1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
53 #include <asm/tlbflush.h>
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
62 struct address_space *mapping;
65 * Avoid burning cycles with pages that are yet under __free_pages(),
66 * or just got freed under us.
68 * In case we 'win' a race for a movable page being freed under us and
69 * raise its refcount preventing __free_pages() from doing its job
70 * the put_page() at the end of this block will take care of
71 * release this page, thus avoiding a nasty leakage.
73 if (unlikely(!get_page_unless_zero(page)))
77 * Check PageMovable before holding a PG_lock because page's owner
78 * assumes anybody doesn't touch PG_lock of newly allocated page
79 * so unconditionally grabbing the lock ruins page's owner side.
81 if (unlikely(!__PageMovable(page)))
84 * As movable pages are not isolated from LRU lists, concurrent
85 * compaction threads can race against page migration functions
86 * as well as race against the releasing a page.
88 * In order to avoid having an already isolated movable page
89 * being (wrongly) re-isolated while it is under migration,
90 * or to avoid attempting to isolate pages being released,
91 * lets be sure we have the page lock
92 * before proceeding with the movable page isolation steps.
94 if (unlikely(!trylock_page(page)))
97 if (!PageMovable(page) || PageIsolated(page))
100 mapping = page_mapping(page);
101 VM_BUG_ON_PAGE(!mapping, page);
103 if (!mapping->a_ops->isolate_page(page, mode))
104 goto out_no_isolated;
106 /* Driver shouldn't use PG_isolated bit of page->flags */
107 WARN_ON_ONCE(PageIsolated(page));
108 __SetPageIsolated(page);
121 static void putback_movable_page(struct page *page)
123 struct address_space *mapping;
125 mapping = page_mapping(page);
126 mapping->a_ops->putback_page(page);
127 __ClearPageIsolated(page);
131 * Put previously isolated pages back onto the appropriate lists
132 * from where they were once taken off for compaction/migration.
134 * This function shall be used whenever the isolated pageset has been
135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136 * and isolate_huge_page().
138 void putback_movable_pages(struct list_head *l)
143 list_for_each_entry_safe(page, page2, l, lru) {
144 if (unlikely(PageHuge(page))) {
145 putback_active_hugepage(page);
148 list_del(&page->lru);
150 * We isolated non-lru movable page so here we can use
151 * __PageMovable because LRU page's mapping cannot have
152 * PAGE_MAPPING_MOVABLE.
154 if (unlikely(__PageMovable(page))) {
155 VM_BUG_ON_PAGE(!PageIsolated(page), page);
157 if (PageMovable(page))
158 putback_movable_page(page);
160 __ClearPageIsolated(page);
164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 page_is_file_lru(page), -thp_nr_pages(page));
166 putback_lru_page(page);
172 * Restore a potential migration pte to a working pte entry
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175 unsigned long addr, void *old)
177 struct page_vma_mapped_walk pvmw = {
181 .flags = PVMW_SYNC | PVMW_MIGRATION,
187 VM_BUG_ON_PAGE(PageTail(page), page);
188 while (page_vma_mapped_walk(&pvmw)) {
192 new = page - pvmw.page->index +
193 linear_page_index(vma, pvmw.address);
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 /* PMD-mapped THP migration entry */
198 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 remove_migration_pmd(&pvmw, new);
205 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 if (pte_swp_soft_dirty(*pvmw.pte))
207 pte = pte_mksoft_dirty(pte);
210 * Recheck VMA as permissions can change since migration started
212 entry = pte_to_swp_entry(*pvmw.pte);
213 if (is_write_migration_entry(entry))
214 pte = maybe_mkwrite(pte, vma);
215 else if (pte_swp_uffd_wp(*pvmw.pte))
216 pte = pte_mkuffd_wp(pte);
218 if (unlikely(is_device_private_page(new))) {
219 entry = make_device_private_entry(new, pte_write(pte));
220 pte = swp_entry_to_pte(entry);
221 if (pte_swp_soft_dirty(*pvmw.pte))
222 pte = pte_swp_mksoft_dirty(pte);
223 if (pte_swp_uffd_wp(*pvmw.pte))
224 pte = pte_swp_mkuffd_wp(pte);
227 #ifdef CONFIG_HUGETLB_PAGE
229 unsigned int shift = huge_page_shift(hstate_vma(vma));
231 pte = pte_mkhuge(pte);
232 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
233 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
235 hugepage_add_anon_rmap(new, vma, pvmw.address);
237 page_dup_rmap(new, true);
241 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
244 page_add_anon_rmap(new, vma, pvmw.address, false);
246 page_add_file_rmap(new, false);
248 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
251 if (PageTransHuge(page) && PageMlocked(page))
252 clear_page_mlock(page);
254 /* No need to invalidate - it was non-present before */
255 update_mmu_cache(vma, pvmw.address, pvmw.pte);
262 * Get rid of all migration entries and replace them by
263 * references to the indicated page.
265 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
267 struct rmap_walk_control rwc = {
268 .rmap_one = remove_migration_pte,
273 rmap_walk_locked(new, &rwc);
275 rmap_walk(new, &rwc);
279 * Something used the pte of a page under migration. We need to
280 * get to the page and wait until migration is finished.
281 * When we return from this function the fault will be retried.
283 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
292 if (!is_swap_pte(pte))
295 entry = pte_to_swp_entry(pte);
296 if (!is_migration_entry(entry))
299 page = migration_entry_to_page(entry);
300 page = compound_head(page);
303 * Once page cache replacement of page migration started, page_count
304 * is zero; but we must not call put_and_wait_on_page_locked() without
305 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
307 if (!get_page_unless_zero(page))
309 pte_unmap_unlock(ptep, ptl);
310 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
313 pte_unmap_unlock(ptep, ptl);
316 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
317 unsigned long address)
319 spinlock_t *ptl = pte_lockptr(mm, pmd);
320 pte_t *ptep = pte_offset_map(pmd, address);
321 __migration_entry_wait(mm, ptep, ptl);
324 void migration_entry_wait_huge(struct vm_area_struct *vma,
325 struct mm_struct *mm, pte_t *pte)
327 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
328 __migration_entry_wait(mm, pte, ptl);
331 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
332 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
337 ptl = pmd_lock(mm, pmd);
338 if (!is_pmd_migration_entry(*pmd))
340 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
341 if (!get_page_unless_zero(page))
344 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
351 static int expected_page_refs(struct address_space *mapping, struct page *page)
353 int expected_count = 1;
356 * Device private pages have an extra refcount as they are
359 expected_count += is_device_private_page(page);
361 expected_count += thp_nr_pages(page) + page_has_private(page);
363 return expected_count;
367 * Replace the page in the mapping.
369 * The number of remaining references must be:
370 * 1 for anonymous pages without a mapping
371 * 2 for pages with a mapping
372 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
374 int migrate_page_move_mapping(struct address_space *mapping,
375 struct page *newpage, struct page *page, int extra_count)
377 XA_STATE(xas, &mapping->i_pages, page_index(page));
378 struct zone *oldzone, *newzone;
380 int expected_count = expected_page_refs(mapping, page) + extra_count;
381 int nr = thp_nr_pages(page);
384 /* Anonymous page without mapping */
385 if (page_count(page) != expected_count)
388 /* No turning back from here */
389 newpage->index = page->index;
390 newpage->mapping = page->mapping;
391 if (PageSwapBacked(page))
392 __SetPageSwapBacked(newpage);
394 return MIGRATEPAGE_SUCCESS;
397 oldzone = page_zone(page);
398 newzone = page_zone(newpage);
401 if (page_count(page) != expected_count || xas_load(&xas) != page) {
402 xas_unlock_irq(&xas);
406 if (!page_ref_freeze(page, expected_count)) {
407 xas_unlock_irq(&xas);
412 * Now we know that no one else is looking at the page:
413 * no turning back from here.
