4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/init.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <linux/badblocks.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
39 struct block_device bdev;
40 struct inode vfs_inode;
43 static const struct address_space_operations def_blk_aops;
45 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 return container_of(inode, struct bdev_inode, vfs_inode);
50 struct block_device *I_BDEV(struct inode *inode)
52 return &BDEV_I(inode)->bdev;
54 EXPORT_SYMBOL(I_BDEV);
56 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
64 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
68 static void bdev_write_inode(struct block_device *bdev)
70 struct inode *inode = bdev->bd_inode;
73 spin_lock(&inode->i_lock);
74 while (inode->i_state & I_DIRTY) {
75 spin_unlock(&inode->i_lock);
76 ret = write_inode_now(inode, true);
78 char name[BDEVNAME_SIZE];
79 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
80 "for block device %s (err=%d).\n",
81 bdevname(bdev, name), ret);
83 spin_lock(&inode->i_lock);
85 spin_unlock(&inode->i_lock);
88 /* Kill _all_ buffers and pagecache , dirty or not.. */
89 void kill_bdev(struct block_device *bdev)
91 struct address_space *mapping = bdev->bd_inode->i_mapping;
93 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
97 truncate_inode_pages(mapping, 0);
99 EXPORT_SYMBOL(kill_bdev);
101 /* Invalidate clean unused buffers and pagecache. */
102 void invalidate_bdev(struct block_device *bdev)
104 struct address_space *mapping = bdev->bd_inode->i_mapping;
106 if (mapping->nrpages == 0)
109 invalidate_bh_lrus();
110 lru_add_drain_all(); /* make sure all lru add caches are flushed */
111 invalidate_mapping_pages(mapping, 0, -1);
112 /* 99% of the time, we don't need to flush the cleancache on the bdev.
113 * But, for the strange corners, lets be cautious
115 cleancache_invalidate_inode(mapping);
117 EXPORT_SYMBOL(invalidate_bdev);
119 int set_blocksize(struct block_device *bdev, int size)
121 /* Size must be a power of two, and between 512 and PAGE_SIZE */
122 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 /* Size cannot be smaller than the size supported by the device */
126 if (size < bdev_logical_block_size(bdev))
129 /* Don't change the size if it is same as current */
130 if (bdev->bd_block_size != size) {
132 bdev->bd_block_size = size;
133 bdev->bd_inode->i_blkbits = blksize_bits(size);
139 EXPORT_SYMBOL(set_blocksize);
141 int sb_set_blocksize(struct super_block *sb, int size)
143 if (set_blocksize(sb->s_bdev, size))
145 /* If we get here, we know size is power of two
146 * and it's value is between 512 and PAGE_SIZE */
147 sb->s_blocksize = size;
148 sb->s_blocksize_bits = blksize_bits(size);
149 return sb->s_blocksize;
152 EXPORT_SYMBOL(sb_set_blocksize);
154 int sb_min_blocksize(struct super_block *sb, int size)
156 int minsize = bdev_logical_block_size(sb->s_bdev);
159 return sb_set_blocksize(sb, size);
162 EXPORT_SYMBOL(sb_min_blocksize);
165 blkdev_get_block(struct inode *inode, sector_t iblock,
166 struct buffer_head *bh, int create)
168 bh->b_bdev = I_BDEV(inode);
169 bh->b_blocknr = iblock;
170 set_buffer_mapped(bh);
174 static struct inode *bdev_file_inode(struct file *file)
176 return file->f_mapping->host;
179 static unsigned int dio_bio_write_op(struct kiocb *iocb)
181 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
183 /* avoid the need for a I/O completion work item */
184 if (iocb->ki_flags & IOCB_DSYNC)
189 #define DIO_INLINE_BIO_VECS 4
191 static void blkdev_bio_end_io_simple(struct bio *bio)
193 struct task_struct *waiter = bio->bi_private;
195 WRITE_ONCE(bio->bi_private, NULL);
196 wake_up_process(waiter);
200 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 struct file *file = iocb->ki_filp;
204 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
205 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
206 loff_t pos = iocb->ki_pos;
207 bool should_dirty = false;
213 if ((pos | iov_iter_alignment(iter)) &
214 (bdev_logical_block_size(bdev) - 1))
217 if (nr_pages <= DIO_INLINE_BIO_VECS)
220 vecs = kmalloc(nr_pages * sizeof(struct bio_vec), GFP_KERNEL);
225 bio_init(&bio, vecs, nr_pages);
227 bio.bi_iter.bi_sector = pos >> 9;
228 bio.bi_private = current;
229 bio.bi_end_io = blkdev_bio_end_io_simple;
231 ret = bio_iov_iter_get_pages(&bio, iter);
234 ret = bio.bi_iter.bi_size;
236 if (iov_iter_rw(iter) == READ) {
237 bio.bi_opf = REQ_OP_READ;
238 if (iter_is_iovec(iter))
241 bio.bi_opf = dio_bio_write_op(iocb);
242 task_io_account_write(ret);
245 qc = submit_bio(&bio);
247 set_current_state(TASK_UNINTERRUPTIBLE);
248 if (!READ_ONCE(bio.bi_private))
250 if (!(iocb->ki_flags & IOCB_HIPRI) ||
251 !blk_mq_poll(bdev_get_queue(bdev), qc))
254 __set_current_state(TASK_RUNNING);
256 bio_for_each_segment_all(bvec, &bio, i) {
257 if (should_dirty && !PageCompound(bvec->bv_page))
258 set_page_dirty_lock(bvec->bv_page);
259 put_page(bvec->bv_page);
262 if (vecs != inline_vecs)
265 if (unlikely(bio.bi_error))
273 struct task_struct *waiter;
278 bool should_dirty : 1;
283 static struct bio_set *blkdev_dio_pool __read_mostly;
285 static void blkdev_bio_end_io(struct bio *bio)
287 struct blkdev_dio *dio = bio->bi_private;
288 bool should_dirty = dio->should_dirty;
290 if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
291 if (bio->bi_error && !dio->bio.bi_error)
292 dio->bio.bi_error = bio->bi_error;
295 struct kiocb *iocb = dio->iocb;
296 ssize_t ret = dio->bio.bi_error;
303 dio->iocb->ki_complete(iocb, ret, 0);
306 struct task_struct *waiter = dio->waiter;
308 WRITE_ONCE(dio->waiter, NULL);
309 wake_up_process(waiter);
314 bio_check_pages_dirty(bio);
316 struct bio_vec *bvec;
319 bio_for_each_segment_all(bvec, bio, i)
320 put_page(bvec->bv_page);
326 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
328 struct file *file = iocb->ki_filp;
329 struct inode *inode = bdev_file_inode(file);
330 struct block_device *bdev = I_BDEV(inode);
331 struct blk_plug plug;
332 struct blkdev_dio *dio;
334 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
335 loff_t pos = iocb->ki_pos;
336 blk_qc_t qc = BLK_QC_T_NONE;
