow the poll checking to sometimes report false positive EPOLLIN
2274 * events where we might actually report EAGAIN on read() if there's
2275 * not really any data available. In this situation though we don't
2276 * want to enter a busy loop between poll() reporting a EPOLLIN event
2277 * and read() returning -EAGAIN. Clearing the oa.pollin state here
2278 * effectively ensures we back off until the next hrtimer callback
2279 * before reporting another EPOLLIN event.
2281 if (ret >= 0 || ret == -EAGAIN) {
2282 /* Maybe make ->pollin per-stream state if we support multiple
2283 * concurrent streams in the future.
2285 dev_priv->perf.oa.pollin = false;
2291 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
2293 struct drm_i915_private *dev_priv =
2294 container_of(hrtimer, typeof(*dev_priv),
2295 perf.oa.poll_check_timer);
2297 if (oa_buffer_check_unlocked(dev_priv)) {
2298 dev_priv->perf.oa.pollin = true;
2299 wake_up(&dev_priv->perf.oa.poll_wq);
2302 hrtimer_forward_now(hrtimer, ns_to_ktime(POLL_PERIOD));
2304 return HRTIMER_RESTART;
2308 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
2309 * @dev_priv: i915 device instance
2310 * @stream: An i915 perf stream
2311 * @file: An i915 perf stream file
2312 * @wait: poll() state table
2314 * For handling userspace polling on an i915 perf stream, this calls through to
2315 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
2316 * will be woken for new stream data.
2318 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2319 * with any non-file-operation driver hooks.
2321 * Returns: any poll events that are ready without sleeping
2323 static __poll_t i915_perf_poll_locked(struct drm_i915_private *dev_priv,
2324 struct i915_perf_stream *stream,
2328 __poll_t events = 0;
2330 stream->ops->poll_wait(stream, file, wait);
2332 /* Note: we don't explicitly check whether there's something to read
2333 * here since this path may be very hot depending on what else
2334 * userspace is polling, or on the timeout in use. We rely solely on
2335 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
2338 if (dev_priv->perf.oa.pollin)
2345 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
2346 * @file: An i915 perf stream file
2347 * @wait: poll() state table
2349 * For handling userspace polling on an i915 perf stream, this ensures
2350 * poll_wait() gets called with a wait queue that will be woken for new stream
2353 * Note: Implementation deferred to i915_perf_poll_locked()
2355 * Returns: any poll events that are ready without sleeping
2357 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
2359 struct i915_perf_stream *stream = file->private_data;
2360 struct drm_i915_private *dev_priv = stream->dev_priv;
2363 mutex_lock(&dev_priv->perf.lock);
2364 ret = i915_perf_poll_locked(dev_priv, stream, file, wait);
2365 mutex_unlock(&dev_priv->perf.lock);
2371 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
2372 * @stream: A disabled i915 perf stream
2374 * [Re]enables the associated capture of data for this stream.
2376 * If a stream was previously enabled then there's currently no intention
2377 * to provide userspace any guarantee about the preservation of previously
2380 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
2382 if (stream->enabled)
2385 /* Allow stream->ops->enable() to refer to this */
2386 stream->enabled = true;
2388 if (stream->ops->enable)
2389 stream->ops->enable(stream);
2393 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
2394 * @stream: An enabled i915 perf stream
2396 * Disables the associated capture of data for this stream.
2398 * The intention is that disabling an re-enabling a stream will ideally be
2399 * cheaper than destroying and re-opening a stream with the same configuration,
2400 * though there are no formal guarantees about what state or buffered data
2401 * must be retained between disabling and re-enabling a stream.
2403 * Note: while a stream is disabled it's considered an error for userspace
2404 * to attempt to read from the stream (-EIO).
2406 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
2408 if (!stream->enabled)
2411 /* Allow stream->ops->disable() to refer to this */
2412 stream->enabled = false;
2414 if (stream->ops->disable)
2415 stream->ops->disable(stream);
2419 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2420 * @stream: An i915 perf stream
2421 * @cmd: the ioctl request
2422 * @arg: the ioctl data
2424 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2425 * with any non-file-operation driver hooks.
2427 * Returns: zero on success or a negative error code. Returns -EINVAL for
2428 * an unknown ioctl request.
2430 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
2435 case I915_PERF_IOCTL_ENABLE:
2436 i915_perf_enable_locked(stream);
2438 case I915_PERF_IOCTL_DISABLE:
2439 i915_perf_disable_locked(stream);
2447 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
2448 * @file: An i915 perf stream file
2449 * @cmd: the ioctl request
2450 * @arg: the ioctl data
2452 * Implementation deferred to i915_perf_ioctl_locked().