415 newpage->index = page->index;
416 newpage->mapping = page->mapping;
417 page_ref_add(newpage, nr); /* add cache reference */
418 if (PageSwapBacked(page)) {
419 __SetPageSwapBacked(newpage);
420 if (PageSwapCache(page)) {
421 SetPageSwapCache(newpage);
422 set_page_private(newpage, page_private(page));
425 VM_BUG_ON_PAGE(PageSwapCache(page), page);
428 /* Move dirty while page refs frozen and newpage not yet exposed */
429 dirty = PageDirty(page);
431 ClearPageDirty(page);
432 SetPageDirty(newpage);
435 xas_store(&xas, newpage);
436 if (PageTransHuge(page)) {
439 for (i = 1; i < nr; i++) {
441 xas_store(&xas, newpage);
446 * Drop cache reference from old page by unfreezing
447 * to one less reference.
448 * We know this isn't the last reference.
450 page_ref_unfreeze(page, expected_count - nr);
453 /* Leave irq disabled to prevent preemption while updating stats */
456 * If moved to a different zone then also account
457 * the page for that zone. Other VM counters will be
458 * taken care of when we establish references to the
459 * new page and drop references to the old page.
461 * Note that anonymous pages are accounted for
462 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
463 * are mapped to swap space.
465 if (newzone != oldzone) {
466 struct lruvec *old_lruvec, *new_lruvec;
467 struct mem_cgroup *memcg;
469 memcg = page_memcg(page);
470 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
471 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
473 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
474 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
475 if (PageSwapBacked(page) && !PageSwapCache(page)) {
476 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
477 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
480 if (PageSwapCache(page)) {
481 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
482 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
485 if (dirty && mapping_can_writeback(mapping)) {
486 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
487 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
488 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
489 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
494 return MIGRATEPAGE_SUCCESS;
496 EXPORT_SYMBOL(migrate_page_move_mapping);
499 * The expected number of remaining references is the same as that
500 * of migrate_page_move_mapping().
502 int migrate_huge_page_move_mapping(struct address_space *mapping,
503 struct page *newpage, struct page *page)
505 XA_STATE(xas, &mapping->i_pages, page_index(page));
509 expected_count = 2 + page_has_private(page);
510 if (page_count(page) != expected_count || xas_load(&xas) != page) {
511 xas_unlock_irq(&xas);
515 if (!page_ref_freeze(page, expected_count)) {
516 xas_unlock_irq(&xas);
520 newpage->index = page->index;
521 newpage->mapping = page->mapping;
525 xas_store(&xas, newpage);
527 page_ref_unfreeze(page, expected_count - 1);
529 xas_unlock_irq(&xas);
531 return MIGRATEPAGE_SUCCESS;
535 * Gigantic pages are so large that we do not guarantee that page++ pointer
536 * arithmetic will work across the entire page. We need something more
539 static void __copy_gigantic_page(struct page *dst, struct page *src,
543 struct page *dst_base = dst;
544 struct page *src_base = src;
546 for (i = 0; i < nr_pages; ) {
548 copy_highpage(dst, src);
551 dst = mem_map_next(dst, dst_base, i);
552 src = mem_map_next(src, src_base, i);
556 void copy_huge_page(struct page *dst, struct page *src)
563 struct hstate *h = page_hstate(src);
564 nr_pages = pages_per_huge_page(h);
566 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
567 __copy_gigantic_page(dst, src, nr_pages);
572 BUG_ON(!PageTransHuge(src));
573 nr_pages = thp_nr_pages(src);
576 for (i = 0; i < nr_pages; i++) {
578 copy_highpage(dst + i, src + i);
583 * Copy the page to its new location
585 void migrate_page_states(struct page *newpage, struct page *page)
590 SetPageError(newpage);
591 if (PageReferenced(page))
592 SetPageReferenced(newpage);
593 if (PageUptodate(page))
594 SetPageUptodate(newpage);
595 if (TestClearPageActive(page)) {
596 VM_BUG_ON_PAGE(PageUnevictable(page), page);
597 SetPageActive(newpage);
598 } else if (TestClearPageUnevictable(page))
599 SetPageUnevictable(newpage);
600 if (PageWorkingset(page))
601 SetPageWorkingset(newpage);
602 if (PageChecked(page))
603 SetPageChecked(newpage);
604 if (PageMappedToDisk(page))
605 SetPageMappedToDisk(newpage);
607 /* Move dirty on pages not done by migrate_page_move_mapping() */
609 SetPageDirty(newpage);
611 if (page_is_young(page))
612 set_page_young(newpage);
613 if (page_is_idle(page))
614 set_page_idle(newpage);
617 * Copy NUMA information to the new page, to prevent over-eager
618 * future migrations of this same page.
620 cpupid = page_cpupid_xchg_last(page, -1);
621 page_cpupid_xchg_last(newpage, cpupid);
623 ksm_migrate_page(newpage, page);
625 * Please do not reorder this without considering how mm/ksm.c's
626 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
628 if (PageSwapCache(page))
629 ClearPageSwapCache(page);
630 ClearPagePrivate(page);
632 /* page->private contains hugetlb specific flags */
634 set_page_private(page, 0);
637 * If any waiters have accumulated on the new page then
640 if (PageWriteback(newpage))
641 end_page_writeback(newpage);
644 * PG_readahead shares the same bit with PG_reclaim. The above
645 * end_page_writeback() may clear PG_readahead mistakenly, so set the
648 if (PageReadahead(page))
649 SetPageReadahead(newpage);
651 copy_page_owner(page, newpage);
654 mem_cgroup_migrate(page, newpage);
656 EXPORT_SYMBOL(migrate_page_states);
658 void migrate_page_copy(struct page *newpage, struct page *page)
660 if (PageHuge(page) || PageTransHuge(page))
661 copy_huge_page(newpage, page);
663 copy_highpage(newpage, page);
665 migrate_page_states(newpage, page);
667 EXPORT_SYMBOL(migrate_page_copy);
669 /************************************************************
670 * Migration functions
671 ***********************************************************/
674 * Common logic to directly migrate a single LRU page suitable for
675 * pages that do not use PagePrivate/PagePrivate2.
677 * Pages are locked upon entry and exit.
679 int migrate_page(struct address_space *mapping,
680 struct page *newpage, struct page *page,
681 enum migrate_mode mode)
685 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
687 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
689 if (rc != MIGRATEPAGE_SUCCESS)
692 if (mode != MIGRATE_SYNC_NO_COPY)
693 migrate_page_copy(newpage, page);
695 migrate_page_states(newpage, page);
696 return MIGRATEPAGE_SUCCESS;
698 EXPORT_SYMBOL(migrate_page);
701 /* Returns true if all buffers are successfully locked */
702 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
703 enum migrate_mode mode)
705 struct buffer_head *bh = head;
707 /* Simple case, sync compaction */
708 if (mode != MIGRATE_ASYNC) {
711 bh = bh->b_this_page;
713 } while (bh != head);
718 /* async case, we cannot block on lock_buffer so use trylock_buffer */
720 if (!trylock_buffer(bh)) {
722 * We failed to lock the buffer and cannot stall in
723 * async migration. Release the taken locks
725 struct buffer_head *failed_bh = bh;
727 while (bh != failed_bh) {
729 bh = bh->b_this_page;
734 bh = bh->b_this_page;
735 } while (bh != head);
739 static int __buffer_migrate_page(struct address_space *mapping,
740 struct page *newpage, struct page *page, enum migrate_mode mode,
743 struct buffer_head *bh, *head;
747 if (!page_has_buffers(page))
748 return migrate_page(mapping, newpage, page, mode);
750 /* Check whether page does not have extra refs before we do more work */
751 expected_count = expected_page_refs(mapping, page);
752 if (page_count(page) != expected_count)
755 head = page_buffers(page);
756 if (!buffer_migrate_lock_buffers(head, mode))
761 bool invalidated = false;
765 spin_lock(&mapping->private_lock);
768 if (atomic_read(&bh->b_count)) {
772 bh = bh->b_this_page;
773 } while (bh != head);
779 spin_unlock(&mapping->private_lock);
780 invalidate_bh_lrus();
782 goto recheck_buffers;
786 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
787 if (rc != MIGRATEPAGE_SUCCESS)
790 attach_page_private(newpage, detach_page_private(page));
794 set_bh_page(bh, newpage, bh_offset(bh));
795 bh = bh->b_this_page;
797 } while (bh != head);
799 if (mode != MIGRATE_SYNC_NO_COPY)
800 migrate_page_copy(newpage, page);
802 migrate_page_states(newpage, page);
804 rc = MIGRATEPAGE_SUCCESS;
807 spin_unlock(&mapping->private_lock);
811 bh = bh->b_this_page;
813 } while (bh != head);
819 * Migration function for pages with buffers. This function can only be used
820 * if the underlying filesystem guarantees that no other references to "page"
821 * exist. For example attached buffer heads are accessed only under page lock.