339 if ((pos | iov_iter_alignment(iter)) &
340 (bdev_logical_block_size(bdev) - 1))
343 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, blkdev_dio_pool);
344 bio_get(bio); /* extra ref for the completion handler */
346 dio = container_of(bio, struct blkdev_dio, bio);
347 dio->is_sync = is_sync = is_sync_kiocb(iocb);
349 dio->waiter = current;
354 dio->multi_bio = false;
355 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
357 blk_start_plug(&plug);
360 bio->bi_iter.bi_sector = pos >> 9;
361 bio->bi_private = dio;
362 bio->bi_end_io = blkdev_bio_end_io;
364 ret = bio_iov_iter_get_pages(bio, iter);
372 bio->bi_opf = REQ_OP_READ;
373 if (dio->should_dirty)
374 bio_set_pages_dirty(bio);
376 bio->bi_opf = dio_bio_write_op(iocb);
377 task_io_account_write(bio->bi_iter.bi_size);
380 dio->size += bio->bi_iter.bi_size;
381 pos += bio->bi_iter.bi_size;
383 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
385 qc = submit_bio(bio);
389 if (!dio->multi_bio) {
390 dio->multi_bio = true;
391 atomic_set(&dio->ref, 2);
393 atomic_inc(&dio->ref);
397 bio = bio_alloc(GFP_KERNEL, nr_pages);
399 blk_finish_plug(&plug);
405 set_current_state(TASK_UNINTERRUPTIBLE);
406 if (!READ_ONCE(dio->waiter))
409 if (!(iocb->ki_flags & IOCB_HIPRI) ||
410 !blk_mq_poll(bdev_get_queue(bdev), qc))
413 __set_current_state(TASK_RUNNING);
415 ret = dio->bio.bi_error;
424 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
428 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
431 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
432 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
434 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
437 static __init int blkdev_init(void)
439 blkdev_dio_pool = bioset_create(4, offsetof(struct blkdev_dio, bio));
440 if (!blkdev_dio_pool)
444 module_init(blkdev_init);
446 int __sync_blockdev(struct block_device *bdev, int wait)
451 return filemap_flush(bdev->bd_inode->i_mapping);
452 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
456 * Write out and wait upon all the dirty data associated with a block
457 * device via its mapping. Does not take the superblock lock.
459 int sync_blockdev(struct block_device *bdev)
461 return __sync_blockdev(bdev, 1);
463 EXPORT_SYMBOL(sync_blockdev);
466 * Write out and wait upon all dirty data associated with this
467 * device. Filesystem data as well as the underlying block
468 * device. Takes the superblock lock.
470 int fsync_bdev(struct block_device *bdev)
472 struct super_block *sb = get_super(bdev);
474 int res = sync_filesystem(sb);
478 return sync_blockdev(bdev);
480 EXPORT_SYMBOL(fsync_bdev);
483 * freeze_bdev -- lock a filesystem and force it into a consistent state
484 * @bdev: blockdevice to lock
486 * If a superblock is found on this device, we take the s_umount semaphore
487 * on it to make sure nobody unmounts until the snapshot creation is done.
488 * The reference counter (bd_fsfreeze_count) guarantees that only the last
489 * unfreeze process can unfreeze the frozen filesystem actually when multiple
490 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
491 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
494 struct super_block *freeze_bdev(struct block_device *bdev)
496 struct super_block *sb;
499 mutex_lock(&bdev->bd_fsfreeze_mutex);
500 if (++bdev->bd_fsfreeze_count > 1) {
502 * We don't even need to grab a reference - the first call
503 * to freeze_bdev grab an active reference and only the last
504 * thaw_bdev drops it.
506 sb = get_super(bdev);
509 mutex_unlock(&bdev->bd_fsfreeze_mutex);
513 sb = get_active_super(bdev);
516 if (sb->s_op->freeze_super)
517 error = sb->s_op->freeze_super(sb);
519 error = freeze_super(sb);
521 deactivate_super(sb);
522 bdev->bd_fsfreeze_count--;
523 mutex_unlock(&bdev->bd_fsfreeze_mutex);
524 return ERR_PTR(error);
526 deactivate_super(sb);
529 mutex_unlock(&bdev->bd_fsfreeze_mutex);
530 return sb; /* thaw_bdev releases s->s_umount */
532 EXPORT_SYMBOL(freeze_bdev);
535 * thaw_bdev -- unlock filesystem
536 * @bdev: blockdevice to unlock
537 * @sb: associated superblock
539 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
541 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
545 mutex_lock(&bdev->bd_fsfreeze_mutex);
546 if (!bdev->bd_fsfreeze_count)
550 if (--bdev->bd_fsfreeze_count > 0)
556 if (sb->s_op->thaw_super)
557 error = sb->s_op->thaw_super(sb);
559 error = thaw_super(sb);
561 bdev->bd_fsfreeze_count++;
563 mutex_unlock(&bdev->bd_fsfreeze_mutex);
566 EXPORT_SYMBOL(thaw_bdev);
568 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
570 return block_write_full_page(page, blkdev_get_block, wbc);
573 static int blkdev_readpage(struct file * file, struct page * page)
575 return block_read_full_page(page, blkdev_get_block);
578 static int blkdev_readpages(struct file *file, struct address_space *mapping,
579 struct list_head *pages, unsigned nr_pages)
581 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
584 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
585 loff_t pos, unsigned len, unsigned flags,
586 struct page **pagep, void **fsdata)
588 return block_write_begin(mapping, pos, len, flags, pagep,
592 static int blkdev_write_end(struct file *file, struct address_space *mapping,
593 loff_t pos, unsigned len, unsigned copied,
594 struct page *page, void *fsdata)
597 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
607 * for a block special file file_inode(file)->i_size is zero
608 * so we compute the size by hand (just as in block_read/write above)
610 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
612 struct inode *bd_inode = bdev_file_inode(file);
615 inode_lock(bd_inode);
616 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
617 inode_unlock(bd_inode);
621 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
623 struct inode *bd_inode = bdev_file_inode(filp);
624 struct block_device *bdev = I_BDEV(bd_inode);
627 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
632 * There is no need to serialise calls to blkdev_issue_flush with
633 * i_mutex and doing so causes performance issues with concurrent
634 * O_SYNC writers to a block device.