2454 * Returns: zero on success or a negative error code. Returns -EINVAL for
2455 * an unknown ioctl request.
2457 static long i915_perf_ioctl(struct file *file,
2461 struct i915_perf_stream *stream = file->private_data;
2462 struct drm_i915_private *dev_priv = stream->dev_priv;
2465 mutex_lock(&dev_priv->perf.lock);
2466 ret = i915_perf_ioctl_locked(stream, cmd, arg);
2467 mutex_unlock(&dev_priv->perf.lock);
2473 * i915_perf_destroy_locked - destroy an i915 perf stream
2474 * @stream: An i915 perf stream
2476 * Frees all resources associated with the given i915 perf @stream, disabling
2477 * any associated data capture in the process.
2479 * Note: The &drm_i915_private->perf.lock mutex has been taken to serialize
2480 * with any non-file-operation driver hooks.
2482 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
2484 if (stream->enabled)
2485 i915_perf_disable_locked(stream);
2487 if (stream->ops->destroy)
2488 stream->ops->destroy(stream);
2490 list_del(&stream->link);
2493 i915_gem_context_put(stream->ctx);
2499 * i915_perf_release - handles userspace close() of a stream file
2500 * @inode: anonymous inode associated with file
2501 * @file: An i915 perf stream file
2503 * Cleans up any resources associated with an open i915 perf stream file.
2505 * NB: close() can't really fail from the userspace point of view.
2507 * Returns: zero on success or a negative error code.
2509 static int i915_perf_release(struct inode *inode, struct file *file)
2511 struct i915_perf_stream *stream = file->private_data;
2512 struct drm_i915_private *dev_priv = stream->dev_priv;
2514 mutex_lock(&dev_priv->perf.lock);
2515 i915_perf_destroy_locked(stream);
2516 mutex_unlock(&dev_priv->perf.lock);
2522 static const struct file_operations fops = {
2523 .owner = THIS_MODULE,
2524 .llseek = no_llseek,
2525 .release = i915_perf_release,
2526 .poll = i915_perf_poll,
2527 .read = i915_perf_read,
2528 .unlocked_ioctl = i915_perf_ioctl,
2529 /* Our ioctl have no arguments, so it's safe to use the same function
2530 * to handle 32bits compatibility.
2532 .compat_ioctl = i915_perf_ioctl,
2537 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
2538 * @dev_priv: i915 device instance
2539 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
2540 * @props: individually validated u64 property value pairs
2543 * See i915_perf_ioctl_open() for interface details.
2545 * Implements further stream config validation and stream initialization on
2546 * behalf of i915_perf_open_ioctl() with the &drm_i915_private->perf.lock mutex
2547 * taken to serialize with any non-file-operation driver hooks.
2549 * Note: at this point the @props have only been validated in isolation and
2550 * it's still necessary to validate that the combination of properties makes
2553 * In the case where userspace is interested in OA unit metrics then further
2554 * config validation and stream initialization details will be handled by
2555 * i915_oa_stream_init(). The code here should only validate config state that
2556 * will be relevant to all stream types / backends.
2558 * Returns: zero on success or a negative error code.
2561 i915_perf_open_ioctl_locked(struct drm_i915_private *dev_priv,
2562 struct drm_i915_perf_open_param *param,
2563 struct perf_open_properties *props,
2564 struct drm_file *file)
2566 struct i915_gem_context *specific_ctx = NULL;
2567 struct i915_perf_stream *stream = NULL;
2568 unsigned long f_flags = 0;
2569 bool privileged_op = true;
2573 if (props->single_context) {
2574 u32 ctx_handle = props->ctx_handle;
2575 struct drm_i915_file_private *file_priv = file->driver_priv;
2577 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
2578 if (!specific_ctx) {
2579 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
2587 * On Haswell the OA unit supports clock gating off for a specific
2588 * context and in this mode there's no visibility of metrics for the
2589 * rest of the system, which we consider acceptable for a
2590 * non-privileged client.
2592 * For Gen8+ the OA unit no longer supports clock gating off for a
2593 * specific context and the kernel can't securely stop the counters
2594 * from updating as system-wide / global values. Even though we can
2595 * filter reports based on the included context ID we can't block
2596 * clients from seeing the raw / global counter values via
2597 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
2598 * enable the OA unit by default.
2600 if (IS_HASWELL(dev_priv) && specific_ctx)
2601 privileged_op = false;
2603 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
2604 * we check a dev.i915.perf_stream_paranoid sysctl option
2605 * to determine if it's ok to access system wide OA counters
2606 * without CAP_SYS_ADMIN privileges.