823 int buffer_migrate_page(struct address_space *mapping,
824 struct page *newpage, struct page *page, enum migrate_mode mode)
826 return __buffer_migrate_page(mapping, newpage, page, mode, false);
828 EXPORT_SYMBOL(buffer_migrate_page);
831 * Same as above except that this variant is more careful and checks that there
832 * are also no buffer head references. This function is the right one for
833 * mappings where buffer heads are directly looked up and referenced (such as
834 * block device mappings).
836 int buffer_migrate_page_norefs(struct address_space *mapping,
837 struct page *newpage, struct page *page, enum migrate_mode mode)
839 return __buffer_migrate_page(mapping, newpage, page, mode, true);
844 * Writeback a page to clean the dirty state
846 static int writeout(struct address_space *mapping, struct page *page)
848 struct writeback_control wbc = {
849 .sync_mode = WB_SYNC_NONE,
852 .range_end = LLONG_MAX,
857 if (!mapping->a_ops->writepage)
858 /* No write method for the address space */
861 if (!clear_page_dirty_for_io(page))
862 /* Someone else already triggered a write */
866 * A dirty page may imply that the underlying filesystem has
867 * the page on some queue. So the page must be clean for
868 * migration. Writeout may mean we loose the lock and the
869 * page state is no longer what we checked for earlier.
870 * At this point we know that the migration attempt cannot
873 remove_migration_ptes(page, page, false);
875 rc = mapping->a_ops->writepage(page, &wbc);
877 if (rc != AOP_WRITEPAGE_ACTIVATE)
878 /* unlocked. Relock */
881 return (rc < 0) ? -EIO : -EAGAIN;
885 * Default handling if a filesystem does not provide a migration function.
887 static int fallback_migrate_page(struct address_space *mapping,
888 struct page *newpage, struct page *page, enum migrate_mode mode)
890 if (PageDirty(page)) {
891 /* Only writeback pages in full synchronous migration */
894 case MIGRATE_SYNC_NO_COPY:
899 return writeout(mapping, page);
903 * Buffers may be managed in a filesystem specific way.
904 * We must have no buffers or drop them.
906 if (page_has_private(page) &&
907 !try_to_release_page(page, GFP_KERNEL))
908 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
910 return migrate_page(mapping, newpage, page, mode);
914 * Move a page to a newly allocated page
915 * The page is locked and all ptes have been successfully removed.
917 * The new page will have replaced the old page if this function
922 * MIGRATEPAGE_SUCCESS - success
924 static int move_to_new_page(struct page *newpage, struct page *page,
925 enum migrate_mode mode)
927 struct address_space *mapping;
929 bool is_lru = !__PageMovable(page);
931 VM_BUG_ON_PAGE(!PageLocked(page), page);
932 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
934 mapping = page_mapping(page);
936 if (likely(is_lru)) {
938 rc = migrate_page(mapping, newpage, page, mode);
939 else if (mapping->a_ops->migratepage)
941 * Most pages have a mapping and most filesystems
942 * provide a migratepage callback. Anonymous pages
943 * are part of swap space which also has its own
944 * migratepage callback. This is the most common path
945 * for page migration.
947 rc = mapping->a_ops->migratepage(mapping, newpage,
950 rc = fallback_migrate_page(mapping, newpage,
954 * In case of non-lru page, it could be released after
955 * isolation step. In that case, we shouldn't try migration.
957 VM_BUG_ON_PAGE(!PageIsolated(page), page);
958 if (!PageMovable(page)) {
959 rc = MIGRATEPAGE_SUCCESS;
960 __ClearPageIsolated(page);
964 rc = mapping->a_ops->migratepage(mapping, newpage,
966 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
967 !PageIsolated(page));
971 * When successful, old pagecache page->mapping must be cleared before
972 * page is freed; but stats require that PageAnon be left as PageAnon.
974 if (rc == MIGRATEPAGE_SUCCESS) {
975 if (__PageMovable(page)) {
976 VM_BUG_ON_PAGE(!PageIsolated(page), page);
979 * We clear PG_movable under page_lock so any compactor
980 * cannot try to migrate this page.
982 __ClearPageIsolated(page);
986 * Anonymous and movable page->mapping will be cleared by
987 * free_pages_prepare so don't reset it here for keeping
988 * the type to work PageAnon, for example.
990 if (!PageMappingFlags(page))
991 page->mapping = NULL;
993 if (likely(!is_zone_device_page(newpage)))
994 flush_dcache_page(newpage);
1001 static int __unmap_and_move(struct page *page, struct page *newpage,
1002 int force, enum migrate_mode mode)
1005 int page_was_mapped = 0;
1006 struct anon_vma *anon_vma = NULL;
1007 bool is_lru = !__PageMovable(page);
1009 if (!trylock_page(page)) {
1010 if (!force || mode == MIGRATE_ASYNC)
1014 * It's not safe for direct compaction to call lock_page.
1015 * For example, during page readahead pages are added locked
1016 * to the LRU. Later, when the IO completes the pages are
1017 * marked uptodate and unlocked. However, the queueing
1018 * could be merging multiple pages for one bio (e.g.
1019 * mpage_readahead). If an allocation happens for the
1020 * second or third page, the process can end up locking
1021 * the same page twice and deadlocking. Rather than
1022 * trying to be clever about what pages can be locked,
1023 * avoid the use of lock_page for direct compaction
1026 if (current->flags & PF_MEMALLOC)
1032 if (PageWriteback(page)) {
1034 * Only in the case of a full synchronous migration is it
1035 * necessary to wait for PageWriteback. In the async case,
1036 * the retry loop is too short and in the sync-light case,
1037 * the overhead of stalling is too much
1041 case MIGRATE_SYNC_NO_COPY:
1049 wait_on_page_writeback(page);
1053 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1054 * we cannot notice that anon_vma is freed while we migrates a page.
1055 * This get_anon_vma() delays freeing anon_vma pointer until the end
1056 * of migration. File cache pages are no problem because of page_lock()
1057 * File Caches may use write_page() or lock_page() in migration, then,
1058 * just care Anon page here.
1060 * Only page_get_anon_vma() understands the subtleties of
1061 * getting a hold on an anon_vma from outside one of its mms.
1062 * But if we cannot get anon_vma, then we won't need it anyway,
1063 * because that implies that the anon page is no longer mapped
1064 * (and cannot be remapped so long as we hold the page lock).
1066 if (PageAnon(page) && !PageKsm(page))
1067 anon_vma = page_get_anon_vma(page);
1070 * Block others from accessing the new page when we get around to
1071 * establishing additional references. We are usually the only one
1072 * holding a reference to newpage at this point. We used to have a BUG
1073 * here if trylock_page(newpage) fails, but would like to allow for
1074 * cases where there might be a race with the previous use of newpage.
1075 * This is much like races on refcount of oldpage: just don't BUG().
1077 if (unlikely(!trylock_page(newpage)))
1080 if (unlikely(!is_lru)) {
1081 rc = move_to_new_page(newpage, page, mode);
1082 goto out_unlock_both;
1086 * Corner case handling:
1087 * 1. When a new swap-cache page is read into, it is added to the LRU
1088 * and treated as swapcache but it has no rmap yet.
1089 * Calling try_to_unmap() against a page->mapping==NULL page will
1090 * trigger a BUG. So handle it here.
1091 * 2. An orphaned page (see truncate_cleanup_page) might have
1092 * fs-private metadata. The page can be picked up due to memory
1093 * offlining. Everywhere else except page reclaim, the page is
1094 * invisible to the vm, so the page can not be migrated. So try to
1095 * free the metadata, so the page can be freed.
