]> Git Repo - linux.git/blob - arch/x86/kvm/x86.c
KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS
[linux.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <[email protected]>
14  *   Yaniv Kamay  <[email protected]>
15  *   Amit Shah    <[email protected]>
16  *   Ben-Ami Yassour <[email protected]>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94
95 #define emul_to_vcpu(ctxt) \
96         ((struct kvm_vcpu *)(ctxt)->vcpu)
97
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131
132 #define KVM_X86_OP(func)                                             \
133         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
134                                 *(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32  __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64  __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170
171 /*
172  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
173  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
174  * advancement entirely.  Any other value is used as-is and disables adaptive
175  * tuning, i.e. allows privileged userspace to set an exact advancement time.
176  */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200
201 /*
202  * Restoring the host value for MSRs that are only consumed when running in
203  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204  * returns to userspace, i.e. the kernel can run with the guest's value.
205  */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207
208 struct kvm_user_return_msrs {
209         struct user_return_notifier urn;
210         bool registered;
211         struct kvm_user_return_msr_values {
212                 u64 host;
213                 u64 curr;
214         } values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221
222 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242         KVM_GENERIC_VM_STATS(),
243         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244         STATS_DESC_COUNTER(VM, mmu_pte_write),
245         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246         STATS_DESC_COUNTER(VM, mmu_flooded),
247         STATS_DESC_COUNTER(VM, mmu_recycled),
248         STATS_DESC_COUNTER(VM, mmu_cache_miss),
249         STATS_DESC_ICOUNTER(VM, mmu_unsync),
250         STATS_DESC_ICOUNTER(VM, pages_4k),
251         STATS_DESC_ICOUNTER(VM, pages_2m),
252         STATS_DESC_ICOUNTER(VM, pages_1g),
253         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257
258 const struct kvm_stats_header kvm_vm_stats_header = {
259         .name_size = KVM_STATS_NAME_SIZE,
260         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261         .id_offset = sizeof(struct kvm_stats_header),
262         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264                        sizeof(kvm_vm_stats_desc),
265 };
266
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268         KVM_GENERIC_VCPU_STATS(),
269         STATS_DESC_COUNTER(VCPU, pf_taken),
270         STATS_DESC_COUNTER(VCPU, pf_fixed),
271         STATS_DESC_COUNTER(VCPU, pf_emulate),
272         STATS_DESC_COUNTER(VCPU, pf_spurious),
273         STATS_DESC_COUNTER(VCPU, pf_fast),
274         STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
275         STATS_DESC_COUNTER(VCPU, pf_guest),
276         STATS_DESC_COUNTER(VCPU, tlb_flush),
277         STATS_DESC_COUNTER(VCPU, invlpg),
278         STATS_DESC_COUNTER(VCPU, exits),
279         STATS_DESC_COUNTER(VCPU, io_exits),
280         STATS_DESC_COUNTER(VCPU, mmio_exits),
281         STATS_DESC_COUNTER(VCPU, signal_exits),
282         STATS_DESC_COUNTER(VCPU, irq_window_exits),
283         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
284         STATS_DESC_COUNTER(VCPU, l1d_flush),
285         STATS_DESC_COUNTER(VCPU, halt_exits),
286         STATS_DESC_COUNTER(VCPU, request_irq_exits),
287         STATS_DESC_COUNTER(VCPU, irq_exits),
288         STATS_DESC_COUNTER(VCPU, host_state_reload),
289         STATS_DESC_COUNTER(VCPU, fpu_reload),
290         STATS_DESC_COUNTER(VCPU, insn_emulation),
291         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
292         STATS_DESC_COUNTER(VCPU, hypercalls),
293         STATS_DESC_COUNTER(VCPU, irq_injections),
294         STATS_DESC_COUNTER(VCPU, nmi_injections),
295         STATS_DESC_COUNTER(VCPU, req_event),
296         STATS_DESC_COUNTER(VCPU, nested_run),
297         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
298         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
299         STATS_DESC_ICOUNTER(VCPU, guest_mode)
300 };
301
302 const struct kvm_stats_header kvm_vcpu_stats_header = {
303         .name_size = KVM_STATS_NAME_SIZE,
304         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
305         .id_offset = sizeof(struct kvm_stats_header),
306         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
307         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
308                        sizeof(kvm_vcpu_stats_desc),
309 };
310
311 u64 __read_mostly host_xcr0;
312 u64 __read_mostly supported_xcr0;
313 EXPORT_SYMBOL_GPL(supported_xcr0);
314
315 static struct kmem_cache *x86_emulator_cache;
316
317 /*
318  * When called, it means the previous get/set msr reached an invalid msr.
319  * Return true if we want to ignore/silent this failed msr access.
320  */
321 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
322 {
323         const char *op = write ? "wrmsr" : "rdmsr";
324
325         if (ignore_msrs) {
326                 if (report_ignored_msrs)
327                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
328                                       op, msr, data);
329                 /* Mask the error */
330                 return true;
331         } else {
332                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
333                                       op, msr, data);
334                 return false;
335         }
336 }
337
338 static struct kmem_cache *kvm_alloc_emulator_cache(void)
339 {
340         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
341         unsigned int size = sizeof(struct x86_emulate_ctxt);
342
343         return kmem_cache_create_usercopy("x86_emulator", size,
344                                           __alignof__(struct x86_emulate_ctxt),
345                                           SLAB_ACCOUNT, useroffset,
346                                           size - useroffset, NULL);
347 }
348
349 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
350
351 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
352 {
353         int i;
354         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
355                 vcpu->arch.apf.gfns[i] = ~0;
356 }
357
358 static void kvm_on_user_return(struct user_return_notifier *urn)
359 {
360         unsigned slot;
361         struct kvm_user_return_msrs *msrs
362                 = container_of(urn, struct kvm_user_return_msrs, urn);
363         struct kvm_user_return_msr_values *values;
364         unsigned long flags;
365
366         /*
367          * Disabling irqs at this point since the following code could be
368          * interrupted and executed through kvm_arch_hardware_disable()
369          */
370         local_irq_save(flags);
371         if (msrs->registered) {
372                 msrs->registered = false;
373                 user_return_notifier_unregister(urn);
374         }
375         local_irq_restore(flags);
376         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
377                 values = &msrs->values[slot];
378                 if (values->host != values->curr) {
379                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
380                         values->curr = values->host;
381                 }
382         }
383 }
384
385 static int kvm_probe_user_return_msr(u32 msr)
386 {
387         u64 val;
388         int ret;
389
390         preempt_disable();
391         ret = rdmsrl_safe(msr, &val);
392         if (ret)
393                 goto out;
394         ret = wrmsrl_safe(msr, val);
395 out:
396         preempt_enable();
397         return ret;
398 }
399
400 int kvm_add_user_return_msr(u32 msr)
401 {
402         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
403
404         if (kvm_probe_user_return_msr(msr))
405                 return -1;
406
407         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
408         return kvm_nr_uret_msrs++;
409 }
410 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
411
412 int kvm_find_user_return_msr(u32 msr)
413 {
414         int i;
415
416         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
417                 if (kvm_uret_msrs_list[i] == msr)
418                         return i;
419         }
420         return -1;
421 }
422 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
423
424 static void kvm_user_return_msr_cpu_online(void)
425 {
426         unsigned int cpu = smp_processor_id();
427         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
428         u64 value;
429         int i;
430
431         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
432                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
433                 msrs->values[i].host = value;
434                 msrs->values[i].curr = value;
435         }
436 }
437
438 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
439 {
440         unsigned int cpu = smp_processor_id();
441         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
442         int err;
443
444         value = (value & mask) | (msrs->values[slot].host & ~mask);
445         if (value == msrs->values[slot].curr)
446                 return 0;
447         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
448         if (err)
449                 return 1;
450
451         msrs->values[slot].curr = value;
452         if (!msrs->registered) {
453                 msrs->urn.on_user_return = kvm_on_user_return;
454                 user_return_notifier_register(&msrs->urn);
455                 msrs->registered = true;
456         }
457         return 0;
458 }
459 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
460
461 static void drop_user_return_notifiers(void)
462 {
463         unsigned int cpu = smp_processor_id();
464         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
465
466         if (msrs->registered)
467                 kvm_on_user_return(&msrs->urn);
468 }
469
470 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
471 {
472         return vcpu->arch.apic_base;
473 }
474 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
475
476 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
477 {
478         return kvm_apic_mode(kvm_get_apic_base(vcpu));
479 }
480 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
481
482 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
483 {
484         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
485         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
486         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
487                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
488
489         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
490                 return 1;
491         if (!msr_info->host_initiated) {
492                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
493                         return 1;
494                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
495                         return 1;
496         }
497
498         kvm_lapic_set_base(vcpu, msr_info->data);
499         kvm_recalculate_apic_map(vcpu->kvm);
500         return 0;
501 }
502 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
503
504 /*
505  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
506  *
507  * Hardware virtualization extension instructions may fault if a reboot turns
508  * off virtualization while processes are running.  Usually after catching the
509  * fault we just panic; during reboot instead the instruction is ignored.
510  */
511 noinstr void kvm_spurious_fault(void)
512 {
513         /* Fault while not rebooting.  We want the trace. */
514         BUG_ON(!kvm_rebooting);
515 }
516 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
517
518 #define EXCPT_BENIGN            0
519 #define EXCPT_CONTRIBUTORY      1
520 #define EXCPT_PF                2
521
522 static int exception_class(int vector)
523 {
524         switch (vector) {
525         case PF_VECTOR:
526                 return EXCPT_PF;
527         case DE_VECTOR:
528         case TS_VECTOR:
529         case NP_VECTOR:
530         case SS_VECTOR:
531         case GP_VECTOR:
532                 return EXCPT_CONTRIBUTORY;
533         default:
534                 break;
535         }
536         return EXCPT_BENIGN;
537 }
538
539 #define EXCPT_FAULT             0
540 #define EXCPT_TRAP              1
541 #define EXCPT_ABORT             2
542 #define EXCPT_INTERRUPT         3
543
544 static int exception_type(int vector)
545 {
546         unsigned int mask;
547
548         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
549                 return EXCPT_INTERRUPT;
550
551         mask = 1 << vector;
552
553         /* #DB is trap, as instruction watchpoints are handled elsewhere */
554         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
555                 return EXCPT_TRAP;
556
557         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
558                 return EXCPT_ABORT;
559
560         /* Reserved exceptions will result in fault */
561         return EXCPT_FAULT;
562 }
563
564 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
565 {
566         unsigned nr = vcpu->arch.exception.nr;
567         bool has_payload = vcpu->arch.exception.has_payload;
568         unsigned long payload = vcpu->arch.exception.payload;
569
570         if (!has_payload)
571                 return;
572
573         switch (nr) {
574         case DB_VECTOR:
575                 /*
576                  * "Certain debug exceptions may clear bit 0-3.  The
577                  * remaining contents of the DR6 register are never
578                  * cleared by the processor".
579                  */
580                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
581                 /*
582                  * In order to reflect the #DB exception payload in guest
583                  * dr6, three components need to be considered: active low
584                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
585                  * DR6_BS and DR6_BT)
586                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
587                  * In the target guest dr6:
588                  * FIXED_1 bits should always be set.
589                  * Active low bits should be cleared if 1-setting in payload.
590                  * Active high bits should be set if 1-setting in payload.
591                  *
592                  * Note, the payload is compatible with the pending debug
593                  * exceptions/exit qualification under VMX, that active_low bits
594                  * are active high in payload.
595                  * So they need to be flipped for DR6.
596                  */
597                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
598                 vcpu->arch.dr6 |= payload;
599                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
600
601                 /*
602                  * The #DB payload is defined as compatible with the 'pending
603                  * debug exceptions' field under VMX, not DR6. While bit 12 is
604                  * defined in the 'pending debug exceptions' field (enabled
605                  * breakpoint), it is reserved and must be zero in DR6.
606                  */
607                 vcpu->arch.dr6 &= ~BIT(12);
608                 break;
609         case PF_VECTOR:
610                 vcpu->arch.cr2 = payload;
611                 break;
612         }
613
614         vcpu->arch.exception.has_payload = false;
615         vcpu->arch.exception.payload = 0;
616 }
617 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
618
619 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
620                 unsigned nr, bool has_error, u32 error_code,
621                 bool has_payload, unsigned long payload, bool reinject)
622 {
623         u32 prev_nr;
624         int class1, class2;
625
626         kvm_make_request(KVM_REQ_EVENT, vcpu);
627
628         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
629         queue:
630                 if (reinject) {
631                         /*
632                          * On vmentry, vcpu->arch.exception.pending is only
633                          * true if an event injection was blocked by
634                          * nested_run_pending.  In that case, however,
635                          * vcpu_enter_guest requests an immediate exit,
636                          * and the guest shouldn't proceed far enough to
637                          * need reinjection.
638                          */
639                         WARN_ON_ONCE(vcpu->arch.exception.pending);
640                         vcpu->arch.exception.injected = true;
641                         if (WARN_ON_ONCE(has_payload)) {
642                                 /*
643                                  * A reinjected event has already
644                                  * delivered its payload.
645                                  */
646                                 has_payload = false;
647                                 payload = 0;
648                         }
649                 } else {
650                         vcpu->arch.exception.pending = true;
651                         vcpu->arch.exception.injected = false;
652                 }
653                 vcpu->arch.exception.has_error_code = has_error;
654                 vcpu->arch.exception.nr = nr;
655                 vcpu->arch.exception.error_code = error_code;
656                 vcpu->arch.exception.has_payload = has_payload;
657                 vcpu->arch.exception.payload = payload;
658                 if (!is_guest_mode(vcpu))
659                         kvm_deliver_exception_payload(vcpu);
660                 return;
661         }
662
663         /* to check exception */
664         prev_nr = vcpu->arch.exception.nr;
665         if (prev_nr == DF_VECTOR) {
666                 /* triple fault -> shutdown */
667                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
668                 return;
669         }
670         class1 = exception_class(prev_nr);
671         class2 = exception_class(nr);
672         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
673                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
674                 /*
675                  * Generate double fault per SDM Table 5-5.  Set
676                  * exception.pending = true so that the double fault
677                  * can trigger a nested vmexit.
678                  */
679                 vcpu->arch.exception.pending = true;
680                 vcpu->arch.exception.injected = false;
681                 vcpu->arch.exception.has_error_code = true;
682                 vcpu->arch.exception.nr = DF_VECTOR;
683                 vcpu->arch.exception.error_code = 0;
684                 vcpu->arch.exception.has_payload = false;
685                 vcpu->arch.exception.payload = 0;
686         } else
687                 /* replace previous exception with a new one in a hope
688                    that instruction re-execution will regenerate lost
689                    exception */
690                 goto queue;
691 }
692
693 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
694 {
695         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
696 }
697 EXPORT_SYMBOL_GPL(kvm_queue_exception);
698
699 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
700 {
701         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
702 }
703 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
704
705 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
706                            unsigned long payload)
707 {
708         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
709 }
710 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
711
712 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
713                                     u32 error_code, unsigned long payload)
714 {
715         kvm_multiple_exception(vcpu, nr, true, error_code,
716                                true, payload, false);
717 }
718
719 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
720 {
721         if (err)
722                 kvm_inject_gp(vcpu, 0);
723         else
724                 return kvm_skip_emulated_instruction(vcpu);
725
726         return 1;
727 }
728 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
729
730 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
731 {
732         if (err) {
733                 kvm_inject_gp(vcpu, 0);
734                 return 1;
735         }
736
737         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
738                                        EMULTYPE_COMPLETE_USER_EXIT);
739 }
740
741 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
742 {
743         ++vcpu->stat.pf_guest;
744         vcpu->arch.exception.nested_apf =
745                 is_guest_mode(vcpu) && fault->async_page_fault;
746         if (vcpu->arch.exception.nested_apf) {
747                 vcpu->arch.apf.nested_apf_token = fault->address;
748                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
749         } else {
750                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
751                                         fault->address);
752         }
753 }
754 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
755
756 /* Returns true if the page fault was immediately morphed into a VM-Exit. */
757 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
758                                     struct x86_exception *fault)
759 {
760         struct kvm_mmu *fault_mmu;
761         WARN_ON_ONCE(fault->vector != PF_VECTOR);
762
763         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
764                                                vcpu->arch.walk_mmu;
765
766         /*
767          * Invalidate the TLB entry for the faulting address, if it exists,
768          * else the access will fault indefinitely (and to emulate hardware).