636 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
637 if (error == -EOPNOTSUPP)
642 EXPORT_SYMBOL(blkdev_fsync);
645 * bdev_read_page() - Start reading a page from a block device
646 * @bdev: The device to read the page from
647 * @sector: The offset on the device to read the page to (need not be aligned)
648 * @page: The page to read
650 * On entry, the page should be locked. It will be unlocked when the page
651 * has been read. If the block driver implements rw_page synchronously,
652 * that will be true on exit from this function, but it need not be.
654 * Errors returned by this function are usually "soft", eg out of memory, or
655 * queue full; callers should try a different route to read this page rather
656 * than propagate an error back up the stack.
658 * Return: negative errno if an error occurs, 0 if submission was successful.
660 int bdev_read_page(struct block_device *bdev, sector_t sector,
663 const struct block_device_operations *ops = bdev->bd_disk->fops;
664 int result = -EOPNOTSUPP;
666 if (!ops->rw_page || bdev_get_integrity(bdev))
669 result = blk_queue_enter(bdev->bd_queue, false);
672 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
673 blk_queue_exit(bdev->bd_queue);
676 EXPORT_SYMBOL_GPL(bdev_read_page);
679 * bdev_write_page() - Start writing a page to a block device
680 * @bdev: The device to write the page to
681 * @sector: The offset on the device to write the page to (need not be aligned)
682 * @page: The page to write
683 * @wbc: The writeback_control for the write
685 * On entry, the page should be locked and not currently under writeback.
686 * On exit, if the write started successfully, the page will be unlocked and
687 * under writeback. If the write failed already (eg the driver failed to
688 * queue the page to the device), the page will still be locked. If the
689 * caller is a ->writepage implementation, it will need to unlock the page.
691 * Errors returned by this function are usually "soft", eg out of memory, or
692 * queue full; callers should try a different route to write this page rather
693 * than propagate an error back up the stack.
695 * Return: negative errno if an error occurs, 0 if submission was successful.
697 int bdev_write_page(struct block_device *bdev, sector_t sector,
698 struct page *page, struct writeback_control *wbc)
701 const struct block_device_operations *ops = bdev->bd_disk->fops;
703 if (!ops->rw_page || bdev_get_integrity(bdev))
705 result = blk_queue_enter(bdev->bd_queue, false);
709 set_page_writeback(page);
710 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
712 end_page_writeback(page);
715 blk_queue_exit(bdev->bd_queue);
718 EXPORT_SYMBOL_GPL(bdev_write_page);
721 * bdev_direct_access() - Get the address for directly-accessibly memory
722 * @bdev: The device containing the memory
723 * @dax: control and output parameters for ->direct_access
725 * If a block device is made up of directly addressable memory, this function
726 * will tell the caller the PFN and the address of the memory. The address
727 * may be directly dereferenced within the kernel without the need to call
728 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
731 * Return: negative errno if an error occurs, otherwise the number of bytes
732 * accessible at this address.
734 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
736 sector_t sector = dax->sector;
737 long avail, size = dax->size;
738 const struct block_device_operations *ops = bdev->bd_disk->fops;
741 * The device driver is allowed to sleep, in order to make the
742 * memory directly accessible.
748 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access)
750 if ((sector + DIV_ROUND_UP(size, 512)) >
751 part_nr_sects_read(bdev->bd_part))
753 sector += get_start_sect(bdev);
754 if (sector % (PAGE_SIZE / 512))
756 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
759 if (avail > 0 && avail & ~PAGE_MASK)
761 return min(avail, size);
763 EXPORT_SYMBOL_GPL(bdev_direct_access);
766 * bdev_dax_supported() - Check if the device supports dax for filesystem
767 * @sb: The superblock of the device
768 * @blocksize: The block size of the device
770 * This is a library function for filesystems to check if the block device
771 * can be mounted with dax option.
773 * Return: negative errno if unsupported, 0 if supported.
775 int bdev_dax_supported(struct super_block *sb, int blocksize)
777 struct blk_dax_ctl dax = {
783 if (blocksize != PAGE_SIZE) {
784 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
788 err = bdev_direct_access(sb->s_bdev, &dax);
792 vfs_msg(sb, KERN_ERR,
793 "error: device does not support dax");
796 vfs_msg(sb, KERN_ERR,
797 "error: unaligned partition for dax");
800 vfs_msg(sb, KERN_ERR,
801 "error: dax access failed (%d)", err);
808 EXPORT_SYMBOL_GPL(bdev_dax_supported);
811 * bdev_dax_capable() - Return if the raw device is capable for dax
812 * @bdev: The device for raw block device access
814 bool bdev_dax_capable(struct block_device *bdev)
816 struct blk_dax_ctl dax = {
820 if (!IS_ENABLED(CONFIG_FS_DAX))
824 if (bdev_direct_access(bdev, &dax) < 0)
827 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
828 if (bdev_direct_access(bdev, &dax) < 0)
838 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
839 static struct kmem_cache * bdev_cachep __read_mostly;
841 static struct inode *bdev_alloc_inode(struct super_block *sb)
843 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
846 return &ei->vfs_inode;
849 static void bdev_i_callback(struct rcu_head *head)
851 struct inode *inode = container_of(head, struct inode, i_rcu);
852 struct bdev_inode *bdi = BDEV_I(inode);
854 kmem_cache_free(bdev_cachep, bdi);
857 static void bdev_destroy_inode(struct inode *inode)
859 call_rcu(&inode->i_rcu, bdev_i_callback);
862 static void init_once(void *foo)
864 struct bdev_inode *ei = (struct bdev_inode *) foo;
865 struct block_device *bdev = &ei->bdev;
867 memset(bdev, 0, sizeof(*bdev));
868 mutex_init(&bdev->bd_mutex);
869 INIT_LIST_HEAD(&bdev->bd_list);
871 INIT_LIST_HEAD(&bdev->bd_holder_disks);
873 inode_init_once(&ei->vfs_inode);
874 /* Initialize mutex for freeze. */
875 mutex_init(&bdev->bd_fsfreeze_mutex);
878 static void bdev_evict_inode(struct inode *inode)
880 struct block_device *bdev = &BDEV_I(inode)->bdev;
881 truncate_inode_pages_final(&inode->i_data);
882 invalidate_inode_buffers(inode); /* is it needed here? */
884 spin_lock(&bdev_lock);
885 list_del_init(&bdev->bd_list);
886 spin_unlock(&bdev_lock);
887 if (bdev->bd_bdi != &noop_backing_dev_info)
888 bdi_put(bdev->bd_bdi);
891 static const struct super_operations bdev_sops = {
892 .statfs = simple_statfs,
893 .alloc_inode = bdev_alloc_inode,
894 .destroy_inode = bdev_destroy_inode,
895 .drop_inode = generic_delete_inode,
896 .evict_inode = bdev_evict_inode,
899 static struct dentry *bd_mount(struct file_system_type *fs_type,
900 int flags, const char *dev_name, void *data)
903 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
905 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
909 static struct file_system_type bd_type = {
912 .kill_sb = kill_anon_super,
915 struct super_block *blockdev_superblock __read_mostly;
916 EXPORT_SYMBOL_GPL(blockdev_superblock);
918 void __init bdev_cache_init(void)
921 static struct vfsmount *bd_mnt;
923 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
924 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
925 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
927 err = register_filesystem(&bd_type);
929 panic("Cannot register bdev pseudo-fs");
930 bd_mnt = kern_mount(&bd_type);
932 panic("Cannot create bdev pseudo-fs");
933 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
937 * Most likely _very_ bad one - but then it's hardly critical for small
938 * /dev and can be fixed when somebody will need really large one.