1097 if (!page->mapping) {
1098 VM_BUG_ON_PAGE(PageAnon(page), page);
1099 if (page_has_private(page)) {
1100 try_to_free_buffers(page);
1101 goto out_unlock_both;
1103 } else if (page_mapped(page)) {
1104 /* Establish migration ptes */
1105 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1107 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1108 page_was_mapped = 1;
1111 if (!page_mapped(page))
1112 rc = move_to_new_page(newpage, page, mode);
1114 if (page_was_mapped)
1115 remove_migration_ptes(page,
1116 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1119 unlock_page(newpage);
1121 /* Drop an anon_vma reference if we took one */
1123 put_anon_vma(anon_vma);
1127 * If migration is successful, decrease refcount of the newpage
1128 * which will not free the page because new page owner increased
1129 * refcounter. As well, if it is LRU page, add the page to LRU
1130 * list in here. Use the old state of the isolated source page to
1131 * determine if we migrated a LRU page. newpage was already unlocked
1132 * and possibly modified by its owner - don't rely on the page
1135 if (rc == MIGRATEPAGE_SUCCESS) {
1136 if (unlikely(!is_lru))
1139 putback_lru_page(newpage);
1146 * Obtain the lock on page, remove all ptes and migrate the page
1147 * to the newly allocated page in newpage.
1149 static int unmap_and_move(new_page_t get_new_page,
1150 free_page_t put_new_page,
1151 unsigned long private, struct page *page,
1152 int force, enum migrate_mode mode,
1153 enum migrate_reason reason,
1154 struct list_head *ret)
1156 int rc = MIGRATEPAGE_SUCCESS;
1157 struct page *newpage = NULL;
1159 if (!thp_migration_supported() && PageTransHuge(page))
1162 if (page_count(page) == 1) {
1163 /* page was freed from under us. So we are done. */
1164 ClearPageActive(page);
1165 ClearPageUnevictable(page);
1166 if (unlikely(__PageMovable(page))) {
1168 if (!PageMovable(page))
1169 __ClearPageIsolated(page);
1175 newpage = get_new_page(page, private);
1179 rc = __unmap_and_move(page, newpage, force, mode);
1180 if (rc == MIGRATEPAGE_SUCCESS)
1181 set_page_owner_migrate_reason(newpage, reason);
1184 if (rc != -EAGAIN) {
1186 * A page that has been migrated has all references
1187 * removed and will be freed. A page that has not been
1188 * migrated will have kept its references and be restored.
1190 list_del(&page->lru);
1194 * If migration is successful, releases reference grabbed during
1195 * isolation. Otherwise, restore the page to right list unless
1198 if (rc == MIGRATEPAGE_SUCCESS) {
1200 * Compaction can migrate also non-LRU pages which are
1201 * not accounted to NR_ISOLATED_*. They can be recognized
1204 if (likely(!__PageMovable(page)))
1205 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1206 page_is_file_lru(page), -thp_nr_pages(page));
1208 if (reason != MR_MEMORY_FAILURE)
1210 * We release the page in page_handle_poison.
1215 list_add_tail(&page->lru, ret);
1218 put_new_page(newpage, private);
1227 * Counterpart of unmap_and_move_page() for hugepage migration.
1229 * This function doesn't wait the completion of hugepage I/O
1230 * because there is no race between I/O and migration for hugepage.
1231 * Note that currently hugepage I/O occurs only in direct I/O
1232 * where no lock is held and PG_writeback is irrelevant,
1233 * and writeback status of all subpages are counted in the reference
1234 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1235 * under direct I/O, the reference of the head page is 512 and a bit more.)
1236 * This means that when we try to migrate hugepage whose subpages are
1237 * doing direct I/O, some references remain after try_to_unmap() and
1238 * hugepage migration fails without data corruption.
1240 * There is also no race when direct I/O is issued on the page under migration,
1241 * because then pte is replaced with migration swap entry and direct I/O code
1242 * will wait in the page fault for migration to complete.
1244 static int unmap_and_move_huge_page(new_page_t get_new_page,
1245 free_page_t put_new_page, unsigned long private,
1246 struct page *hpage, int force,
1247 enum migrate_mode mode, int reason,
1248 struct list_head *ret)
1251 int page_was_mapped = 0;
1252 struct page *new_hpage;
1253 struct anon_vma *anon_vma = NULL;
1254 struct address_space *mapping = NULL;
1257 * Migratability of hugepages depends on architectures and their size.
1258 * This check is necessary because some callers of hugepage migration
1259 * like soft offline and memory hotremove don't walk through page
1260 * tables or check whether the hugepage is pmd-based or not before
1261 * kicking migration.
1263 if (!hugepage_migration_supported(page_hstate(hpage))) {
1264 list_move_tail(&hpage->lru, ret);
1268 if (page_count(hpage) == 1) {
1269 /* page was freed from under us. So we are done. */
1270 putback_active_hugepage(hpage);
1271 return MIGRATEPAGE_SUCCESS;
1274 new_hpage = get_new_page(hpage, private);
1278 if (!trylock_page(hpage)) {
1283 case MIGRATE_SYNC_NO_COPY:
1292 * Check for pages which are in the process of being freed. Without
1293 * page_mapping() set, hugetlbfs specific move page routine will not
1294 * be called and we could leak usage counts for subpools.
1296 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1301 if (PageAnon(hpage))
1302 anon_vma = page_get_anon_vma(hpage);
1304 if (unlikely(!trylock_page(new_hpage)))
1307 if (page_mapped(hpage)) {
1308 bool mapping_locked = false;
1309 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1311 if (!PageAnon(hpage)) {
1313 * In shared mappings, try_to_unmap could potentially
1314 * call huge_pmd_unshare. Because of this, take
1315 * semaphore in write mode here and set TTU_RMAP_LOCKED
1316 * to let lower levels know we have taken the lock.
1318 mapping = hugetlb_page_mapping_lock_write(hpage);
1319 if (unlikely(!mapping))
1320 goto unlock_put_anon;
1322 mapping_locked = true;
1323 ttu |= TTU_RMAP_LOCKED;
1326 try_to_unmap(hpage, ttu);
1327 page_was_mapped = 1;
1330 i_mmap_unlock_write(mapping);
1333 if (!page_mapped(hpage))
1334 rc = move_to_new_page(new_hpage, hpage, mode);
1336 if (page_was_mapped)
1337 remove_migration_ptes(hpage,
1338 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1341 unlock_page(new_hpage);
1345 put_anon_vma(anon_vma);
1347 if (rc == MIGRATEPAGE_SUCCESS) {
1348 move_hugetlb_state(hpage, new_hpage, reason);
1349 put_new_page = NULL;
1355 if (rc == MIGRATEPAGE_SUCCESS)
1356 putback_active_hugepage(hpage);
1357 else if (rc != -EAGAIN)
1358 list_move_tail(&hpage->lru, ret);
1361 * If migration was not successful and there's a freeing callback, use
1362 * it. Otherwise, put_page() will drop the reference grabbed during
1366 put_new_page(new_hpage, private);
1368 putback_active_hugepage(new_hpage);
1373 static inline int try_split_thp(struct page *page, struct page **page2,
1374 struct list_head *from)
1379 rc = split_huge_page_to_list(page, from);
1382 list_safe_reset_next(page, *page2, lru);
1388 * migrate_pages - migrate the pages specified in a list, to the free pages
1389 * supplied as the target for the page migration
1391 * @from: The list of pages to be migrated.
1392 * @get_new_page: The function used to allocate free pages to be used
1393 * as the target of the page migration.
1394 * @put_new_page: The function used to free target pages if migration
1395 * fails, or NULL if no special handling is necessary.
1396 * @private: Private data to be passed on to get_new_page()
1397 * @mode: The migration mode that specifies the constraints for
1398 * page migration, if any.
1399 * @reason: The reason for page migration.
1401 * The function returns after 10 attempts or if no pages are movable any more
1402 * because the list has become empty or no retryable pages exist any more.
1403 * It is caller's responsibility to call putback_movable_pages() to return pages
1404 * to the LRU or free list only if ret != 0.
1406 * Returns the number of pages that were not migrated, or an error code.
1408 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1409 free_page_t put_new_page, unsigned long private,
1410 enum migrate_mode mode, int reason)
1415 int nr_succeeded = 0;
1416 int nr_thp_succeeded = 0;
1417 int nr_thp_failed = 0;
1418 int nr_thp_split = 0;
1420 bool is_thp = false;
1423 int swapwrite = current->flags & PF_SWAPWRITE;
1424 int rc, nr_subpages;
1425 LIST_HEAD(ret_pages);
1427 trace_mm_migrate_pages_start(mode, reason);
1430 current->flags |= PF_SWAPWRITE;
1432 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1436 list_for_each_entry_safe(page, page2, from, lru) {
1439 * THP statistics is based on the source huge page.