769          */
770         if ((fault->error_code & PFERR_PRESENT_MASK) &&
771             !(fault->error_code & PFERR_RSVD_MASK))
772                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
773                                        fault_mmu->root.hpa);
774
775         /*
776          * A workaround for KVM's bad exception handling.  If KVM injected an
777          * exception into L2, and L2 encountered a #PF while vectoring the
778          * injected exception, manually check to see if L1 wants to intercept
779          * #PF, otherwise queuing the #PF will lead to #DF or a lost exception.
780          * In all other cases, defer the check to nested_ops->check_events(),
781          * which will correctly handle priority (this does not).  Note, other
782          * exceptions, e.g. #GP, are theoretically affected, #PF is simply the
783          * most problematic, e.g. when L0 and L1 are both intercepting #PF for
784          * shadow paging.
785          *
786          * TODO: Rewrite exception handling to track injected and pending
787          *       (VM-Exit) exceptions separately.
788          */
789         if (unlikely(vcpu->arch.exception.injected && is_guest_mode(vcpu)) &&
790             kvm_x86_ops.nested_ops->handle_page_fault_workaround(vcpu, fault))
791                 return true;
792
793         fault_mmu->inject_page_fault(vcpu, fault);
794         return false;
795 }
796 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
797
798 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
799 {
800         atomic_inc(&vcpu->arch.nmi_queued);
801         kvm_make_request(KVM_REQ_NMI, vcpu);
802 }
803 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
804
805 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
806 {
807         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
808 }
809 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
810
811 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
812 {
813         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
814 }
815 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
816
817 /*
818  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
819  * a #GP and return false.
820  */
821 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
822 {
823         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
824                 return true;
825         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
826         return false;
827 }
828 EXPORT_SYMBOL_GPL(kvm_require_cpl);
829
830 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
831 {
832         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
833                 return true;
834
835         kvm_queue_exception(vcpu, UD_VECTOR);
836         return false;
837 }
838 EXPORT_SYMBOL_GPL(kvm_require_dr);
839
840 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
841 {
842         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
843 }
844
845 /*
846  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
847  */
848 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
849 {
850         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
851         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
852         gpa_t real_gpa;
853         int i;
854         int ret;
855         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
856
857         /*
858          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
859          * to an L1 GPA.
860          */
861         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
862                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
863         if (real_gpa == UNMAPPED_GVA)
864                 return 0;
865
866         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
867         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
868                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
869         if (ret < 0)
870                 return 0;
871
872         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
873                 if ((pdpte[i] & PT_PRESENT_MASK) &&
874                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
875                         return 0;
876                 }
877         }
878
879         /*
880          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
881          * Shadow page roots need to be reconstructed instead.
882          */
883         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
884                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
885
886         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
887         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
888         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
889         vcpu->arch.pdptrs_from_userspace = false;
890
891         return 1;
892 }
893 EXPORT_SYMBOL_GPL(load_pdptrs);
894
895 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
896 {
897         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
898                 kvm_clear_async_pf_completion_queue(vcpu);
899                 kvm_async_pf_hash_reset(vcpu);
900
901                 /*
902                  * Clearing CR0.PG is defined to flush the TLB from the guest's
903                  * perspective.
904                  */
905                 if (!(cr0 & X86_CR0_PG))
906                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
907         }
908
909         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
910                 kvm_mmu_reset_context(vcpu);
911
912         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
913             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
914             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
915                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
916 }
917 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
918
919 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
920 {
921         unsigned long old_cr0 = kvm_read_cr0(vcpu);
922
923         cr0 |= X86_CR0_ET;
924
925 #ifdef CONFIG_X86_64
926         if (cr0 & 0xffffffff00000000UL)
927                 return 1;
928 #endif
929
930         cr0 &= ~CR0_RESERVED_BITS;
931
932         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
933                 return 1;
934
935         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
936                 return 1;
937
938 #ifdef CONFIG_X86_64
939         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
940             (cr0 & X86_CR0_PG)) {
941                 int cs_db, cs_l;
942
943                 if (!is_pae(vcpu))
944                         return 1;
945                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
946                 if (cs_l)
947                         return 1;
948         }
949 #endif
950         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
951             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
952             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
953                 return 1;
954
955         if (!(cr0 & X86_CR0_PG) &&
956             (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
957                 return 1;
958
959         static_call(kvm_x86_set_cr0)(vcpu, cr0);
960
961         kvm_post_set_cr0(vcpu, old_cr0, cr0);
962
963         return 0;
964 }
965 EXPORT_SYMBOL_GPL(kvm_set_cr0);
966
967 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
968 {
969         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
970 }
971 EXPORT_SYMBOL_GPL(kvm_lmsw);
972
973 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
974 {
975         if (vcpu->arch.guest_state_protected)
976                 return;
977
978         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
979
980                 if (vcpu->arch.xcr0 != host_xcr0)
981                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
982
983                 if (vcpu->arch.xsaves_enabled &&
984                     vcpu->arch.ia32_xss != host_xss)
985                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
986         }
987
988 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
989         if (static_cpu_has(X86_FEATURE_PKU) &&
990             vcpu->arch.pkru != vcpu->arch.host_pkru &&
991             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
992              kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
993                 write_pkru(vcpu->arch.pkru);
994 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
995 }
996 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
997
998 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
999 {
1000         if (vcpu->arch.guest_state_protected)
1001                 return;
1002
1003 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1004         if (static_cpu_has(X86_FEATURE_PKU) &&
1005             ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1006              kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1007                 vcpu->arch.pkru = rdpkru();
1008                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1009                         write_pkru(vcpu->arch.host_pkru);
1010         }
1011 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1012
1013         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1014
1015                 if (vcpu->arch.xcr0 != host_xcr0)
1016                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1017
1018                 if (vcpu->arch.xsaves_enabled &&
1019                     vcpu->arch.ia32_xss != host_xss)
1020                         wrmsrl(MSR_IA32_XSS, host_xss);
1021         }
1022
1023 }
1024 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1025
1026 static inline u64 kvm_guest_supported_xcr0(struct kvm_vcpu *vcpu)
1027 {
1028         return vcpu->arch.guest_fpu.fpstate->user_xfeatures;
1029 }
1030
1031 #ifdef CONFIG_X86_64
1032 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1033 {
1034         return kvm_guest_supported_xcr0(vcpu) & XFEATURE_MASK_USER_DYNAMIC;
1035 }
1036 #endif
1037
1038 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1039 {
1040         u64 xcr0 = xcr;
1041         u64 old_xcr0 = vcpu->arch.xcr0;
1042         u64 valid_bits;
1043
1044         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1045         if (index != XCR_XFEATURE_ENABLED_MASK)
1046                 return 1;
1047         if (!(xcr0 & XFEATURE_MASK_FP))
1048                 return 1;
1049         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1050                 return 1;
1051
1052         /*
1053          * Do not allow the guest to set bits that we do not support
1054          * saving.  However, xcr0 bit 0 is always set, even if the
1055          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1056          */
1057         valid_bits = kvm_guest_supported_xcr0(vcpu) | XFEATURE_MASK_FP;
1058         if (xcr0 & ~valid_bits)
1059                 return 1;
1060
1061         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1062             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1063                 return 1;
1064
1065         if (xcr0 & XFEATURE_MASK_AVX512) {
1066                 if (!(xcr0 & XFEATURE_MASK_YMM))
1067                         return 1;
1068                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1069                         return 1;
1070         }
1071
1072         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1073             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1074                 return 1;
1075
1076         vcpu->arch.xcr0 = xcr0;
1077
1078         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1079                 kvm_update_cpuid_runtime(vcpu);
1080         return 0;
1081 }
1082
1083 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1084 {
1085         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1086             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1087                 kvm_inject_gp(vcpu, 0);
1088                 return 1;
1089         }
1090
1091         return kvm_skip_emulated_instruction(vcpu);
1092 }
1093 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1094
1095 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1096 {
1097         if (cr4 & cr4_reserved_bits)
1098                 return false;
1099
1100         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1101                 return false;
1102
1103         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1104 }
1105 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1106
1107 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1108 {
1109         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1110                 kvm_mmu_reset_context(vcpu);
1111
1112         /*
1113          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1114          * according to the SDM; however, stale prev_roots could be reused
1115          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1116          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1117          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1118          * so fall through.
1119          */
1120         if (!tdp_enabled &&
1121             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1122                 kvm_mmu_unload(vcpu);
1123
1124         /*
1125          * The TLB has to be flushed for all PCIDs if any of the following
1126          * (architecturally required) changes happen:
1127          * - CR4.PCIDE is changed from 1 to 0
1128          * - CR4.PGE is toggled
1129          *
1130          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1131          */
1132         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1133             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1134                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1135
1136         /*
1137          * The TLB has to be flushed for the current PCID if any of the
1138          * following (architecturally required) changes happen:
1139          * - CR4.SMEP is changed from 0 to 1
1140          * - CR4.PAE is toggled
1141          */
1142         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1143                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1144                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1145
1146 }
1147 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1148
1149 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1150 {
1151         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1152
1153         if (!kvm_is_valid_cr4(vcpu, cr4))
1154                 return 1;
1155
1156         if (is_long_mode(vcpu)) {
1157                 if (!(cr4 & X86_CR4_PAE))
1158                         return 1;
1159                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1160                         return 1;
1161         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1162                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1163                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1164                 return 1;
1165
1166         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1167                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1168                         return 1;
1169
1170                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1171                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1172                         return 1;
1173         }
1174
1175         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1176
1177         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1178
1179         return 0;
1180 }
1181 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1182
1183 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1184 {
1185         struct kvm_mmu *mmu = vcpu->arch.mmu;
1186         unsigned long roots_to_free = 0;
1187         int i;
1188
1189         /*
1190          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1191          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1192          * also via the emulator.  KVM's TDP page tables are not in the scope of
1193          * the invalidation, but the guest's TLB entries need to be flushed as
1194          * the CPU may have cached entries in its TLB for the target PCID.
1195          */
1196         if (unlikely(tdp_enabled)) {
1197                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1198                 return;
1199         }
1200
1201         /*
1202          * If neither the current CR3 nor any of the prev_roots use the given
1203          * PCID, then nothing needs to be done here because a resync will
1204          * happen anyway before switching to any other CR3.
1205          */
1206         if (kvm_get_active_pcid(vcpu) == pcid) {
1207                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1208                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1209         }
1210
1211         /*
1212          * If PCID is disabled, there is no need to free prev_roots even if the
1213          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1214          * with PCIDE=0.
1215          */
1216         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1217                 return;
1218
1219         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1220                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1221                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1222
1223         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1224 }
1225
1226 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1227 {
1228         bool skip_tlb_flush = false;
1229         unsigned long pcid = 0;
1230 #ifdef CONFIG_X86_64
1231         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1232
1233         if (pcid_enabled) {
1234                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1235                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1236                 pcid = cr3 & X86_CR3_PCID_MASK;
1237         }
1238 #endif
1239
1240         /* PDPTRs are always reloaded for PAE paging. */
1241         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1242                 goto handle_tlb_flush;
1243
1244         /*
1245          * Do not condition the GPA check on long mode, this helper is used to
1246          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1247          * the current vCPU mode is accurate.
1248          */
1249         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1250                 return 1;
1251
1252         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1253                 return 1;
1254
1255         if (cr3 != kvm_read_cr3(vcpu))
1256                 kvm_mmu_new_pgd(vcpu, cr3);
1257
1258         vcpu->arch.cr3 = cr3;
1259         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1260         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1261
1262 handle_tlb_flush:
1263         /*
1264          * A load of CR3 that flushes the TLB flushes only the current PCID,
1265          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1266          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1267          * and it's impossible to use a non-zero PCID when PCID is disabled,
1268          * i.e. only PCID=0 can be relevant.
1269          */
1270         if (!skip_tlb_flush)
1271                 kvm_invalidate_pcid(vcpu, pcid);
1272
1273         return 0;
1274 }
1275 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1276
1277 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1278 {
1279         if (cr8 & CR8_RESERVED_BITS)
1280                 return 1;
1281         if (lapic_in_kernel(vcpu))
1282                 kvm_lapic_set_tpr(vcpu, cr8);
1283         else
1284                 vcpu->arch.cr8 = cr8;
1285         return 0;
1286 }
1287 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1288
1289 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1290 {
1291         if (lapic_in_kernel(vcpu))
1292                 return kvm_lapic_get_cr8(vcpu);
1293         else
1294                 return vcpu->arch.cr8;
1295 }
1296 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1297
1298 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1299 {
1300         int i;
1301
1302         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1303                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1304                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1305         }
1306 }
1307
1308 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1309 {
1310         unsigned long dr7;
1311
1312         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1313                 dr7 = vcpu->arch.guest_debug_dr7;
1314         else
1315                 dr7 = vcpu->arch.dr7;
1316         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1317         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1318         if (dr7 & DR7_BP_EN_MASK)
1319                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1320 }
1321 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1322
1323 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1324 {
1325         u64 fixed = DR6_FIXED_1;
1326
1327         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1328                 fixed |= DR6_RTM;
1329
1330         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1331                 fixed |= DR6_BUS_LOCK;
1332         return fixed;
1333 }
1334
1335 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1336 {
1337         size_t size = ARRAY_SIZE(vcpu->arch.db);
1338
1339         switch (dr) {
1340         case 0 ... 3:
1341                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1342                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1343                         vcpu->arch.eff_db[dr] = val;
1344                 break;
1345         case 4:
1346         case 6:
1347                 if (!kvm_dr6_valid(val))
1348                         return 1; /* #GP */
1349                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1350                 break;
1351         case 5:
1352         default: /* 7 */
1353                 if (!kvm_dr7_valid(val))
1354                         return 1; /* #GP */
1355                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1356                 kvm_update_dr7(vcpu);
1357                 break;
1358         }
1359
1360         return 0;
1361 }
1362 EXPORT_SYMBOL_GPL(kvm_set_dr);
1363
1364 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1365 {
1366         size_t size = ARRAY_SIZE(vcpu->arch.db);
1367
1368         switch (dr) {
1369         case 0 ... 3:
1370                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1371                 break;
1372         case 4:
1373         case 6:
1374                 *val = vcpu->arch.dr6;
1375                 break;
1376         case 5:
1377         default: /* 7 */
1378                 *val = vcpu->arch.dr7;
1379                 break;
1380         }
1381 }
1382 EXPORT_SYMBOL_GPL(kvm_get_dr);
1383
1384 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1385 {
1386         u32 ecx = kvm_rcx_read(vcpu);
1387         u64 data;
1388
1389         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1390                 kvm_inject_gp(vcpu, 0);
1391                 return 1;
1392         }
1393
1394         kvm_rax_write(vcpu, (u32)data);
1395         kvm_rdx_write(vcpu, data >> 32);
1396         return kvm_skip_emulated_instruction(vcpu);
1397 }
1398 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1399
1400 /*
1401  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1402  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1403  *
1404  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1405  * extract the supported MSRs from the related const lists.
1406  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1407  * capabilities of the host cpu. This capabilities test skips MSRs that are
1408  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1409  * may depend on host virtualization features rather than host cpu features.