939 * Keep in mind that it will be fed through icache hash function too.
941 static inline unsigned long hash(dev_t dev)
943 return MAJOR(dev)+MINOR(dev);
946 static int bdev_test(struct inode *inode, void *data)
948 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
951 static int bdev_set(struct inode *inode, void *data)
953 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
957 static LIST_HEAD(all_bdevs);
960 * If there is a bdev inode for this device, unhash it so that it gets evicted
961 * as soon as last inode reference is dropped.
963 void bdev_unhash_inode(dev_t dev)
967 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
969 remove_inode_hash(inode);
974 struct block_device *bdget(dev_t dev)
976 struct block_device *bdev;
979 inode = iget5_locked(blockdev_superblock, hash(dev),
980 bdev_test, bdev_set, &dev);
985 bdev = &BDEV_I(inode)->bdev;
987 if (inode->i_state & I_NEW) {
988 bdev->bd_contains = NULL;
989 bdev->bd_super = NULL;
990 bdev->bd_inode = inode;
991 bdev->bd_bdi = &noop_backing_dev_info;
992 bdev->bd_block_size = (1 << inode->i_blkbits);
993 bdev->bd_part_count = 0;
994 bdev->bd_invalidated = 0;
995 inode->i_mode = S_IFBLK;
997 inode->i_bdev = bdev;
998 inode->i_data.a_ops = &def_blk_aops;
999 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
1000 spin_lock(&bdev_lock);
1001 list_add(&bdev->bd_list, &all_bdevs);
1002 spin_unlock(&bdev_lock);
1003 unlock_new_inode(inode);
1008 EXPORT_SYMBOL(bdget);
1011 * bdgrab -- Grab a reference to an already referenced block device
1012 * @bdev: Block device to grab a reference to.
1014 struct block_device *bdgrab(struct block_device *bdev)
1016 ihold(bdev->bd_inode);
1019 EXPORT_SYMBOL(bdgrab);
1021 long nr_blockdev_pages(void)
1023 struct block_device *bdev;
1025 spin_lock(&bdev_lock);
1026 list_for_each_entry(bdev, &all_bdevs, bd_list) {
1027 ret += bdev->bd_inode->i_mapping->nrpages;
1029 spin_unlock(&bdev_lock);
1033 void bdput(struct block_device *bdev)
1035 iput(bdev->bd_inode);
1038 EXPORT_SYMBOL(bdput);
1040 static struct block_device *bd_acquire(struct inode *inode)
1042 struct block_device *bdev;
1044 spin_lock(&bdev_lock);
1045 bdev = inode->i_bdev;
1048 spin_unlock(&bdev_lock);
1051 spin_unlock(&bdev_lock);
1053 bdev = bdget(inode->i_rdev);
1055 spin_lock(&bdev_lock);
1056 if (!inode->i_bdev) {
1058 * We take an additional reference to bd_inode,
1059 * and it's released in clear_inode() of inode.
1060 * So, we can access it via ->i_mapping always
1064 inode->i_bdev = bdev;
1065 inode->i_mapping = bdev->bd_inode->i_mapping;
1067 spin_unlock(&bdev_lock);
1072 /* Call when you free inode */
1074 void bd_forget(struct inode *inode)
1076 struct block_device *bdev = NULL;
1078 spin_lock(&bdev_lock);
1079 if (!sb_is_blkdev_sb(inode->i_sb))
1080 bdev = inode->i_bdev;
1081 inode->i_bdev = NULL;
1082 inode->i_mapping = &inode->i_data;
1083 spin_unlock(&bdev_lock);
1090 * bd_may_claim - test whether a block device can be claimed
1091 * @bdev: block device of interest
1092 * @whole: whole block device containing @bdev, may equal @bdev
1093 * @holder: holder trying to claim @bdev
1095 * Test whether @bdev can be claimed by @holder.
1098 * spin_lock(&bdev_lock).
1101 * %true if @bdev can be claimed, %false otherwise.
1103 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1106 if (bdev->bd_holder == holder)
1107 return true; /* already a holder */
1108 else if (bdev->bd_holder != NULL)
1109 return false; /* held by someone else */
1110 else if (whole == bdev)
1111 return true; /* is a whole device which isn't held */
1113 else if (whole->bd_holder == bd_may_claim)
1114 return true; /* is a partition of a device that is being partitioned */
1115 else if (whole->bd_holder != NULL)
1116 return false; /* is a partition of a held device */
1118 return true; /* is a partition of an un-held device */
1122 * bd_prepare_to_claim - prepare to claim a block device
1123 * @bdev: block device of interest
1124 * @whole: the whole device containing @bdev, may equal @bdev
1125 * @holder: holder trying to claim @bdev
1127 * Prepare to claim @bdev. This function fails if @bdev is already
1128 * claimed by another holder and waits if another claiming is in
1129 * progress. This function doesn't actually claim. On successful
1130 * return, the caller has ownership of bd_claiming and bd_holder[s].
1133 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1134 * it multiple times.
1137 * 0 if @bdev can be claimed, -EBUSY otherwise.