2608 if (privileged_op &&
2609 i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
2610 DRM_DEBUG("Insufficient privileges to open system-wide i915 perf stream\n");
2615 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
2621 stream->dev_priv = dev_priv;
2622 stream->ctx = specific_ctx;
2624 ret = i915_oa_stream_init(stream, param, props);
2628 /* we avoid simply assigning stream->sample_flags = props->sample_flags
2629 * to have _stream_init check the combination of sample flags more
2630 * thoroughly, but still this is the expected result at this point.
2632 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
2637 list_add(&stream->link, &dev_priv->perf.streams);
2639 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
2640 f_flags |= O_CLOEXEC;
2641 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
2642 f_flags |= O_NONBLOCK;
2644 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
2645 if (stream_fd < 0) {
2650 if (!(param->flags & I915_PERF_FLAG_DISABLED))
2651 i915_perf_enable_locked(stream);
2656 list_del(&stream->link);
2658 if (stream->ops->destroy)
2659 stream->ops->destroy(stream);
2664 i915_gem_context_put(specific_ctx);
2669 static u64 oa_exponent_to_ns(struct drm_i915_private *dev_priv, int exponent)
2671 return div64_u64(1000000000ULL * (2ULL << exponent),
2672 1000ULL * RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz);
2676 * read_properties_unlocked - validate + copy userspace stream open properties
2677 * @dev_priv: i915 device instance
2678 * @uprops: The array of u64 key value pairs given by userspace
2679 * @n_props: The number of key value pairs expected in @uprops
2680 * @props: The stream configuration built up while validating properties
2682 * Note this function only validates properties in isolation it doesn't
2683 * validate that the combination of properties makes sense or that all
2684 * properties necessary for a particular kind of stream have been set.
2686 * Note that there currently aren't any ordering requirements for properties so
2687 * we shouldn't validate or assume anything about ordering here. This doesn't
2688 * rule out defining new properties with ordering requirements in the future.
2690 static int read_properties_unlocked(struct drm_i915_private *dev_priv,
2693 struct perf_open_properties *props)
2695 u64 __user *uprop = uprops;
2698 memset(props, 0, sizeof(struct perf_open_properties));
2701 DRM_DEBUG("No i915 perf properties given\n");
2705 /* Considering that ID = 0 is reserved and assuming that we don't
2706 * (currently) expect any configurations to ever specify duplicate
2707 * values for a particular property ID then the last _PROP_MAX value is
2708 * one greater than the maximum number of properties we expect to get
2711 if (n_props >= DRM_I915_PERF_PROP_MAX) {
2712 DRM_DEBUG("More i915 perf properties specified than exist\n");
2716 for (i = 0; i < n_props; i++) {
2717 u64 oa_period, oa_freq_hz;
2721 ret = get_user(id, uprop);
2725 ret = get_user(value, uprop + 1);
2729 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
2730 DRM_DEBUG("Unknown i915 perf property ID\n");
2734 switch ((enum drm_i915_perf_property_id)id) {
2735 case DRM_I915_PERF_PROP_CTX_HANDLE:
2736 props->single_context = 1;
2737 props->ctx_handle = value;
2739 case DRM_I915_PERF_PROP_SAMPLE_OA:
2741 props->sample_flags |= SAMPLE_OA_REPORT;
2743 case DRM_I915_PERF_PROP_OA_METRICS_SET:
2745 DRM_DEBUG("Unknown OA metric set ID\n");
2748 props->metrics_set = value;
2750 case DRM_I915_PERF_PROP_OA_FORMAT:
2751 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
2752 DRM_DEBUG("Out-of-range OA report format %llu\n",
2756 if (!dev_priv->perf.oa.oa_formats[value].size) {
2757 DRM_DEBUG("Unsupported OA report format %llu\n",
2761 props->oa_format = value;
2763 case DRM_I915_PERF_PROP_OA_EXPONENT:
2764 if (value > OA_EXPONENT_MAX) {
2765 DRM_DEBUG("OA timer exponent too high (> %u)\n",
2770 /* Theoretically we can program the OA unit to sample
2771 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
2772 * for BXT. We don't allow such high sampling
2773 * frequencies by default unless root.
2776 BUILD_BUG_ON(sizeof(oa_period) != 8);
2777 oa_period = oa_exponent_to_ns(dev_priv, value);
2779 /* This check is primarily to ensure that oa_period <=
2780 * UINT32_MAX (before passing to do_div which only
2781 * accepts a u32 denominator), but we can also skip
2782 * checking anything < 1Hz which implicitly can't be
2783 * limited via an integer oa_max_sample_rate.