1410  */
1411
1412 static const u32 msrs_to_save_all[] = {
1413         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1414         MSR_STAR,
1415 #ifdef CONFIG_X86_64
1416         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1417 #endif
1418         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1419         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1420         MSR_IA32_SPEC_CTRL,
1421         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1422         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1423         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1424         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1425         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1426         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1427         MSR_IA32_UMWAIT_CONTROL,
1428
1429         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1430         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1431         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1432         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1433         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1434         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1435         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1436         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1437         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1438         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1439         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1440         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1441         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1442         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1443         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1444         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1445         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1446         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1447         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1448         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1449         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1450         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1451         MSR_IA32_PEBS_ENABLE,
1452
1453         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1454         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1455         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1456         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1457         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1458         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1459         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1460 };
1461
1462 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1463 static unsigned num_msrs_to_save;
1464
1465 static const u32 emulated_msrs_all[] = {
1466         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1467         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1468         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1469         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1470         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1471         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1472         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1473         HV_X64_MSR_RESET,
1474         HV_X64_MSR_VP_INDEX,
1475         HV_X64_MSR_VP_RUNTIME,
1476         HV_X64_MSR_SCONTROL,
1477         HV_X64_MSR_STIMER0_CONFIG,
1478         HV_X64_MSR_VP_ASSIST_PAGE,
1479         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1480         HV_X64_MSR_TSC_EMULATION_STATUS,
1481         HV_X64_MSR_SYNDBG_OPTIONS,
1482         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1483         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1484         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1485
1486         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1487         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1488
1489         MSR_IA32_TSC_ADJUST,
1490         MSR_IA32_TSC_DEADLINE,
1491         MSR_IA32_ARCH_CAPABILITIES,
1492         MSR_IA32_PERF_CAPABILITIES,
1493         MSR_IA32_MISC_ENABLE,
1494         MSR_IA32_MCG_STATUS,
1495         MSR_IA32_MCG_CTL,
1496         MSR_IA32_MCG_EXT_CTL,
1497         MSR_IA32_SMBASE,
1498         MSR_SMI_COUNT,
1499         MSR_PLATFORM_INFO,
1500         MSR_MISC_FEATURES_ENABLES,
1501         MSR_AMD64_VIRT_SPEC_CTRL,
1502         MSR_AMD64_TSC_RATIO,
1503         MSR_IA32_POWER_CTL,
1504         MSR_IA32_UCODE_REV,
1505
1506         /*
1507          * The following list leaves out MSRs whose values are determined
1508          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1509          * We always support the "true" VMX control MSRs, even if the host
1510          * processor does not, so I am putting these registers here rather
1511          * than in msrs_to_save_all.
1512          */
1513         MSR_IA32_VMX_BASIC,
1514         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1515         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1516         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1517         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1518         MSR_IA32_VMX_MISC,
1519         MSR_IA32_VMX_CR0_FIXED0,
1520         MSR_IA32_VMX_CR4_FIXED0,
1521         MSR_IA32_VMX_VMCS_ENUM,
1522         MSR_IA32_VMX_PROCBASED_CTLS2,
1523         MSR_IA32_VMX_EPT_VPID_CAP,
1524         MSR_IA32_VMX_VMFUNC,
1525
1526         MSR_K7_HWCR,
1527         MSR_KVM_POLL_CONTROL,
1528 };
1529
1530 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1531 static unsigned num_emulated_msrs;
1532
1533 /*
1534  * List of msr numbers which are used to expose MSR-based features that
1535  * can be used by a hypervisor to validate requested CPU features.
1536  */
1537 static const u32 msr_based_features_all[] = {
1538         MSR_IA32_VMX_BASIC,
1539         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1540         MSR_IA32_VMX_PINBASED_CTLS,
1541         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1542         MSR_IA32_VMX_PROCBASED_CTLS,
1543         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1544         MSR_IA32_VMX_EXIT_CTLS,
1545         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1546         MSR_IA32_VMX_ENTRY_CTLS,
1547         MSR_IA32_VMX_MISC,
1548         MSR_IA32_VMX_CR0_FIXED0,
1549         MSR_IA32_VMX_CR0_FIXED1,
1550         MSR_IA32_VMX_CR4_FIXED0,
1551         MSR_IA32_VMX_CR4_FIXED1,
1552         MSR_IA32_VMX_VMCS_ENUM,
1553         MSR_IA32_VMX_PROCBASED_CTLS2,
1554         MSR_IA32_VMX_EPT_VPID_CAP,
1555         MSR_IA32_VMX_VMFUNC,
1556
1557         MSR_F10H_DECFG,
1558         MSR_IA32_UCODE_REV,
1559         MSR_IA32_ARCH_CAPABILITIES,
1560         MSR_IA32_PERF_CAPABILITIES,
1561 };
1562
1563 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1564 static unsigned int num_msr_based_features;
1565
1566 static u64 kvm_get_arch_capabilities(void)
1567 {
1568         u64 data = 0;
1569
1570         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1571                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1572
1573         /*
1574          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1575          * the nested hypervisor runs with NX huge pages.  If it is not,
1576          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1577          * L1 guests, so it need not worry about its own (L2) guests.
1578          */
1579         data |= ARCH_CAP_PSCHANGE_MC_NO;
1580
1581         /*
1582          * If we're doing cache flushes (either "always" or "cond")
1583          * we will do one whenever the guest does a vmlaunch/vmresume.
1584          * If an outer hypervisor is doing the cache flush for us
1585          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1586          * capability to the guest too, and if EPT is disabled we're not
1587          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1588          * require a nested hypervisor to do a flush of its own.
1589          */
1590         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1591                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1592
1593         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1594                 data |= ARCH_CAP_RDCL_NO;
1595         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1596                 data |= ARCH_CAP_SSB_NO;
1597         if (!boot_cpu_has_bug(X86_BUG_MDS))
1598                 data |= ARCH_CAP_MDS_NO;
1599
1600         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1601                 /*
1602                  * If RTM=0 because the kernel has disabled TSX, the host might
1603                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1604                  * and therefore knows that there cannot be TAA) but keep
1605                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1606                  * and we want to allow migrating those guests to tsx=off hosts.
1607                  */
1608                 data &= ~ARCH_CAP_TAA_NO;
1609         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1610                 data |= ARCH_CAP_TAA_NO;
1611         } else {
1612                 /*
1613                  * Nothing to do here; we emulate TSX_CTRL if present on the
1614                  * host so the guest can choose between disabling TSX or
1615                  * using VERW to clear CPU buffers.
1616                  */
1617         }
1618
1619         return data;
1620 }
1621
1622 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1623 {
1624         switch (msr->index) {
1625         case MSR_IA32_ARCH_CAPABILITIES:
1626                 msr->data = kvm_get_arch_capabilities();
1627                 break;
1628         case MSR_IA32_UCODE_REV:
1629                 rdmsrl_safe(msr->index, &msr->data);
1630                 break;
1631         default:
1632                 return static_call(kvm_x86_get_msr_feature)(msr);
1633         }
1634         return 0;
1635 }
1636
1637 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1638 {
1639         struct kvm_msr_entry msr;
1640         int r;
1641
1642         msr.index = index;
1643         r = kvm_get_msr_feature(&msr);
1644
1645         if (r == KVM_MSR_RET_INVALID) {
1646                 /* Unconditionally clear the output for simplicity */
1647                 *data = 0;
1648                 if (kvm_msr_ignored_check(index, 0, false))
1649                         r = 0;
1650         }
1651
1652         if (r)
1653                 return r;
1654
1655         *data = msr.data;
1656
1657         return 0;
1658 }
1659
1660 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1661 {
1662         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1663                 return false;
1664
1665         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1666                 return false;
1667
1668         if (efer & (EFER_LME | EFER_LMA) &&
1669             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1670                 return false;
1671
1672         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1673                 return false;
1674
1675         return true;
1676
1677 }
1678 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1679 {
1680         if (efer & efer_reserved_bits)
1681                 return false;
1682
1683         return __kvm_valid_efer(vcpu, efer);
1684 }
1685 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1686
1687 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1688 {
1689         u64 old_efer = vcpu->arch.efer;
1690         u64 efer = msr_info->data;
1691         int r;
1692
1693         if (efer & efer_reserved_bits)
1694                 return 1;
1695
1696         if (!msr_info->host_initiated) {
1697                 if (!__kvm_valid_efer(vcpu, efer))
1698                         return 1;
1699
1700                 if (is_paging(vcpu) &&
1701                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1702                         return 1;
1703         }
1704
1705         efer &= ~EFER_LMA;
1706         efer |= vcpu->arch.efer & EFER_LMA;
1707
1708         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1709         if (r) {
1710                 WARN_ON(r > 0);
1711                 return r;
1712         }
1713
1714         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1715                 kvm_mmu_reset_context(vcpu);
1716
1717         return 0;
1718 }
1719
1720 void kvm_enable_efer_bits(u64 mask)
1721 {
1722        efer_reserved_bits &= ~mask;
1723 }
1724 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1725
1726 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1727 {
1728         struct kvm_x86_msr_filter *msr_filter;
1729         struct msr_bitmap_range *ranges;
1730         struct kvm *kvm = vcpu->kvm;
1731         bool allowed;
1732         int idx;
1733         u32 i;
1734
1735         /* x2APIC MSRs do not support filtering. */
1736         if (index >= 0x800 && index <= 0x8ff)
1737                 return true;
1738
1739         idx = srcu_read_lock(&kvm->srcu);
1740
1741         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1742         if (!msr_filter) {
1743                 allowed = true;
1744                 goto out;
1745         }
1746
1747         allowed = msr_filter->default_allow;
1748         ranges = msr_filter->ranges;
1749
1750         for (i = 0; i < msr_filter->count; i++) {
1751                 u32 start = ranges[i].base;
1752                 u32 end = start + ranges[i].nmsrs;
1753                 u32 flags = ranges[i].flags;
1754                 unsigned long *bitmap = ranges[i].bitmap;
1755
1756                 if ((index >= start) && (index < end) && (flags & type)) {
1757                         allowed = !!test_bit(index - start, bitmap);
1758                         break;
1759                 }
1760         }
1761
1762 out:
1763         srcu_read_unlock(&kvm->srcu, idx);
1764
1765         return allowed;
1766 }
1767 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1768
1769 /*
1770  * Write @data into the MSR specified by @index.  Select MSR specific fault
1771  * checks are bypassed if @host_initiated is %true.
1772  * Returns 0 on success, non-0 otherwise.
1773  * Assumes vcpu_load() was already called.
1774  */
1775 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1776                          bool host_initiated)
1777 {
1778         struct msr_data msr;
1779
1780         switch (index) {
1781         case MSR_FS_BASE:
1782         case MSR_GS_BASE:
1783         case MSR_KERNEL_GS_BASE:
1784         case MSR_CSTAR:
1785         case MSR_LSTAR:
1786                 if (is_noncanonical_address(data, vcpu))
1787                         return 1;
1788                 break;
1789         case MSR_IA32_SYSENTER_EIP:
1790         case MSR_IA32_SYSENTER_ESP:
1791                 /*
1792                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1793                  * non-canonical address is written on Intel but not on
1794                  * AMD (which ignores the top 32-bits, because it does
1795                  * not implement 64-bit SYSENTER).
1796                  *
1797                  * 64-bit code should hence be able to write a non-canonical
1798                  * value on AMD.  Making the address canonical ensures that
1799                  * vmentry does not fail on Intel after writing a non-canonical
1800                  * value, and that something deterministic happens if the guest
1801                  * invokes 64-bit SYSENTER.
1802                  */
1803                 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1804                 break;
1805         case MSR_TSC_AUX:
1806                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1807                         return 1;
1808
1809                 if (!host_initiated &&
1810                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1811                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1812                         return 1;
1813
1814                 /*
1815                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1816                  * incomplete and conflicting architectural behavior.  Current
1817                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1818                  * reserved and always read as zeros.  Enforce Intel's reserved
1819                  * bits check if and only if the guest CPU is Intel, and clear
1820                  * the bits in all other cases.  This ensures cross-vendor
1821                  * migration will provide consistent behavior for the guest.
1822                  */
1823                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1824                         return 1;
1825
1826                 data = (u32)data;
1827                 break;
1828         }
1829
1830         msr.data = data;
1831         msr.index = index;
1832         msr.host_initiated = host_initiated;
1833
1834         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1835 }
1836
1837 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1838                                      u32 index, u64 data, bool host_initiated)
1839 {
1840         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1841
1842         if (ret == KVM_MSR_RET_INVALID)
1843                 if (kvm_msr_ignored_check(index, data, true))
1844                         ret = 0;
1845
1846         return ret;
1847 }
1848
1849 /*
1850  * Read the MSR specified by @index into @data.  Select MSR specific fault
1851  * checks are bypassed if @host_initiated is %true.
1852  * Returns 0 on success, non-0 otherwise.
1853  * Assumes vcpu_load() was already called.
1854  */
1855 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1856                   bool host_initiated)
1857 {
1858         struct msr_data msr;
1859         int ret;
1860
1861         switch (index) {
1862         case MSR_TSC_AUX:
1863                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1864                         return 1;
1865
1866                 if (!host_initiated &&
1867                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1868                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1869                         return 1;
1870                 break;
1871         }
1872
1873         msr.index = index;
1874         msr.host_initiated = host_initiated;
1875
1876         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1877         if (!ret)
1878                 *data = msr.data;
1879         return ret;
1880 }
1881
1882 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1883                                      u32 index, u64 *data, bool host_initiated)
1884 {
1885         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1886
1887         if (ret == KVM_MSR_RET_INVALID) {
1888                 /* Unconditionally clear *data for simplicity */
1889                 *data = 0;
1890                 if (kvm_msr_ignored_check(index, 0, false))
1891                         ret = 0;
1892         }
1893
1894         return ret;
1895 }
1896
1897 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1898 {
1899         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1900                 return KVM_MSR_RET_FILTERED;
1901         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1902 }
1903
1904 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1905 {
1906         if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1907                 return KVM_MSR_RET_FILTERED;
1908         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1909 }
1910
1911 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1912 {
1913         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_get_msr);
1916
1917 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1918 {
1919         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1920 }
1921 EXPORT_SYMBOL_GPL(kvm_set_msr);
1922
1923 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1924 {
1925         if (!vcpu->run->msr.error) {
1926                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1927                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1928         }
1929 }
1930
1931 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1932 {
1933         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1934 }
1935
1936 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1937 {
1938         complete_userspace_rdmsr(vcpu);
1939         return complete_emulated_msr_access(vcpu);
1940 }
1941
1942 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1943 {
1944         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1945 }
1946
1947 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1948 {
1949         complete_userspace_rdmsr(vcpu);
1950         return complete_fast_msr_access(vcpu);
1951 }
1952
1953 static u64 kvm_msr_reason(int r)
1954 {
1955         switch (r) {
1956         case KVM_MSR_RET_INVALID:
1957                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1958         case KVM_MSR_RET_FILTERED:
1959                 return KVM_MSR_EXIT_REASON_FILTER;
1960         default:
1961                 return KVM_MSR_EXIT_REASON_INVAL;
1962         }
1963 }
1964
1965 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1966                               u32 exit_reason, u64 data,
1967                               int (*completion)(struct kvm_vcpu *vcpu),
1968                               int r)
1969 {
1970         u64 msr_reason = kvm_msr_reason(r);
1971
1972         /* Check if the user wanted to know about this MSR fault */
1973         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1974                 return 0;
1975
1976         vcpu->run->exit_reason = exit_reason;
1977         vcpu->run->msr.error = 0;
1978         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1979         vcpu->run->msr.reason = msr_reason;
1980         vcpu->run->msr.index = index;
1981         vcpu->run->msr.data = data;
1982         vcpu->arch.complete_userspace_io = completion;
1983
1984         return 1;
1985 }
1986
1987 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1988 {
1989         u32 ecx = kvm_rcx_read(vcpu);
1990         u64 data;
1991         int r;
1992
1993         r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1994
1995         if (!r) {
1996                 trace_kvm_msr_read(ecx, data);
1997
1998                 kvm_rax_write(vcpu, data & -1u);
1999                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2000         } else {
2001                 /* MSR read failed? See if we should ask user space */
2002                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2003                                        complete_fast_rdmsr, r))
2004                         return 0;
2005                 trace_kvm_msr_read_ex(ecx);
2006         }
2007
2008         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2009 }
2010 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2011
2012 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2013 {
2014         u32 ecx = kvm_rcx_read(vcpu);
2015         u64 data = kvm_read_edx_eax(vcpu);
2016         int r;
2017
2018         r = kvm_set_msr_with_filter(vcpu, ecx, data);
2019
2020         if (!r) {
2021                 trace_kvm_msr_write(ecx, data);
2022         } else {
2023                 /* MSR write failed? See if we should ask user space */
2024                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2025                                        complete_fast_msr_access, r))
2026                         return 0;
2027                 /* Signal all other negative errors to userspace */
2028                 if (r < 0)
2029                         return r;
2030                 trace_kvm_msr_write_ex(ecx, data);
2031         }
2032
2033         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2034 }
2035 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2036
2037 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2038 {
2039         return kvm_skip_emulated_instruction(vcpu);
2040 }
2041 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2042
2043 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2044 {
2045         /* Treat an INVD instruction as a NOP and just skip it. */
2046         return kvm_emulate_as_nop(vcpu);
2047 }
2048 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2049
2050 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2051 {
2052         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2053         return kvm_emulate_as_nop(vcpu);
2054 }
2055 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2056
2057 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2058 {
2059         kvm_queue_exception(vcpu, UD_VECTOR);
2060         return 1;
2061 }
2062 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2063
2064 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2065 {
2066         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2067         return kvm_emulate_as_nop(vcpu);
2068 }
2069 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2070
2071 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2072 {
2073         xfer_to_guest_mode_prepare();
2074         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2075                 xfer_to_guest_mode_work_pending();
2076 }
2077
2078 /*
2079  * The fast path for frequent and performance sensitive wrmsr emulation,
2080  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2081  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2082  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2083  * other cases which must be called after interrupts are enabled on the host.