1139 static int bd_prepare_to_claim(struct block_device *bdev,
1140 struct block_device *whole, void *holder)
1143 /* if someone else claimed, fail */
1144 if (!bd_may_claim(bdev, whole, holder))
1147 /* if claiming is already in progress, wait for it to finish */
1148 if (whole->bd_claiming) {
1149 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1152 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1153 spin_unlock(&bdev_lock);
1155 finish_wait(wq, &wait);
1156 spin_lock(&bdev_lock);
1165 * bd_start_claiming - start claiming a block device
1166 * @bdev: block device of interest
1167 * @holder: holder trying to claim @bdev
1169 * @bdev is about to be opened exclusively. Check @bdev can be opened
1170 * exclusively and mark that an exclusive open is in progress. Each
1171 * successful call to this function must be matched with a call to
1172 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1175 * This function is used to gain exclusive access to the block device
1176 * without actually causing other exclusive open attempts to fail. It
1177 * should be used when the open sequence itself requires exclusive
1178 * access but may subsequently fail.
1184 * Pointer to the block device containing @bdev on success, ERR_PTR()
1187 static struct block_device *bd_start_claiming(struct block_device *bdev,
1190 struct gendisk *disk;
1191 struct block_device *whole;
1197 * @bdev might not have been initialized properly yet, look up
1198 * and grab the outer block device the hard way.
1200 disk = get_gendisk(bdev->bd_dev, &partno);
1202 return ERR_PTR(-ENXIO);
1205 * Normally, @bdev should equal what's returned from bdget_disk()
1206 * if partno is 0; however, some drivers (floppy) use multiple
1207 * bdev's for the same physical device and @bdev may be one of the
1208 * aliases. Keep @bdev if partno is 0. This means claimer
1209 * tracking is broken for those devices but it has always been that
1213 whole = bdget_disk(disk, 0);
1215 whole = bdgrab(bdev);
1217 module_put(disk->fops->owner);
1220 return ERR_PTR(-ENOMEM);
1222 /* prepare to claim, if successful, mark claiming in progress */
1223 spin_lock(&bdev_lock);
1225 err = bd_prepare_to_claim(bdev, whole, holder);
1227 whole->bd_claiming = holder;
1228 spin_unlock(&bdev_lock);
1231 spin_unlock(&bdev_lock);
1233 return ERR_PTR(err);
1238 struct bd_holder_disk {
1239 struct list_head list;
1240 struct gendisk *disk;
1244 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1245 struct gendisk *disk)
1247 struct bd_holder_disk *holder;
1249 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1250 if (holder->disk == disk)
1255 static int add_symlink(struct kobject *from, struct kobject *to)
1257 return sysfs_create_link(from, to, kobject_name(to));
1260 static void del_symlink(struct kobject *from, struct kobject *to)
1262 sysfs_remove_link(from, kobject_name(to));
1266 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1267 * @bdev: the claimed slave bdev
1268 * @disk: the holding disk
1270 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1272 * This functions creates the following sysfs symlinks.
1274 * - from "slaves" directory of the holder @disk to the claimed @bdev
1275 * - from "holders" directory of the @bdev to the holder @disk
1277 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1278 * passed to bd_link_disk_holder(), then:
1280 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1281 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1283 * The caller must have claimed @bdev before calling this function and
1284 * ensure that both @bdev and @disk are valid during the creation and
1285 * lifetime of these symlinks.
1291 * 0 on success, -errno on failure.
1293 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1295 struct bd_holder_disk *holder;
1298 mutex_lock(&bdev->bd_mutex);
1300 WARN_ON_ONCE(!bdev->bd_holder);
1302 /* FIXME: remove the following once add_disk() handles errors */
1303 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1306 holder = bd_find_holder_disk(bdev, disk);
1312 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1318 INIT_LIST_HEAD(&holder->list);
1319 holder->disk = disk;
1322 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1326 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1330 * bdev could be deleted beneath us which would implicitly destroy
1331 * the holder directory. Hold on to it.
1333 kobject_get(bdev->bd_part->holder_dir);
1335 list_add(&holder->list, &bdev->bd_holder_disks);
1339 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1343 mutex_unlock(&bdev->bd_mutex);
1346 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1349 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1350 * @bdev: the calimed slave bdev
1351 * @disk: the holding disk
1353 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1358 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1360 struct bd_holder_disk *holder;
1362 mutex_lock(&bdev->bd_mutex);
1364 holder = bd_find_holder_disk(bdev, disk);
1366 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1367 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1368 del_symlink(bdev->bd_part->holder_dir,
1369 &disk_to_dev(disk)->kobj);
1370 kobject_put(bdev->bd_part->holder_dir);
1371 list_del_init(&holder->list);
1375 mutex_unlock(&bdev->bd_mutex);
1377 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1381 * flush_disk - invalidates all buffer-cache entries on a disk
1383 * @bdev: struct block device to be flushed
1384 * @kill_dirty: flag to guide handling of dirty inodes
1386 * Invalidates all buffer-cache entries on a disk. It should be called
1387 * when a disk has been changed -- either by a media change or online
1390 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1392 if (__invalidate_device(bdev, kill_dirty)) {
1393 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1394 "resized disk %s\n",
1395 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1400 if (disk_part_scan_enabled(bdev->bd_disk))
1401 bdev->bd_invalidated = 1;
1405 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1406 * @disk: struct gendisk to check
1407 * @bdev: struct bdev to adjust.
1409 * This routine checks to see if the bdev size does not match the disk size
1410 * and adjusts it if it differs.
1412 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1414 loff_t disk_size, bdev_size;
1416 disk_size = (loff_t)get_capacity(disk) << 9;
1417 bdev_size = i_size_read(bdev->bd_inode);
1418 if (disk_size != bdev_size) {
1420 "%s: detected capacity change from %lld to %lld\n",
1421 disk->disk_name, bdev_size, disk_size);
1422 i_size_write(bdev->bd_inode, disk_size);
1423 flush_disk(bdev, false);
1426 EXPORT_SYMBOL(check_disk_size_change);
1429 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1430 * @disk: struct gendisk to be revalidated
1432 * This routine is a wrapper for lower-level driver's revalidate_disk
1433 * call-backs. It is used to do common pre and post operations needed
1434 * for all revalidate_disk operations.