2785 if (oa_period <= NSEC_PER_SEC) {
2786 u64 tmp = NSEC_PER_SEC;
2787 do_div(tmp, oa_period);
2792 if (oa_freq_hz > i915_oa_max_sample_rate &&
2793 !capable(CAP_SYS_ADMIN)) {
2794 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without root privileges\n",
2795 i915_oa_max_sample_rate);
2799 props->oa_periodic = true;
2800 props->oa_period_exponent = value;
2802 case DRM_I915_PERF_PROP_MAX:
2814 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
2816 * @data: ioctl data copied from userspace (unvalidated)
2819 * Validates the stream open parameters given by userspace including flags
2820 * and an array of u64 key, value pair properties.
2822 * Very little is assumed up front about the nature of the stream being
2823 * opened (for instance we don't assume it's for periodic OA unit metrics). An
2824 * i915-perf stream is expected to be a suitable interface for other forms of
2825 * buffered data written by the GPU besides periodic OA metrics.
2827 * Note we copy the properties from userspace outside of the i915 perf
2828 * mutex to avoid an awkward lockdep with mmap_sem.
2830 * Most of the implementation details are handled by
2831 * i915_perf_open_ioctl_locked() after taking the &drm_i915_private->perf.lock
2832 * mutex for serializing with any non-file-operation driver hooks.
2834 * Return: A newly opened i915 Perf stream file descriptor or negative
2835 * error code on failure.
2837 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
2838 struct drm_file *file)
2840 struct drm_i915_private *dev_priv = dev->dev_private;
2841 struct drm_i915_perf_open_param *param = data;
2842 struct perf_open_properties props;
2843 u32 known_open_flags;
2846 if (!dev_priv->perf.initialized) {
2847 DRM_DEBUG("i915 perf interface not available for this system\n");
2851 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
2852 I915_PERF_FLAG_FD_NONBLOCK |
2853 I915_PERF_FLAG_DISABLED;
2854 if (param->flags & ~known_open_flags) {
2855 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
2859 ret = read_properties_unlocked(dev_priv,
2860 u64_to_user_ptr(param->properties_ptr),
2861 param->num_properties,
2866 mutex_lock(&dev_priv->perf.lock);
2867 ret = i915_perf_open_ioctl_locked(dev_priv, param, &props, file);
2868 mutex_unlock(&dev_priv->perf.lock);
2874 * i915_perf_register - exposes i915-perf to userspace
2875 * @dev_priv: i915 device instance
2877 * In particular OA metric sets are advertised under a sysfs metrics/
2878 * directory allowing userspace to enumerate valid IDs that can be
2879 * used to open an i915-perf stream.
2881 void i915_perf_register(struct drm_i915_private *dev_priv)
2885 if (!dev_priv->perf.initialized)
2888 /* To be sure we're synchronized with an attempted
2889 * i915_perf_open_ioctl(); considering that we register after
2890 * being exposed to userspace.
2892 mutex_lock(&dev_priv->perf.lock);
2894 dev_priv->perf.metrics_kobj =
2895 kobject_create_and_add("metrics",
2896 &dev_priv->drm.primary->kdev->kobj);
2897 if (!dev_priv->perf.metrics_kobj)
2900 sysfs_attr_init(&dev_priv->perf.oa.test_config.sysfs_metric_id.attr);
2902 if (INTEL_GEN(dev_priv) >= 11) {
2903 i915_perf_load_test_config_icl(dev_priv);
2904 } else if (IS_CANNONLAKE(dev_priv)) {
2905 i915_perf_load_test_config_cnl(dev_priv);
2906 } else if (IS_COFFEELAKE(dev_priv)) {
2907 if (IS_CFL_GT2(dev_priv))
2908 i915_perf_load_test_config_cflgt2(dev_priv);
2909 if (IS_CFL_GT3(dev_priv))
2910 i915_perf_load_test_config_cflgt3(dev_priv);
2911 } else if (IS_GEMINILAKE(dev_priv)) {
2912 i915_perf_load_test_config_glk(dev_priv);
2913 } else if (IS_KABYLAKE(dev_priv)) {
2914 if (IS_KBL_GT2(dev_priv))
2915 i915_perf_load_test_config_kblgt2(dev_priv);
2916 else if (IS_KBL_GT3(dev_priv))
2917 i915_perf_load_test_config_kblgt3(dev_priv);
2918 } else if (IS_BROXTON(dev_priv)) {
2919 i915_perf_load_test_config_bxt(dev_priv);
2920 } else if (IS_SKYLAKE(dev_priv)) {
2921 if (IS_SKL_GT2(dev_priv))
2922 i915_perf_load_test_config_sklgt2(dev_priv);
2923 else if (IS_SKL_GT3(dev_priv))
2924 i915_perf_load_test_config_sklgt3(dev_priv);
2925 else if (IS_SKL_GT4(dev_priv))
2926 i915_perf_load_test_config_sklgt4(dev_priv);
2927 } else if (IS_CHERRYVIEW(dev_priv)) {
2928 i915_perf_load_test_config_chv(dev_priv);
2929 } else if (IS_BROADWELL(dev_priv)) {
2930 i915_perf_load_test_config_bdw(dev_priv);
2931 } else if (IS_HASWELL(dev_priv)) {
2932 i915_perf_load_test_config_hsw(dev_priv);
2935 if (dev_priv->perf.oa.test_config.id == 0)
2938 ret = sysfs_create_group(dev_priv->perf.metrics_kobj,
2939 &dev_priv->perf.oa.test_config.sysfs_metric);
2943 atomic_set(&dev_priv->perf.oa.test_config.ref_count, 1);
2948 kobject_put(dev_priv->perf.metrics_kobj);
2949 dev_priv->perf.metrics_kobj = NULL;
2952 mutex_unlock(&dev_priv->perf.lock);
2956 * i915_perf_unregister - hide i915-perf from userspace
2957 * @dev_priv: i915 device instance
2959 * i915-perf state cleanup is split up into an 'unregister' and
2960 * 'deinit' phase where the interface is first hidden from
2961 * userspace by i915_perf_unregister() before cleaning up
2962 * remaining state in i915_perf_fini().
