]> Git Repo - linux.git/blob - mm/filemap.c
kasan: turn on -fsanitize-address-use-after-scope
[linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <[email protected]>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <[email protected]>
60  */
61
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem              (truncate_pagecache)
66  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock             (exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
76  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page               (access_process_vm)
80  *
81  *  ->i_mutex                   (generic_perform_write)
82  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock                   (fs/fs-writeback.c)
86  *    ->mapping->tree_lock      (__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock           (vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock               (try_to_unmap_one)
96  *    ->private_lock            (try_to_unmap_one)
97  *    ->tree_lock               (try_to_unmap_one)
98  *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
100  *    ->private_lock            (page_remove_rmap->set_page_dirty)
101  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
107  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112
113 static int page_cache_tree_insert(struct address_space *mapping,
114                                   struct page *page, void **shadowp)
115 {
116         struct radix_tree_node *node;
117         void **slot;
118         int error;
119
120         error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121                                     &node, &slot);
122         if (error)
123                 return error;
124         if (*slot) {
125                 void *p;
126
127                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128                 if (!radix_tree_exceptional_entry(p))
129                         return -EEXIST;
130
131                 mapping->nrexceptional--;
132                 if (!dax_mapping(mapping)) {
133                         if (shadowp)
134                                 *shadowp = p;
135                 } else {
136                         /* DAX can replace empty locked entry with a hole */
137                         WARN_ON_ONCE(p !=
138                                 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
139                                          RADIX_DAX_ENTRY_LOCK));
140                         /* Wakeup waiters for exceptional entry lock */
141                         dax_wake_mapping_entry_waiter(mapping, page->index,
142                                                       false);
143                 }
144         }
145         __radix_tree_replace(&mapping->page_tree, node, slot, page,
146                              workingset_update_node, mapping);
147         mapping->nrpages++;
148         return 0;
149 }
150
151 static void page_cache_tree_delete(struct address_space *mapping,
152                                    struct page *page, void *shadow)
153 {
154         int i, nr;
155
156         /* hugetlb pages are represented by one entry in the radix tree */
157         nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
158
159         VM_BUG_ON_PAGE(!PageLocked(page), page);
160         VM_BUG_ON_PAGE(PageTail(page), page);
161         VM_BUG_ON_PAGE(nr != 1 && shadow, page);
162
163         for (i = 0; i < nr; i++) {
164                 struct radix_tree_node *node;
165                 void **slot;
166
167                 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168                                     &node, &slot);
169
170                 VM_BUG_ON_PAGE(!node && nr != 1, page);
171
172                 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173                 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174                                      workingset_update_node, mapping);
175         }
176
177         if (shadow) {
178                 mapping->nrexceptional += nr;
179                 /*
180                  * Make sure the nrexceptional update is committed before
181                  * the nrpages update so that final truncate racing
182                  * with reclaim does not see both counters 0 at the
183                  * same time and miss a shadow entry.
184                  */
185                 smp_wmb();
186         }
187         mapping->nrpages -= nr;
188 }
189
190 /*
191  * Delete a page from the page cache and free it. Caller has to make
192  * sure the page is locked and that nobody else uses it - or that usage
193  * is safe.  The caller must hold the mapping's tree_lock.
194  */
195 void __delete_from_page_cache(struct page *page, void *shadow)
196 {
197         struct address_space *mapping = page->mapping;
198         int nr = hpage_nr_pages(page);
199
200         trace_mm_filemap_delete_from_page_cache(page);
201         /*
202          * if we're uptodate, flush out into the cleancache, otherwise
203          * invalidate any existing cleancache entries.  We can't leave
204          * stale data around in the cleancache once our page is gone
205          */
206         if (PageUptodate(page) && PageMappedToDisk(page))
207                 cleancache_put_page(page);
208         else
209                 cleancache_invalidate_page(mapping, page);
210
211         VM_BUG_ON_PAGE(PageTail(page), page);
212         VM_BUG_ON_PAGE(page_mapped(page), page);
213         if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214                 int mapcount;
215
216                 pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
217                          current->comm, page_to_pfn(page));
218                 dump_page(page, "still mapped when deleted");
219                 dump_stack();
220                 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222                 mapcount = page_mapcount(page);
223                 if (mapping_exiting(mapping) &&
224                     page_count(page) >= mapcount + 2) {
225                         /*
226                          * All vmas have already been torn down, so it's
227                          * a good bet that actually the page is unmapped,
228                          * and we'd prefer not to leak it: if we're wrong,
229                          * some other bad page check should catch it later.
230                          */
231                         page_mapcount_reset(page);
232                         page_ref_sub(page, mapcount);
233                 }
234         }
235
236         page_cache_tree_delete(mapping, page, shadow);
237
238         page->mapping = NULL;
239         /* Leave page->index set: truncation lookup relies upon it */
240
241         /* hugetlb pages do not participate in page cache accounting. */
242         if (!PageHuge(page))
243                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
244         if (PageSwapBacked(page)) {
245                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
246                 if (PageTransHuge(page))
247                         __dec_node_page_state(page, NR_SHMEM_THPS);
248         } else {
249                 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250         }
251
252         /*
253          * At this point page must be either written or cleaned by truncate.
254          * Dirty page here signals a bug and loss of unwritten data.
255          *
256          * This fixes dirty accounting after removing the page entirely but
257          * leaves PageDirty set: it has no effect for truncated page and
258          * anyway will be cleared before returning page into buddy allocator.
259          */
260         if (WARN_ON_ONCE(PageDirty(page)))
261                 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
262 }
263
264 /**
265  * delete_from_page_cache - delete page from page cache
266  * @page: the page which the kernel is trying to remove from page cache
267  *
268  * This must be called only on pages that have been verified to be in the page
269  * cache and locked.  It will never put the page into the free list, the caller
270  * has a reference on the page.
271  */
272 void delete_from_page_cache(struct page *page)
273 {
274         struct address_space *mapping = page_mapping(page);
275         unsigned long flags;
276         void (*freepage)(struct page *);
277
278         BUG_ON(!PageLocked(page));
279
280         freepage = mapping->a_ops->freepage;
281
282         spin_lock_irqsave(&mapping->tree_lock, flags);
283         __delete_from_page_cache(page, NULL);
284         spin_unlock_irqrestore(&mapping->tree_lock, flags);
285
286         if (freepage)
287                 freepage(page);
288
289         if (PageTransHuge(page) && !PageHuge(page)) {
290                 page_ref_sub(page, HPAGE_PMD_NR);
291                 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292         } else {
293                 put_page(page);
294         }
295 }
296 EXPORT_SYMBOL(delete_from_page_cache);
297
298 int filemap_check_errors(struct address_space *mapping)
299 {
300         int ret = 0;
301         /* Check for outstanding write errors */
302         if (test_bit(AS_ENOSPC, &mapping->flags) &&
303             test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304                 ret = -ENOSPC;
305         if (test_bit(AS_EIO, &mapping->flags) &&
306             test_and_clear_bit(AS_EIO, &mapping->flags))
307                 ret = -EIO;
308         return ret;
309 }
310 EXPORT_SYMBOL(filemap_check_errors);
311
312 /**
313  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
314  * @mapping:    address space structure to write
315  * @start:      offset in bytes where the range starts
316  * @end:        offset in bytes where the range ends (inclusive)
317  * @sync_mode:  enable synchronous operation
318  *
319  * Start writeback against all of a mapping's dirty pages that lie
320  * within the byte offsets <start, end> inclusive.
321  *
322  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
323  * opposed to a regular memory cleansing writeback.  The difference between
324  * these two operations is that if a dirty page/buffer is encountered, it must
325  * be waited upon, and not just skipped over.
326  */
327 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
328                                 loff_t end, int sync_mode)
329 {
330         int ret;
331         struct writeback_control wbc = {
332                 .sync_mode = sync_mode,
333                 .nr_to_write = LONG_MAX,
334                 .range_start = start,
335                 .range_end = end,
336         };
337
338         if (!mapping_cap_writeback_dirty(mapping))
339                 return 0;
340
341         wbc_attach_fdatawrite_inode(&wbc, mapping->host);
342         ret = do_writepages(mapping, &wbc);
343         wbc_detach_inode(&wbc);
344         return ret;
345 }
346
347 static inline int __filemap_fdatawrite(struct address_space *mapping,
348         int sync_mode)
349 {
350         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
351 }
352
353 int filemap_fdatawrite(struct address_space *mapping)
354 {
355         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
356 }
357 EXPORT_SYMBOL(filemap_fdatawrite);
358
359 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
360                                 loff_t end)
361 {
362         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
363 }
364 EXPORT_SYMBOL(filemap_fdatawrite_range);
365
366 /**
367  * filemap_flush - mostly a non-blocking flush
368  * @mapping:    target address_space
369  *
370  * This is a mostly non-blocking flush.  Not suitable for data-integrity
371  * purposes - I/O may not be started against all dirty pages.
372  */
373 int filemap_flush(struct address_space *mapping)
374 {
375         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
376 }
377 EXPORT_SYMBOL(filemap_flush);
378
379 static int __filemap_fdatawait_range(struct address_space *mapping,
380                                      loff_t start_byte, loff_t end_byte)
381 {
382         pgoff_t index = start_byte >> PAGE_SHIFT;
383         pgoff_t end = end_byte >> PAGE_SHIFT;
384         struct pagevec pvec;
385         int nr_pages;
386         int ret = 0;
387
388         if (end_byte < start_byte)
389                 goto out;
390
391         pagevec_init(&pvec, 0);
392         while ((index <= end) &&
393                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
394                         PAGECACHE_TAG_WRITEBACK,
395                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
396                 unsigned i;
397
398                 for (i = 0; i < nr_pages; i++) {
399                         struct page *page = pvec.pages[i];
400
401                         /* until radix tree lookup accepts end_index */
402                         if (page->index > end)
403                                 continue;
404
405                         wait_on_page_writeback(page);
406                         if (TestClearPageError(page))
407                                 ret = -EIO;
408                 }
409                 pagevec_release(&pvec);
410                 cond_resched();
411         }
412 out:
413         return ret;
414 }
415
416 /**
417  * filemap_fdatawait_range - wait for writeback to complete
418  * @mapping:            address space structure to wait for
419  * @start_byte:         offset in bytes where the range starts
420  * @end_byte:           offset in bytes where the range ends (inclusive)
421  *
422  * Walk the list of under-writeback pages of the given address space
423  * in the given range and wait for all of them.  Check error status of
424  * the address space and return it.
425  *
426  * Since the error status of the address space is cleared by this function,
427  * callers are responsible for checking the return value and handling and/or
428  * reporting the error.
429  */
430 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
431                             loff_t end_byte)
432 {
433         int ret, ret2;
434
435         ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
436         ret2 = filemap_check_errors(mapping);
437         if (!ret)
438                 ret = ret2;
439
440         return ret;
441 }
442 EXPORT_SYMBOL(filemap_fdatawait_range);
443
444 /**
445  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
446  * @mapping: address space structure to wait for
447  *
448  * Walk the list of under-writeback pages of the given address space
449  * and wait for all of them.  Unlike filemap_fdatawait(), this function
450  * does not clear error status of the address space.