1436 int revalidate_disk(struct gendisk *disk)
1438 struct block_device *bdev;
1441 if (disk->fops->revalidate_disk)
1442 ret = disk->fops->revalidate_disk(disk);
1443 blk_integrity_revalidate(disk);
1444 bdev = bdget_disk(disk, 0);
1448 mutex_lock(&bdev->bd_mutex);
1449 check_disk_size_change(disk, bdev);
1450 bdev->bd_invalidated = 0;
1451 mutex_unlock(&bdev->bd_mutex);
1455 EXPORT_SYMBOL(revalidate_disk);
1458 * This routine checks whether a removable media has been changed,
1459 * and invalidates all buffer-cache-entries in that case. This
1460 * is a relatively slow routine, so we have to try to minimize using
1461 * it. Thus it is called only upon a 'mount' or 'open'. This
1462 * is the best way of combining speed and utility, I think.
1463 * People changing diskettes in the middle of an operation deserve
1466 int check_disk_change(struct block_device *bdev)
1468 struct gendisk *disk = bdev->bd_disk;
1469 const struct block_device_operations *bdops = disk->fops;
1470 unsigned int events;
1472 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1473 DISK_EVENT_EJECT_REQUEST);
1474 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1477 flush_disk(bdev, true);
1478 if (bdops->revalidate_disk)
1479 bdops->revalidate_disk(bdev->bd_disk);
1483 EXPORT_SYMBOL(check_disk_change);
1485 void bd_set_size(struct block_device *bdev, loff_t size)
1487 unsigned bsize = bdev_logical_block_size(bdev);
1489 inode_lock(bdev->bd_inode);
1490 i_size_write(bdev->bd_inode, size);
1491 inode_unlock(bdev->bd_inode);
1492 while (bsize < PAGE_SIZE) {
1497 bdev->bd_block_size = bsize;
1498 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1500 EXPORT_SYMBOL(bd_set_size);
1502 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1507 * mutex_lock(part->bd_mutex)
1508 * mutex_lock_nested(whole->bd_mutex, 1)
1511 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1513 struct gendisk *disk;
1514 struct module *owner;
1519 if (mode & FMODE_READ)
1521 if (mode & FMODE_WRITE)
1524 * hooks: /n/, see "layering violations".
1527 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1537 disk = get_gendisk(bdev->bd_dev, &partno);
1540 owner = disk->fops->owner;
1542 disk_block_events(disk);
1543 mutex_lock_nested(&bdev->bd_mutex, for_part);
1544 if (!bdev->bd_openers) {
1545 bdev->bd_disk = disk;
1546 bdev->bd_queue = disk->queue;
1547 bdev->bd_contains = bdev;
1548 if (bdev->bd_bdi == &noop_backing_dev_info)
1549 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1553 bdev->bd_part = disk_get_part(disk, partno);
1558 if (disk->fops->open) {
1559 ret = disk->fops->open(bdev, mode);
1560 if (ret == -ERESTARTSYS) {
1561 /* Lost a race with 'disk' being
1562 * deleted, try again.
1565 disk_put_part(bdev->bd_part);
1566 bdev->bd_part = NULL;
1567 bdev->bd_disk = NULL;
1568 bdev->bd_queue = NULL;
1569 mutex_unlock(&bdev->bd_mutex);
1570 disk_unblock_events(disk);
1578 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1581 * If the device is invalidated, rescan partition
1582 * if open succeeded or failed with -ENOMEDIUM.
1583 * The latter is necessary to prevent ghost
1584 * partitions on a removed medium.
1586 if (bdev->bd_invalidated) {
1588 rescan_partitions(disk, bdev);
1589 else if (ret == -ENOMEDIUM)
1590 invalidate_partitions(disk, bdev);
1596 struct block_device *whole;
1597 whole = bdget_disk(disk, 0);
1602 ret = __blkdev_get(whole, mode, 1);
1605 bdev->bd_contains = whole;
1606 bdev->bd_part = disk_get_part(disk, partno);
1607 if (!(disk->flags & GENHD_FL_UP) ||
1608 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1612 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1615 if (bdev->bd_contains == bdev) {
1617 if (bdev->bd_disk->fops->open)
1618 ret = bdev->bd_disk->fops->open(bdev, mode);
1619 /* the same as first opener case, read comment there */
1620 if (bdev->bd_invalidated) {
1622 rescan_partitions(bdev->bd_disk, bdev);
1623 else if (ret == -ENOMEDIUM)
1624 invalidate_partitions(bdev->bd_disk, bdev);
1627 goto out_unlock_bdev;
1629 /* only one opener holds refs to the module and disk */
1635 bdev->bd_part_count++;
1636 mutex_unlock(&bdev->bd_mutex);
1637 disk_unblock_events(disk);
1641 disk_put_part(bdev->bd_part);
1642 bdev->bd_disk = NULL;
1643 bdev->bd_part = NULL;
1644 bdev->bd_queue = NULL;
1645 bdi_put(bdev->bd_bdi);
1646 bdev->bd_bdi = &noop_backing_dev_info;
1647 if (bdev != bdev->bd_contains)
1648 __blkdev_put(bdev->bd_contains, mode, 1);
1649 bdev->bd_contains = NULL;
1651 mutex_unlock(&bdev->bd_mutex);
1652 disk_unblock_events(disk);
1662 * blkdev_get - open a block device
1663 * @bdev: block_device to open
1664 * @mode: FMODE_* mask
1665 * @holder: exclusive holder identifier
1667 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1668 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1669 * @holder is invalid. Exclusive opens may nest for the same @holder.
1671 * On success, the reference count of @bdev is unchanged. On failure,
1678 * 0 on success, -errno on failure.
1680 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1682 struct block_device *whole = NULL;
1685 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1687 if ((mode & FMODE_EXCL) && holder) {
1688 whole = bd_start_claiming(bdev, holder);
1689 if (IS_ERR(whole)) {
1691 return PTR_ERR(whole);
1695 res = __blkdev_get(bdev, mode, 0);
1698 struct gendisk *disk = whole->bd_disk;
1700 /* finish claiming */
1701 mutex_lock(&bdev->bd_mutex);
1702 spin_lock(&bdev_lock);
1705 BUG_ON(!bd_may_claim(bdev, whole, holder));
1707 * Note that for a whole device bd_holders
1708 * will be incremented twice, and bd_holder
1709 * will be set to bd_may_claim before being
1712 whole->bd_holders++;
1713 whole->bd_holder = bd_may_claim;
1715 bdev->bd_holder = holder;
1718 /* tell others that we're done */
1719 BUG_ON(whole->bd_claiming != holder);
1720 whole->bd_claiming = NULL;
1721 wake_up_bit(&whole->bd_claiming, 0);
1723 spin_unlock(&bdev_lock);
1726 * Block event polling for write claims if requested. Any
1727 * write holder makes the write_holder state stick until
1728 * all are released. This is good enough and tracking
1729 * individual writeable reference is too fragile given the
1730 * way @mode is used in blkdev_get/put().