2084  */
2085 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2086 {
2087         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2088                 return 1;
2089
2090         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2091             ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2092             ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2093             ((u32)(data >> 32) != X2APIC_BROADCAST))
2094                 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2095
2096         return 1;
2097 }
2098
2099 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2100 {
2101         if (!kvm_can_use_hv_timer(vcpu))
2102                 return 1;
2103
2104         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2105         return 0;
2106 }
2107
2108 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2109 {
2110         u32 msr = kvm_rcx_read(vcpu);
2111         u64 data;
2112         fastpath_t ret = EXIT_FASTPATH_NONE;
2113
2114         switch (msr) {
2115         case APIC_BASE_MSR + (APIC_ICR >> 4):
2116                 data = kvm_read_edx_eax(vcpu);
2117                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2118                         kvm_skip_emulated_instruction(vcpu);
2119                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2120                 }
2121                 break;
2122         case MSR_IA32_TSC_DEADLINE:
2123                 data = kvm_read_edx_eax(vcpu);
2124                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2125                         kvm_skip_emulated_instruction(vcpu);
2126                         ret = EXIT_FASTPATH_REENTER_GUEST;
2127                 }
2128                 break;
2129         default:
2130                 break;
2131         }
2132
2133         if (ret != EXIT_FASTPATH_NONE)
2134                 trace_kvm_msr_write(msr, data);
2135
2136         return ret;
2137 }
2138 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2139
2140 /*
2141  * Adapt set_msr() to msr_io()'s calling convention
2142  */
2143 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2144 {
2145         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2146 }
2147
2148 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2149 {
2150         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2151 }
2152
2153 #ifdef CONFIG_X86_64
2154 struct pvclock_clock {
2155         int vclock_mode;
2156         u64 cycle_last;
2157         u64 mask;
2158         u32 mult;
2159         u32 shift;
2160         u64 base_cycles;
2161         u64 offset;
2162 };
2163
2164 struct pvclock_gtod_data {
2165         seqcount_t      seq;
2166
2167         struct pvclock_clock clock; /* extract of a clocksource struct */
2168         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2169
2170         ktime_t         offs_boot;
2171         u64             wall_time_sec;
2172 };
2173
2174 static struct pvclock_gtod_data pvclock_gtod_data;
2175
2176 static void update_pvclock_gtod(struct timekeeper *tk)
2177 {
2178         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2179
2180         write_seqcount_begin(&vdata->seq);
2181
2182         /* copy pvclock gtod data */
2183         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2184         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2185         vdata->clock.mask               = tk->tkr_mono.mask;
2186         vdata->clock.mult               = tk->tkr_mono.mult;
2187         vdata->clock.shift              = tk->tkr_mono.shift;
2188         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2189         vdata->clock.offset             = tk->tkr_mono.base;
2190
2191         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2192         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2193         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2194         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2195         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2196         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2197         vdata->raw_clock.offset         = tk->tkr_raw.base;
2198
2199         vdata->wall_time_sec            = tk->xtime_sec;
2200
2201         vdata->offs_boot                = tk->offs_boot;
2202
2203         write_seqcount_end(&vdata->seq);
2204 }
2205
2206 static s64 get_kvmclock_base_ns(void)
2207 {
2208         /* Count up from boot time, but with the frequency of the raw clock.  */
2209         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2210 }
2211 #else
2212 static s64 get_kvmclock_base_ns(void)
2213 {
2214         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2215         return ktime_get_boottime_ns();
2216 }
2217 #endif
2218
2219 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2220 {
2221         int version;
2222         int r;
2223         struct pvclock_wall_clock wc;
2224         u32 wc_sec_hi;
2225         u64 wall_nsec;
2226
2227         if (!wall_clock)
2228                 return;
2229
2230         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2231         if (r)
2232                 return;
2233
2234         if (version & 1)
2235                 ++version;  /* first time write, random junk */
2236
2237         ++version;
2238
2239         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2240                 return;
2241
2242         /*
2243          * The guest calculates current wall clock time by adding
2244          * system time (updated by kvm_guest_time_update below) to the
2245          * wall clock specified here.  We do the reverse here.
2246          */
2247         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2248
2249         wc.nsec = do_div(wall_nsec, 1000000000);
2250         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2251         wc.version = version;
2252
2253         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2254
2255         if (sec_hi_ofs) {
2256                 wc_sec_hi = wall_nsec >> 32;
2257                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2258                                 &wc_sec_hi, sizeof(wc_sec_hi));
2259         }
2260
2261         version++;
2262         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2263 }
2264
2265 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2266                                   bool old_msr, bool host_initiated)
2267 {
2268         struct kvm_arch *ka = &vcpu->kvm->arch;
2269
2270         if (vcpu->vcpu_id == 0 && !host_initiated) {
2271                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2272                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2273
2274                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2275         }
2276
2277         vcpu->arch.time = system_time;
2278         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2279
2280         /* we verify if the enable bit is set... */
2281         if (system_time & 1) {
2282                 kvm_gfn_to_pfn_cache_init(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2283                                           KVM_HOST_USES_PFN, system_time & ~1ULL,
2284                                           sizeof(struct pvclock_vcpu_time_info));
2285         } else {
2286                 kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
2287         }
2288
2289         return;
2290 }
2291
2292 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2293 {
2294         do_shl32_div32(dividend, divisor);
2295         return dividend;
2296 }
2297
2298 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2299                                s8 *pshift, u32 *pmultiplier)
2300 {
2301         uint64_t scaled64;
2302         int32_t  shift = 0;
2303         uint64_t tps64;
2304         uint32_t tps32;
2305
2306         tps64 = base_hz;
2307         scaled64 = scaled_hz;
2308         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2309                 tps64 >>= 1;
2310                 shift--;
2311         }
2312
2313         tps32 = (uint32_t)tps64;
2314         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2315                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2316                         scaled64 >>= 1;
2317                 else
2318                         tps32 <<= 1;
2319                 shift++;
2320         }
2321
2322         *pshift = shift;
2323         *pmultiplier = div_frac(scaled64, tps32);
2324 }
2325
2326 #ifdef CONFIG_X86_64
2327 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2328 #endif
2329
2330 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2331 static unsigned long max_tsc_khz;
2332
2333 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2334 {
2335         u64 v = (u64)khz * (1000000 + ppm);
2336         do_div(v, 1000000);
2337         return v;
2338 }
2339
2340 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2341
2342 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2343 {
2344         u64 ratio;
2345
2346         /* Guest TSC same frequency as host TSC? */
2347         if (!scale) {
2348                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2349                 return 0;
2350         }
2351
2352         /* TSC scaling supported? */
2353         if (!kvm_has_tsc_control) {
2354                 if (user_tsc_khz > tsc_khz) {
2355                         vcpu->arch.tsc_catchup = 1;
2356                         vcpu->arch.tsc_always_catchup = 1;
2357                         return 0;
2358                 } else {
2359                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2360                         return -1;
2361                 }
2362         }
2363
2364         /* TSC scaling required  - calculate ratio */
2365         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2366                                 user_tsc_khz, tsc_khz);
2367
2368         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2369                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2370                                     user_tsc_khz);
2371                 return -1;
2372         }
2373
2374         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2375         return 0;
2376 }
2377
2378 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2379 {
2380         u32 thresh_lo, thresh_hi;
2381         int use_scaling = 0;
2382
2383         /* tsc_khz can be zero if TSC calibration fails */
2384         if (user_tsc_khz == 0) {
2385                 /* set tsc_scaling_ratio to a safe value */
2386                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2387                 return -1;
2388         }
2389
2390         /* Compute a scale to convert nanoseconds in TSC cycles */
2391         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2392                            &vcpu->arch.virtual_tsc_shift,
2393                            &vcpu->arch.virtual_tsc_mult);
2394         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2395
2396         /*
2397          * Compute the variation in TSC rate which is acceptable
2398          * within the range of tolerance and decide if the
2399          * rate being applied is within that bounds of the hardware
2400          * rate.  If so, no scaling or compensation need be done.
2401          */
2402         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2403         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2404         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2405                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2406                 use_scaling = 1;
2407         }
2408         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2409 }
2410
2411 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2412 {
2413         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2414                                       vcpu->arch.virtual_tsc_mult,
2415                                       vcpu->arch.virtual_tsc_shift);
2416         tsc += vcpu->arch.this_tsc_write;
2417         return tsc;
2418 }
2419
2420 #ifdef CONFIG_X86_64
2421 static inline int gtod_is_based_on_tsc(int mode)
2422 {
2423         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2424 }
2425 #endif
2426
2427 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2428 {
2429 #ifdef CONFIG_X86_64
2430         bool vcpus_matched;
2431         struct kvm_arch *ka = &vcpu->kvm->arch;
2432         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2433
2434         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2435                          atomic_read(&vcpu->kvm->online_vcpus));
2436
2437         /*
2438          * Once the masterclock is enabled, always perform request in
2439          * order to update it.
2440          *
2441          * In order to enable masterclock, the host clocksource must be TSC
2442          * and the vcpus need to have matched TSCs.  When that happens,
2443          * perform request to enable masterclock.
2444          */
2445         if (ka->use_master_clock ||
2446             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2447                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2448
2449         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2450                             atomic_read(&vcpu->kvm->online_vcpus),
2451                             ka->use_master_clock, gtod->clock.vclock_mode);
2452 #endif
2453 }
2454
2455 /*
2456  * Multiply tsc by a fixed point number represented by ratio.
2457  *
2458  * The most significant 64-N bits (mult) of ratio represent the
2459  * integral part of the fixed point number; the remaining N bits
2460  * (frac) represent the fractional part, ie. ratio represents a fixed
2461  * point number (mult + frac * 2^(-N)).
2462  *
2463  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2464  */
2465 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2466 {
2467         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2468 }
2469
2470 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2471 {
2472         u64 _tsc = tsc;
2473
2474         if (ratio != kvm_default_tsc_scaling_ratio)
2475                 _tsc = __scale_tsc(ratio, tsc);
2476
2477         return _tsc;
2478 }
2479 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2480
2481 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2482 {
2483         u64 tsc;
2484
2485         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2486
2487         return target_tsc - tsc;
2488 }
2489
2490 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2491 {
2492         return vcpu->arch.l1_tsc_offset +
2493                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2494 }
2495 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2496
2497 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2498 {
2499         u64 nested_offset;
2500
2501         if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2502                 nested_offset = l1_offset;
2503         else
2504                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2505                                                 kvm_tsc_scaling_ratio_frac_bits);
2506
2507         nested_offset += l2_offset;
2508         return nested_offset;
2509 }
2510 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2511
2512 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2513 {
2514         if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2515                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2516                                        kvm_tsc_scaling_ratio_frac_bits);
2517
2518         return l1_multiplier;
2519 }
2520 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2521
2522 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2523 {
2524         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2525                                    vcpu->arch.l1_tsc_offset,
2526                                    l1_offset);
2527
2528         vcpu->arch.l1_tsc_offset = l1_offset;
2529
2530         /*
2531          * If we are here because L1 chose not to trap WRMSR to TSC then
2532          * according to the spec this should set L1's TSC (as opposed to
2533          * setting L1's offset for L2).
2534          */
2535         if (is_guest_mode(vcpu))
2536                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2537                         l1_offset,
2538                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2539                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2540         else
2541                 vcpu->arch.tsc_offset = l1_offset;
2542
2543         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2544 }
2545
2546 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2547 {
2548         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2549
2550         /* Userspace is changing the multiplier while L2 is active */
2551         if (is_guest_mode(vcpu))
2552                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2553                         l1_multiplier,
2554                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2555         else
2556                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2557
2558         if (kvm_has_tsc_control)
2559                 static_call(kvm_x86_write_tsc_multiplier)(
2560                         vcpu, vcpu->arch.tsc_scaling_ratio);
2561 }
2562
2563 static inline bool kvm_check_tsc_unstable(void)
2564 {
2565 #ifdef CONFIG_X86_64
2566         /*
2567          * TSC is marked unstable when we're running on Hyper-V,
2568          * 'TSC page' clocksource is good.
2569          */
2570         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2571                 return false;
2572 #endif
2573         return check_tsc_unstable();
2574 }
2575
2576 /*
2577  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2578  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2579  * participates in.
2580  */
2581 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2582                                   u64 ns, bool matched)
2583 {
2584         struct kvm *kvm = vcpu->kvm;
2585
2586         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2587
2588         /*
2589          * We also track th most recent recorded KHZ, write and time to
2590          * allow the matching interval to be extended at each write.
2591          */
2592         kvm->arch.last_tsc_nsec = ns;
2593         kvm->arch.last_tsc_write = tsc;
2594         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2595         kvm->arch.last_tsc_offset = offset;
2596
2597         vcpu->arch.last_guest_tsc = tsc;
2598
2599         kvm_vcpu_write_tsc_offset(vcpu, offset);
2600
2601         if (!matched) {
2602                 /*
2603                  * We split periods of matched TSC writes into generations.
2604                  * For each generation, we track the original measured
2605                  * nanosecond time, offset, and write, so if TSCs are in
2606                  * sync, we can match exact offset, and if not, we can match
2607                  * exact software computation in compute_guest_tsc()
2608                  *
2609                  * These values are tracked in kvm->arch.cur_xxx variables.
2610                  */
2611                 kvm->arch.cur_tsc_generation++;
2612                 kvm->arch.cur_tsc_nsec = ns;
2613                 kvm->arch.cur_tsc_write = tsc;
2614                 kvm->arch.cur_tsc_offset = offset;
2615                 kvm->arch.nr_vcpus_matched_tsc = 0;
2616         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2617                 kvm->arch.nr_vcpus_matched_tsc++;
2618         }
2619
2620         /* Keep track of which generation this VCPU has synchronized to */
2621         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2622         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2623         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2624
2625         kvm_track_tsc_matching(vcpu);
2626 }
2627
2628 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2629 {
2630         struct kvm *kvm = vcpu->kvm;
2631         u64 offset, ns, elapsed;
2632         unsigned long flags;
2633         bool matched = false;
2634         bool synchronizing = false;
2635
2636         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2637         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2638         ns = get_kvmclock_base_ns();
2639         elapsed = ns - kvm->arch.last_tsc_nsec;
2640
2641         if (vcpu->arch.virtual_tsc_khz) {
2642                 if (data == 0) {
2643                         /*
2644                          * detection of vcpu initialization -- need to sync
2645                          * with other vCPUs. This particularly helps to keep
2646                          * kvm_clock stable after CPU hotplug
2647                          */
2648                         synchronizing = true;
2649                 } else {
2650                         u64 tsc_exp = kvm->arch.last_tsc_write +
2651                                                 nsec_to_cycles(vcpu, elapsed);
2652                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2653                         /*
2654                          * Special case: TSC write with a small delta (1 second)
2655                          * of virtual cycle time against real time is
2656                          * interpreted as an attempt to synchronize the CPU.