451  *
452  * Use this function if callers don't handle errors themselves.  Expected
453  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
454  * fsfreeze(8)
455  */
456 void filemap_fdatawait_keep_errors(struct address_space *mapping)
457 {
458         loff_t i_size = i_size_read(mapping->host);
459
460         if (i_size == 0)
461                 return;
462
463         __filemap_fdatawait_range(mapping, 0, i_size - 1);
464 }
465
466 /**
467  * filemap_fdatawait - wait for all under-writeback pages to complete
468  * @mapping: address space structure to wait for
469  *
470  * Walk the list of under-writeback pages of the given address space
471  * and wait for all of them.  Check error status of the address space
472  * and return it.
473  *
474  * Since the error status of the address space is cleared by this function,
475  * callers are responsible for checking the return value and handling and/or
476  * reporting the error.
477  */
478 int filemap_fdatawait(struct address_space *mapping)
479 {
480         loff_t i_size = i_size_read(mapping->host);
481
482         if (i_size == 0)
483                 return 0;
484
485         return filemap_fdatawait_range(mapping, 0, i_size - 1);
486 }
487 EXPORT_SYMBOL(filemap_fdatawait);
488
489 int filemap_write_and_wait(struct address_space *mapping)
490 {
491         int err = 0;
492
493         if ((!dax_mapping(mapping) && mapping->nrpages) ||
494             (dax_mapping(mapping) && mapping->nrexceptional)) {
495                 err = filemap_fdatawrite(mapping);
496                 /*
497                  * Even if the above returned error, the pages may be
498                  * written partially (e.g. -ENOSPC), so we wait for it.
499                  * But the -EIO is special case, it may indicate the worst
500                  * thing (e.g. bug) happened, so we avoid waiting for it.
501                  */
502                 if (err != -EIO) {
503                         int err2 = filemap_fdatawait(mapping);
504                         if (!err)
505                                 err = err2;
506                 }
507         } else {
508                 err = filemap_check_errors(mapping);
509         }
510         return err;
511 }
512 EXPORT_SYMBOL(filemap_write_and_wait);
513
514 /**
515  * filemap_write_and_wait_range - write out & wait on a file range
516  * @mapping:    the address_space for the pages
517  * @lstart:     offset in bytes where the range starts
518  * @lend:       offset in bytes where the range ends (inclusive)
519  *
520  * Write out and wait upon file offsets lstart->lend, inclusive.
521  *
522  * Note that `lend' is inclusive (describes the last byte to be written) so
523  * that this function can be used to write to the very end-of-file (end = -1).
524  */
525 int filemap_write_and_wait_range(struct address_space *mapping,
526                                  loff_t lstart, loff_t lend)
527 {
528         int err = 0;
529
530         if ((!dax_mapping(mapping) && mapping->nrpages) ||
531             (dax_mapping(mapping) && mapping->nrexceptional)) {
532                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
533                                                  WB_SYNC_ALL);
534                 /* See comment of filemap_write_and_wait() */
535                 if (err != -EIO) {
536                         int err2 = filemap_fdatawait_range(mapping,
537                                                 lstart, lend);
538                         if (!err)
539                                 err = err2;
540                 }
541         } else {
542                 err = filemap_check_errors(mapping);
543         }
544         return err;
545 }
546 EXPORT_SYMBOL(filemap_write_and_wait_range);
547
548 /**
549  * replace_page_cache_page - replace a pagecache page with a new one
550  * @old:        page to be replaced
551  * @new:        page to replace with
552  * @gfp_mask:   allocation mode
553  *
554  * This function replaces a page in the pagecache with a new one.  On
555  * success it acquires the pagecache reference for the new page and
556  * drops it for the old page.  Both the old and new pages must be
557  * locked.  This function does not add the new page to the LRU, the
558  * caller must do that.
559  *
560  * The remove + add is atomic.  The only way this function can fail is
561  * memory allocation failure.
562  */
563 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
564 {
565         int error;
566
567         VM_BUG_ON_PAGE(!PageLocked(old), old);
568         VM_BUG_ON_PAGE(!PageLocked(new), new);
569         VM_BUG_ON_PAGE(new->mapping, new);
570
571         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
572         if (!error) {
573                 struct address_space *mapping = old->mapping;
574                 void (*freepage)(struct page *);
575                 unsigned long flags;
576
577                 pgoff_t offset = old->index;
578                 freepage = mapping->a_ops->freepage;
579
580                 get_page(new);
581                 new->mapping = mapping;
582                 new->index = offset;
583
584                 spin_lock_irqsave(&mapping->tree_lock, flags);
585                 __delete_from_page_cache(old, NULL);
586                 error = page_cache_tree_insert(mapping, new, NULL);
587                 BUG_ON(error);
588
589                 /*
590                  * hugetlb pages do not participate in page cache accounting.
591                  */
592                 if (!PageHuge(new))
593                         __inc_node_page_state(new, NR_FILE_PAGES);
594                 if (PageSwapBacked(new))
595                         __inc_node_page_state(new, NR_SHMEM);
596                 spin_unlock_irqrestore(&mapping->tree_lock, flags);
597                 mem_cgroup_migrate(old, new);
598                 radix_tree_preload_end();
599                 if (freepage)
600                         freepage(old);
601                 put_page(old);
602         }
603
604         return error;
605 }
606 EXPORT_SYMBOL_GPL(replace_page_cache_page);
607
608 static int __add_to_page_cache_locked(struct page *page,
609                                       struct address_space *mapping,
610                                       pgoff_t offset, gfp_t gfp_mask,
611                                       void **shadowp)
612 {
613         int huge = PageHuge(page);
614         struct mem_cgroup *memcg;
615         int error;
616
617         VM_BUG_ON_PAGE(!PageLocked(page), page);
618         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
619
620         if (!huge) {
621                 error = mem_cgroup_try_charge(page, current->mm,
622                                               gfp_mask, &memcg, false);
623                 if (error)
624                         return error;
625         }
626
627         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
628         if (error) {
629                 if (!huge)
630                         mem_cgroup_cancel_charge(page, memcg, false);
631                 return error;
632         }
633
634         get_page(page);
635         page->mapping = mapping;
636         page->index = offset;
637
638         spin_lock_irq(&mapping->tree_lock);
639         error = page_cache_tree_insert(mapping, page, shadowp);
640         radix_tree_preload_end();
641         if (unlikely(error))
642                 goto err_insert;
643
644         /* hugetlb pages do not participate in page cache accounting. */
645         if (!huge)
646                 __inc_node_page_state(page, NR_FILE_PAGES);
647         spin_unlock_irq(&mapping->tree_lock);
648         if (!huge)
649                 mem_cgroup_commit_charge(page, memcg, false, false);
650         trace_mm_filemap_add_to_page_cache(page);
651         return 0;
652 err_insert:
653         page->mapping = NULL;
654         /* Leave page->index set: truncation relies upon it */
655         spin_unlock_irq(&mapping->tree_lock);
656         if (!huge)
657                 mem_cgroup_cancel_charge(page, memcg, false);
658         put_page(page);
659         return error;
660 }
661
662 /**
663  * add_to_page_cache_locked - add a locked page to the pagecache
664  * @page:       page to add
665  * @mapping:    the page's address_space
666  * @offset:     page index
667  * @gfp_mask:   page allocation mode
668  *
669  * This function is used to add a page to the pagecache. It must be locked.
670  * This function does not add the page to the LRU.  The caller must do that.
671  */
672 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
673                 pgoff_t offset, gfp_t gfp_mask)
674 {
675         return __add_to_page_cache_locked(page, mapping, offset,
676                                           gfp_mask, NULL);
677 }
678 EXPORT_SYMBOL(add_to_page_cache_locked);
679
680 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
681                                 pgoff_t offset, gfp_t gfp_mask)
682 {
683         void *shadow = NULL;
684         int ret;
685
686         __SetPageLocked(page);
687         ret = __add_to_page_cache_locked(page, mapping, offset,
688                                          gfp_mask, &shadow);
689         if (unlikely(ret))
690                 __ClearPageLocked(page);
691         else {
692                 /*
693                  * The page might have been evicted from cache only
694                  * recently, in which case it should be activated like
695                  * any other repeatedly accessed page.
696                  * The exception is pages getting rewritten; evicting other
697                  * data from the working set, only to cache data that will
698                  * get overwritten with something else, is a waste of memory.
699                  */
700                 if (!(gfp_mask & __GFP_WRITE) &&
701                     shadow && workingset_refault(shadow)) {
702                         SetPageActive(page);
703                         workingset_activation(page);
704                 } else
705                         ClearPageActive(page);
706                 lru_cache_add(page);
707         }
708         return ret;
709 }
710 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
711
712 #ifdef CONFIG_NUMA
713 struct page *__page_cache_alloc(gfp_t gfp)
714 {
715         int n;
716         struct page *page;
717
718         if (cpuset_do_page_mem_spread()) {
719                 unsigned int cpuset_mems_cookie;
720                 do {
721                         cpuset_mems_cookie = read_mems_allowed_begin();
722                         n = cpuset_mem_spread_node();
723                         page = __alloc_pages_node(n, gfp, 0);
724                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
725
726                 return page;
727         }
728         return alloc_pages(gfp, 0);
729 }
730 EXPORT_SYMBOL(__page_cache_alloc);
731 #endif
732
733 /*
734  * In order to wait for pages to become available there must be
735  * waitqueues associated with pages. By using a hash table of
736  * waitqueues where the bucket discipline is to maintain all
737  * waiters on the same queue and wake all when any of the pages
738  * become available, and for the woken contexts to check to be
739  * sure the appropriate page became available, this saves space
740  * at a cost of "thundering herd" phenomena during rare hash
741  * collisions.
742  */
743 wait_queue_head_t *page_waitqueue(struct page *page)
744 {
745         return bit_waitqueue(page, 0);
746 }
747 EXPORT_SYMBOL(page_waitqueue);
748
749 void wait_on_page_bit(struct page *page, int bit_nr)
750 {
751         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
752
753         if (test_bit(bit_nr, &page->flags))
754                 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
755                                                         TASK_UNINTERRUPTIBLE);
756 }
757 EXPORT_SYMBOL(wait_on_page_bit);
758
759 int wait_on_page_bit_killable(struct page *page, int bit_nr)
760 {
761         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
762
763         if (!test_bit(bit_nr, &page->flags))
764                 return 0;
765
766         return __wait_on_bit(page_waitqueue(page), &wait,
767                              bit_wait_io, TASK_KILLABLE);
768 }
769
770 int wait_on_page_bit_killable_timeout(struct page *page,
771                                        int bit_nr, unsigned long timeout)
772 {
773         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
774
775         wait.key.timeout = jiffies + timeout;
776         if (!test_bit(bit_nr, &page->flags))
777                 return 0;
778         return __wait_on_bit(page_waitqueue(page), &wait,
779                              bit_wait_io_timeout, TASK_KILLABLE);
780 }
781 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
782
783 /**
784  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
785  * @page: Page defining the wait queue of interest
786  * @waiter: Waiter to add to the queue
787  *
788  * Add an arbitrary @waiter to the wait queue for the nominated @page.