1440 * Capture required information that might get lost
1443 is_thp = PageTransHuge(page) && !PageHuge(page);
1444 nr_subpages = thp_nr_pages(page);
1448 rc = unmap_and_move_huge_page(get_new_page,
1449 put_new_page, private, page,
1450 pass > 2, mode, reason,
1453 rc = unmap_and_move(get_new_page, put_new_page,
1454 private, page, pass > 2, mode,
1455 reason, &ret_pages);
1458 * Success: non hugetlb page will be freed, hugetlb
1459 * page will be put back
1460 * -EAGAIN: stay on the from list
1461 * -ENOMEM: stay on the from list
1462 * Other errno: put on ret_pages list then splice to
1467 * THP migration might be unsupported or the
1468 * allocation could've failed so we should
1469 * retry on the same page with the THP split
1472 * Head page is retried immediately and tail
1473 * pages are added to the tail of the list so
1474 * we encounter them after the rest of the list
1478 /* THP migration is unsupported */
1480 if (!try_split_thp(page, &page2, from)) {
1486 nr_failed += nr_subpages;
1490 /* Hugetlb migration is unsupported */
1495 * When memory is low, don't bother to try to migrate
1496 * other pages, just exit.
1499 if (!try_split_thp(page, &page2, from)) {
1505 nr_failed += nr_subpages;
1517 case MIGRATEPAGE_SUCCESS:
1520 nr_succeeded += nr_subpages;
1527 * Permanent failure (-EBUSY, etc.):
1528 * unlike -EAGAIN case, the failed page is
1529 * removed from migration page list and not
1530 * retried in the next outer loop.
1534 nr_failed += nr_subpages;
1542 nr_failed += retry + thp_retry;
1543 nr_thp_failed += thp_retry;
1547 * Put the permanent failure page back to migration list, they
1548 * will be put back to the right list by the caller.
1550 list_splice(&ret_pages, from);
1552 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1553 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1554 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1555 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1556 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1557 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1558 nr_thp_failed, nr_thp_split, mode, reason);
1561 current->flags &= ~PF_SWAPWRITE;
1566 struct page *alloc_migration_target(struct page *page, unsigned long private)
1568 struct migration_target_control *mtc;
1570 unsigned int order = 0;
1571 struct page *new_page = NULL;
1575 mtc = (struct migration_target_control *)private;
1576 gfp_mask = mtc->gfp_mask;
1578 if (nid == NUMA_NO_NODE)
1579 nid = page_to_nid(page);
1581 if (PageHuge(page)) {
1582 struct hstate *h = page_hstate(compound_head(page));
1584 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1585 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1588 if (PageTransHuge(page)) {
1590 * clear __GFP_RECLAIM to make the migration callback
1591 * consistent with regular THP allocations.
1593 gfp_mask &= ~__GFP_RECLAIM;
1594 gfp_mask |= GFP_TRANSHUGE;
1595 order = HPAGE_PMD_ORDER;
1597 zidx = zone_idx(page_zone(page));
1598 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1599 gfp_mask |= __GFP_HIGHMEM;
1601 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1603 if (new_page && PageTransHuge(new_page))
1604 prep_transhuge_page(new_page);
1611 static int store_status(int __user *status, int start, int value, int nr)
1614 if (put_user(value, status + start))
1622 static int do_move_pages_to_node(struct mm_struct *mm,
1623 struct list_head *pagelist, int node)
1626 struct migration_target_control mtc = {
1628 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1631 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1632 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1634 putback_movable_pages(pagelist);
1639 * Resolves the given address to a struct page, isolates it from the LRU and
1640 * puts it to the given pagelist.
1642 * errno - if the page cannot be found/isolated
1643 * 0 - when it doesn't have to be migrated because it is already on the
1645 * 1 - when it has been queued
1647 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1648 int node, struct list_head *pagelist, bool migrate_all)
1650 struct vm_area_struct *vma;
1652 unsigned int follflags;
1657 vma = find_vma(mm, addr);
1658 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1661 /* FOLL_DUMP to ignore special (like zero) pages */
1662 follflags = FOLL_GET | FOLL_DUMP;
1663 page = follow_page(vma, addr, follflags);
1665 err = PTR_ERR(page);
1674 if (page_to_nid(page) == node)
1678 if (page_mapcount(page) > 1 && !migrate_all)
1681 if (PageHuge(page)) {
1682 if (PageHead(page)) {
1683 isolate_huge_page(page, pagelist);
1689 head = compound_head(page);
1690 err = isolate_lru_page(head);
1695 list_add_tail(&head->lru, pagelist);
1696 mod_node_page_state(page_pgdat(head),
1697 NR_ISOLATED_ANON + page_is_file_lru(head),
1698 thp_nr_pages(head));
1702 * Either remove the duplicate refcount from
1703 * isolate_lru_page() or drop the page ref if it was
1708 mmap_read_unlock(mm);
1712 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1713 struct list_head *pagelist, int __user *status,
1714 int start, int i, unsigned long nr_pages)
1718 if (list_empty(pagelist))
1721 err = do_move_pages_to_node(mm, pagelist, node);
1724 * Positive err means the number of failed
1725 * pages to migrate. Since we are going to
1726 * abort and return the number of non-migrated
1727 * pages, so need to include the rest of the
1728 * nr_pages that have not been attempted as
1732 err += nr_pages - i - 1;
1735 return store_status(status, start, node, i - start);
1739 * Migrate an array of page address onto an array of nodes and fill
1740 * the corresponding array of status.
1742 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1743 unsigned long nr_pages,
1744 const void __user * __user *pages,
1745 const int __user *nodes,
1746 int __user *status, int flags)
1748 int current_node = NUMA_NO_NODE;
1749 LIST_HEAD(pagelist);
1753 lru_cache_disable();
1755 for (i = start = 0; i < nr_pages; i++) {
1756 const void __user *p;
1761 if (get_user(p, pages + i))
1763 if (get_user(node, nodes + i))
1765 addr = (unsigned long)untagged_addr(p);
1768 if (node < 0 || node >= MAX_NUMNODES)
1770 if (!node_state(node, N_MEMORY))
1774 if (!node_isset(node, task_nodes))
1777 if (current_node == NUMA_NO_NODE) {
1778 current_node = node;
1780 } else if (node != current_node) {
1781 err = move_pages_and_store_status(mm, current_node,
1782 &pagelist, status, start, i, nr_pages);
1786 current_node = node;
1790 * Errors in the page lookup or isolation are not fatal and we simply
1791 * report them via status
1793 err = add_page_for_migration(mm, addr, current_node,
1794 &pagelist, flags & MPOL_MF_MOVE_ALL);
1797 /* The page is successfully queued for migration */
1802 * If the page is already on the target node (!err), store the
1803 * node, otherwise, store the err.
1805 err = store_status(status, i, err ? : current_node, 1);
1809 err = move_pages_and_store_status(mm, current_node, &pagelist,
1810 status, start, i, nr_pages);
1813 current_node = NUMA_NO_NODE;
1816 /* Make sure we do not overwrite the existing error */
1817 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1818 status, start, i, nr_pages);
1827 * Determine the nodes of an array of pages and store it in an array of status.
1829 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1830 const void __user **pages, int *status)
1836 for (i = 0; i < nr_pages; i++) {
1837 unsigned long addr = (unsigned long)(*pages);
1838 struct vm_area_struct *vma;
1842 vma = vma_lookup(mm, addr);
1846 /* FOLL_DUMP to ignore special (like zero) pages */
1847 page = follow_page(vma, addr, FOLL_DUMP);
1849 err = PTR_ERR(page);
1853 err = page ? page_to_nid(page) : -ENOENT;
1861 mmap_read_unlock(mm);
1865 * Determine the nodes of a user array of pages and store it in
1866 * a user array of status.