2657                          */
2658                         synchronizing = data < tsc_exp + tsc_hz &&
2659                                         data + tsc_hz > tsc_exp;
2660                 }
2661         }
2662
2663         /*
2664          * For a reliable TSC, we can match TSC offsets, and for an unstable
2665          * TSC, we add elapsed time in this computation.  We could let the
2666          * compensation code attempt to catch up if we fall behind, but
2667          * it's better to try to match offsets from the beginning.
2668          */
2669         if (synchronizing &&
2670             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2671                 if (!kvm_check_tsc_unstable()) {
2672                         offset = kvm->arch.cur_tsc_offset;
2673                 } else {
2674                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2675                         data += delta;
2676                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2677                 }
2678                 matched = true;
2679         }
2680
2681         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2682         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2683 }
2684
2685 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2686                                            s64 adjustment)
2687 {
2688         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2689         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2690 }
2691
2692 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2693 {
2694         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2695                 WARN_ON(adjustment < 0);
2696         adjustment = kvm_scale_tsc((u64) adjustment,
2697                                    vcpu->arch.l1_tsc_scaling_ratio);
2698         adjust_tsc_offset_guest(vcpu, adjustment);
2699 }
2700
2701 #ifdef CONFIG_X86_64
2702
2703 static u64 read_tsc(void)
2704 {
2705         u64 ret = (u64)rdtsc_ordered();
2706         u64 last = pvclock_gtod_data.clock.cycle_last;
2707
2708         if (likely(ret >= last))
2709                 return ret;
2710
2711         /*
2712          * GCC likes to generate cmov here, but this branch is extremely
2713          * predictable (it's just a function of time and the likely is
2714          * very likely) and there's a data dependence, so force GCC
2715          * to generate a branch instead.  I don't barrier() because
2716          * we don't actually need a barrier, and if this function
2717          * ever gets inlined it will generate worse code.
2718          */
2719         asm volatile ("");
2720         return last;
2721 }
2722
2723 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2724                           int *mode)
2725 {
2726         long v;
2727         u64 tsc_pg_val;
2728
2729         switch (clock->vclock_mode) {
2730         case VDSO_CLOCKMODE_HVCLOCK:
2731                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2732                                                   tsc_timestamp);
2733                 if (tsc_pg_val != U64_MAX) {
2734                         /* TSC page valid */
2735                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2736                         v = (tsc_pg_val - clock->cycle_last) &
2737                                 clock->mask;
2738                 } else {
2739                         /* TSC page invalid */
2740                         *mode = VDSO_CLOCKMODE_NONE;
2741                 }
2742                 break;
2743         case VDSO_CLOCKMODE_TSC:
2744                 *mode = VDSO_CLOCKMODE_TSC;
2745                 *tsc_timestamp = read_tsc();
2746                 v = (*tsc_timestamp - clock->cycle_last) &
2747                         clock->mask;
2748                 break;
2749         default:
2750                 *mode = VDSO_CLOCKMODE_NONE;
2751         }
2752
2753         if (*mode == VDSO_CLOCKMODE_NONE)
2754                 *tsc_timestamp = v = 0;
2755
2756         return v * clock->mult;
2757 }
2758
2759 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2760 {
2761         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2762         unsigned long seq;
2763         int mode;
2764         u64 ns;
2765
2766         do {
2767                 seq = read_seqcount_begin(&gtod->seq);
2768                 ns = gtod->raw_clock.base_cycles;
2769                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2770                 ns >>= gtod->raw_clock.shift;
2771                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2772         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2773         *t = ns;
2774
2775         return mode;
2776 }
2777
2778 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2779 {
2780         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2781         unsigned long seq;
2782         int mode;
2783         u64 ns;
2784
2785         do {
2786                 seq = read_seqcount_begin(&gtod->seq);
2787                 ts->tv_sec = gtod->wall_time_sec;
2788                 ns = gtod->clock.base_cycles;
2789                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2790                 ns >>= gtod->clock.shift;
2791         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2792
2793         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2794         ts->tv_nsec = ns;
2795
2796         return mode;
2797 }
2798
2799 /* returns true if host is using TSC based clocksource */
2800 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2801 {
2802         /* checked again under seqlock below */
2803         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2804                 return false;
2805
2806         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2807                                                       tsc_timestamp));
2808 }
2809
2810 /* returns true if host is using TSC based clocksource */
2811 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2812                                            u64 *tsc_timestamp)
2813 {
2814         /* checked again under seqlock below */
2815         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2816                 return false;
2817
2818         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2819 }
2820 #endif
2821
2822 /*
2823  *
2824  * Assuming a stable TSC across physical CPUS, and a stable TSC
2825  * across virtual CPUs, the following condition is possible.
2826  * Each numbered line represents an event visible to both
2827  * CPUs at the next numbered event.
2828  *
2829  * "timespecX" represents host monotonic time. "tscX" represents
2830  * RDTSC value.
2831  *
2832  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2833  *
2834  * 1.  read timespec0,tsc0
2835  * 2.                                   | timespec1 = timespec0 + N
2836  *                                      | tsc1 = tsc0 + M
2837  * 3. transition to guest               | transition to guest
2838  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2839  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2840  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2841  *
2842  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2843  *
2844  *      - ret0 < ret1
2845  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2846  *              ...
2847  *      - 0 < N - M => M < N
2848  *
2849  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2850  * always the case (the difference between two distinct xtime instances
2851  * might be smaller then the difference between corresponding TSC reads,
2852  * when updating guest vcpus pvclock areas).
2853  *
2854  * To avoid that problem, do not allow visibility of distinct
2855  * system_timestamp/tsc_timestamp values simultaneously: use a master
2856  * copy of host monotonic time values. Update that master copy
2857  * in lockstep.
2858  *
2859  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2860  *
2861  */
2862
2863 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2864 {
2865 #ifdef CONFIG_X86_64
2866         struct kvm_arch *ka = &kvm->arch;
2867         int vclock_mode;
2868         bool host_tsc_clocksource, vcpus_matched;
2869
2870         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2871         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2872                         atomic_read(&kvm->online_vcpus));
2873
2874         /*
2875          * If the host uses TSC clock, then passthrough TSC as stable
2876          * to the guest.
2877          */
2878         host_tsc_clocksource = kvm_get_time_and_clockread(
2879                                         &ka->master_kernel_ns,
2880                                         &ka->master_cycle_now);
2881
2882         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2883                                 && !ka->backwards_tsc_observed
2884                                 && !ka->boot_vcpu_runs_old_kvmclock;
2885
2886         if (ka->use_master_clock)
2887                 atomic_set(&kvm_guest_has_master_clock, 1);
2888
2889         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2890         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2891                                         vcpus_matched);
2892 #endif
2893 }
2894
2895 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2896 {
2897         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2898 }
2899
2900 static void __kvm_start_pvclock_update(struct kvm *kvm)
2901 {
2902         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2903         write_seqcount_begin(&kvm->arch.pvclock_sc);
2904 }
2905
2906 static void kvm_start_pvclock_update(struct kvm *kvm)
2907 {
2908         kvm_make_mclock_inprogress_request(kvm);
2909
2910         /* no guest entries from this point */
2911         __kvm_start_pvclock_update(kvm);
2912 }
2913
2914 static void kvm_end_pvclock_update(struct kvm *kvm)
2915 {
2916         struct kvm_arch *ka = &kvm->arch;
2917         struct kvm_vcpu *vcpu;
2918         unsigned long i;
2919
2920         write_seqcount_end(&ka->pvclock_sc);
2921         raw_spin_unlock_irq(&ka->tsc_write_lock);
2922         kvm_for_each_vcpu(i, vcpu, kvm)
2923                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2924
2925         /* guest entries allowed */
2926         kvm_for_each_vcpu(i, vcpu, kvm)
2927                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2928 }
2929
2930 static void kvm_update_masterclock(struct kvm *kvm)
2931 {
2932         kvm_hv_request_tsc_page_update(kvm);
2933         kvm_start_pvclock_update(kvm);
2934         pvclock_update_vm_gtod_copy(kvm);
2935         kvm_end_pvclock_update(kvm);
2936 }
2937
2938 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2939 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2940 {
2941         struct kvm_arch *ka = &kvm->arch;
2942         struct pvclock_vcpu_time_info hv_clock;
2943
2944         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2945         get_cpu();
2946
2947         data->flags = 0;
2948         if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2949 #ifdef CONFIG_X86_64
2950                 struct timespec64 ts;
2951
2952                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2953                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2954                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2955                 } else
2956 #endif
2957                 data->host_tsc = rdtsc();
2958
2959                 data->flags |= KVM_CLOCK_TSC_STABLE;
2960                 hv_clock.tsc_timestamp = ka->master_cycle_now;
2961                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2962                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2963                                    &hv_clock.tsc_shift,
2964                                    &hv_clock.tsc_to_system_mul);
2965                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2966         } else {
2967                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2968         }
2969
2970         put_cpu();
2971 }
2972
2973 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2974 {
2975         struct kvm_arch *ka = &kvm->arch;
2976         unsigned seq;
2977
2978         do {
2979                 seq = read_seqcount_begin(&ka->pvclock_sc);
2980                 __get_kvmclock(kvm, data);
2981         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2982 }
2983
2984 u64 get_kvmclock_ns(struct kvm *kvm)
2985 {
2986         struct kvm_clock_data data;
2987
2988         get_kvmclock(kvm, &data);
2989         return data.clock;
2990 }
2991
2992 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
2993                                     struct gfn_to_pfn_cache *gpc,
2994                                     unsigned int offset)
2995 {
2996         struct kvm_vcpu_arch *vcpu = &v->arch;
2997         struct pvclock_vcpu_time_info *guest_hv_clock;
2998         unsigned long flags;
2999
3000         read_lock_irqsave(&gpc->lock, flags);
3001         while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3002                                            offset + sizeof(*guest_hv_clock))) {
3003                 read_unlock_irqrestore(&gpc->lock, flags);
3004
3005                 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3006                                                  offset + sizeof(*guest_hv_clock)))
3007                         return;
3008
3009                 read_lock_irqsave(&gpc->lock, flags);
3010         }
3011
3012         guest_hv_clock = (void *)(gpc->khva + offset);
3013
3014         /*
3015          * This VCPU is paused, but it's legal for a guest to read another
3016          * VCPU's kvmclock, so we really have to follow the specification where
3017          * it says that version is odd if data is being modified, and even after
3018          * it is consistent.
3019          */
3020
3021         guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3022         smp_wmb();
3023
3024         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3025         vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3026
3027         if (vcpu->pvclock_set_guest_stopped_request) {
3028                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3029                 vcpu->pvclock_set_guest_stopped_request = false;
3030         }
3031
3032         memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3033         smp_wmb();
3034
3035         guest_hv_clock->version = ++vcpu->hv_clock.version;
3036
3037         mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3038         read_unlock_irqrestore(&gpc->lock, flags);
3039
3040         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3041 }
3042
3043 static int kvm_guest_time_update(struct kvm_vcpu *v)
3044 {
3045         unsigned long flags, tgt_tsc_khz;
3046         unsigned seq;
3047         struct kvm_vcpu_arch *vcpu = &v->arch;
3048         struct kvm_arch *ka = &v->kvm->arch;
3049         s64 kernel_ns;
3050         u64 tsc_timestamp, host_tsc;
3051         u8 pvclock_flags;
3052         bool use_master_clock;
3053
3054         kernel_ns = 0;
3055         host_tsc = 0;
3056
3057         /*
3058          * If the host uses TSC clock, then passthrough TSC as stable
3059          * to the guest.
3060          */
3061         do {
3062                 seq = read_seqcount_begin(&ka->pvclock_sc);
3063                 use_master_clock = ka->use_master_clock;
3064                 if (use_master_clock) {
3065                         host_tsc = ka->master_cycle_now;
3066                         kernel_ns = ka->master_kernel_ns;
3067                 }
3068         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3069
3070         /* Keep irq disabled to prevent changes to the clock */
3071         local_irq_save(flags);
3072         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3073         if (unlikely(tgt_tsc_khz == 0)) {
3074                 local_irq_restore(flags);
3075                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3076                 return 1;
3077         }
3078         if (!use_master_clock) {
3079                 host_tsc = rdtsc();
3080                 kernel_ns = get_kvmclock_base_ns();
3081         }
3082
3083         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3084
3085         /*
3086          * We may have to catch up the TSC to match elapsed wall clock
3087          * time for two reasons, even if kvmclock is used.
3088          *   1) CPU could have been running below the maximum TSC rate
3089          *   2) Broken TSC compensation resets the base at each VCPU
3090          *      entry to avoid unknown leaps of TSC even when running
3091          *      again on the same CPU.  This may cause apparent elapsed
3092          *      time to disappear, and the guest to stand still or run
3093          *      very slowly.
3094          */
3095         if (vcpu->tsc_catchup) {
3096                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3097                 if (tsc > tsc_timestamp) {
3098                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3099                         tsc_timestamp = tsc;
3100                 }
3101         }
3102
3103         local_irq_restore(flags);
3104
3105         /* With all the info we got, fill in the values */
3106
3107         if (kvm_has_tsc_control)
3108                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3109                                             v->arch.l1_tsc_scaling_ratio);
3110
3111         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3112                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3113                                    &vcpu->hv_clock.tsc_shift,
3114                                    &vcpu->hv_clock.tsc_to_system_mul);
3115                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3116         }
3117
3118         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3119         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3120         vcpu->last_guest_tsc = tsc_timestamp;
3121
3122         /* If the host uses TSC clocksource, then it is stable */
3123         pvclock_flags = 0;
3124         if (use_master_clock)
3125                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3126
3127         vcpu->hv_clock.flags = pvclock_flags;
3128
3129         if (vcpu->pv_time.active)
3130                 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3131         if (vcpu->xen.vcpu_info_cache.active)
3132                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3133                                         offsetof(struct compat_vcpu_info, time));
3134         if (vcpu->xen.vcpu_time_info_cache.active)
3135                 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3136         kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3137         return 0;
3138 }
3139
3140 /*
3141  * kvmclock updates which are isolated to a given vcpu, such as
3142  * vcpu->cpu migration, should not allow system_timestamp from
3143  * the rest of the vcpus to remain static. Otherwise ntp frequency
3144  * correction applies to one vcpu's system_timestamp but not
3145  * the others.
3146  *
3147  * So in those cases, request a kvmclock update for all vcpus.
3148  * We need to rate-limit these requests though, as they can
3149  * considerably slow guests that have a large number of vcpus.
3150  * The time for a remote vcpu to update its kvmclock is bound
3151  * by the delay we use to rate-limit the updates.
3152  */
3153
3154 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3155
3156 static void kvmclock_update_fn(struct work_struct *work)
3157 {
3158         unsigned long i;
3159         struct delayed_work *dwork = to_delayed_work(work);
3160         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3161                                            kvmclock_update_work);
3162         struct kvm *kvm = container_of(ka, struct kvm, arch);
3163         struct kvm_vcpu *vcpu;
3164
3165         kvm_for_each_vcpu(i, vcpu, kvm) {
3166                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3167                 kvm_vcpu_kick(vcpu);
3168         }
3169 }
3170
3171 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3172 {
3173         struct kvm *kvm = v->kvm;
3174
3175         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3176         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3177                                         KVMCLOCK_UPDATE_DELAY);
3178 }
3179
3180 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3181
3182 static void kvmclock_sync_fn(struct work_struct *work)
3183 {
3184         struct delayed_work *dwork = to_delayed_work(work);
3185         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3186                                            kvmclock_sync_work);
3187         struct kvm *kvm = container_of(ka, struct kvm, arch);
3188
3189         if (!kvmclock_periodic_sync)
3190                 return;
3191
3192         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3193         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3194                                         KVMCLOCK_SYNC_PERIOD);
3195 }
3196
3197 /*
3198  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3199  */
3200 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3201 {
3202         /* McStatusWrEn enabled? */
3203         if (guest_cpuid_is_amd_or_hygon(vcpu))
3204                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3205
3206         return false;
3207 }
3208
3209 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3210 {
3211         u64 mcg_cap = vcpu->arch.mcg_cap;
3212         unsigned bank_num = mcg_cap & 0xff;
3213         u32 msr = msr_info->index;
3214         u64 data = msr_info->data;
3215
3216         switch (msr) {
3217         case MSR_IA32_MCG_STATUS:
3218                 vcpu->arch.mcg_status = data;
3219                 break;
3220         case MSR_IA32_MCG_CTL:
3221                 if (!(mcg_cap & MCG_CTL_P) &&
3222                     (data || !msr_info->host_initiated))
3223                         return 1;
3224                 if (data != 0 && data != ~(u64)0)
3225                         return 1;
3226                 vcpu->arch.mcg_ctl = data;
3227                 break;
3228         default:
3229                 if (msr >= MSR_IA32_MC0_CTL &&
3230                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3231                         u32 offset = array_index_nospec(
3232                                 msr - MSR_IA32_MC0_CTL,
3233                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3234
3235                         /* only 0 or all 1s can be written to IA32_MCi_CTL
3236                          * some Linux kernels though clear bit 10 in bank 4 to
3237                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3238                          * this to avoid an uncatched #GP in the guest.