789  */
790 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
791 {
792         wait_queue_head_t *q = page_waitqueue(page);
793         unsigned long flags;
794
795         spin_lock_irqsave(&q->lock, flags);
796         __add_wait_queue(q, waiter);
797         spin_unlock_irqrestore(&q->lock, flags);
798 }
799 EXPORT_SYMBOL_GPL(add_page_wait_queue);
800
801 /**
802  * unlock_page - unlock a locked page
803  * @page: the page
804  *
805  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
806  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
807  * mechanism between PageLocked pages and PageWriteback pages is shared.
808  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
809  *
810  * The mb is necessary to enforce ordering between the clear_bit and the read
811  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
812  */
813 void unlock_page(struct page *page)
814 {
815         page = compound_head(page);
816         VM_BUG_ON_PAGE(!PageLocked(page), page);
817         clear_bit_unlock(PG_locked, &page->flags);
818         smp_mb__after_atomic();
819         wake_up_page(page, PG_locked);
820 }
821 EXPORT_SYMBOL(unlock_page);
822
823 /**
824  * end_page_writeback - end writeback against a page
825  * @page: the page
826  */
827 void end_page_writeback(struct page *page)
828 {
829         /*
830          * TestClearPageReclaim could be used here but it is an atomic
831          * operation and overkill in this particular case. Failing to
832          * shuffle a page marked for immediate reclaim is too mild to
833          * justify taking an atomic operation penalty at the end of
834          * ever page writeback.
835          */
836         if (PageReclaim(page)) {
837                 ClearPageReclaim(page);
838                 rotate_reclaimable_page(page);
839         }
840
841         if (!test_clear_page_writeback(page))
842                 BUG();
843
844         smp_mb__after_atomic();
845         wake_up_page(page, PG_writeback);
846 }
847 EXPORT_SYMBOL(end_page_writeback);
848
849 /*
850  * After completing I/O on a page, call this routine to update the page
851  * flags appropriately
852  */
853 void page_endio(struct page *page, bool is_write, int err)
854 {
855         if (!is_write) {
856                 if (!err) {
857                         SetPageUptodate(page);
858                 } else {
859                         ClearPageUptodate(page);
860                         SetPageError(page);
861                 }
862                 unlock_page(page);
863         } else {
864                 if (err) {
865                         SetPageError(page);
866                         if (page->mapping)
867                                 mapping_set_error(page->mapping, err);
868                 }
869                 end_page_writeback(page);
870         }
871 }
872 EXPORT_SYMBOL_GPL(page_endio);
873
874 /**
875  * __lock_page - get a lock on the page, assuming we need to sleep to get it
876  * @page: the page to lock
877  */
878 void __lock_page(struct page *page)
879 {
880         struct page *page_head = compound_head(page);
881         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
882
883         __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
884                                                         TASK_UNINTERRUPTIBLE);
885 }
886 EXPORT_SYMBOL(__lock_page);
887
888 int __lock_page_killable(struct page *page)
889 {
890         struct page *page_head = compound_head(page);
891         DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
892
893         return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
894                                         bit_wait_io, TASK_KILLABLE);
895 }
896 EXPORT_SYMBOL_GPL(__lock_page_killable);
897
898 /*
899  * Return values:
900  * 1 - page is locked; mmap_sem is still held.
901  * 0 - page is not locked.
902  *     mmap_sem has been released (up_read()), unless flags had both
903  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
904  *     which case mmap_sem is still held.
905  *
906  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
907  * with the page locked and the mmap_sem unperturbed.
908  */
909 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
910                          unsigned int flags)
911 {
912         if (flags & FAULT_FLAG_ALLOW_RETRY) {
913                 /*
914                  * CAUTION! In this case, mmap_sem is not released
915                  * even though return 0.
916                  */
917                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
918                         return 0;
919
920                 up_read(&mm->mmap_sem);
921                 if (flags & FAULT_FLAG_KILLABLE)
922                         wait_on_page_locked_killable(page);
923                 else
924                         wait_on_page_locked(page);
925                 return 0;
926         } else {
927                 if (flags & FAULT_FLAG_KILLABLE) {
928                         int ret;
929
930                         ret = __lock_page_killable(page);
931                         if (ret) {
932                                 up_read(&mm->mmap_sem);
933                                 return 0;
934                         }
935                 } else
936                         __lock_page(page);
937                 return 1;
938         }
939 }
940
941 /**
942  * page_cache_next_hole - find the next hole (not-present entry)
943  * @mapping: mapping
944  * @index: index
945  * @max_scan: maximum range to search
946  *
947  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
948  * lowest indexed hole.
949  *
950  * Returns: the index of the hole if found, otherwise returns an index
951  * outside of the set specified (in which case 'return - index >=
952  * max_scan' will be true). In rare cases of index wrap-around, 0 will
953  * be returned.
954  *
955  * page_cache_next_hole may be called under rcu_read_lock. However,
956  * like radix_tree_gang_lookup, this will not atomically search a
957  * snapshot of the tree at a single point in time. For example, if a
958  * hole is created at index 5, then subsequently a hole is created at
959  * index 10, page_cache_next_hole covering both indexes may return 10
960  * if called under rcu_read_lock.
961  */
962 pgoff_t page_cache_next_hole(struct address_space *mapping,
963                              pgoff_t index, unsigned long max_scan)
964 {
965         unsigned long i;
966
967         for (i = 0; i < max_scan; i++) {
968                 struct page *page;
969
970                 page = radix_tree_lookup(&mapping->page_tree, index);
971                 if (!page || radix_tree_exceptional_entry(page))
972                         break;
973                 index++;
974                 if (index == 0)
975                         break;
976         }
977
978         return index;
979 }
980 EXPORT_SYMBOL(page_cache_next_hole);
981
982 /**
983  * page_cache_prev_hole - find the prev hole (not-present entry)
984  * @mapping: mapping
985  * @index: index
986  * @max_scan: maximum range to search
987  *
988  * Search backwards in the range [max(index-max_scan+1, 0), index] for
989  * the first hole.
990  *
991  * Returns: the index of the hole if found, otherwise returns an index
992  * outside of the set specified (in which case 'index - return >=
993  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
994  * will be returned.
995  *
996  * page_cache_prev_hole may be called under rcu_read_lock. However,
997  * like radix_tree_gang_lookup, this will not atomically search a
998  * snapshot of the tree at a single point in time. For example, if a
999  * hole is created at index 10, then subsequently a hole is created at
1000  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1001  * called under rcu_read_lock.
1002  */
1003 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1004                              pgoff_t index, unsigned long max_scan)
1005 {
1006         unsigned long i;
1007
1008         for (i = 0; i < max_scan; i++) {
1009                 struct page *page;
1010
1011                 page = radix_tree_lookup(&mapping->page_tree, index);
1012                 if (!page || radix_tree_exceptional_entry(page))
1013                         break;
1014                 index--;
1015                 if (index == ULONG_MAX)
1016                         break;
1017         }
1018
1019         return index;
1020 }
1021 EXPORT_SYMBOL(page_cache_prev_hole);
1022
1023 /**
1024  * find_get_entry - find and get a page cache entry
1025  * @mapping: the address_space to search
1026  * @offset: the page cache index
1027  *
1028  * Looks up the page cache slot at @mapping & @offset.  If there is a
1029  * page cache page, it is returned with an increased refcount.
1030  *
1031  * If the slot holds a shadow entry of a previously evicted page, or a
1032  * swap entry from shmem/tmpfs, it is returned.
1033  *
1034  * Otherwise, %NULL is returned.
1035  */
1036 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1037 {
1038         void **pagep;
1039         struct page *head, *page;
1040
1041         rcu_read_lock();
1042 repeat:
1043         page = NULL;
1044         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1045         if (pagep) {
1046                 page = radix_tree_deref_slot(pagep);
1047                 if (unlikely(!page))
1048                         goto out;
1049                 if (radix_tree_exception(page)) {
1050                         if (radix_tree_deref_retry(page))
1051                                 goto repeat;
1052                         /*
1053                          * A shadow entry of a recently evicted page,
1054                          * or a swap entry from shmem/tmpfs.  Return
1055                          * it without attempting to raise page count.
1056                          */
1057                         goto out;
1058                 }
1059
1060                 head = compound_head(page);
1061                 if (!page_cache_get_speculative(head))
1062                         goto repeat;
1063
1064                 /* The page was split under us? */
1065                 if (compound_head(page) != head) {
1066                         put_page(head);
1067                         goto repeat;
1068                 }
1069
1070                 /*
1071                  * Has the page moved?
1072                  * This is part of the lockless pagecache protocol. See
1073                  * include/linux/pagemap.h for details.
1074                  */
1075                 if (unlikely(page != *pagep)) {
1076                         put_page(head);
1077                         goto repeat;
1078                 }
1079         }
1080 out:
1081         rcu_read_unlock();
1082
1083         return page;
1084 }
1085 EXPORT_SYMBOL(find_get_entry);
1086
1087 /**
1088  * find_lock_entry - locate, pin and lock a page cache entry
1089  * @mapping: the address_space to search
1090  * @offset: the page cache index
1091  *
1092  * Looks up the page cache slot at @mapping & @offset.  If there is a
1093  * page cache page, it is returned locked and with an increased
1094  * refcount.
1095  *
1096  * If the slot holds a shadow entry of a previously evicted page, or a
1097  * swap entry from shmem/tmpfs, it is returned.
1098  *
1099  * Otherwise, %NULL is returned.
1100  *
1101  * find_lock_entry() may sleep.
1102  */
1103 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1104 {
1105         struct page *page;
1106
1107 repeat:
1108         page = find_get_entry(mapping, offset);
1109         if (page && !radix_tree_exception(page)) {
1110                 lock_page(page);
1111                 /* Has the page been truncated? */
1112                 if (unlikely(page_mapping(page) != mapping)) {
1113                         unlock_page(page);
1114                         put_page(page);
1115                         goto repeat;
1116                 }
1117                 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1118         }
1119         return page;
1120 }
1121 EXPORT_SYMBOL(find_lock_entry);
1122
1123 /**
1124  * pagecache_get_page - find and get a page reference
1125  * @mapping: the address_space to search
1126  * @offset: the page index
1127  * @fgp_flags: PCG flags
1128  * @gfp_mask: gfp mask to use for the page cache data page allocation
1129  *
1130  * Looks up the page cache slot at @mapping & @offset.
1131  *
1132  * PCG flags modify how the page is returned.
1133  *
1134  * FGP_ACCESSED: the page will be marked accessed
1135  * FGP_LOCK: Page is return locked
1136  * FGP_CREAT: If page is not present then a new page is allocated using
1137  *              @gfp_mask and added to the page cache and the VM's LRU
1138  *              list. The page is returned locked and with an increased
1139  *              refcount. Otherwise, %NULL is returned.
1140  *
1141  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1142  * if the GFP flags specified for FGP_CREAT are atomic.
1143  *
1144  * If there is a page cache page, it is returned with an increased refcount.