1868 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1869 const void __user * __user *pages,
1872 #define DO_PAGES_STAT_CHUNK_NR 16
1873 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1874 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1877 unsigned long chunk_nr;
1879 chunk_nr = nr_pages;
1880 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1881 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1883 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1886 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1888 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1893 nr_pages -= chunk_nr;
1895 return nr_pages ? -EFAULT : 0;
1898 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1900 struct task_struct *task;
1901 struct mm_struct *mm;
1904 * There is no need to check if current process has the right to modify
1905 * the specified process when they are same.
1909 *mem_nodes = cpuset_mems_allowed(current);
1913 /* Find the mm_struct */
1915 task = find_task_by_vpid(pid);
1918 return ERR_PTR(-ESRCH);
1920 get_task_struct(task);
1923 * Check if this process has the right to modify the specified
1924 * process. Use the regular "ptrace_may_access()" checks.
1926 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1928 mm = ERR_PTR(-EPERM);
1933 mm = ERR_PTR(security_task_movememory(task));
1936 *mem_nodes = cpuset_mems_allowed(task);
1937 mm = get_task_mm(task);
1939 put_task_struct(task);
1941 mm = ERR_PTR(-EINVAL);
1946 * Move a list of pages in the address space of the currently executing
1949 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1950 const void __user * __user *pages,
1951 const int __user *nodes,
1952 int __user *status, int flags)
1954 struct mm_struct *mm;
1956 nodemask_t task_nodes;
1959 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1962 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1965 mm = find_mm_struct(pid, &task_nodes);
1970 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1971 nodes, status, flags);
1973 err = do_pages_stat(mm, nr_pages, pages, status);
1979 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1980 const void __user * __user *, pages,
1981 const int __user *, nodes,
1982 int __user *, status, int, flags)
1984 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1987 #ifdef CONFIG_COMPAT
1988 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1989 compat_uptr_t __user *, pages32,
1990 const int __user *, nodes,
1991 int __user *, status,
1994 const void __user * __user *pages;
1997 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1998 for (i = 0; i < nr_pages; i++) {
2001 if (get_user(p, pages32 + i) ||
2002 put_user(compat_ptr(p), pages + i))
2005 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2007 #endif /* CONFIG_COMPAT */
2009 #ifdef CONFIG_NUMA_BALANCING
2011 * Returns true if this is a safe migration target node for misplaced NUMA
2012 * pages. Currently it only checks the watermarks which crude
2014 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2015 unsigned long nr_migrate_pages)
2019 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2020 struct zone *zone = pgdat->node_zones + z;
2022 if (!populated_zone(zone))
2025 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2026 if (!zone_watermark_ok(zone, 0,
2027 high_wmark_pages(zone) +
2036 static struct page *alloc_misplaced_dst_page(struct page *page,
2039 int nid = (int) data;
2040 struct page *newpage;
2042 newpage = __alloc_pages_node(nid,
2043 (GFP_HIGHUSER_MOVABLE |
2044 __GFP_THISNODE | __GFP_NOMEMALLOC |
2045 __GFP_NORETRY | __GFP_NOWARN) &
2051 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2054 int nid = (int) data;
2055 struct page *newpage;
2057 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2062 prep_transhuge_page(newpage);
2068 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2072 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2074 /* Avoid migrating to a node that is nearly full */
2075 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2078 if (isolate_lru_page(page))
2082 * migrate_misplaced_transhuge_page() skips page migration's usual
2083 * check on page_count(), so we must do it here, now that the page
2084 * has been isolated: a GUP pin, or any other pin, prevents migration.
2085 * The expected page count is 3: 1 for page's mapcount and 1 for the
2086 * caller's pin and 1 for the reference taken by isolate_lru_page().
2088 if (PageTransHuge(page) && page_count(page) != 3) {
2089 putback_lru_page(page);
2093 page_lru = page_is_file_lru(page);
2094 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2095 thp_nr_pages(page));
2098 * Isolating the page has taken another reference, so the
2099 * caller's reference can be safely dropped without the page
2100 * disappearing underneath us during migration.
2107 * Attempt to migrate a misplaced page to the specified destination
2108 * node. Caller is expected to have an elevated reference count on
2109 * the page that will be dropped by this function before returning.
2111 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2114 pg_data_t *pgdat = NODE_DATA(node);
2117 LIST_HEAD(migratepages);
2122 * PTE mapped THP or HugeTLB page can't reach here so the page could
2123 * be either base page or THP. And it must be head page if it is
2126 compound = PageTransHuge(page);
2129 new = alloc_misplaced_dst_page_thp;
2131 new = alloc_misplaced_dst_page;
2134 * Don't migrate file pages that are mapped in multiple processes
2135 * with execute permissions as they are probably shared libraries.
2137 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2138 (vma->vm_flags & VM_EXEC))
2142 * Also do not migrate dirty pages as not all filesystems can move
2143 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2145 if (page_is_file_lru(page) && PageDirty(page))
2148 isolated = numamigrate_isolate_page(pgdat, page);
2152 list_add(&page->lru, &migratepages);
2153 nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2154 MIGRATE_ASYNC, MR_NUMA_MISPLACED);
2156 if (!list_empty(&migratepages)) {
2157 list_del(&page->lru);
2158 dec_node_page_state(page, NR_ISOLATED_ANON +
2159 page_is_file_lru(page));
2160 putback_lru_page(page);
2164 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2165 BUG_ON(!list_empty(&migratepages));
2172 #endif /* CONFIG_NUMA_BALANCING */
2173 #endif /* CONFIG_NUMA */
2175 #ifdef CONFIG_DEVICE_PRIVATE
2176 static int migrate_vma_collect_skip(unsigned long start,
2178 struct mm_walk *walk)
2180 struct migrate_vma *migrate = walk->private;
2183 for (addr = start; addr < end; addr += PAGE_SIZE) {
2184 migrate->dst[migrate->npages] = 0;
2185 migrate->src[migrate->npages++] = 0;
2191 static int migrate_vma_collect_hole(unsigned long start,
2193 __always_unused int depth,
2194 struct mm_walk *walk)
2196 struct migrate_vma *migrate = walk->private;
2199 /* Only allow populating anonymous memory. */
2200 if (!vma_is_anonymous(walk->vma))
2201 return migrate_vma_collect_skip(start, end, walk);
2203 for (addr = start; addr < end; addr += PAGE_SIZE) {
2204 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2205 migrate->dst[migrate->npages] = 0;
2213 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2214 unsigned long start,
2216 struct mm_walk *walk)
2218 struct migrate_vma *migrate = walk->private;
2219 struct vm_area_struct *vma = walk->vma;
2220 struct mm_struct *mm = vma->vm_mm;
2221 unsigned long addr = start, unmapped = 0;
2226 if (pmd_none(*pmdp))
2227 return migrate_vma_collect_hole(start, end, -1, walk);
2229 if (pmd_trans_huge(*pmdp)) {
2232 ptl = pmd_lock(mm, pmdp);
2233 if (unlikely(!pmd_trans_huge(*pmdp))) {
2238 page = pmd_page(*pmdp);
2239 if (is_huge_zero_page(page)) {
2241 split_huge_pmd(vma, pmdp, addr);
2242 if (pmd_trans_unstable(pmdp))
2243 return migrate_vma_collect_skip(start, end,
2250 if (unlikely(!trylock_page(page)))
2251 return migrate_vma_collect_skip(start, end,
2253 ret = split_huge_page(page);
2257 return migrate_vma_collect_skip(start, end,
2259 if (pmd_none(*pmdp))
2260 return migrate_vma_collect_hole(start, end, -1,
2265 if (unlikely(pmd_bad(*pmdp)))
2266 return migrate_vma_collect_skip(start, end, walk);
2268 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2269 arch_enter_lazy_mmu_mode();
2271 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2272 unsigned long mpfn = 0, pfn;
2279 if (pte_none(pte)) {
2280 if (vma_is_anonymous(vma)) {
2281 mpfn = MIGRATE_PFN_MIGRATE;
2287 if (!pte_present(pte)) {
2289 * Only care about unaddressable device page special
2290 * page table entry. Other special swap entries are not
2291 * migratable, and we ignore regular swapped page.