3239                          *
3240                          * UNIXWARE clears bit 0 of MC1_CTL to ignore
3241                          * correctable, single-bit ECC data errors.
3242                          */
3243                         if ((offset & 0x3) == 0 &&
3244                             data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3245                                 return -1;
3246
3247                         /* MCi_STATUS */
3248                         if (!msr_info->host_initiated &&
3249                             (offset & 0x3) == 1 && data != 0) {
3250                                 if (!can_set_mci_status(vcpu))
3251                                         return -1;
3252                         }
3253
3254                         vcpu->arch.mce_banks[offset] = data;
3255                         break;
3256                 }
3257                 return 1;
3258         }
3259         return 0;
3260 }
3261
3262 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3263 {
3264         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3265
3266         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3267 }
3268
3269 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3270 {
3271         gpa_t gpa = data & ~0x3f;
3272
3273         /* Bits 4:5 are reserved, Should be zero */
3274         if (data & 0x30)
3275                 return 1;
3276
3277         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3278             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3279                 return 1;
3280
3281         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3282             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3283                 return 1;
3284
3285         if (!lapic_in_kernel(vcpu))
3286                 return data ? 1 : 0;
3287
3288         vcpu->arch.apf.msr_en_val = data;
3289
3290         if (!kvm_pv_async_pf_enabled(vcpu)) {
3291                 kvm_clear_async_pf_completion_queue(vcpu);
3292                 kvm_async_pf_hash_reset(vcpu);
3293                 return 0;
3294         }
3295
3296         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3297                                         sizeof(u64)))
3298                 return 1;
3299
3300         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3301         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3302
3303         kvm_async_pf_wakeup_all(vcpu);
3304
3305         return 0;
3306 }
3307
3308 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3309 {
3310         /* Bits 8-63 are reserved */
3311         if (data >> 8)
3312                 return 1;
3313
3314         if (!lapic_in_kernel(vcpu))
3315                 return 1;
3316
3317         vcpu->arch.apf.msr_int_val = data;
3318
3319         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3320
3321         return 0;
3322 }
3323
3324 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3325 {
3326         kvm_gfn_to_pfn_cache_destroy(vcpu->kvm, &vcpu->arch.pv_time);
3327         vcpu->arch.time = 0;
3328 }
3329
3330 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3331 {
3332         ++vcpu->stat.tlb_flush;
3333         static_call(kvm_x86_flush_tlb_all)(vcpu);
3334 }
3335
3336 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3337 {
3338         ++vcpu->stat.tlb_flush;
3339
3340         if (!tdp_enabled) {
3341                 /*
3342                  * A TLB flush on behalf of the guest is equivalent to
3343                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3344                  * a forced sync of the shadow page tables.  Ensure all the
3345                  * roots are synced and the guest TLB in hardware is clean.
3346                  */
3347                 kvm_mmu_sync_roots(vcpu);
3348                 kvm_mmu_sync_prev_roots(vcpu);
3349         }
3350
3351         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3352 }
3353
3354
3355 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3356 {
3357         ++vcpu->stat.tlb_flush;
3358         static_call(kvm_x86_flush_tlb_current)(vcpu);
3359 }
3360
3361 /*
3362  * Service "local" TLB flush requests, which are specific to the current MMU
3363  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3364  * TLB flushes that are targeted at an MMU context also need to be serviced
3365  * prior before nested VM-Enter/VM-Exit.
3366  */
3367 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3368 {
3369         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3370                 kvm_vcpu_flush_tlb_current(vcpu);
3371
3372         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3373                 kvm_vcpu_flush_tlb_guest(vcpu);
3374 }
3375 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3376
3377 static void record_steal_time(struct kvm_vcpu *vcpu)
3378 {
3379         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3380         struct kvm_steal_time __user *st;
3381         struct kvm_memslots *slots;
3382         u64 steal;
3383         u32 version;
3384
3385         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3386                 kvm_xen_runstate_set_running(vcpu);
3387                 return;
3388         }
3389
3390         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3391                 return;
3392
3393         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3394                 return;
3395
3396         slots = kvm_memslots(vcpu->kvm);
3397
3398         if (unlikely(slots->generation != ghc->generation ||
3399                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3400                 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3401
3402                 /* We rely on the fact that it fits in a single page. */
3403                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3404
3405                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3406                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3407                         return;
3408         }
3409
3410         st = (struct kvm_steal_time __user *)ghc->hva;
3411         /*
3412          * Doing a TLB flush here, on the guest's behalf, can avoid
3413          * expensive IPIs.
3414          */
3415         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3416                 u8 st_preempted = 0;
3417                 int err = -EFAULT;
3418
3419                 if (!user_access_begin(st, sizeof(*st)))
3420                         return;
3421
3422                 asm volatile("1: xchgb %0, %2\n"
3423                              "xor %1, %1\n"
3424                              "2:\n"
3425                              _ASM_EXTABLE_UA(1b, 2b)
3426                              : "+q" (st_preempted),
3427                                "+&r" (err),
3428                                "+m" (st->preempted));
3429                 if (err)
3430                         goto out;
3431
3432                 user_access_end();
3433
3434                 vcpu->arch.st.preempted = 0;
3435
3436                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3437                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3438                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3439                         kvm_vcpu_flush_tlb_guest(vcpu);
3440
3441                 if (!user_access_begin(st, sizeof(*st)))
3442                         goto dirty;
3443         } else {
3444                 if (!user_access_begin(st, sizeof(*st)))
3445                         return;
3446
3447                 unsafe_put_user(0, &st->preempted, out);
3448                 vcpu->arch.st.preempted = 0;
3449         }
3450
3451         unsafe_get_user(version, &st->version, out);
3452         if (version & 1)
3453                 version += 1;  /* first time write, random junk */
3454
3455         version += 1;
3456         unsafe_put_user(version, &st->version, out);
3457
3458         smp_wmb();
3459
3460         unsafe_get_user(steal, &st->steal, out);
3461         steal += current->sched_info.run_delay -
3462                 vcpu->arch.st.last_steal;
3463         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3464         unsafe_put_user(steal, &st->steal, out);
3465
3466         version += 1;
3467         unsafe_put_user(version, &st->version, out);
3468
3469  out:
3470         user_access_end();
3471  dirty:
3472         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3473 }
3474
3475 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3476 {
3477         bool pr = false;
3478         u32 msr = msr_info->index;
3479         u64 data = msr_info->data;
3480
3481         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3482                 return kvm_xen_write_hypercall_page(vcpu, data);
3483
3484         switch (msr) {
3485         case MSR_AMD64_NB_CFG:
3486         case MSR_IA32_UCODE_WRITE:
3487         case MSR_VM_HSAVE_PA:
3488         case MSR_AMD64_PATCH_LOADER:
3489         case MSR_AMD64_BU_CFG2:
3490         case MSR_AMD64_DC_CFG:
3491         case MSR_F15H_EX_CFG:
3492                 break;
3493
3494         case MSR_IA32_UCODE_REV:
3495                 if (msr_info->host_initiated)
3496                         vcpu->arch.microcode_version = data;
3497                 break;
3498         case MSR_IA32_ARCH_CAPABILITIES:
3499                 if (!msr_info->host_initiated)
3500                         return 1;
3501                 vcpu->arch.arch_capabilities = data;
3502                 break;
3503         case MSR_IA32_PERF_CAPABILITIES: {
3504                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3505
3506                 if (!msr_info->host_initiated)
3507                         return 1;
3508                 if (kvm_get_msr_feature(&msr_ent))
3509                         return 1;
3510                 if (data & ~msr_ent.data)
3511                         return 1;
3512
3513                 vcpu->arch.perf_capabilities = data;
3514
3515                 return 0;
3516                 }
3517         case MSR_EFER:
3518                 return set_efer(vcpu, msr_info);
3519         case MSR_K7_HWCR:
3520                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3521                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3522                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3523
3524                 /* Handle McStatusWrEn */
3525                 if (data == BIT_ULL(18)) {
3526                         vcpu->arch.msr_hwcr = data;
3527                 } else if (data != 0) {
3528                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3529                                     data);
3530                         return 1;
3531                 }
3532                 break;
3533         case MSR_FAM10H_MMIO_CONF_BASE:
3534                 if (data != 0) {
3535                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3536                                     "0x%llx\n", data);
3537                         return 1;
3538                 }
3539                 break;
3540         case 0x200 ... 0x2ff:
3541                 return kvm_mtrr_set_msr(vcpu, msr, data);
3542         case MSR_IA32_APICBASE:
3543                 return kvm_set_apic_base(vcpu, msr_info);
3544         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3545                 return kvm_x2apic_msr_write(vcpu, msr, data);
3546         case MSR_IA32_TSC_DEADLINE:
3547                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3548                 break;
3549         case MSR_IA32_TSC_ADJUST:
3550                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3551                         if (!msr_info->host_initiated) {
3552                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3553                                 adjust_tsc_offset_guest(vcpu, adj);
3554                                 /* Before back to guest, tsc_timestamp must be adjusted
3555                                  * as well, otherwise guest's percpu pvclock time could jump.
3556                                  */
3557                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3558                         }
3559                         vcpu->arch.ia32_tsc_adjust_msr = data;
3560                 }
3561                 break;
3562         case MSR_IA32_MISC_ENABLE: {
3563                 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3564                 u64 pmu_mask = MSR_IA32_MISC_ENABLE_EMON;
3565
3566                 /*
3567                  * For a dummy user space, the order of setting vPMU capabilities and
3568                  * initialising MSR_IA32_MISC_ENABLE is not strictly guaranteed, so to
3569                  * avoid inconsistent functionality we keep the vPMU bits unchanged here.
3570                  */
3571                 data &= ~pmu_mask;
3572                 data |= old_val & pmu_mask;
3573                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3574                     ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3575                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3576                                 return 1;
3577                         vcpu->arch.ia32_misc_enable_msr = data;
3578                         kvm_update_cpuid_runtime(vcpu);
3579                 } else {
3580                         vcpu->arch.ia32_misc_enable_msr = data;
3581                 }
3582                 break;
3583         }
3584         case MSR_IA32_SMBASE:
3585                 if (!msr_info->host_initiated)
3586                         return 1;
3587                 vcpu->arch.smbase = data;
3588                 break;
3589         case MSR_IA32_POWER_CTL:
3590                 vcpu->arch.msr_ia32_power_ctl = data;
3591                 break;
3592         case MSR_IA32_TSC:
3593                 if (msr_info->host_initiated) {
3594                         kvm_synchronize_tsc(vcpu, data);
3595                 } else {
3596                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3597                         adjust_tsc_offset_guest(vcpu, adj);
3598                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3599                 }
3600                 break;
3601         case MSR_IA32_XSS:
3602                 if (!msr_info->host_initiated &&
3603                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3604                         return 1;
3605                 /*
3606                  * KVM supports exposing PT to the guest, but does not support
3607                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3608                  * XSAVES/XRSTORS to save/restore PT MSRs.
3609                  */
3610                 if (data & ~supported_xss)
3611                         return 1;
3612                 vcpu->arch.ia32_xss = data;
3613                 kvm_update_cpuid_runtime(vcpu);
3614                 break;
3615         case MSR_SMI_COUNT:
3616                 if (!msr_info->host_initiated)
3617                         return 1;
3618                 vcpu->arch.smi_count = data;
3619                 break;
3620         case MSR_KVM_WALL_CLOCK_NEW:
3621                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3622                         return 1;
3623
3624                 vcpu->kvm->arch.wall_clock = data;
3625                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3626                 break;
3627         case MSR_KVM_WALL_CLOCK:
3628                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3629                         return 1;
3630
3631                 vcpu->kvm->arch.wall_clock = data;
3632                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3633                 break;
3634         case MSR_KVM_SYSTEM_TIME_NEW:
3635                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3636                         return 1;
3637
3638                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3639                 break;
3640         case MSR_KVM_SYSTEM_TIME:
3641                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3642                         return 1;
3643
3644                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3645                 break;
3646         case MSR_KVM_ASYNC_PF_EN:
3647                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3648                         return 1;
3649
3650                 if (kvm_pv_enable_async_pf(vcpu, data))
3651                         return 1;
3652                 break;
3653         case MSR_KVM_ASYNC_PF_INT:
3654                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3655                         return 1;
3656
3657                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3658                         return 1;
3659                 break;
3660         case MSR_KVM_ASYNC_PF_ACK:
3661                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3662                         return 1;
3663                 if (data & 0x1) {
3664                         vcpu->arch.apf.pageready_pending = false;
3665                         kvm_check_async_pf_completion(vcpu);
3666                 }
3667                 break;
3668         case MSR_KVM_STEAL_TIME:
3669                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3670                         return 1;
3671
3672                 if (unlikely(!sched_info_on()))
3673                         return 1;
3674
3675                 if (data & KVM_STEAL_RESERVED_MASK)
3676                         return 1;
3677
3678                 vcpu->arch.st.msr_val = data;
3679
3680                 if (!(data & KVM_MSR_ENABLED))
3681                         break;
3682
3683                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3684
3685                 break;
3686         case MSR_KVM_PV_EOI_EN:
3687                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3688                         return 1;
3689
3690                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3691                         return 1;
3692                 break;
3693
3694         case MSR_KVM_POLL_CONTROL:
3695                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3696                         return 1;
3697
3698                 /* only enable bit supported */
3699                 if (data & (-1ULL << 1))
3700                         return 1;
3701
3702                 vcpu->arch.msr_kvm_poll_control = data;
3703                 break;
3704
3705         case MSR_IA32_MCG_CTL:
3706         case MSR_IA32_MCG_STATUS:
3707         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3708                 return set_msr_mce(vcpu, msr_info);
3709
3710         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3711         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3712                 pr = true;
3713                 fallthrough;
3714         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3715         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3716                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3717                         return kvm_pmu_set_msr(vcpu, msr_info);
3718
3719                 if (pr || data != 0)
3720                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3721                                     "0x%x data 0x%llx\n", msr, data);
3722                 break;
3723         case MSR_K7_CLK_CTL:
3724                 /*
3725                  * Ignore all writes to this no longer documented MSR.
3726                  * Writes are only relevant for old K7 processors,
3727                  * all pre-dating SVM, but a recommended workaround from
3728                  * AMD for these chips. It is possible to specify the
3729                  * affected processor models on the command line, hence
3730                  * the need to ignore the workaround.
3731                  */
3732                 break;
3733         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3734         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3735         case HV_X64_MSR_SYNDBG_OPTIONS:
3736         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3737         case HV_X64_MSR_CRASH_CTL:
3738         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3739         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3740         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3741         case HV_X64_MSR_TSC_EMULATION_STATUS:
3742                 return kvm_hv_set_msr_common(vcpu, msr, data,
3743                                              msr_info->host_initiated);
3744         case MSR_IA32_BBL_CR_CTL3:
3745                 /* Drop writes to this legacy MSR -- see rdmsr
3746                  * counterpart for further detail.