1145  */
1146 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1147         int fgp_flags, gfp_t gfp_mask)
1148 {
1149         struct page *page;
1150
1151 repeat:
1152         page = find_get_entry(mapping, offset);
1153         if (radix_tree_exceptional_entry(page))
1154                 page = NULL;
1155         if (!page)
1156                 goto no_page;
1157
1158         if (fgp_flags & FGP_LOCK) {
1159                 if (fgp_flags & FGP_NOWAIT) {
1160                         if (!trylock_page(page)) {
1161                                 put_page(page);
1162                                 return NULL;
1163                         }
1164                 } else {
1165                         lock_page(page);
1166                 }
1167
1168                 /* Has the page been truncated? */
1169                 if (unlikely(page->mapping != mapping)) {
1170                         unlock_page(page);
1171                         put_page(page);
1172                         goto repeat;
1173                 }
1174                 VM_BUG_ON_PAGE(page->index != offset, page);
1175         }
1176
1177         if (page && (fgp_flags & FGP_ACCESSED))
1178                 mark_page_accessed(page);
1179
1180 no_page:
1181         if (!page && (fgp_flags & FGP_CREAT)) {
1182                 int err;
1183                 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1184                         gfp_mask |= __GFP_WRITE;
1185                 if (fgp_flags & FGP_NOFS)
1186                         gfp_mask &= ~__GFP_FS;
1187
1188                 page = __page_cache_alloc(gfp_mask);
1189                 if (!page)
1190                         return NULL;
1191
1192                 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1193                         fgp_flags |= FGP_LOCK;
1194
1195                 /* Init accessed so avoid atomic mark_page_accessed later */
1196                 if (fgp_flags & FGP_ACCESSED)
1197                         __SetPageReferenced(page);
1198
1199                 err = add_to_page_cache_lru(page, mapping, offset,
1200                                 gfp_mask & GFP_RECLAIM_MASK);
1201                 if (unlikely(err)) {
1202                         put_page(page);
1203                         page = NULL;
1204                         if (err == -EEXIST)
1205                                 goto repeat;
1206                 }
1207         }
1208
1209         return page;
1210 }
1211 EXPORT_SYMBOL(pagecache_get_page);
1212
1213 /**
1214  * find_get_entries - gang pagecache lookup
1215  * @mapping:    The address_space to search
1216  * @start:      The starting page cache index
1217  * @nr_entries: The maximum number of entries
1218  * @entries:    Where the resulting entries are placed
1219  * @indices:    The cache indices corresponding to the entries in @entries
1220  *
1221  * find_get_entries() will search for and return a group of up to
1222  * @nr_entries entries in the mapping.  The entries are placed at
1223  * @entries.  find_get_entries() takes a reference against any actual
1224  * pages it returns.
1225  *
1226  * The search returns a group of mapping-contiguous page cache entries
1227  * with ascending indexes.  There may be holes in the indices due to
1228  * not-present pages.
1229  *
1230  * Any shadow entries of evicted pages, or swap entries from
1231  * shmem/tmpfs, are included in the returned array.
1232  *
1233  * find_get_entries() returns the number of pages and shadow entries
1234  * which were found.
1235  */
1236 unsigned find_get_entries(struct address_space *mapping,
1237                           pgoff_t start, unsigned int nr_entries,
1238                           struct page **entries, pgoff_t *indices)
1239 {
1240         void **slot;
1241         unsigned int ret = 0;
1242         struct radix_tree_iter iter;
1243
1244         if (!nr_entries)
1245                 return 0;
1246
1247         rcu_read_lock();
1248         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1249                 struct page *head, *page;
1250 repeat:
1251                 page = radix_tree_deref_slot(slot);
1252                 if (unlikely(!page))
1253                         continue;
1254                 if (radix_tree_exception(page)) {
1255                         if (radix_tree_deref_retry(page)) {
1256                                 slot = radix_tree_iter_retry(&iter);
1257                                 continue;
1258                         }
1259                         /*
1260                          * A shadow entry of a recently evicted page, a swap
1261                          * entry from shmem/tmpfs or a DAX entry.  Return it
1262                          * without attempting to raise page count.
1263                          */
1264                         goto export;
1265                 }
1266
1267                 head = compound_head(page);
1268                 if (!page_cache_get_speculative(head))
1269                         goto repeat;
1270
1271                 /* The page was split under us? */
1272                 if (compound_head(page) != head) {
1273                         put_page(head);
1274                         goto repeat;
1275                 }
1276
1277                 /* Has the page moved? */
1278                 if (unlikely(page != *slot)) {
1279                         put_page(head);
1280                         goto repeat;
1281                 }
1282 export:
1283                 indices[ret] = iter.index;
1284                 entries[ret] = page;
1285                 if (++ret == nr_entries)
1286                         break;
1287         }
1288         rcu_read_unlock();
1289         return ret;
1290 }
1291
1292 /**
1293  * find_get_pages - gang pagecache lookup
1294  * @mapping:    The address_space to search
1295  * @start:      The starting page index
1296  * @nr_pages:   The maximum number of pages
1297  * @pages:      Where the resulting pages are placed
1298  *
1299  * find_get_pages() will search for and return a group of up to
1300  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1301  * find_get_pages() takes a reference against the returned pages.
1302  *
1303  * The search returns a group of mapping-contiguous pages with ascending
1304  * indexes.  There may be holes in the indices due to not-present pages.
1305  *
1306  * find_get_pages() returns the number of pages which were found.
1307  */
1308 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1309                             unsigned int nr_pages, struct page **pages)
1310 {
1311         struct radix_tree_iter iter;
1312         void **slot;
1313         unsigned ret = 0;
1314
1315         if (unlikely(!nr_pages))
1316                 return 0;
1317
1318         rcu_read_lock();
1319         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1320                 struct page *head, *page;
1321 repeat:
1322                 page = radix_tree_deref_slot(slot);
1323                 if (unlikely(!page))
1324                         continue;
1325
1326                 if (radix_tree_exception(page)) {
1327                         if (radix_tree_deref_retry(page)) {
1328                                 slot = radix_tree_iter_retry(&iter);
1329                                 continue;
1330                         }
1331                         /*
1332                          * A shadow entry of a recently evicted page,
1333                          * or a swap entry from shmem/tmpfs.  Skip
1334                          * over it.
1335                          */
1336                         continue;
1337                 }
1338
1339                 head = compound_head(page);
1340                 if (!page_cache_get_speculative(head))
1341                         goto repeat;
1342
1343                 /* The page was split under us? */
1344                 if (compound_head(page) != head) {
1345                         put_page(head);
1346                         goto repeat;
1347                 }
1348
1349                 /* Has the page moved? */
1350                 if (unlikely(page != *slot)) {
1351                         put_page(head);
1352                         goto repeat;
1353                 }
1354
1355                 pages[ret] = page;
1356                 if (++ret == nr_pages)
1357                         break;
1358         }
1359
1360         rcu_read_unlock();
1361         return ret;
1362 }
1363
1364 /**
1365  * find_get_pages_contig - gang contiguous pagecache lookup
1366  * @mapping:    The address_space to search
1367  * @index:      The starting page index
1368  * @nr_pages:   The maximum number of pages
1369  * @pages:      Where the resulting pages are placed
1370  *
1371  * find_get_pages_contig() works exactly like find_get_pages(), except
1372  * that the returned number of pages are guaranteed to be contiguous.
1373  *
1374  * find_get_pages_contig() returns the number of pages which were found.
1375  */
1376 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1377                                unsigned int nr_pages, struct page **pages)
1378 {
1379         struct radix_tree_iter iter;
1380         void **slot;
1381         unsigned int ret = 0;
1382
1383         if (unlikely(!nr_pages))
1384                 return 0;
1385
1386         rcu_read_lock();
1387         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1388                 struct page *head, *page;
1389 repeat:
1390                 page = radix_tree_deref_slot(slot);
1391                 /* The hole, there no reason to continue */
1392                 if (unlikely(!page))
1393                         break;
1394
1395                 if (radix_tree_exception(page)) {
1396                         if (radix_tree_deref_retry(page)) {
1397                                 slot = radix_tree_iter_retry(&iter);
1398                                 continue;
1399                         }
1400                         /*
1401                          * A shadow entry of a recently evicted page,
1402                          * or a swap entry from shmem/tmpfs.  Stop
1403                          * looking for contiguous pages.
1404                          */
1405                         break;
1406                 }
1407
1408                 head = compound_head(page);
1409                 if (!page_cache_get_speculative(head))
1410                         goto repeat;
1411
1412                 /* The page was split under us? */
1413                 if (compound_head(page) != head) {
1414                         put_page(head);
1415                         goto repeat;
1416                 }
1417
1418                 /* Has the page moved? */
1419                 if (unlikely(page != *slot)) {
1420                         put_page(head);
1421                         goto repeat;
1422                 }
1423
1424                 /*
1425                  * must check mapping and index after taking the ref.
1426                  * otherwise we can get both false positives and false
1427                  * negatives, which is just confusing to the caller.
1428                  */
1429                 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1430                         put_page(page);
1431                         break;
1432                 }
1433
1434                 pages[ret] = page;
1435                 if (++ret == nr_pages)
1436                         break;
1437         }
1438         rcu_read_unlock();
1439         return ret;
1440 }
1441 EXPORT_SYMBOL(find_get_pages_contig);
1442
1443 /**
1444  * find_get_pages_tag - find and return pages that match @tag
1445  * @mapping:    the address_space to search
1446  * @index:      the starting page index
1447  * @tag:        the tag index
1448  * @nr_pages:   the maximum number of pages
1449  * @pages:      where the resulting pages are placed
1450  *
1451  * Like find_get_pages, except we only return pages which are tagged with
1452  * @tag.   We update @index to index the next page for the traversal.
1453  */
1454 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1455                         int tag, unsigned int nr_pages, struct page **pages)
1456 {
1457         struct radix_tree_iter iter;
1458         void **slot;
1459         unsigned ret = 0;
1460
1461         if (unlikely(!nr_pages))
1462                 return 0;
1463
1464         rcu_read_lock();
1465         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1466                                    &iter, *index, tag) {
1467                 struct page *head, *page;
1468 repeat:
1469                 page = radix_tree_deref_slot(slot);
1470                 if (unlikely(!page))
1471                         continue;
1472
1473                 if (radix_tree_exception(page)) {
1474                         if (radix_tree_deref_retry(page)) {
1475                                 slot = radix_tree_iter_retry(&iter);
1476                                 continue;
1477                         }
1478                         /*
1479                          * A shadow entry of a recently evicted page.
1480                          *
1481                          * Those entries should never be tagged, but
1482                          * this tree walk is lockless and the tags are
1483                          * looked up in bulk, one radix tree node at a
1484                          * time, so there is a sizable window for page
1485                          * reclaim to evict a page we saw tagged.
1486                          *
1487                          * Skip over it.
1488                          */
1489                         continue;
1490                 }
1491
1492                 head = compound_head(page);
1493                 if (!page_cache_get_speculative(head))
1494                         goto repeat;
1495
1496                 /* The page was split under us? */
1497                 if (compound_head(page) != head) {
1498                         put_page(head);
1499                         goto repeat;
1500                 }
1501
1502                 /* Has the page moved? */
1503                 if (unlikely(page != *slot)) {
1504                         put_page(head);
1505                         goto repeat;
1506                 }
1507
1508                 pages[ret] = page;
1509                 if (++ret == nr_pages)
1510                         break;
1511         }
1512
1513         rcu_read_unlock();
1514
1515         if (ret)
1516                 *index = pages[ret - 1]->index + 1;
1517
1518         return ret;
1519 }
1520 EXPORT_SYMBOL(find_get_pages_tag);
1521
1522 /**
1523  * find_get_entries_tag - find and return entries that match @tag
1524  * @mapping:    the address_space to search
1525  * @start:      the starting page cache index
1526  * @tag:        the tag index
1527  * @nr_entries: the maximum number of entries
1528  * @entries:    where the resulting entries are placed
1529  * @indices:    the cache indices corresponding to the entries in @entries
1530  *
1531  * Like find_get_entries, except we only return entries which are tagged with
1532  * @tag.