2293 entry = pte_to_swp_entry(pte);
2294 if (!is_device_private_entry(entry))
2297 page = device_private_entry_to_page(entry);
2298 if (!(migrate->flags &
2299 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2300 page->pgmap->owner != migrate->pgmap_owner)
2303 mpfn = migrate_pfn(page_to_pfn(page)) |
2304 MIGRATE_PFN_MIGRATE;
2305 if (is_write_device_private_entry(entry))
2306 mpfn |= MIGRATE_PFN_WRITE;
2308 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2311 if (is_zero_pfn(pfn)) {
2312 mpfn = MIGRATE_PFN_MIGRATE;
2316 page = vm_normal_page(migrate->vma, addr, pte);
2317 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2318 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2321 /* FIXME support THP */
2322 if (!page || !page->mapping || PageTransCompound(page)) {
2328 * By getting a reference on the page we pin it and that blocks
2329 * any kind of migration. Side effect is that it "freezes" the
2332 * We drop this reference after isolating the page from the lru
2333 * for non device page (device page are not on the lru and thus
2334 * can't be dropped from it).
2340 * Optimize for the common case where page is only mapped once
2341 * in one process. If we can lock the page, then we can safely
2342 * set up a special migration page table entry now.
2344 if (trylock_page(page)) {
2347 mpfn |= MIGRATE_PFN_LOCKED;
2348 ptep_get_and_clear(mm, addr, ptep);
2350 /* Setup special migration page table entry */
2351 entry = make_migration_entry(page, mpfn &
2353 swp_pte = swp_entry_to_pte(entry);
2354 if (pte_present(pte)) {
2355 if (pte_soft_dirty(pte))
2356 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2357 if (pte_uffd_wp(pte))
2358 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2360 if (pte_swp_soft_dirty(pte))
2361 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2362 if (pte_swp_uffd_wp(pte))
2363 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2365 set_pte_at(mm, addr, ptep, swp_pte);
2368 * This is like regular unmap: we remove the rmap and
2369 * drop page refcount. Page won't be freed, as we took
2370 * a reference just above.
2372 page_remove_rmap(page, false);
2375 if (pte_present(pte))
2380 migrate->dst[migrate->npages] = 0;
2381 migrate->src[migrate->npages++] = mpfn;
2383 arch_leave_lazy_mmu_mode();
2384 pte_unmap_unlock(ptep - 1, ptl);
2386 /* Only flush the TLB if we actually modified any entries */
2388 flush_tlb_range(walk->vma, start, end);
2393 static const struct mm_walk_ops migrate_vma_walk_ops = {
2394 .pmd_entry = migrate_vma_collect_pmd,
2395 .pte_hole = migrate_vma_collect_hole,
2399 * migrate_vma_collect() - collect pages over a range of virtual addresses
2400 * @migrate: migrate struct containing all migration information
2402 * This will walk the CPU page table. For each virtual address backed by a
2403 * valid page, it updates the src array and takes a reference on the page, in
2404 * order to pin the page until we lock it and unmap it.
2406 static void migrate_vma_collect(struct migrate_vma *migrate)
2408 struct mmu_notifier_range range;
2411 * Note that the pgmap_owner is passed to the mmu notifier callback so
2412 * that the registered device driver can skip invalidating device
2413 * private page mappings that won't be migrated.
2415 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2416 migrate->vma->vm_mm, migrate->start, migrate->end,
2417 migrate->pgmap_owner);
2418 mmu_notifier_invalidate_range_start(&range);
2420 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2421 &migrate_vma_walk_ops, migrate);
2423 mmu_notifier_invalidate_range_end(&range);
2424 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2428 * migrate_vma_check_page() - check if page is pinned or not
2429 * @page: struct page to check
2431 * Pinned pages cannot be migrated. This is the same test as in
2432 * migrate_page_move_mapping(), except that here we allow migration of a
2435 static bool migrate_vma_check_page(struct page *page)
2438 * One extra ref because caller holds an extra reference, either from
2439 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2445 * FIXME support THP (transparent huge page), it is bit more complex to
2446 * check them than regular pages, because they can be mapped with a pmd
2447 * or with a pte (split pte mapping).
2449 if (PageCompound(page))
2452 /* Page from ZONE_DEVICE have one extra reference */
2453 if (is_zone_device_page(page)) {
2455 * Private page can never be pin as they have no valid pte and
2456 * GUP will fail for those. Yet if there is a pending migration
2457 * a thread might try to wait on the pte migration entry and
2458 * will bump the page reference count. Sadly there is no way to
2459 * differentiate a regular pin from migration wait. Hence to
2460 * avoid 2 racing thread trying to migrate back to CPU to enter
2461 * infinite loop (one stopping migration because the other is
2462 * waiting on pte migration entry). We always return true here.
2464 * FIXME proper solution is to rework migration_entry_wait() so
2465 * it does not need to take a reference on page.
2467 return is_device_private_page(page);
2470 /* For file back page */
2471 if (page_mapping(page))
2472 extra += 1 + page_has_private(page);
2474 if ((page_count(page) - extra) > page_mapcount(page))
2481 * migrate_vma_prepare() - lock pages and isolate them from the lru
2482 * @migrate: migrate struct containing all migration information
2484 * This locks pages that have been collected by migrate_vma_collect(). Once each
2485 * page is locked it is isolated from the lru (for non-device pages). Finally,
2486 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2487 * migrated by concurrent kernel threads.
2489 static void migrate_vma_prepare(struct migrate_vma *migrate)
2491 const unsigned long npages = migrate->npages;
2492 const unsigned long start = migrate->start;
2493 unsigned long addr, i, restore = 0;
2494 bool allow_drain = true;
2498 for (i = 0; (i < npages) && migrate->cpages; i++) {
2499 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2505 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2507 * Because we are migrating several pages there can be
2508 * a deadlock between 2 concurrent migration where each
2509 * are waiting on each other page lock.
2511 * Make migrate_vma() a best effort thing and backoff
2512 * for any page we can not lock right away.
2514 if (!trylock_page(page)) {
2515 migrate->src[i] = 0;
2521 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2524 /* ZONE_DEVICE pages are not on LRU */
2525 if (!is_zone_device_page(page)) {
2526 if (!PageLRU(page) && allow_drain) {
2527 /* Drain CPU's pagevec */
2528 lru_add_drain_all();
2529 allow_drain = false;
2532 if (isolate_lru_page(page)) {
2534 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2538 migrate->src[i] = 0;
2546 /* Drop the reference we took in collect */
2550 if (!migrate_vma_check_page(page)) {
2552 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2556 if (!is_zone_device_page(page)) {
2558 putback_lru_page(page);
2561 migrate->src[i] = 0;
2565 if (!is_zone_device_page(page))
2566 putback_lru_page(page);
2573 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2574 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2576 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2579 remove_migration_pte(page, migrate->vma, addr, page);
2581 migrate->src[i] = 0;
2589 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2590 * @migrate: migrate struct containing all migration information
2592 * Replace page mapping (CPU page table pte) with a special migration pte entry
2593 * and check again if it has been pinned. Pinned pages are restored because we
2594 * cannot migrate them.
2596 * This is the last step before we call the device driver callback to allocate
2597 * destination memory and copy contents of original page over to new page.
2599 static void migrate_vma_unmap(struct migrate_vma *migrate)
2601 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2602 const unsigned long npages = migrate->npages;
2603 const unsigned long start = migrate->start;
2604 unsigned long addr, i, restore = 0;
2606 for (i = 0; i < npages; i++) {
2607 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2609 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2612 if (page_mapped(page)) {
2613 try_to_unmap(page, flags);
2614 if (page_mapped(page))
2618 if (migrate_vma_check_page(page))
2622 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2627 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2628 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2630 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2633 remove_migration_ptes(page, page, false);
2635 migrate->src[i] = 0;
2639 if (is_zone_device_page(page))
2642 putback_lru_page(page);
2647 * migrate_vma_setup() - prepare to migrate a range of memory
2648 * @args: contains the vma, start, and pfns arrays for the migration
2650 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2653 * Prepare to migrate a range of memory virtual address range by collecting all
2654 * the pages backing each virtual address in the range, saving them inside the
2655 * src array. Then lock those pages and unmap them. Once the pages are locked
2656 * and unmapped, check whether each page is pinned or not. Pages that aren't
2657 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2658 * corresponding src array entry. Then restores any pages that are pinned, by
2659 * remapping and unlocking those pages.