2964 void i915_perf_unregister(struct drm_i915_private *dev_priv)
2966 if (!dev_priv->perf.metrics_kobj)
2969 sysfs_remove_group(dev_priv->perf.metrics_kobj,
2970 &dev_priv->perf.oa.test_config.sysfs_metric);
2972 kobject_put(dev_priv->perf.metrics_kobj);
2973 dev_priv->perf.metrics_kobj = NULL;
2976 static bool gen8_is_valid_flex_addr(struct drm_i915_private *dev_priv, u32 addr)
2978 static const i915_reg_t flex_eu_regs[] = {
2989 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
2990 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
2996 static bool gen7_is_valid_b_counter_addr(struct drm_i915_private *dev_priv, u32 addr)
2998 return (addr >= i915_mmio_reg_offset(OASTARTTRIG1) &&
2999 addr <= i915_mmio_reg_offset(OASTARTTRIG8)) ||
3000 (addr >= i915_mmio_reg_offset(OAREPORTTRIG1) &&
3001 addr <= i915_mmio_reg_offset(OAREPORTTRIG8)) ||
3002 (addr >= i915_mmio_reg_offset(OACEC0_0) &&
3003 addr <= i915_mmio_reg_offset(OACEC7_1));
3006 static bool gen7_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3008 return addr == i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) ||
3009 (addr >= i915_mmio_reg_offset(MICRO_BP0_0) &&
3010 addr <= i915_mmio_reg_offset(NOA_WRITE)) ||
3011 (addr >= i915_mmio_reg_offset(OA_PERFCNT1_LO) &&
3012 addr <= i915_mmio_reg_offset(OA_PERFCNT2_HI)) ||
3013 (addr >= i915_mmio_reg_offset(OA_PERFMATRIX_LO) &&
3014 addr <= i915_mmio_reg_offset(OA_PERFMATRIX_HI));
3017 static bool gen8_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3019 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3020 addr == i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) ||
3021 (addr >= i915_mmio_reg_offset(RPM_CONFIG0) &&
3022 addr <= i915_mmio_reg_offset(NOA_CONFIG(8)));
3025 static bool gen10_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3027 return gen8_is_valid_mux_addr(dev_priv, addr) ||
3028 addr == i915_mmio_reg_offset(GEN10_NOA_WRITE_HIGH) ||
3029 (addr >= i915_mmio_reg_offset(OA_PERFCNT3_LO) &&
3030 addr <= i915_mmio_reg_offset(OA_PERFCNT4_HI));
3033 static bool hsw_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3035 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3036 (addr >= 0x25100 && addr <= 0x2FF90) ||
3037 (addr >= i915_mmio_reg_offset(HSW_MBVID2_NOA0) &&
3038 addr <= i915_mmio_reg_offset(HSW_MBVID2_NOA9)) ||
3039 addr == i915_mmio_reg_offset(HSW_MBVID2_MISR0);
3042 static bool chv_is_valid_mux_addr(struct drm_i915_private *dev_priv, u32 addr)
3044 return gen7_is_valid_mux_addr(dev_priv, addr) ||
3045 (addr >= 0x182300 && addr <= 0x1823A4);
3048 static u32 mask_reg_value(u32 reg, u32 val)
3050 /* HALF_SLICE_CHICKEN2 is programmed with a the
3051 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3052 * programmed by userspace doesn't change this.