1533  */
1534 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1535                         int tag, unsigned int nr_entries,
1536                         struct page **entries, pgoff_t *indices)
1537 {
1538         void **slot;
1539         unsigned int ret = 0;
1540         struct radix_tree_iter iter;
1541
1542         if (!nr_entries)
1543                 return 0;
1544
1545         rcu_read_lock();
1546         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1547                                    &iter, start, tag) {
1548                 struct page *head, *page;
1549 repeat:
1550                 page = radix_tree_deref_slot(slot);
1551                 if (unlikely(!page))
1552                         continue;
1553                 if (radix_tree_exception(page)) {
1554                         if (radix_tree_deref_retry(page)) {
1555                                 slot = radix_tree_iter_retry(&iter);
1556                                 continue;
1557                         }
1558
1559                         /*
1560                          * A shadow entry of a recently evicted page, a swap
1561                          * entry from shmem/tmpfs or a DAX entry.  Return it
1562                          * without attempting to raise page count.
1563                          */
1564                         goto export;
1565                 }
1566
1567                 head = compound_head(page);
1568                 if (!page_cache_get_speculative(head))
1569                         goto repeat;
1570
1571                 /* The page was split under us? */
1572                 if (compound_head(page) != head) {
1573                         put_page(head);
1574                         goto repeat;
1575                 }
1576
1577                 /* Has the page moved? */
1578                 if (unlikely(page != *slot)) {
1579                         put_page(head);
1580                         goto repeat;
1581                 }
1582 export:
1583                 indices[ret] = iter.index;
1584                 entries[ret] = page;
1585                 if (++ret == nr_entries)
1586                         break;
1587         }
1588         rcu_read_unlock();
1589         return ret;
1590 }
1591 EXPORT_SYMBOL(find_get_entries_tag);
1592
1593 /*
1594  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1595  * a _large_ part of the i/o request. Imagine the worst scenario:
1596  *
1597  *      ---R__________________________________________B__________
1598  *         ^ reading here                             ^ bad block(assume 4k)
1599  *
1600  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1601  * => failing the whole request => read(R) => read(R+1) =>
1602  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1603  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1604  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1605  *
1606  * It is going insane. Fix it by quickly scaling down the readahead size.
1607  */
1608 static void shrink_readahead_size_eio(struct file *filp,
1609                                         struct file_ra_state *ra)
1610 {
1611         ra->ra_pages /= 4;
1612 }
1613
1614 /**
1615  * do_generic_file_read - generic file read routine
1616  * @filp:       the file to read
1617  * @ppos:       current file position
1618  * @iter:       data destination
1619  * @written:    already copied
1620  *
1621  * This is a generic file read routine, and uses the
1622  * mapping->a_ops->readpage() function for the actual low-level stuff.
1623  *
1624  * This is really ugly. But the goto's actually try to clarify some
1625  * of the logic when it comes to error handling etc.
1626  */
1627 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1628                 struct iov_iter *iter, ssize_t written)
1629 {
1630         struct address_space *mapping = filp->f_mapping;
1631         struct inode *inode = mapping->host;
1632         struct file_ra_state *ra = &filp->f_ra;
1633         pgoff_t index;
1634         pgoff_t last_index;
1635         pgoff_t prev_index;
1636         unsigned long offset;      /* offset into pagecache page */
1637         unsigned int prev_offset;
1638         int error = 0;
1639
1640         if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1641                 return -EINVAL;
1642         iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1643
1644         index = *ppos >> PAGE_SHIFT;
1645         prev_index = ra->prev_pos >> PAGE_SHIFT;
1646         prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1647         last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1648         offset = *ppos & ~PAGE_MASK;
1649
1650         for (;;) {
1651                 struct page *page;
1652                 pgoff_t end_index;
1653                 loff_t isize;
1654                 unsigned long nr, ret;
1655
1656                 cond_resched();
1657 find_page:
1658                 page = find_get_page(mapping, index);
1659                 if (!page) {
1660                         page_cache_sync_readahead(mapping,
1661                                         ra, filp,
1662                                         index, last_index - index);
1663                         page = find_get_page(mapping, index);
1664                         if (unlikely(page == NULL))
1665                                 goto no_cached_page;
1666                 }
1667                 if (PageReadahead(page)) {
1668                         page_cache_async_readahead(mapping,
1669                                         ra, filp, page,
1670                                         index, last_index - index);
1671                 }
1672                 if (!PageUptodate(page)) {
1673                         /*
1674                          * See comment in do_read_cache_page on why
1675                          * wait_on_page_locked is used to avoid unnecessarily
1676                          * serialisations and why it's safe.
1677                          */
1678                         error = wait_on_page_locked_killable(page);
1679                         if (unlikely(error))
1680                                 goto readpage_error;
1681                         if (PageUptodate(page))
1682                                 goto page_ok;
1683
1684                         if (inode->i_blkbits == PAGE_SHIFT ||
1685                                         !mapping->a_ops->is_partially_uptodate)
1686                                 goto page_not_up_to_date;
1687                         /* pipes can't handle partially uptodate pages */
1688                         if (unlikely(iter->type & ITER_PIPE))
1689                                 goto page_not_up_to_date;
1690                         if (!trylock_page(page))
1691                                 goto page_not_up_to_date;
1692                         /* Did it get truncated before we got the lock? */
1693                         if (!page->mapping)
1694                                 goto page_not_up_to_date_locked;
1695                         if (!mapping->a_ops->is_partially_uptodate(page,
1696                                                         offset, iter->count))
1697                                 goto page_not_up_to_date_locked;
1698                         unlock_page(page);
1699                 }
1700 page_ok:
1701                 /*
1702                  * i_size must be checked after we know the page is Uptodate.
1703                  *
1704                  * Checking i_size after the check allows us to calculate
1705                  * the correct value for "nr", which means the zero-filled
1706                  * part of the page is not copied back to userspace (unless
1707                  * another truncate extends the file - this is desired though).
1708                  */
1709
1710                 isize = i_size_read(inode);
1711                 end_index = (isize - 1) >> PAGE_SHIFT;
1712                 if (unlikely(!isize || index > end_index)) {
1713                         put_page(page);
1714                         goto out;
1715                 }
1716
1717                 /* nr is the maximum number of bytes to copy from this page */
1718                 nr = PAGE_SIZE;
1719                 if (index == end_index) {
1720                         nr = ((isize - 1) & ~PAGE_MASK) + 1;
1721                         if (nr <= offset) {
1722                                 put_page(page);
1723                                 goto out;
1724                         }
1725                 }
1726                 nr = nr - offset;
1727
1728                 /* If users can be writing to this page using arbitrary
1729                  * virtual addresses, take care about potential aliasing
1730                  * before reading the page on the kernel side.
1731                  */
1732                 if (mapping_writably_mapped(mapping))
1733                         flush_dcache_page(page);
1734
1735                 /*
1736                  * When a sequential read accesses a page several times,
1737                  * only mark it as accessed the first time.
1738                  */
1739                 if (prev_index != index || offset != prev_offset)
1740                         mark_page_accessed(page);
1741                 prev_index = index;
1742
1743                 /*
1744                  * Ok, we have the page, and it's up-to-date, so
1745                  * now we can copy it to user space...
1746                  */
1747
1748                 ret = copy_page_to_iter(page, offset, nr, iter);
1749                 offset += ret;
1750                 index += offset >> PAGE_SHIFT;
1751                 offset &= ~PAGE_MASK;
1752                 prev_offset = offset;
1753
1754                 put_page(page);
1755                 written += ret;
1756                 if (!iov_iter_count(iter))
1757                         goto out;
1758                 if (ret < nr) {
1759                         error = -EFAULT;
1760                         goto out;
1761                 }
1762                 continue;
1763
1764 page_not_up_to_date:
1765                 /* Get exclusive access to the page ... */
1766                 error = lock_page_killable(page);
1767                 if (unlikely(error))
1768                         goto readpage_error;
1769
1770 page_not_up_to_date_locked:
1771                 /* Did it get truncated before we got the lock? */
1772                 if (!page->mapping) {
1773                         unlock_page(page);
1774                         put_page(page);
1775                         continue;
1776                 }
1777
1778                 /* Did somebody else fill it already? */
1779                 if (PageUptodate(page)) {
1780                         unlock_page(page);
1781                         goto page_ok;
1782                 }
1783
1784 readpage:
1785                 /*
1786                  * A previous I/O error may have been due to temporary
1787                  * failures, eg. multipath errors.
1788                  * PG_error will be set again if readpage fails.
1789                  */
1790                 ClearPageError(page);
1791                 /* Start the actual read. The read will unlock the page. */
1792                 error = mapping->a_ops->readpage(filp, page);
1793
1794                 if (unlikely(error)) {
1795                         if (error == AOP_TRUNCATED_PAGE) {
1796                                 put_page(page);
1797                                 error = 0;
1798                                 goto find_page;
1799                         }
1800                         goto readpage_error;
1801                 }
1802
1803                 if (!PageUptodate(page)) {
1804                         error = lock_page_killable(page);
1805                         if (unlikely(error))
1806                                 goto readpage_error;
1807                         if (!PageUptodate(page)) {
1808                                 if (page->mapping == NULL) {
1809                                         /*
1810                                          * invalidate_mapping_pages got it
1811                                          */
1812                                         unlock_page(page);
1813                                         put_page(page);
1814                                         goto find_page;
1815                                 }
1816                                 unlock_page(page);
1817                                 shrink_readahead_size_eio(filp, ra);
1818                                 error = -EIO;
1819                                 goto readpage_error;
1820                         }
1821                         unlock_page(page);
1822                 }
1823
1824                 goto page_ok;
1825
1826 readpage_error:
1827                 /* UHHUH! A synchronous read error occurred. Report it */
1828                 put_page(page);
1829                 goto out;
1830
1831 no_cached_page:
1832                 /*
1833                  * Ok, it wasn't cached, so we need to create a new
1834                  * page..
1835                  */
1836                 page = page_cache_alloc_cold(mapping);
1837                 if (!page) {
1838                         error = -ENOMEM;
1839                         goto out;
1840                 }
1841                 error = add_to_page_cache_lru(page, mapping, index,
1842                                 mapping_gfp_constraint(mapping, GFP_KERNEL));
1843                 if (error) {
1844                         put_page(page);
1845                         if (error == -EEXIST) {
1846                                 error = 0;
1847                                 goto find_page;
1848                         }
1849                         goto out;
1850                 }
1851                 goto readpage;
1852         }
1853
1854 out:
1855         ra->prev_pos = prev_index;
1856         ra->prev_pos <<= PAGE_SHIFT;
1857         ra->prev_pos |= prev_offset;
1858
1859         *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1860         file_accessed(filp);
1861         return written ? written : error;
1862 }
1863
1864 /**
1865  * generic_file_read_iter - generic filesystem read routine
1866  * @iocb:       kernel I/O control block
1867  * @iter:       destination for the data read
1868  *
1869  * This is the "read_iter()" routine for all filesystems
1870  * that can use the page cache directly.