3747                  */
3748                 if (report_ignored_msrs)
3749                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3750                                 msr, data);
3751                 break;
3752         case MSR_AMD64_OSVW_ID_LENGTH:
3753                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3754                         return 1;
3755                 vcpu->arch.osvw.length = data;
3756                 break;
3757         case MSR_AMD64_OSVW_STATUS:
3758                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3759                         return 1;
3760                 vcpu->arch.osvw.status = data;
3761                 break;
3762         case MSR_PLATFORM_INFO:
3763                 if (!msr_info->host_initiated ||
3764                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3765                      cpuid_fault_enabled(vcpu)))
3766                         return 1;
3767                 vcpu->arch.msr_platform_info = data;
3768                 break;
3769         case MSR_MISC_FEATURES_ENABLES:
3770                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3771                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3772                      !supports_cpuid_fault(vcpu)))
3773                         return 1;
3774                 vcpu->arch.msr_misc_features_enables = data;
3775                 break;
3776 #ifdef CONFIG_X86_64
3777         case MSR_IA32_XFD:
3778                 if (!msr_info->host_initiated &&
3779                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3780                         return 1;
3781
3782                 if (data & ~kvm_guest_supported_xfd(vcpu))
3783                         return 1;
3784
3785                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3786                 break;
3787         case MSR_IA32_XFD_ERR:
3788                 if (!msr_info->host_initiated &&
3789                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3790                         return 1;
3791
3792                 if (data & ~kvm_guest_supported_xfd(vcpu))
3793                         return 1;
3794
3795                 vcpu->arch.guest_fpu.xfd_err = data;
3796                 break;
3797 #endif
3798         default:
3799                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3800                         return kvm_pmu_set_msr(vcpu, msr_info);
3801                 return KVM_MSR_RET_INVALID;
3802         }
3803         return 0;
3804 }
3805 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3806
3807 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3808 {
3809         u64 data;
3810         u64 mcg_cap = vcpu->arch.mcg_cap;
3811         unsigned bank_num = mcg_cap & 0xff;
3812
3813         switch (msr) {
3814         case MSR_IA32_P5_MC_ADDR:
3815         case MSR_IA32_P5_MC_TYPE:
3816                 data = 0;
3817                 break;
3818         case MSR_IA32_MCG_CAP:
3819                 data = vcpu->arch.mcg_cap;
3820                 break;
3821         case MSR_IA32_MCG_CTL:
3822                 if (!(mcg_cap & MCG_CTL_P) && !host)
3823                         return 1;
3824                 data = vcpu->arch.mcg_ctl;
3825                 break;
3826         case MSR_IA32_MCG_STATUS:
3827                 data = vcpu->arch.mcg_status;
3828                 break;
3829         default:
3830                 if (msr >= MSR_IA32_MC0_CTL &&
3831                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3832                         u32 offset = array_index_nospec(
3833                                 msr - MSR_IA32_MC0_CTL,
3834                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3835
3836                         data = vcpu->arch.mce_banks[offset];
3837                         break;
3838                 }
3839                 return 1;
3840         }
3841         *pdata = data;
3842         return 0;
3843 }
3844
3845 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3846 {
3847         switch (msr_info->index) {
3848         case MSR_IA32_PLATFORM_ID:
3849         case MSR_IA32_EBL_CR_POWERON:
3850         case MSR_IA32_LASTBRANCHFROMIP:
3851         case MSR_IA32_LASTBRANCHTOIP:
3852         case MSR_IA32_LASTINTFROMIP:
3853         case MSR_IA32_LASTINTTOIP:
3854         case MSR_AMD64_SYSCFG:
3855         case MSR_K8_TSEG_ADDR:
3856         case MSR_K8_TSEG_MASK:
3857         case MSR_VM_HSAVE_PA:
3858         case MSR_K8_INT_PENDING_MSG:
3859         case MSR_AMD64_NB_CFG:
3860         case MSR_FAM10H_MMIO_CONF_BASE:
3861         case MSR_AMD64_BU_CFG2:
3862         case MSR_IA32_PERF_CTL:
3863         case MSR_AMD64_DC_CFG:
3864         case MSR_F15H_EX_CFG:
3865         /*
3866          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3867          * limit) MSRs. Just return 0, as we do not want to expose the host
3868          * data here. Do not conditionalize this on CPUID, as KVM does not do
3869          * so for existing CPU-specific MSRs.
3870          */
3871         case MSR_RAPL_POWER_UNIT:
3872         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3873         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3874         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3875         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3876                 msr_info->data = 0;
3877                 break;
3878         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3879                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3880                         return kvm_pmu_get_msr(vcpu, msr_info);
3881                 if (!msr_info->host_initiated)
3882                         return 1;
3883                 msr_info->data = 0;
3884                 break;
3885         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3886         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3887         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3888         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3889                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3890                         return kvm_pmu_get_msr(vcpu, msr_info);
3891                 msr_info->data = 0;
3892                 break;
3893         case MSR_IA32_UCODE_REV:
3894                 msr_info->data = vcpu->arch.microcode_version;
3895                 break;
3896         case MSR_IA32_ARCH_CAPABILITIES:
3897                 if (!msr_info->host_initiated &&
3898                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3899                         return 1;
3900                 msr_info->data = vcpu->arch.arch_capabilities;
3901                 break;
3902         case MSR_IA32_PERF_CAPABILITIES:
3903                 if (!msr_info->host_initiated &&
3904                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3905                         return 1;
3906                 msr_info->data = vcpu->arch.perf_capabilities;
3907                 break;
3908         case MSR_IA32_POWER_CTL:
3909                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3910                 break;
3911         case MSR_IA32_TSC: {
3912                 /*
3913                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3914                  * even when not intercepted. AMD manual doesn't explicitly
3915                  * state this but appears to behave the same.
3916                  *
3917                  * On userspace reads and writes, however, we unconditionally
3918                  * return L1's TSC value to ensure backwards-compatible
3919                  * behavior for migration.
3920                  */
3921                 u64 offset, ratio;
3922
3923                 if (msr_info->host_initiated) {
3924                         offset = vcpu->arch.l1_tsc_offset;
3925                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
3926                 } else {
3927                         offset = vcpu->arch.tsc_offset;
3928                         ratio = vcpu->arch.tsc_scaling_ratio;
3929                 }
3930
3931                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3932                 break;
3933         }
3934         case MSR_MTRRcap:
3935         case 0x200 ... 0x2ff:
3936                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3937         case 0xcd: /* fsb frequency */
3938                 msr_info->data = 3;
3939                 break;
3940                 /*
3941                  * MSR_EBC_FREQUENCY_ID
3942                  * Conservative value valid for even the basic CPU models.
3943                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3944                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3945                  * and 266MHz for model 3, or 4. Set Core Clock
3946                  * Frequency to System Bus Frequency Ratio to 1 (bits
3947                  * 31:24) even though these are only valid for CPU
3948                  * models > 2, however guests may end up dividing or
3949                  * multiplying by zero otherwise.
3950                  */
3951         case MSR_EBC_FREQUENCY_ID:
3952                 msr_info->data = 1 << 24;
3953                 break;
3954         case MSR_IA32_APICBASE:
3955                 msr_info->data = kvm_get_apic_base(vcpu);
3956                 break;
3957         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3958                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3959         case MSR_IA32_TSC_DEADLINE:
3960                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3961                 break;
3962         case MSR_IA32_TSC_ADJUST:
3963                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3964                 break;
3965         case MSR_IA32_MISC_ENABLE:
3966                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3967                 break;
3968         case MSR_IA32_SMBASE:
3969                 if (!msr_info->host_initiated)
3970                         return 1;
3971                 msr_info->data = vcpu->arch.smbase;
3972                 break;
3973         case MSR_SMI_COUNT:
3974                 msr_info->data = vcpu->arch.smi_count;
3975                 break;
3976         case MSR_IA32_PERF_STATUS:
3977                 /* TSC increment by tick */
3978                 msr_info->data = 1000ULL;
3979                 /* CPU multiplier */
3980                 msr_info->data |= (((uint64_t)4ULL) << 40);
3981                 break;
3982         case MSR_EFER:
3983                 msr_info->data = vcpu->arch.efer;
3984                 break;
3985         case MSR_KVM_WALL_CLOCK:
3986                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3987                         return 1;
3988
3989                 msr_info->data = vcpu->kvm->arch.wall_clock;
3990                 break;
3991         case MSR_KVM_WALL_CLOCK_NEW:
3992                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3993                         return 1;
3994
3995                 msr_info->data = vcpu->kvm->arch.wall_clock;
3996                 break;
3997         case MSR_KVM_SYSTEM_TIME:
3998                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3999                         return 1;
4000
4001                 msr_info->data = vcpu->arch.time;
4002                 break;
4003         case MSR_KVM_SYSTEM_TIME_NEW:
4004                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4005                         return 1;
4006
4007                 msr_info->data = vcpu->arch.time;
4008                 break;
4009         case MSR_KVM_ASYNC_PF_EN:
4010                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4011                         return 1;
4012
4013                 msr_info->data = vcpu->arch.apf.msr_en_val;
4014                 break;
4015         case MSR_KVM_ASYNC_PF_INT:
4016                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4017                         return 1;
4018
4019                 msr_info->data = vcpu->arch.apf.msr_int_val;
4020                 break;
4021         case MSR_KVM_ASYNC_PF_ACK:
4022                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4023                         return 1;
4024
4025                 msr_info->data = 0;
4026                 break;
4027         case MSR_KVM_STEAL_TIME:
4028                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4029                         return 1;
4030
4031                 msr_info->data = vcpu->arch.st.msr_val;
4032                 break;
4033         case MSR_KVM_PV_EOI_EN:
4034                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4035                         return 1;
4036
4037                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4038                 break;
4039         case MSR_KVM_POLL_CONTROL:
4040                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4041                         return 1;
4042
4043                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4044                 break;
4045         case MSR_IA32_P5_MC_ADDR:
4046         case MSR_IA32_P5_MC_TYPE:
4047         case MSR_IA32_MCG_CAP:
4048         case MSR_IA32_MCG_CTL:
4049         case MSR_IA32_MCG_STATUS:
4050         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4051                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4052                                    msr_info->host_initiated);
4053         case MSR_IA32_XSS:
4054                 if (!msr_info->host_initiated &&
4055                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4056                         return 1;
4057                 msr_info->data = vcpu->arch.ia32_xss;
4058                 break;
4059         case MSR_K7_CLK_CTL:
4060                 /*
4061                  * Provide expected ramp-up count for K7. All other
4062                  * are set to zero, indicating minimum divisors for
4063                  * every field.
4064                  *
4065                  * This prevents guest kernels on AMD host with CPU
4066                  * type 6, model 8 and higher from exploding due to
4067                  * the rdmsr failing.
4068                  */
4069                 msr_info->data = 0x20000000;
4070                 break;
4071         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4072         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4073         case HV_X64_MSR_SYNDBG_OPTIONS:
4074         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4075         case HV_X64_MSR_CRASH_CTL:
4076         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4077         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4078         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4079         case HV_X64_MSR_TSC_EMULATION_STATUS:
4080                 return kvm_hv_get_msr_common(vcpu,
4081                                              msr_info->index, &msr_info->data,
4082                                              msr_info->host_initiated);
4083         case MSR_IA32_BBL_CR_CTL3:
4084                 /* This legacy MSR exists but isn't fully documented in current
4085                  * silicon.  It is however accessed by winxp in very narrow
4086                  * scenarios where it sets bit #19, itself documented as
4087                  * a "reserved" bit.  Best effort attempt to source coherent
4088                  * read data here should the balance of the register be
4089                  * interpreted by the guest:
4090                  *
4091                  * L2 cache control register 3: 64GB range, 256KB size,
4092                  * enabled, latency 0x1, configured
4093                  */
4094                 msr_info->data = 0xbe702111;
4095                 break;
4096         case MSR_AMD64_OSVW_ID_LENGTH:
4097                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4098                         return 1;
4099                 msr_info->data = vcpu->arch.osvw.length;
4100                 break;
4101         case MSR_AMD64_OSVW_STATUS:
4102                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4103                         return 1;
4104                 msr_info->data = vcpu->arch.osvw.status;
4105                 break;
4106         case MSR_PLATFORM_INFO:
4107                 if (!msr_info->host_initiated &&
4108                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4109                         return 1;
4110                 msr_info->data = vcpu->arch.msr_platform_info;
4111                 break;
4112         case MSR_MISC_FEATURES_ENABLES:
4113                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4114                 break;
4115         case MSR_K7_HWCR:
4116                 msr_info->data = vcpu->arch.msr_hwcr;
4117                 break;
4118 #ifdef CONFIG_X86_64
4119         case MSR_IA32_XFD:
4120                 if (!msr_info->host_initiated &&
4121                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4122                         return 1;
4123
4124                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4125                 break;
4126         case MSR_IA32_XFD_ERR:
4127                 if (!msr_info->host_initiated &&
4128                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4129                         return 1;
4130
4131                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4132                 break;
4133 #endif
4134         default:
4135                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4136                         return kvm_pmu_get_msr(vcpu, msr_info);
4137                 return KVM_MSR_RET_INVALID;
4138         }
4139         return 0;
4140 }
4141 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4142
4143 /*
4144  * Read or write a bunch of msrs. All parameters are kernel addresses.
4145  *
4146  * @return number of msrs set successfully.
4147  */
4148 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4149                     struct kvm_msr_entry *entries,
4150                     int (*do_msr)(struct kvm_vcpu *vcpu,
4151                                   unsigned index, u64 *data))
4152 {
4153         int i;
4154
4155         for (i = 0; i < msrs->nmsrs; ++i)
4156                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4157                         break;
4158
4159         return i;
4160 }
4161
4162 /*
4163  * Read or write a bunch of msrs. Parameters are user addresses.
4164  *
4165  * @return number of msrs set successfully.