3054 if (i915_mmio_reg_offset(HALF_SLICE_CHICKEN2) == reg)
3055 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3057 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3058 * indicated by its name and a bunch of selection fields used by OA
3061 if (i915_mmio_reg_offset(WAIT_FOR_RC6_EXIT) == reg)
3062 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3067 static struct i915_oa_reg *alloc_oa_regs(struct drm_i915_private *dev_priv,
3068 bool (*is_valid)(struct drm_i915_private *dev_priv, u32 addr),
3072 struct i915_oa_reg *oa_regs;
3079 if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3080 return ERR_PTR(-EFAULT);
3082 /* No is_valid function means we're not allowing any register to be programmed. */
3083 GEM_BUG_ON(!is_valid);
3085 return ERR_PTR(-EINVAL);
3087 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3089 return ERR_PTR(-ENOMEM);
3091 for (i = 0; i < n_regs; i++) {
3094 err = get_user(addr, regs);
3098 if (!is_valid(dev_priv, addr)) {
3099 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3104 err = get_user(value, regs + 1);
3108 oa_regs[i].addr = _MMIO(addr);
3109 oa_regs[i].value = mask_reg_value(addr, value);
3118 return ERR_PTR(err);
3121 static ssize_t show_dynamic_id(struct device *dev,
3122 struct device_attribute *attr,
3125 struct i915_oa_config *oa_config =
3126 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3128 return sprintf(buf, "%d\n", oa_config->id);
3131 static int create_dynamic_oa_sysfs_entry(struct drm_i915_private *dev_priv,
3132 struct i915_oa_config *oa_config)
3134 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3135 oa_config->sysfs_metric_id.attr.name = "id";
3136 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3137 oa_config->sysfs_metric_id.show = show_dynamic_id;
3138 oa_config->sysfs_metric_id.store = NULL;
3140 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3141 oa_config->attrs[1] = NULL;
3143 oa_config->sysfs_metric.name = oa_config->uuid;
3144 oa_config->sysfs_metric.attrs = oa_config->attrs;
3146 return sysfs_create_group(dev_priv->perf.metrics_kobj,
3147 &oa_config->sysfs_metric);
3151 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3153 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3154 * userspace (unvalidated)
3157 * Validates the submitted OA register to be saved into a new OA config that
3158 * can then be used for programming the OA unit and its NOA network.
3160 * Returns: A new allocated config number to be used with the perf open ioctl
3161 * or a negative error code on failure.
3163 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3164 struct drm_file *file)
3166 struct drm_i915_private *dev_priv = dev->dev_private;
3167 struct drm_i915_perf_oa_config *args = data;
3168 struct i915_oa_config *oa_config, *tmp;
3171 if (!dev_priv->perf.initialized) {
3172 DRM_DEBUG("i915 perf interface not available for this system\n");
3176 if (!dev_priv->perf.metrics_kobj) {
3177 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3181 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3182 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
3186 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
3187 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
3188 (!args->flex_regs_ptr || !args->n_flex_regs)) {
3189 DRM_DEBUG("No OA registers given\n");
3193 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
3195 DRM_DEBUG("Failed to allocate memory for the OA config\n");
3199 atomic_set(&oa_config->ref_count, 1);
3201 if (!uuid_is_valid(args->uuid)) {
3202 DRM_DEBUG("Invalid uuid format for OA config\n");
3207 /* Last character in oa_config->uuid will be 0 because oa_config is
3210 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
3212 oa_config->mux_regs_len = args->n_mux_regs;
3213 oa_config->mux_regs =
3214 alloc_oa_regs(dev_priv,
3215 dev_priv->perf.oa.ops.is_valid_mux_reg,
3216 u64_to_user_ptr(args->mux_regs_ptr),
3219 if (IS_ERR(oa_config->mux_regs)) {
3220 DRM_DEBUG("Failed to create OA config for mux_regs\n");
3221 err = PTR_ERR(oa_config->mux_regs);
3225 oa_config->b_counter_regs_len = args->n_boolean_regs;
3226 oa_config->b_counter_regs =
3227 alloc_oa_regs(dev_priv,
3228 dev_priv->perf.oa.ops.is_valid_b_counter_reg,
3229 u64_to_user_ptr(args->boolean_regs_ptr),
3230 args->n_boolean_regs);
3232 if (IS_ERR(oa_config->b_counter_regs)) {
3233 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
3234 err = PTR_ERR(oa_config->b_counter_regs);
3238 if (INTEL_GEN(dev_priv) < 8) {
3239 if (args->n_flex_regs != 0) {
3244 oa_config->flex_regs_len = args->n_flex_regs;