1871  */
1872 ssize_t
1873 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1874 {
1875         struct file *file = iocb->ki_filp;
1876         ssize_t retval = 0;
1877         size_t count = iov_iter_count(iter);
1878
1879         if (!count)
1880                 goto out; /* skip atime */
1881
1882         if (iocb->ki_flags & IOCB_DIRECT) {
1883                 struct address_space *mapping = file->f_mapping;
1884                 struct inode *inode = mapping->host;
1885                 struct iov_iter data = *iter;
1886                 loff_t size;
1887
1888                 size = i_size_read(inode);
1889                 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1890                                         iocb->ki_pos + count - 1);
1891                 if (retval < 0)
1892                         goto out;
1893
1894                 file_accessed(file);
1895
1896                 retval = mapping->a_ops->direct_IO(iocb, &data);
1897                 if (retval >= 0) {
1898                         iocb->ki_pos += retval;
1899                         iov_iter_advance(iter, retval);
1900                 }
1901
1902                 /*
1903                  * Btrfs can have a short DIO read if we encounter
1904                  * compressed extents, so if there was an error, or if
1905                  * we've already read everything we wanted to, or if
1906                  * there was a short read because we hit EOF, go ahead
1907                  * and return.  Otherwise fallthrough to buffered io for
1908                  * the rest of the read.  Buffered reads will not work for
1909                  * DAX files, so don't bother trying.
1910                  */
1911                 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1912                     IS_DAX(inode))
1913                         goto out;
1914         }
1915
1916         retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1917 out:
1918         return retval;
1919 }
1920 EXPORT_SYMBOL(generic_file_read_iter);
1921
1922 #ifdef CONFIG_MMU
1923 /**
1924  * page_cache_read - adds requested page to the page cache if not already there
1925  * @file:       file to read
1926  * @offset:     page index
1927  * @gfp_mask:   memory allocation flags
1928  *
1929  * This adds the requested page to the page cache if it isn't already there,
1930  * and schedules an I/O to read in its contents from disk.
1931  */
1932 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1933 {
1934         struct address_space *mapping = file->f_mapping;
1935         struct page *page;
1936         int ret;
1937
1938         do {
1939                 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1940                 if (!page)
1941                         return -ENOMEM;
1942
1943                 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1944                 if (ret == 0)
1945                         ret = mapping->a_ops->readpage(file, page);
1946                 else if (ret == -EEXIST)
1947                         ret = 0; /* losing race to add is OK */
1948
1949                 put_page(page);
1950
1951         } while (ret == AOP_TRUNCATED_PAGE);
1952
1953         return ret;
1954 }
1955
1956 #define MMAP_LOTSAMISS  (100)
1957
1958 /*
1959  * Synchronous readahead happens when we don't even find
1960  * a page in the page cache at all.
1961  */
1962 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1963                                    struct file_ra_state *ra,
1964                                    struct file *file,
1965                                    pgoff_t offset)
1966 {
1967         struct address_space *mapping = file->f_mapping;
1968
1969         /* If we don't want any read-ahead, don't bother */
1970         if (vma->vm_flags & VM_RAND_READ)
1971                 return;
1972         if (!ra->ra_pages)
1973                 return;
1974
1975         if (vma->vm_flags & VM_SEQ_READ) {
1976                 page_cache_sync_readahead(mapping, ra, file, offset,
1977                                           ra->ra_pages);
1978                 return;
1979         }
1980
1981         /* Avoid banging the cache line if not needed */
1982         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1983                 ra->mmap_miss++;
1984
1985         /*
1986          * Do we miss much more than hit in this file? If so,
1987          * stop bothering with read-ahead. It will only hurt.
1988          */
1989         if (ra->mmap_miss > MMAP_LOTSAMISS)
1990                 return;
1991
1992         /*
1993          * mmap read-around
1994          */
1995         ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1996         ra->size = ra->ra_pages;
1997         ra->async_size = ra->ra_pages / 4;
1998         ra_submit(ra, mapping, file);
1999 }
2000
2001 /*
2002  * Asynchronous readahead happens when we find the page and PG_readahead,
2003  * so we want to possibly extend the readahead further..
2004  */
2005 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2006                                     struct file_ra_state *ra,
2007                                     struct file *file,
2008                                     struct page *page,
2009                                     pgoff_t offset)
2010 {
2011         struct address_space *mapping = file->f_mapping;
2012
2013         /* If we don't want any read-ahead, don't bother */
2014         if (vma->vm_flags & VM_RAND_READ)
2015                 return;
2016         if (ra->mmap_miss > 0)
2017                 ra->mmap_miss--;
2018         if (PageReadahead(page))
2019                 page_cache_async_readahead(mapping, ra, file,
2020                                            page, offset, ra->ra_pages);
2021 }
2022
2023 /**
2024  * filemap_fault - read in file data for page fault handling
2025  * @vma:        vma in which the fault was taken
2026  * @vmf:        struct vm_fault containing details of the fault
2027  *
2028  * filemap_fault() is invoked via the vma operations vector for a
2029  * mapped memory region to read in file data during a page fault.
2030  *
2031  * The goto's are kind of ugly, but this streamlines the normal case of having
2032  * it in the page cache, and handles the special cases reasonably without
2033  * having a lot of duplicated code.
2034  *
2035  * vma->vm_mm->mmap_sem must be held on entry.
2036  *
2037  * If our return value has VM_FAULT_RETRY set, it's because
2038  * lock_page_or_retry() returned 0.
2039  * The mmap_sem has usually been released in this case.
2040  * See __lock_page_or_retry() for the exception.
2041  *
2042  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2043  * has not been released.
2044  *
2045  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2046  */
2047 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2048 {
2049         int error;
2050         struct file *file = vma->vm_file;
2051         struct address_space *mapping = file->f_mapping;
2052         struct file_ra_state *ra = &file->f_ra;
2053         struct inode *inode = mapping->host;
2054         pgoff_t offset = vmf->pgoff;
2055         struct page *page;
2056         loff_t size;
2057         int ret = 0;
2058
2059         size = round_up(i_size_read(inode), PAGE_SIZE);
2060         if (offset >= size >> PAGE_SHIFT)
2061                 return VM_FAULT_SIGBUS;
2062
2063         /*
2064          * Do we have something in the page cache already?
2065          */
2066         page = find_get_page(mapping, offset);
2067         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2068                 /*
2069                  * We found the page, so try async readahead before
2070                  * waiting for the lock.
2071                  */
2072                 do_async_mmap_readahead(vma, ra, file, page, offset);
2073         } else if (!page) {
2074                 /* No page in the page cache at all */
2075                 do_sync_mmap_readahead(vma, ra, file, offset);
2076                 count_vm_event(PGMAJFAULT);
2077                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2078                 ret = VM_FAULT_MAJOR;
2079 retry_find:
2080                 page = find_get_page(mapping, offset);
2081                 if (!page)
2082                         goto no_cached_page;
2083         }
2084
2085         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2086                 put_page(page);
2087                 return ret | VM_FAULT_RETRY;
2088         }
2089
2090         /* Did it get truncated? */
2091         if (unlikely(page->mapping != mapping)) {
2092                 unlock_page(page);
2093                 put_page(page);
2094                 goto retry_find;
2095         }
2096         VM_BUG_ON_PAGE(page->index != offset, page);
2097
2098         /*
2099          * We have a locked page in the page cache, now we need to check
2100          * that it's up-to-date. If not, it is going to be due to an error.
2101          */
2102         if (unlikely(!PageUptodate(page)))
2103                 goto page_not_uptodate;
2104
2105         /*
2106          * Found the page and have a reference on it.
2107          * We must recheck i_size under page lock.
2108          */
2109         size = round_up(i_size_read(inode), PAGE_SIZE);
2110         if (unlikely(offset >= size >> PAGE_SHIFT)) {
2111                 unlock_page(page);
2112                 put_page(page);
2113                 return VM_FAULT_SIGBUS;
2114         }
2115
2116         vmf->page = page;
2117         return ret | VM_FAULT_LOCKED;
2118
2119 no_cached_page:
2120         /*
2121          * We're only likely to ever get here if MADV_RANDOM is in
2122          * effect.
2123          */
2124         error = page_cache_read(file, offset, vmf->gfp_mask);
2125
2126         /*
2127          * The page we want has now been added to the page cache.
2128          * In the unlikely event that someone removed it in the
2129          * meantime, we'll just come back here and read it again.
2130          */
2131         if (error >= 0)
2132                 goto retry_find;
2133
2134         /*
2135          * An error return from page_cache_read can result if the
2136          * system is low on memory, or a problem occurs while trying
2137          * to schedule I/O.
2138          */
2139         if (error == -ENOMEM)
2140                 return VM_FAULT_OOM;
2141         return VM_FAULT_SIGBUS;
2142
2143 page_not_uptodate:
2144         /*
2145          * Umm, take care of errors if the page isn't up-to-date.
2146          * Try to re-read it _once_. We do this synchronously,
2147          * because there really aren't any performance issues here
2148          * and we need to check for errors.