2661 * The caller should then allocate destination memory and copy source memory to
2662 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2663 * flag set). Once these are allocated and copied, the caller must update each
2664 * corresponding entry in the dst array with the pfn value of the destination
2665 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2666 * (destination pages must have their struct pages locked, via lock_page()).
2668 * Note that the caller does not have to migrate all the pages that are marked
2669 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2670 * device memory to system memory. If the caller cannot migrate a device page
2671 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2672 * consequences for the userspace process, so it must be avoided if at all
2675 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2676 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2677 * allowing the caller to allocate device memory for those unbacked virtual
2678 * addresses. For this the caller simply has to allocate device memory and
2679 * properly set the destination entry like for regular migration. Note that
2680 * this can still fail, and thus inside the device driver you must check if the
2681 * migration was successful for those entries after calling migrate_vma_pages(),
2682 * just like for regular migration.
2684 * After that, the callers must call migrate_vma_pages() to go over each entry
2685 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2686 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2687 * then migrate_vma_pages() to migrate struct page information from the source
2688 * struct page to the destination struct page. If it fails to migrate the
2689 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2692 * At this point all successfully migrated pages have an entry in the src
2693 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2694 * array entry with MIGRATE_PFN_VALID flag set.
2696 * Once migrate_vma_pages() returns the caller may inspect which pages were
2697 * successfully migrated, and which were not. Successfully migrated pages will
2698 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2700 * It is safe to update device page table after migrate_vma_pages() because
2701 * both destination and source page are still locked, and the mmap_lock is held
2702 * in read mode (hence no one can unmap the range being migrated).
2704 * Once the caller is done cleaning up things and updating its page table (if it
2705 * chose to do so, this is not an obligation) it finally calls
2706 * migrate_vma_finalize() to update the CPU page table to point to new pages
2707 * for successfully migrated pages or otherwise restore the CPU page table to
2708 * point to the original source pages.
2710 int migrate_vma_setup(struct migrate_vma *args)
2712 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2714 args->start &= PAGE_MASK;
2715 args->end &= PAGE_MASK;
2716 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2717 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2721 if (args->start < args->vma->vm_start ||
2722 args->start >= args->vma->vm_end)
2724 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2726 if (!args->src || !args->dst)
2729 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2733 migrate_vma_collect(args);
2736 migrate_vma_prepare(args);
2738 migrate_vma_unmap(args);
2741 * At this point pages are locked and unmapped, and thus they have
2742 * stable content and can safely be copied to destination memory that
2743 * is allocated by the drivers.
2748 EXPORT_SYMBOL(migrate_vma_setup);
2751 * This code closely matches the code in:
2752 * __handle_mm_fault()
2753 * handle_pte_fault()
2754 * do_anonymous_page()
2755 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2758 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2763 struct vm_area_struct *vma = migrate->vma;
2764 struct mm_struct *mm = vma->vm_mm;
2774 /* Only allow populating anonymous memory */
2775 if (!vma_is_anonymous(vma))
2778 pgdp = pgd_offset(mm, addr);
2779 p4dp = p4d_alloc(mm, pgdp, addr);
2782 pudp = pud_alloc(mm, p4dp, addr);
2785 pmdp = pmd_alloc(mm, pudp, addr);
2789 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2793 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2794 * pte_offset_map() on pmds where a huge pmd might be created
2795 * from a different thread.
2797 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2798 * parallel threads are excluded by other means.
2800 * Here we only have mmap_read_lock(mm).
2802 if (pte_alloc(mm, pmdp))
2805 /* See the comment in pte_alloc_one_map() */
2806 if (unlikely(pmd_trans_unstable(pmdp)))
2809 if (unlikely(anon_vma_prepare(vma)))
2811 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2815 * The memory barrier inside __SetPageUptodate makes sure that
2816 * preceding stores to the page contents become visible before
2817 * the set_pte_at() write.
2819 __SetPageUptodate(page);
2821 if (is_zone_device_page(page)) {
2822 if (is_device_private_page(page)) {
2823 swp_entry_t swp_entry;
2825 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2826 entry = swp_entry_to_pte(swp_entry);
2829 * For now we only support migrating to un-addressable
2832 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2836 entry = mk_pte(page, vma->vm_page_prot);
2837 if (vma->vm_flags & VM_WRITE)
2838 entry = pte_mkwrite(pte_mkdirty(entry));
2841 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2843 if (check_stable_address_space(mm))
2846 if (pte_present(*ptep)) {
2847 unsigned long pfn = pte_pfn(*ptep);
2849 if (!is_zero_pfn(pfn))
2852 } else if (!pte_none(*ptep))
2856 * Check for userfaultfd but do not deliver the fault. Instead,
2859 if (userfaultfd_missing(vma))
2862 inc_mm_counter(mm, MM_ANONPAGES);
2863 page_add_new_anon_rmap(page, vma, addr, false);
2864 if (!is_zone_device_page(page))
2865 lru_cache_add_inactive_or_unevictable(page, vma);
2869 flush_cache_page(vma, addr, pte_pfn(*ptep));
2870 ptep_clear_flush_notify(vma, addr, ptep);
2871 set_pte_at_notify(mm, addr, ptep, entry);
2872 update_mmu_cache(vma, addr, ptep);
2874 /* No need to invalidate - it was non-present before */
2875 set_pte_at(mm, addr, ptep, entry);
2876 update_mmu_cache(vma, addr, ptep);
2879 pte_unmap_unlock(ptep, ptl);
2880 *src = MIGRATE_PFN_MIGRATE;
2884 pte_unmap_unlock(ptep, ptl);
2886 *src &= ~MIGRATE_PFN_MIGRATE;
2890 * migrate_vma_pages() - migrate meta-data from src page to dst page
2891 * @migrate: migrate struct containing all migration information
2893 * This migrates struct page meta-data from source struct page to destination
2894 * struct page. This effectively finishes the migration from source page to the
2897 void migrate_vma_pages(struct migrate_vma *migrate)
2899 const unsigned long npages = migrate->npages;
2900 const unsigned long start = migrate->start;
2901 struct mmu_notifier_range range;
2902 unsigned long addr, i;
2903 bool notified = false;
2905 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2906 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2907 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2908 struct address_space *mapping;
2912 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2917 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2922 mmu_notifier_range_init_migrate(&range, 0,
2923 migrate->vma, migrate->vma->vm_mm,
2925 migrate->pgmap_owner);
2926 mmu_notifier_invalidate_range_start(&range);
2928 migrate_vma_insert_page(migrate, addr, newpage,
2933 mapping = page_mapping(page);
2935 if (is_zone_device_page(newpage)) {
2936 if (is_device_private_page(newpage)) {
2938 * For now only support private anonymous when
2939 * migrating to un-addressable device memory.
2942 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2947 * Other types of ZONE_DEVICE page are not
2950 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2955 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2956 if (r != MIGRATEPAGE_SUCCESS)
2957 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2961 * No need to double call mmu_notifier->invalidate_range() callback as
2962 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2963 * did already call it.
2966 mmu_notifier_invalidate_range_only_end(&range);
2968 EXPORT_SYMBOL(migrate_vma_pages);
2971 * migrate_vma_finalize() - restore CPU page table entry
2972 * @migrate: migrate struct containing all migration information
2974 * This replaces the special migration pte entry with either a mapping to the
2975 * new page if migration was successful for that page, or to the original page
2978 * This also unlocks the pages and puts them back on the lru, or drops the extra
2979 * refcount, for device pages.
2981 void migrate_vma_finalize(struct migrate_vma *migrate)
2983 const unsigned long npages = migrate->npages;
2986 for (i = 0; i < npages; i++) {
2987 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2988 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2992 unlock_page(newpage);
2998 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3000 unlock_page(newpage);
3006 remove_migration_ptes(page, newpage, false);
3009 if (is_zone_device_page(page))
3012 putback_lru_page(page);
3014 if (newpage != page) {
3015 unlock_page(newpage);
3016 if (is_zone_device_page(newpage))
3019 putback_lru_page(newpage);
3023 EXPORT_SYMBOL(migrate_vma_finalize);
3024 #endif /* CONFIG_DEVICE_PRIVATE */