3245 oa_config->flex_regs =
3246 alloc_oa_regs(dev_priv,
3247 dev_priv->perf.oa.ops.is_valid_flex_reg,
3248 u64_to_user_ptr(args->flex_regs_ptr),
3251 if (IS_ERR(oa_config->flex_regs)) {
3252 DRM_DEBUG("Failed to create OA config for flex_regs\n");
3253 err = PTR_ERR(oa_config->flex_regs);
3258 err = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3262 /* We shouldn't have too many configs, so this iteration shouldn't be
3265 idr_for_each_entry(&dev_priv->perf.metrics_idr, tmp, id) {
3266 if (!strcmp(tmp->uuid, oa_config->uuid)) {
3267 DRM_DEBUG("OA config already exists with this uuid\n");
3273 err = create_dynamic_oa_sysfs_entry(dev_priv, oa_config);
3275 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3279 /* Config id 0 is invalid, id 1 for kernel stored test config. */
3280 oa_config->id = idr_alloc(&dev_priv->perf.metrics_idr,
3283 if (oa_config->id < 0) {
3284 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
3285 err = oa_config->id;
3289 mutex_unlock(&dev_priv->perf.metrics_lock);
3291 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
3293 return oa_config->id;
3296 mutex_unlock(&dev_priv->perf.metrics_lock);
3298 put_oa_config(dev_priv, oa_config);
3299 DRM_DEBUG("Failed to add new OA config\n");
3304 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
3306 * @data: ioctl data (pointer to u64 integer) copied from userspace
3309 * Configs can be removed while being used, the will stop appearing in sysfs
3310 * and their content will be freed when the stream using the config is closed.
3312 * Returns: 0 on success or a negative error code on failure.
3314 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3315 struct drm_file *file)
3317 struct drm_i915_private *dev_priv = dev->dev_private;
3319 struct i915_oa_config *oa_config;
3322 if (!dev_priv->perf.initialized) {
3323 DRM_DEBUG("i915 perf interface not available for this system\n");
3327 if (i915_perf_stream_paranoid && !capable(CAP_SYS_ADMIN)) {
3328 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
3332 ret = mutex_lock_interruptible(&dev_priv->perf.metrics_lock);
3336 oa_config = idr_find(&dev_priv->perf.metrics_idr, *arg);
3338 DRM_DEBUG("Failed to remove unknown OA config\n");
3343 GEM_BUG_ON(*arg != oa_config->id);
3345 sysfs_remove_group(dev_priv->perf.metrics_kobj,
3346 &oa_config->sysfs_metric);
3348 idr_remove(&dev_priv->perf.metrics_idr, *arg);
3350 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
3352 put_oa_config(dev_priv, oa_config);
3355 mutex_unlock(&dev_priv->perf.metrics_lock);
3360 static struct ctl_table oa_table[] = {
3362 .procname = "perf_stream_paranoid",
3363 .data = &i915_perf_stream_paranoid,
3364 .maxlen = sizeof(i915_perf_stream_paranoid),
3366 .proc_handler = proc_dointvec_minmax,
3367 .extra1 = SYSCTL_ZERO,
3368 .extra2 = SYSCTL_ONE,
3371 .procname = "oa_max_sample_rate",
3372 .data = &i915_oa_max_sample_rate,
3373 .maxlen = sizeof(i915_oa_max_sample_rate),
3375 .proc_handler = proc_dointvec_minmax,
3376 .extra1 = SYSCTL_ZERO,
3377 .extra2 = &oa_sample_rate_hard_limit,
3382 static struct ctl_table i915_root[] = {
3392 static struct ctl_table dev_root[] = {
3403 * i915_perf_init - initialize i915-perf state on module load
3404 * @dev_priv: i915 device instance
3406 * Initializes i915-perf state without exposing anything to userspace.
3408 * Note: i915-perf initialization is split into an 'init' and 'register'
3409 * phase with the i915_perf_register() exposing state to userspace.
3411 void i915_perf_init(struct drm_i915_private *dev_priv)
3413 if (IS_HASWELL(dev_priv)) {
3414 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3415 gen7_is_valid_b_counter_addr;
3416 dev_priv->perf.oa.ops.is_valid_mux_reg =
3417 hsw_is_valid_mux_addr;
3418 dev_priv->perf.oa.ops.is_valid_flex_reg = NULL;
3419 dev_priv->perf.oa.ops.enable_metric_set = hsw_enable_metric_set;
3420 dev_priv->perf.oa.ops.disable_metric_set = hsw_disable_metric_set;
3421 dev_priv->perf.oa.ops.oa_enable = gen7_oa_enable;
3422 dev_priv->perf.oa.ops.oa_disable = gen7_oa_disable;
3423 dev_priv->perf.oa.ops.read = gen7_oa_read;
3424 dev_priv->perf.oa.ops.oa_hw_tail_read =
3425 gen7_oa_hw_tail_read;
3427 dev_priv->perf.oa.oa_formats = hsw_oa_formats;
3428 } else if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
3429 /* Note: that although we could theoretically also support the
3430 * legacy ringbuffer mode on BDW (and earlier iterations of
3431 * this driver, before upstreaming did this) it didn't seem
3432 * worth the complexity to maintain now that BDW+ enable
3433 * execlist mode by default.