2149          */
2150         ClearPageError(page);
2151         error = mapping->a_ops->readpage(file, page);
2152         if (!error) {
2153                 wait_on_page_locked(page);
2154                 if (!PageUptodate(page))
2155                         error = -EIO;
2156         }
2157         put_page(page);
2158
2159         if (!error || error == AOP_TRUNCATED_PAGE)
2160                 goto retry_find;
2161
2162         /* Things didn't work out. Return zero to tell the mm layer so. */
2163         shrink_readahead_size_eio(file, ra);
2164         return VM_FAULT_SIGBUS;
2165 }
2166 EXPORT_SYMBOL(filemap_fault);
2167
2168 void filemap_map_pages(struct fault_env *fe,
2169                 pgoff_t start_pgoff, pgoff_t end_pgoff)
2170 {
2171         struct radix_tree_iter iter;
2172         void **slot;
2173         struct file *file = fe->vma->vm_file;
2174         struct address_space *mapping = file->f_mapping;
2175         pgoff_t last_pgoff = start_pgoff;
2176         loff_t size;
2177         struct page *head, *page;
2178
2179         rcu_read_lock();
2180         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2181                         start_pgoff) {
2182                 if (iter.index > end_pgoff)
2183                         break;
2184 repeat:
2185                 page = radix_tree_deref_slot(slot);
2186                 if (unlikely(!page))
2187                         goto next;
2188                 if (radix_tree_exception(page)) {
2189                         if (radix_tree_deref_retry(page)) {
2190                                 slot = radix_tree_iter_retry(&iter);
2191                                 continue;
2192                         }
2193                         goto next;
2194                 }
2195
2196                 head = compound_head(page);
2197                 if (!page_cache_get_speculative(head))
2198                         goto repeat;
2199
2200                 /* The page was split under us? */
2201                 if (compound_head(page) != head) {
2202                         put_page(head);
2203                         goto repeat;
2204                 }
2205
2206                 /* Has the page moved? */
2207                 if (unlikely(page != *slot)) {
2208                         put_page(head);
2209                         goto repeat;
2210                 }
2211
2212                 if (!PageUptodate(page) ||
2213                                 PageReadahead(page) ||
2214                                 PageHWPoison(page))
2215                         goto skip;
2216                 if (!trylock_page(page))
2217                         goto skip;
2218
2219                 if (page->mapping != mapping || !PageUptodate(page))
2220                         goto unlock;
2221
2222                 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2223                 if (page->index >= size >> PAGE_SHIFT)
2224                         goto unlock;
2225
2226                 if (file->f_ra.mmap_miss > 0)
2227                         file->f_ra.mmap_miss--;
2228
2229                 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2230                 if (fe->pte)
2231                         fe->pte += iter.index - last_pgoff;
2232                 last_pgoff = iter.index;
2233                 if (alloc_set_pte(fe, NULL, page))
2234                         goto unlock;
2235                 unlock_page(page);
2236                 goto next;
2237 unlock:
2238                 unlock_page(page);
2239 skip:
2240                 put_page(page);
2241 next:
2242                 /* Huge page is mapped? No need to proceed. */
2243                 if (pmd_trans_huge(*fe->pmd))
2244                         break;
2245                 if (iter.index == end_pgoff)
2246                         break;
2247         }
2248         rcu_read_unlock();
2249 }
2250 EXPORT_SYMBOL(filemap_map_pages);
2251
2252 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2253 {
2254         struct page *page = vmf->page;
2255         struct inode *inode = file_inode(vma->vm_file);
2256         int ret = VM_FAULT_LOCKED;
2257
2258         sb_start_pagefault(inode->i_sb);
2259         file_update_time(vma->vm_file);
2260         lock_page(page);
2261         if (page->mapping != inode->i_mapping) {
2262                 unlock_page(page);
2263                 ret = VM_FAULT_NOPAGE;
2264                 goto out;
2265         }
2266         /*
2267          * We mark the page dirty already here so that when freeze is in
2268          * progress, we are guaranteed that writeback during freezing will
2269          * see the dirty page and writeprotect it again.
2270          */
2271         set_page_dirty(page);
2272         wait_for_stable_page(page);
2273 out:
2274         sb_end_pagefault(inode->i_sb);
2275         return ret;
2276 }
2277 EXPORT_SYMBOL(filemap_page_mkwrite);
2278
2279 const struct vm_operations_struct generic_file_vm_ops = {
2280         .fault          = filemap_fault,
2281         .map_pages      = filemap_map_pages,
2282         .page_mkwrite   = filemap_page_mkwrite,
2283 };
2284
2285 /* This is used for a general mmap of a disk file */
2286
2287 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2288 {
2289         struct address_space *mapping = file->f_mapping;
2290
2291         if (!mapping->a_ops->readpage)
2292                 return -ENOEXEC;
2293         file_accessed(file);
2294         vma->vm_ops = &generic_file_vm_ops;
2295         return 0;
2296 }
2297
2298 /*
2299  * This is for filesystems which do not implement ->writepage.
2300  */
2301 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2302 {
2303         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2304                 return -EINVAL;
2305         return generic_file_mmap(file, vma);
2306 }
2307 #else
2308 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2309 {
2310         return -ENOSYS;
2311 }
2312 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2313 {
2314         return -ENOSYS;
2315 }
2316 #endif /* CONFIG_MMU */
2317
2318 EXPORT_SYMBOL(generic_file_mmap);
2319 EXPORT_SYMBOL(generic_file_readonly_mmap);
2320
2321 static struct page *wait_on_page_read(struct page *page)
2322 {
2323         if (!IS_ERR(page)) {
2324                 wait_on_page_locked(page);
2325                 if (!PageUptodate(page)) {
2326                         put_page(page);
2327                         page = ERR_PTR(-EIO);
2328                 }
2329         }
2330         return page;
2331 }
2332
2333 static struct page *do_read_cache_page(struct address_space *mapping,
2334                                 pgoff_t index,
2335                                 int (*filler)(void *, struct page *),
2336                                 void *data,
2337                                 gfp_t gfp)
2338 {
2339         struct page *page;
2340         int err;
2341 repeat:
2342         page = find_get_page(mapping, index);
2343         if (!page) {
2344                 page = __page_cache_alloc(gfp | __GFP_COLD);
2345                 if (!page)
2346                         return ERR_PTR(-ENOMEM);
2347                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2348                 if (unlikely(err)) {
2349                         put_page(page);
2350                         if (err == -EEXIST)
2351                                 goto repeat;
2352                         /* Presumably ENOMEM for radix tree node */
2353                         return ERR_PTR(err);
2354                 }
2355
2356 filler:
2357                 err = filler(data, page);
2358                 if (err < 0) {
2359                         put_page(page);
2360                         return ERR_PTR(err);
2361                 }
2362
2363                 page = wait_on_page_read(page);
2364                 if (IS_ERR(page))
2365                         return page;
2366                 goto out;
2367         }
2368         if (PageUptodate(page))
2369                 goto out;
2370
2371         /*
2372          * Page is not up to date and may be locked due one of the following
2373          * case a: Page is being filled and the page lock is held
2374          * case b: Read/write error clearing the page uptodate status
2375          * case c: Truncation in progress (page locked)
2376          * case d: Reclaim in progress
2377          *
2378          * Case a, the page will be up to date when the page is unlocked.
2379          *    There is no need to serialise on the page lock here as the page
2380          *    is pinned so the lock gives no additional protection. Even if the
2381          *    the page is truncated, the data is still valid if PageUptodate as
2382          *    it's a race vs truncate race.
2383          * Case b, the page will not be up to date
2384          * Case c, the page may be truncated but in itself, the data may still
2385          *    be valid after IO completes as it's a read vs truncate race. The
2386          *    operation must restart if the page is not uptodate on unlock but
2387          *    otherwise serialising on page lock to stabilise the mapping gives
2388          *    no additional guarantees to the caller as the page lock is
2389          *    released before return.
2390          * Case d, similar to truncation. If reclaim holds the page lock, it
2391          *    will be a race with remove_mapping that determines if the mapping
2392          *    is valid on unlock but otherwise the data is valid and there is
2393          *    no need to serialise with page lock.
2394          *
2395          * As the page lock gives no additional guarantee, we optimistically
2396          * wait on the page to be unlocked and check if it's up to date and
2397          * use the page if it is. Otherwise, the page lock is required to
2398          * distinguish between the different cases. The motivation is that we
2399          * avoid spurious serialisations and wakeups when multiple processes
2400          * wait on the same page for IO to complete.
2401          */
2402         wait_on_page_locked(page);
2403         if (PageUptodate(page))
2404                 goto out;
2405
2406         /* Distinguish between all the cases under the safety of the lock */
2407         lock_page(page);
2408
2409         /* Case c or d, restart the operation */
2410         if (!page->mapping) {
2411                 unlock_page(page);
2412                 put_page(page);
2413                 goto repeat;
2414         }
2415
2416         /* Someone else locked and filled the page in a very small window */
2417         if (PageUptodate(page)) {
2418                 unlock_page(page);
2419                 goto out;
2420         }
2421         goto filler;
2422
2423 out:
2424         mark_page_accessed(page);
2425         return page;
2426 }
2427
2428 /**
2429  * read_cache_page - read into page cache, fill it if needed
2430  * @mapping:    the page's address_space
2431  * @index:      the page index
2432  * @filler:     function to perform the read
2433  * @data:       first arg to filler(data, page) function, often left as NULL
2434  *
2435  * Read into the page cache. If a page already exists, and PageUptodate() is
2436  * not set, try to fill the page and wait for it to become unlocked.
2437  *
2438  * If the page does not get brought uptodate, return -EIO.
2439  */
2440 struct page *read_cache_page(struct address_space *mapping,
2441                                 pgoff_t index,
2442                                 int (*filler)(void *, struct page *),
2443                                 void *data)
2444 {
2445         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2446 }
2447 EXPORT_SYMBOL(read_cache_page);
2448
2449 /**
2450  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2451  * @mapping:    the page's address_space
2452  * @index:      the page index
2453  * @gfp:        the page allocator flags to use if allocating
2454  *
2455  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2456  * any new page allocations done using the specified allocation flags.
2457  *
2458  * If the page does not get brought uptodate, return -EIO.
2459  */
2460 struct page *read_cache_page_gfp(struct address_space *mapping,
2461                                 pgoff_t index,
2462                                 gfp_t gfp)
2463 {
2464         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2465
2466         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2467 }
2468 EXPORT_SYMBOL(read_cache_page_gfp);
2469
2470 /*
2471  * Performs necessary checks before doing a write
2472  *
2473  * Can adjust writing position or amount of bytes to write.
2474  * Returns appropriate error code that caller should return or
2475  * zero in case that write should be allowed.
2476  */
2477 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2478 {
2479         struct file *file = iocb->ki_filp;
2480         struct inode *inode = file->f_mapping->host;
2481         unsigned long limit = rlimit(RLIMIT_FSIZE);
2482         loff_t pos;
2483
2484         if (!iov_iter_count(from))
2485                 return 0;
2486
2487         /* FIXME: this is for backwards compatibility with 2.4 */
2488         if (iocb->ki_flags & IOCB_APPEND)
2489                 iocb->ki_pos = i_size_read(inode);
2490
2491         pos = iocb->ki_pos;
2492
2493         if (limit != RLIM_INFINITY) {
2494                 if (iocb->ki_pos >= limit) {
2495                         send_sig(SIGXFSZ, current, 0);
2496                         return -EFBIG;
2497                 }
2498                 iov_iter_truncate(from, limit - (unsigned long)pos);
2499         }
2500
2501         /*
2502          * LFS rule
2503          */
2504         if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2505                                 !(file->f_flags & O_LARGEFILE))) {
2506                 if (pos >= MAX_NON_LFS)
2507                         return -EFBIG;
2508                 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2509         }
2510
2511         /*
2512          * Are we about to exceed the fs block limit ?
2513          *
2514          * If we have written data it becomes a short write.  If we have
2515          * exceeded without writing data we send a signal and return EFBIG.
2516          * Linus frestrict idea will clean these up nicely..