1732 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1733 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1734 bdev->bd_write_holder = true;
1735 disk_block_events(disk);
1738 mutex_unlock(&bdev->bd_mutex);
1744 EXPORT_SYMBOL(blkdev_get);
1747 * blkdev_get_by_path - open a block device by name
1748 * @path: path to the block device to open
1749 * @mode: FMODE_* mask
1750 * @holder: exclusive holder identifier
1752 * Open the blockdevice described by the device file at @path. @mode
1753 * and @holder are identical to blkdev_get().
1755 * On success, the returned block_device has reference count of one.
1761 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1763 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1766 struct block_device *bdev;
1769 bdev = lookup_bdev(path);
1773 err = blkdev_get(bdev, mode, holder);
1775 return ERR_PTR(err);
1777 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1778 blkdev_put(bdev, mode);
1779 return ERR_PTR(-EACCES);
1784 EXPORT_SYMBOL(blkdev_get_by_path);
1787 * blkdev_get_by_dev - open a block device by device number
1788 * @dev: device number of block device to open
1789 * @mode: FMODE_* mask
1790 * @holder: exclusive holder identifier
1792 * Open the blockdevice described by device number @dev. @mode and
1793 * @holder are identical to blkdev_get().
1795 * Use it ONLY if you really do not have anything better - i.e. when
1796 * you are behind a truly sucky interface and all you are given is a
1797 * device number. _Never_ to be used for internal purposes. If you
1798 * ever need it - reconsider your API.
1800 * On success, the returned block_device has reference count of one.
1806 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1808 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1810 struct block_device *bdev;
1815 return ERR_PTR(-ENOMEM);
1817 err = blkdev_get(bdev, mode, holder);
1819 return ERR_PTR(err);
1823 EXPORT_SYMBOL(blkdev_get_by_dev);
1825 static int blkdev_open(struct inode * inode, struct file * filp)
1827 struct block_device *bdev;
1830 * Preserve backwards compatibility and allow large file access
1831 * even if userspace doesn't ask for it explicitly. Some mkfs
1832 * binary needs it. We might want to drop this workaround
1833 * during an unstable branch.
1835 filp->f_flags |= O_LARGEFILE;
1837 if (filp->f_flags & O_NDELAY)
1838 filp->f_mode |= FMODE_NDELAY;
1839 if (filp->f_flags & O_EXCL)
1840 filp->f_mode |= FMODE_EXCL;
1841 if ((filp->f_flags & O_ACCMODE) == 3)
1842 filp->f_mode |= FMODE_WRITE_IOCTL;
1844 bdev = bd_acquire(inode);
1848 filp->f_mapping = bdev->bd_inode->i_mapping;
1850 return blkdev_get(bdev, filp->f_mode, filp);
1853 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1855 struct gendisk *disk = bdev->bd_disk;
1856 struct block_device *victim = NULL;
1858 mutex_lock_nested(&bdev->bd_mutex, for_part);
1860 bdev->bd_part_count--;
1862 if (!--bdev->bd_openers) {
1863 WARN_ON_ONCE(bdev->bd_holders);
1864 sync_blockdev(bdev);
1867 bdev_write_inode(bdev);
1869 * Detaching bdev inode from its wb in __destroy_inode()
1870 * is too late: the queue which embeds its bdi (along with
1871 * root wb) can be gone as soon as we put_disk() below.
1873 inode_detach_wb(bdev->bd_inode);
1875 if (bdev->bd_contains == bdev) {
1876 if (disk->fops->release)
1877 disk->fops->release(disk, mode);
1879 if (!bdev->bd_openers) {
1880 struct module *owner = disk->fops->owner;
1882 disk_put_part(bdev->bd_part);
1883 bdev->bd_part = NULL;
1884 bdev->bd_disk = NULL;
1885 if (bdev != bdev->bd_contains)
1886 victim = bdev->bd_contains;
1887 bdev->bd_contains = NULL;
1892 mutex_unlock(&bdev->bd_mutex);
1895 __blkdev_put(victim, mode, 1);
1898 void blkdev_put(struct block_device *bdev, fmode_t mode)
1900 mutex_lock(&bdev->bd_mutex);
1902 if (mode & FMODE_EXCL) {
1906 * Release a claim on the device. The holder fields
1907 * are protected with bdev_lock. bd_mutex is to
1908 * synchronize disk_holder unlinking.
1910 spin_lock(&bdev_lock);
1912 WARN_ON_ONCE(--bdev->bd_holders < 0);
1913 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1915 /* bd_contains might point to self, check in a separate step */
1916 if ((bdev_free = !bdev->bd_holders))
1917 bdev->bd_holder = NULL;
1918 if (!bdev->bd_contains->bd_holders)
1919 bdev->bd_contains->bd_holder = NULL;
1921 spin_unlock(&bdev_lock);
1924 * If this was the last claim, remove holder link and
1925 * unblock evpoll if it was a write holder.
1927 if (bdev_free && bdev->bd_write_holder) {
1928 disk_unblock_events(bdev->bd_disk);
1929 bdev->bd_write_holder = false;
1934 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1935 * event. This is to ensure detection of media removal commanded
1936 * from userland - e.g. eject(1).
1938 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1940 mutex_unlock(&bdev->bd_mutex);
1942 __blkdev_put(bdev, mode, 0);
1944 EXPORT_SYMBOL(blkdev_put);
1946 static int blkdev_close(struct inode * inode, struct file * filp)
1948 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1949 blkdev_put(bdev, filp->f_mode);
1953 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1955 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1956 fmode_t mode = file->f_mode;
1959 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1960 * to updated it before every ioctl.
1962 if (file->f_flags & O_NDELAY)
1963 mode |= FMODE_NDELAY;
1965 mode &= ~FMODE_NDELAY;
1967 return blkdev_ioctl(bdev, mode, cmd, arg);
1971 * Write data to the block device. Only intended for the block device itself
1972 * and the raw driver which basically is a fake block device.