3435 dev_priv->perf.oa.oa_formats = gen8_plus_oa_formats;
3437 dev_priv->perf.oa.ops.oa_enable = gen8_oa_enable;
3438 dev_priv->perf.oa.ops.oa_disable = gen8_oa_disable;
3439 dev_priv->perf.oa.ops.read = gen8_oa_read;
3440 dev_priv->perf.oa.ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
3442 if (IS_GEN_RANGE(dev_priv, 8, 9)) {
3443 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3444 gen7_is_valid_b_counter_addr;
3445 dev_priv->perf.oa.ops.is_valid_mux_reg =
3446 gen8_is_valid_mux_addr;
3447 dev_priv->perf.oa.ops.is_valid_flex_reg =
3448 gen8_is_valid_flex_addr;
3450 if (IS_CHERRYVIEW(dev_priv)) {
3451 dev_priv->perf.oa.ops.is_valid_mux_reg =
3452 chv_is_valid_mux_addr;
3455 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3456 dev_priv->perf.oa.ops.disable_metric_set = gen8_disable_metric_set;
3458 if (IS_GEN(dev_priv, 8)) {
3459 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x120;
3460 dev_priv->perf.oa.ctx_flexeu0_offset = 0x2ce;
3462 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<25);
3464 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3465 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3467 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3469 } else if (IS_GEN_RANGE(dev_priv, 10, 11)) {
3470 dev_priv->perf.oa.ops.is_valid_b_counter_reg =
3471 gen7_is_valid_b_counter_addr;
3472 dev_priv->perf.oa.ops.is_valid_mux_reg =
3473 gen10_is_valid_mux_addr;
3474 dev_priv->perf.oa.ops.is_valid_flex_reg =
3475 gen8_is_valid_flex_addr;
3477 dev_priv->perf.oa.ops.enable_metric_set = gen8_enable_metric_set;
3478 dev_priv->perf.oa.ops.disable_metric_set = gen10_disable_metric_set;
3480 dev_priv->perf.oa.ctx_oactxctrl_offset = 0x128;
3481 dev_priv->perf.oa.ctx_flexeu0_offset = 0x3de;
3483 dev_priv->perf.oa.gen8_valid_ctx_bit = (1<<16);
3487 if (dev_priv->perf.oa.ops.enable_metric_set) {
3488 hrtimer_init(&dev_priv->perf.oa.poll_check_timer,
3489 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3490 dev_priv->perf.oa.poll_check_timer.function = oa_poll_check_timer_cb;
3491 init_waitqueue_head(&dev_priv->perf.oa.poll_wq);
3493 INIT_LIST_HEAD(&dev_priv->perf.streams);
3494 mutex_init(&dev_priv->perf.lock);
3495 spin_lock_init(&dev_priv->perf.oa.oa_buffer.ptr_lock);
3497 oa_sample_rate_hard_limit = 1000 *
3498 (RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz / 2);
3499 dev_priv->perf.sysctl_header = register_sysctl_table(dev_root);
3501 mutex_init(&dev_priv->perf.metrics_lock);
3502 idr_init(&dev_priv->perf.metrics_idr);
3504 dev_priv->perf.initialized = true;
3508 static int destroy_config(int id, void *p, void *data)
3510 struct drm_i915_private *dev_priv = data;
3511 struct i915_oa_config *oa_config = p;
3513 put_oa_config(dev_priv, oa_config);
3519 * i915_perf_fini - Counter part to i915_perf_init()
3520 * @dev_priv: i915 device instance
3522 void i915_perf_fini(struct drm_i915_private *dev_priv)
3524 if (!dev_priv->perf.initialized)
3527 idr_for_each(&dev_priv->perf.metrics_idr, destroy_config, dev_priv);
3528 idr_destroy(&dev_priv->perf.metrics_idr);
3530 unregister_sysctl_table(dev_priv->perf.sysctl_header);
3532 memset(&dev_priv->perf.oa.ops, 0, sizeof(dev_priv->perf.oa.ops));
3534 dev_priv->perf.initialized = false;