2517          */
2518         if (unlikely(pos >= inode->i_sb->s_maxbytes))
2519                 return -EFBIG;
2520
2521         iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2522         return iov_iter_count(from);
2523 }
2524 EXPORT_SYMBOL(generic_write_checks);
2525
2526 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2527                                 loff_t pos, unsigned len, unsigned flags,
2528                                 struct page **pagep, void **fsdata)
2529 {
2530         const struct address_space_operations *aops = mapping->a_ops;
2531
2532         return aops->write_begin(file, mapping, pos, len, flags,
2533                                                         pagep, fsdata);
2534 }
2535 EXPORT_SYMBOL(pagecache_write_begin);
2536
2537 int pagecache_write_end(struct file *file, struct address_space *mapping,
2538                                 loff_t pos, unsigned len, unsigned copied,
2539                                 struct page *page, void *fsdata)
2540 {
2541         const struct address_space_operations *aops = mapping->a_ops;
2542
2543         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2544 }
2545 EXPORT_SYMBOL(pagecache_write_end);
2546
2547 ssize_t
2548 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2549 {
2550         struct file     *file = iocb->ki_filp;
2551         struct address_space *mapping = file->f_mapping;
2552         struct inode    *inode = mapping->host;
2553         loff_t          pos = iocb->ki_pos;
2554         ssize_t         written;
2555         size_t          write_len;
2556         pgoff_t         end;
2557         struct iov_iter data;
2558
2559         write_len = iov_iter_count(from);
2560         end = (pos + write_len - 1) >> PAGE_SHIFT;
2561
2562         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2563         if (written)
2564                 goto out;
2565
2566         /*
2567          * After a write we want buffered reads to be sure to go to disk to get
2568          * the new data.  We invalidate clean cached page from the region we're
2569          * about to write.  We do this *before* the write so that we can return
2570          * without clobbering -EIOCBQUEUED from ->direct_IO().
2571          */
2572         if (mapping->nrpages) {
2573                 written = invalidate_inode_pages2_range(mapping,
2574                                         pos >> PAGE_SHIFT, end);
2575                 /*
2576                  * If a page can not be invalidated, return 0 to fall back
2577                  * to buffered write.
2578                  */
2579                 if (written) {
2580                         if (written == -EBUSY)
2581                                 return 0;
2582                         goto out;
2583                 }
2584         }
2585
2586         data = *from;
2587         written = mapping->a_ops->direct_IO(iocb, &data);
2588
2589         /*
2590          * Finally, try again to invalidate clean pages which might have been
2591          * cached by non-direct readahead, or faulted in by get_user_pages()
2592          * if the source of the write was an mmap'ed region of the file
2593          * we're writing.  Either one is a pretty crazy thing to do,
2594          * so we don't support it 100%.  If this invalidation
2595          * fails, tough, the write still worked...
2596          */
2597         if (mapping->nrpages) {
2598                 invalidate_inode_pages2_range(mapping,
2599                                               pos >> PAGE_SHIFT, end);
2600         }
2601
2602         if (written > 0) {
2603                 pos += written;
2604                 iov_iter_advance(from, written);
2605                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2606                         i_size_write(inode, pos);
2607                         mark_inode_dirty(inode);
2608                 }
2609                 iocb->ki_pos = pos;
2610         }
2611 out:
2612         return written;
2613 }
2614 EXPORT_SYMBOL(generic_file_direct_write);
2615
2616 /*
2617  * Find or create a page at the given pagecache position. Return the locked
2618  * page. This function is specifically for buffered writes.
2619  */
2620 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2621                                         pgoff_t index, unsigned flags)
2622 {
2623         struct page *page;
2624         int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2625
2626         if (flags & AOP_FLAG_NOFS)
2627                 fgp_flags |= FGP_NOFS;
2628
2629         page = pagecache_get_page(mapping, index, fgp_flags,
2630                         mapping_gfp_mask(mapping));
2631         if (page)
2632                 wait_for_stable_page(page);
2633
2634         return page;
2635 }
2636 EXPORT_SYMBOL(grab_cache_page_write_begin);
2637
2638 ssize_t generic_perform_write(struct file *file,
2639                                 struct iov_iter *i, loff_t pos)
2640 {
2641         struct address_space *mapping = file->f_mapping;
2642         const struct address_space_operations *a_ops = mapping->a_ops;
2643         long status = 0;
2644         ssize_t written = 0;
2645         unsigned int flags = 0;
2646
2647         /*
2648          * Copies from kernel address space cannot fail (NFSD is a big user).
2649          */
2650         if (!iter_is_iovec(i))
2651                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2652
2653         do {
2654                 struct page *page;
2655                 unsigned long offset;   /* Offset into pagecache page */
2656                 unsigned long bytes;    /* Bytes to write to page */
2657                 size_t copied;          /* Bytes copied from user */
2658                 void *fsdata;
2659
2660                 offset = (pos & (PAGE_SIZE - 1));
2661                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2662                                                 iov_iter_count(i));
2663
2664 again:
2665                 /*
2666                  * Bring in the user page that we will copy from _first_.
2667                  * Otherwise there's a nasty deadlock on copying from the
2668                  * same page as we're writing to, without it being marked
2669                  * up-to-date.
2670                  *
2671                  * Not only is this an optimisation, but it is also required
2672                  * to check that the address is actually valid, when atomic
2673                  * usercopies are used, below.
2674                  */
2675                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2676                         status = -EFAULT;
2677                         break;
2678                 }
2679
2680                 if (fatal_signal_pending(current)) {
2681                         status = -EINTR;
2682                         break;
2683                 }
2684
2685                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2686                                                 &page, &fsdata);
2687                 if (unlikely(status < 0))
2688                         break;
2689
2690                 if (mapping_writably_mapped(mapping))
2691                         flush_dcache_page(page);
2692
2693                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2694                 flush_dcache_page(page);
2695
2696                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2697                                                 page, fsdata);
2698                 if (unlikely(status < 0))
2699                         break;
2700                 copied = status;
2701
2702                 cond_resched();
2703
2704                 iov_iter_advance(i, copied);
2705                 if (unlikely(copied == 0)) {
2706                         /*
2707                          * If we were unable to copy any data at all, we must
2708                          * fall back to a single segment length write.
2709                          *
2710                          * If we didn't fallback here, we could livelock
2711                          * because not all segments in the iov can be copied at
2712                          * once without a pagefault.
2713                          */
2714                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
2715                                                 iov_iter_single_seg_count(i));
2716                         goto again;
2717                 }
2718                 pos += copied;
2719                 written += copied;
2720
2721                 balance_dirty_pages_ratelimited(mapping);
2722         } while (iov_iter_count(i));
2723
2724         return written ? written : status;
2725 }
2726 EXPORT_SYMBOL(generic_perform_write);
2727
2728 /**
2729  * __generic_file_write_iter - write data to a file
2730  * @iocb:       IO state structure (file, offset, etc.)
2731  * @from:       iov_iter with data to write
2732  *
2733  * This function does all the work needed for actually writing data to a
2734  * file. It does all basic checks, removes SUID from the file, updates
2735  * modification times and calls proper subroutines depending on whether we
2736  * do direct IO or a standard buffered write.
2737  *
2738  * It expects i_mutex to be grabbed unless we work on a block device or similar
2739  * object which does not need locking at all.
2740  *
2741  * This function does *not* take care of syncing data in case of O_SYNC write.
2742  * A caller has to handle it. This is mainly due to the fact that we want to
2743  * avoid syncing under i_mutex.
2744  */
2745 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2746 {
2747         struct file *file = iocb->ki_filp;
2748         struct address_space * mapping = file->f_mapping;
2749         struct inode    *inode = mapping->host;
2750         ssize_t         written = 0;
2751         ssize_t         err;
2752         ssize_t         status;
2753
2754         /* We can write back this queue in page reclaim */
2755         current->backing_dev_info = inode_to_bdi(inode);
2756         err = file_remove_privs(file);
2757         if (err)
2758                 goto out;
2759
2760         err = file_update_time(file);
2761         if (err)
2762                 goto out;
2763
2764         if (iocb->ki_flags & IOCB_DIRECT) {
2765                 loff_t pos, endbyte;
2766
2767                 written = generic_file_direct_write(iocb, from);
2768                 /*
2769                  * If the write stopped short of completing, fall back to
2770                  * buffered writes.  Some filesystems do this for writes to
2771                  * holes, for example.  For DAX files, a buffered write will
2772                  * not succeed (even if it did, DAX does not handle dirty
2773                  * page-cache pages correctly).
2774                  */
2775                 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2776                         goto out;
2777
2778                 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2779                 /*
2780                  * If generic_perform_write() returned a synchronous error
2781                  * then we want to return the number of bytes which were
2782                  * direct-written, or the error code if that was zero.  Note
2783                  * that this differs from normal direct-io semantics, which
2784                  * will return -EFOO even if some bytes were written.
2785                  */
2786                 if (unlikely(status < 0)) {
2787                         err = status;
2788                         goto out;
2789                 }
2790                 /*
2791                  * We need to ensure that the page cache pages are written to
2792                  * disk and invalidated to preserve the expected O_DIRECT
2793                  * semantics.
2794                  */
2795                 endbyte = pos + status - 1;
2796                 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2797                 if (err == 0) {
2798                         iocb->ki_pos = endbyte + 1;
2799                         written += status;
2800                         invalidate_mapping_pages(mapping,
2801                                                  pos >> PAGE_SHIFT,
2802                                                  endbyte >> PAGE_SHIFT);
2803                 } else {
2804                         /*
2805                          * We don't know how much we wrote, so just return
2806                          * the number of bytes which were direct-written
2807                          */
2808                 }
2809         } else {
2810                 written = generic_perform_write(file, from, iocb->ki_pos);
2811                 if (likely(written > 0))
2812                         iocb->ki_pos += written;
2813         }
2814 out:
2815         current->backing_dev_info = NULL;
2816         return written ? written : err;
2817 }
2818 EXPORT_SYMBOL(__generic_file_write_iter);
2819
2820 /**
2821  * generic_file_write_iter - write data to a file
2822  * @iocb:       IO state structure
2823  * @from:       iov_iter with data to write
2824  *
2825  * This is a wrapper around __generic_file_write_iter() to be used by most
2826  * filesystems. It takes care of syncing the file in case of O_SYNC file
2827  * and acquires i_mutex as needed.
2828  */
2829 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2830 {
2831         struct file *file = iocb->ki_filp;
2832         struct inode *inode = file->f_mapping->host;
2833         ssize_t ret;
2834
2835         inode_lock(inode);
2836         ret = generic_write_checks(iocb, from);
2837         if (ret > 0)
2838                 ret = __generic_file_write_iter(iocb, from);
2839         inode_unlock(inode);
2840
2841         if (ret > 0)
2842                 ret = generic_write_sync(iocb, ret);
2843         return ret;
2844 }
2845 EXPORT_SYMBOL(generic_file_write_iter);
2846
2847 /**
2848  * try_to_release_page() - release old fs-specific metadata on a page
2849  *
2850  * @page: the page which the kernel is trying to free
2851  * @gfp_mask: memory allocation flags (and I/O mode)
2852  *
2853  * The address_space is to try to release any data against the page
2854  * (presumably at page->private).  If the release was successful, return `1'.
2855  * Otherwise return zero.
2856  *
2857  * This may also be called if PG_fscache is set on a page, indicating that the
2858  * page is known to the local caching routines.
2859  *
2860  * The @gfp_mask argument specifies whether I/O may be performed to release
2861  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2862  *
2863  */
2864 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2865 {
2866         struct address_space * const mapping = page->mapping;
2867
2868         BUG_ON(!PageLocked(page));
2869         if (PageWriteback(page))
2870                 return 0;
2871
2872         if (mapping && mapping->a_ops->releasepage)
2873                 return mapping->a_ops->releasepage(page, gfp_mask);
2874         return try_to_free_buffers(page);
2875 }
2876
2877 EXPORT_SYMBOL(try_to_release_page);
This page took 0.191859 seconds and 4 git commands to generate.