1974 * Does not take i_mutex for the write and thus is not for general purpose
1977 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1979 struct file *file = iocb->ki_filp;
1980 struct inode *bd_inode = bdev_file_inode(file);
1981 loff_t size = i_size_read(bd_inode);
1982 struct blk_plug plug;
1985 if (bdev_read_only(I_BDEV(bd_inode)))
1988 if (!iov_iter_count(from))
1991 if (iocb->ki_pos >= size)
1994 iov_iter_truncate(from, size - iocb->ki_pos);
1996 blk_start_plug(&plug);
1997 ret = __generic_file_write_iter(iocb, from);
1999 ret = generic_write_sync(iocb, ret);
2000 blk_finish_plug(&plug);
2003 EXPORT_SYMBOL_GPL(blkdev_write_iter);
2005 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
2007 struct file *file = iocb->ki_filp;
2008 struct inode *bd_inode = bdev_file_inode(file);
2009 loff_t size = i_size_read(bd_inode);
2010 loff_t pos = iocb->ki_pos;
2016 iov_iter_truncate(to, size);
2017 return generic_file_read_iter(iocb, to);
2019 EXPORT_SYMBOL_GPL(blkdev_read_iter);
2022 * Try to release a page associated with block device when the system
2023 * is under memory pressure.
2025 static int blkdev_releasepage(struct page *page, gfp_t wait)
2027 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
2029 if (super && super->s_op->bdev_try_to_free_page)
2030 return super->s_op->bdev_try_to_free_page(super, page, wait);
2032 return try_to_free_buffers(page);
2035 static int blkdev_writepages(struct address_space *mapping,
2036 struct writeback_control *wbc)
2038 if (dax_mapping(mapping)) {
2039 struct block_device *bdev = I_BDEV(mapping->host);
2041 return dax_writeback_mapping_range(mapping, bdev, wbc);
2043 return generic_writepages(mapping, wbc);
2046 static const struct address_space_operations def_blk_aops = {
2047 .readpage = blkdev_readpage,
2048 .readpages = blkdev_readpages,
2049 .writepage = blkdev_writepage,
2050 .write_begin = blkdev_write_begin,
2051 .write_end = blkdev_write_end,
2052 .writepages = blkdev_writepages,
2053 .releasepage = blkdev_releasepage,
2054 .direct_IO = blkdev_direct_IO,
2055 .is_dirty_writeback = buffer_check_dirty_writeback,
2058 #define BLKDEV_FALLOC_FL_SUPPORTED \
2059 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2060 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2062 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2065 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2066 struct request_queue *q = bdev_get_queue(bdev);
2067 struct address_space *mapping;
2068 loff_t end = start + len - 1;
2072 /* Fail if we don't recognize the flags. */
2073 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2076 /* Don't go off the end of the device. */
2077 isize = i_size_read(bdev->bd_inode);
2081 if (mode & FALLOC_FL_KEEP_SIZE) {
2082 len = isize - start;
2083 end = start + len - 1;
2089 * Don't allow IO that isn't aligned to logical block size.
2091 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2094 /* Invalidate the page cache, including dirty pages. */
2095 mapping = bdev->bd_inode->i_mapping;
2096 truncate_inode_pages_range(mapping, start, end);
2099 case FALLOC_FL_ZERO_RANGE:
2100 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2101 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2104 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2105 /* Only punch if the device can do zeroing discard. */
2106 if (!blk_queue_discard(q) || !q->limits.discard_zeroes_data)
2108 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2111 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2112 if (!blk_queue_discard(q))
2114 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2124 * Invalidate again; if someone wandered in and dirtied a page,
2125 * the caller will be given -EBUSY. The third argument is
2126 * inclusive, so the rounding here is safe.
2128 return invalidate_inode_pages2_range(mapping,
2129 start >> PAGE_SHIFT,
2133 const struct file_operations def_blk_fops = {
2134 .open = blkdev_open,
2135 .release = blkdev_close,
2136 .llseek = block_llseek,
2137 .read_iter = blkdev_read_iter,
2138 .write_iter = blkdev_write_iter,
2139 .mmap = generic_file_mmap,
2140 .fsync = blkdev_fsync,
2141 .unlocked_ioctl = block_ioctl,
2142 #ifdef CONFIG_COMPAT
2143 .compat_ioctl = compat_blkdev_ioctl,
2145 .splice_read = generic_file_splice_read,
2146 .splice_write = iter_file_splice_write,
2147 .fallocate = blkdev_fallocate,
2150 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2153 mm_segment_t old_fs = get_fs();
2155 res = blkdev_ioctl(bdev, 0, cmd, arg);
2160 EXPORT_SYMBOL(ioctl_by_bdev);
2163 * lookup_bdev - lookup a struct block_device by name
2164 * @pathname: special file representing the block device
2166 * Get a reference to the blockdevice at @pathname in the current
2167 * namespace if possible and return it. Return ERR_PTR(error)
2170 struct block_device *lookup_bdev(const char *pathname)
2172 struct block_device *bdev;
2173 struct inode *inode;
2177 if (!pathname || !*pathname)
2178 return ERR_PTR(-EINVAL);
2180 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2182 return ERR_PTR(error);
2184 inode = d_backing_inode(path.dentry);
2186 if (!S_ISBLK(inode->i_mode))
2189 if (!may_open_dev(&path))
2192 bdev = bd_acquire(inode);
2199 bdev = ERR_PTR(error);
2202 EXPORT_SYMBOL(lookup_bdev);
2204 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2206 struct super_block *sb = get_super(bdev);
2211 * no need to lock the super, get_super holds the
2212 * read mutex so the filesystem cannot go away
2213 * under us (->put_super runs with the write lock
2216 shrink_dcache_sb(sb);
2217 res = invalidate_inodes(sb, kill_dirty);
2220 invalidate_bdev(bdev);
2223 EXPORT_SYMBOL(__invalidate_device);
2225 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2227 struct inode *inode, *old_inode = NULL;
2229 spin_lock(&blockdev_superblock->s_inode_list_lock);
2230 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2231 struct address_space *mapping = inode->i_mapping;
2232 struct block_device *bdev;
2234 spin_lock(&inode->i_lock);
2235 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2236 mapping->nrpages == 0) {
2237 spin_unlock(&inode->i_lock);
2241 spin_unlock(&inode->i_lock);
2242 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2244 * We hold a reference to 'inode' so it couldn't have been
2245 * removed from s_inodes list while we dropped the
2246 * s_inode_list_lock We cannot iput the inode now as we can
2247 * be holding the last reference and we cannot iput it under
2248 * s_inode_list_lock. So we keep the reference and iput it
2253 bdev = I_BDEV(inode);
2255 mutex_lock(&bdev->bd_mutex);
2256 if (bdev->bd_openers)
2258 mutex_unlock(&bdev->bd_mutex);
2260 spin_lock(&blockdev_superblock->s_inode_list_lock);
2262 spin_unlock(&blockdev_superblock->s_inode_list_lock);