4166  */
4167 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4168                   int (*do_msr)(struct kvm_vcpu *vcpu,
4169                                 unsigned index, u64 *data),
4170                   int writeback)
4171 {
4172         struct kvm_msrs msrs;
4173         struct kvm_msr_entry *entries;
4174         int r, n;
4175         unsigned size;
4176
4177         r = -EFAULT;
4178         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4179                 goto out;
4180
4181         r = -E2BIG;
4182         if (msrs.nmsrs >= MAX_IO_MSRS)
4183                 goto out;
4184
4185         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4186         entries = memdup_user(user_msrs->entries, size);
4187         if (IS_ERR(entries)) {
4188                 r = PTR_ERR(entries);
4189                 goto out;
4190         }
4191
4192         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4193         if (r < 0)
4194                 goto out_free;
4195
4196         r = -EFAULT;
4197         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4198                 goto out_free;
4199
4200         r = n;
4201
4202 out_free:
4203         kfree(entries);
4204 out:
4205         return r;
4206 }
4207
4208 static inline bool kvm_can_mwait_in_guest(void)
4209 {
4210         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4211                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4212                 boot_cpu_has(X86_FEATURE_ARAT);
4213 }
4214
4215 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4216                                             struct kvm_cpuid2 __user *cpuid_arg)
4217 {
4218         struct kvm_cpuid2 cpuid;
4219         int r;
4220
4221         r = -EFAULT;
4222         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4223                 return r;
4224
4225         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4226         if (r)
4227                 return r;
4228
4229         r = -EFAULT;
4230         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4231                 return r;
4232
4233         return 0;
4234 }
4235
4236 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4237 {
4238         int r = 0;
4239
4240         switch (ext) {
4241         case KVM_CAP_IRQCHIP:
4242         case KVM_CAP_HLT:
4243         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4244         case KVM_CAP_SET_TSS_ADDR:
4245         case KVM_CAP_EXT_CPUID:
4246         case KVM_CAP_EXT_EMUL_CPUID:
4247         case KVM_CAP_CLOCKSOURCE:
4248         case KVM_CAP_PIT:
4249         case KVM_CAP_NOP_IO_DELAY:
4250         case KVM_CAP_MP_STATE:
4251         case KVM_CAP_SYNC_MMU:
4252         case KVM_CAP_USER_NMI:
4253         case KVM_CAP_REINJECT_CONTROL:
4254         case KVM_CAP_IRQ_INJECT_STATUS:
4255         case KVM_CAP_IOEVENTFD:
4256         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4257         case KVM_CAP_PIT2:
4258         case KVM_CAP_PIT_STATE2:
4259         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4260         case KVM_CAP_VCPU_EVENTS:
4261         case KVM_CAP_HYPERV:
4262         case KVM_CAP_HYPERV_VAPIC:
4263         case KVM_CAP_HYPERV_SPIN:
4264         case KVM_CAP_HYPERV_SYNIC:
4265         case KVM_CAP_HYPERV_SYNIC2:
4266         case KVM_CAP_HYPERV_VP_INDEX:
4267         case KVM_CAP_HYPERV_EVENTFD:
4268         case KVM_CAP_HYPERV_TLBFLUSH:
4269         case KVM_CAP_HYPERV_SEND_IPI:
4270         case KVM_CAP_HYPERV_CPUID:
4271         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4272         case KVM_CAP_SYS_HYPERV_CPUID:
4273         case KVM_CAP_PCI_SEGMENT:
4274         case KVM_CAP_DEBUGREGS:
4275         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4276         case KVM_CAP_XSAVE:
4277         case KVM_CAP_ASYNC_PF:
4278         case KVM_CAP_ASYNC_PF_INT:
4279         case KVM_CAP_GET_TSC_KHZ:
4280         case KVM_CAP_KVMCLOCK_CTRL:
4281         case KVM_CAP_READONLY_MEM:
4282         case KVM_CAP_HYPERV_TIME:
4283         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4284         case KVM_CAP_TSC_DEADLINE_TIMER:
4285         case KVM_CAP_DISABLE_QUIRKS:
4286         case KVM_CAP_SET_BOOT_CPU_ID:
4287         case KVM_CAP_SPLIT_IRQCHIP:
4288         case KVM_CAP_IMMEDIATE_EXIT:
4289         case KVM_CAP_PMU_EVENT_FILTER:
4290         case KVM_CAP_GET_MSR_FEATURES:
4291         case KVM_CAP_MSR_PLATFORM_INFO:
4292         case KVM_CAP_EXCEPTION_PAYLOAD:
4293         case KVM_CAP_SET_GUEST_DEBUG:
4294         case KVM_CAP_LAST_CPU:
4295         case KVM_CAP_X86_USER_SPACE_MSR:
4296         case KVM_CAP_X86_MSR_FILTER:
4297         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4298 #ifdef CONFIG_X86_SGX_KVM
4299         case KVM_CAP_SGX_ATTRIBUTE:
4300 #endif
4301         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4302         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4303         case KVM_CAP_SREGS2:
4304         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4305         case KVM_CAP_VCPU_ATTRIBUTES:
4306         case KVM_CAP_SYS_ATTRIBUTES:
4307         case KVM_CAP_VAPIC:
4308         case KVM_CAP_ENABLE_CAP:
4309                 r = 1;
4310                 break;
4311         case KVM_CAP_EXIT_HYPERCALL:
4312                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4313                 break;
4314         case KVM_CAP_SET_GUEST_DEBUG2:
4315                 return KVM_GUESTDBG_VALID_MASK;
4316 #ifdef CONFIG_KVM_XEN
4317         case KVM_CAP_XEN_HVM:
4318                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4319                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4320                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4321                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4322                     KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4323                 if (sched_info_on())
4324                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4325                 break;
4326 #endif
4327         case KVM_CAP_SYNC_REGS:
4328                 r = KVM_SYNC_X86_VALID_FIELDS;
4329                 break;
4330         case KVM_CAP_ADJUST_CLOCK:
4331                 r = KVM_CLOCK_VALID_FLAGS;
4332                 break;
4333         case KVM_CAP_X86_DISABLE_EXITS:
4334                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4335                       KVM_X86_DISABLE_EXITS_CSTATE;
4336                 if(kvm_can_mwait_in_guest())
4337                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
4338                 break;
4339         case KVM_CAP_X86_SMM:
4340                 /* SMBASE is usually relocated above 1M on modern chipsets,
4341                  * and SMM handlers might indeed rely on 4G segment limits,
4342                  * so do not report SMM to be available if real mode is
4343                  * emulated via vm86 mode.  Still, do not go to great lengths
4344                  * to avoid userspace's usage of the feature, because it is a
4345                  * fringe case that is not enabled except via specific settings
4346                  * of the module parameters.
4347                  */
4348                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4349                 break;
4350         case KVM_CAP_NR_VCPUS:
4351                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4352                 break;
4353         case KVM_CAP_MAX_VCPUS:
4354                 r = KVM_MAX_VCPUS;
4355                 break;
4356         case KVM_CAP_MAX_VCPU_ID:
4357                 r = KVM_MAX_VCPU_IDS;
4358                 break;
4359         case KVM_CAP_PV_MMU:    /* obsolete */
4360                 r = 0;
4361                 break;
4362         case KVM_CAP_MCE:
4363                 r = KVM_MAX_MCE_BANKS;
4364                 break;
4365         case KVM_CAP_XCRS:
4366                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4367                 break;
4368         case KVM_CAP_TSC_CONTROL:
4369         case KVM_CAP_VM_TSC_CONTROL:
4370                 r = kvm_has_tsc_control;
4371                 break;
4372         case KVM_CAP_X2APIC_API:
4373                 r = KVM_X2APIC_API_VALID_FLAGS;
4374                 break;
4375         case KVM_CAP_NESTED_STATE:
4376                 r = kvm_x86_ops.nested_ops->get_state ?
4377                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4378                 break;
4379         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4380                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4381                 break;
4382         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4383                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4384                 break;
4385         case KVM_CAP_SMALLER_MAXPHYADDR:
4386                 r = (int) allow_smaller_maxphyaddr;
4387                 break;
4388         case KVM_CAP_STEAL_TIME:
4389                 r = sched_info_on();
4390                 break;
4391         case KVM_CAP_X86_BUS_LOCK_EXIT:
4392                 if (kvm_has_bus_lock_exit)
4393                         r = KVM_BUS_LOCK_DETECTION_OFF |
4394                             KVM_BUS_LOCK_DETECTION_EXIT;
4395                 else
4396                         r = 0;
4397                 break;
4398         case KVM_CAP_XSAVE2: {
4399                 u64 guest_perm = xstate_get_guest_group_perm();
4400
4401                 r = xstate_required_size(supported_xcr0 & guest_perm, false);
4402                 if (r < sizeof(struct kvm_xsave))
4403                         r = sizeof(struct kvm_xsave);
4404                 break;
4405         case KVM_CAP_PMU_CAPABILITY:
4406                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4407                 break;
4408         }
4409         case KVM_CAP_DISABLE_QUIRKS2:
4410                 r = KVM_X86_VALID_QUIRKS;
4411                 break;
4412         default:
4413                 break;
4414         }
4415         return r;
4416 }
4417
4418 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4419 {
4420         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4421
4422         if ((u64)(unsigned long)uaddr != attr->addr)
4423                 return ERR_PTR_USR(-EFAULT);
4424         return uaddr;
4425 }
4426
4427 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4428 {
4429         u64 __user *uaddr = kvm_get_attr_addr(attr);
4430
4431         if (attr->group)
4432                 return -ENXIO;
4433
4434         if (IS_ERR(uaddr))
4435                 return PTR_ERR(uaddr);
4436
4437         switch (attr->attr) {
4438         case KVM_X86_XCOMP_GUEST_SUPP:
4439                 if (put_user(supported_xcr0, uaddr))
4440                         return -EFAULT;
4441                 return 0;
4442         default:
4443                 return -ENXIO;
4444                 break;
4445         }
4446 }
4447
4448 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4449 {
4450         if (attr->group)
4451                 return -ENXIO;
4452
4453         switch (attr->attr) {
4454         case KVM_X86_XCOMP_GUEST_SUPP:
4455                 return 0;
4456         default:
4457                 return -ENXIO;
4458         }
4459 }
4460
4461 long kvm_arch_dev_ioctl(struct file *filp,
4462                         unsigned int ioctl, unsigned long arg)
4463 {
4464         void __user *argp = (void __user *)arg;
4465         long r;
4466
4467         switch (ioctl) {
4468         case KVM_GET_MSR_INDEX_LIST: {
4469                 struct kvm_msr_list __user *user_msr_list = argp;
4470                 struct kvm_msr_list msr_list;
4471                 unsigned n;
4472
4473                 r = -EFAULT;
4474                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4475                         goto out;
4476                 n = msr_list.nmsrs;
4477                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4478                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4479                         goto out;
4480                 r = -E2BIG;
4481                 if (n < msr_list.nmsrs)
4482                         goto out;
4483                 r = -EFAULT;
4484                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4485                                  num_msrs_to_save * sizeof(u32)))
4486                         goto out;
4487                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4488                                  &emulated_msrs,
4489                                  num_emulated_msrs * sizeof(u32)))
4490                         goto out;
4491                 r = 0;
4492                 break;
4493         }
4494         case KVM_GET_SUPPORTED_CPUID:
4495         case KVM_GET_EMULATED_CPUID: {
4496                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4497                 struct kvm_cpuid2 cpuid;
4498
4499                 r = -EFAULT;
4500                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4501                         goto out;
4502
4503                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4504                                             ioctl);
4505                 if (r)
4506                         goto out;
4507
4508                 r = -EFAULT;
4509                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4510                         goto out;
4511                 r = 0;
4512                 break;
4513         }
4514         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4515                 r = -EFAULT;
4516                 if (copy_to_user(argp, &kvm_mce_cap_supported,
4517                                  sizeof(kvm_mce_cap_supported)))
4518                         goto out;
4519                 r = 0;
4520                 break;
4521         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4522                 struct kvm_msr_list __user *user_msr_list = argp;
4523                 struct kvm_msr_list msr_list;
4524                 unsigned int n;
4525
4526                 r = -EFAULT;
4527                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4528                         goto out;
4529                 n = msr_list.nmsrs;
4530                 msr_list.nmsrs = num_msr_based_features;
4531                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4532                         goto out;
4533                 r = -E2BIG;
4534                 if (n < msr_list.nmsrs)
4535                         goto out;
4536                 r = -EFAULT;
4537                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4538                                  num_msr_based_features * sizeof(u32)))
4539                         goto out;
4540                 r = 0;
4541                 break;
4542         }
4543         case KVM_GET_MSRS:
4544                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4545                 break;
4546         case KVM_GET_SUPPORTED_HV_CPUID:
4547                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4548                 break;
4549         case KVM_GET_DEVICE_ATTR: {
4550                 struct kvm_device_attr attr;
4551                 r = -EFAULT;
4552                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4553                         break;
4554                 r = kvm_x86_dev_get_attr(&attr);
4555                 break;
4556         }
4557         case KVM_HAS_DEVICE_ATTR: {
4558                 struct kvm_device_attr attr;
4559                 r = -EFAULT;
4560                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4561                         break;
4562                 r = kvm_x86_dev_has_attr(&attr);
4563                 break;
4564         }
4565         default:
4566                 r = -EINVAL;
4567                 break;
4568         }
4569 out:
4570         return r;
4571 }
4572
4573 static void wbinvd_ipi(void *garbage)
4574 {
4575         wbinvd();
4576 }
4577
4578 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4579 {
4580         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4581 }
4582
4583 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4584 {
4585         /* Address WBINVD may be executed by guest */
4586         if (need_emulate_wbinvd(vcpu)) {
4587                 if (static_call(kvm_x86_has_wbinvd_exit)())
4588                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4589                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4590                         smp_call_function_single(vcpu->cpu,
4591                                         wbinvd_ipi, NULL, 1);
4592         }
4593
4594         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4595
4596         /* Save host pkru register if supported */
4597         vcpu->arch.host_pkru = read_pkru();
4598
4599         /* Apply any externally detected TSC adjustments (due to suspend) */
4600         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4601                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4602                 vcpu->arch.tsc_offset_adjustment = 0;
4603                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4604         }
4605
4606         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4607                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4608                                 rdtsc() - vcpu->arch.last_host_tsc;
4609                 if (tsc_delta < 0)
4610                         mark_tsc_unstable("KVM discovered backwards TSC");
4611
4612                 if (kvm_check_tsc_unstable()) {
4613                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4614                                                 vcpu->arch.last_guest_tsc);
4615                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4616                         vcpu->arch.tsc_catchup = 1;
4617                 }
4618
4619                 if (kvm_lapic_hv_timer_in_use(vcpu))
4620                         kvm_lapic_restart_hv_timer(vcpu);
4621
4622                 /*
4623                  * On a host with synchronized TSC, there is no need to update
4624                  * kvmclock on vcpu->cpu migration
4625                  */
4626                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4627                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4628                 if (vcpu->cpu != cpu)
4629                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4630                 vcpu->cpu = cpu;
4631         }
4632
4633         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4634 }
4635
4636 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4637 {
4638         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4639         struct kvm_steal_time __user *st;
4640         struct kvm_memslots *slots;
4641         static const u8 preempted = KVM_VCPU_PREEMPTED;
4642
4643         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4644                 return;
4645
4646         if (vcpu->arch.st.preempted)
4647                 return;
4648
4649         /* This happens on process exit */
4650         if (unlikely(current->mm != vcpu->kvm->mm))
4651                 return;
4652
4653         slots = kvm_memslots(vcpu->kvm);
4654
4655         if (unlikely(slots->generation != ghc->generation ||
4656                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4657                 return;
4658
4659         st = (struct kvm_steal_time __user *)ghc->hva;
4660         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4661
4662         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4663                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4664
4665         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4666 }
4667
4668 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4669 {
4670         int idx;
4671
4672         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4673                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4674
4675         /*
4676          * Take the srcu lock as memslots will be accessed to check the gfn
4677          * cache generation against the memslots generation.
4678          */
4679         idx = srcu_read_lock(&vcpu->kvm->srcu);
4680         if (kvm_xen_msr_enabled(vcpu->kvm))
4681                 kvm_xen_runstate_set_preempted(vcpu);
4682         else
4683                 kvm_steal_time_set_preempted(vcpu);
4684         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4685
4686         static_call(kvm_x86_vcpu_put)(vcpu);
4687         vcpu->arch.last_host_tsc = rdtsc();
4688 }
4689
4690 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4691                                     struct kvm_lapic_state *s)
4692 {
4693         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4694
4695         return kvm_apic_get_state(vcpu, s);
4696 }
4697
4698 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4699                                     struct kvm_lapic_state *s)
4700 {
4701         int r;
4702
4703         r = kvm_apic_set_state(vcpu, s);
4704         if (r)
4705                 return r;
4706         update_cr8_intercept(vcpu);
4707
4708         return 0;
4709 }
4710
4711 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4712 {
4713         /*
4714          * We can accept userspace's request for interrupt injection
4715          * as long as we have a place to store the interrupt number.
4716          * The actual injection will happen when the CPU is able to
4717          * deliver the interrupt.
4718          */
4719         if (kvm_cpu_has_extint(vcpu))
4720                 return false;
4721
4722         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4723         return (!lapic_in_kernel(vcpu) ||
4724                 kvm_apic_accept_pic_intr(vcpu));
4725 }
4726
4727 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4728 {
4729         /*
4730          * Do not cause an interrupt window exit if an exception
4731          * is pending or an event needs reinjection; userspace
4732          * might want to inject the interrupt manually using KVM_SET_REGS
4733          * or KVM_SET_SREGS.  For that to work, we must be at an
4734          * instruction boundary and with no events half-injected.
4735          */
4736         return (kvm_arch_interrupt_allowed(vcpu) &&
4737                 kvm_cpu_accept_dm_intr(vcpu) &&
4738                 !kvm_event_needs_reinjection(vcpu) &&
4739                 !vcpu->arch.exception.pending);
4740 }
4741
4742 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4743                                     struct kvm_interrupt *irq)
4744 {
4745         if (irq->irq >= KVM_NR_INTERRUPTS)
4746                 return -EINVAL;
4747
4748         if (!irqchip_in_kernel(vcpu->kvm)) {
4749                 kvm_queue_interrupt(vcpu, irq->irq, false);
4750                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4751                 return 0;
4752         }
4753
4754         /*
4755          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4756          * fail for in-kernel 8259.
4757          */
4758         if (pic_in_kernel(vcpu->kvm))
4759                 return -ENXIO;
4760
4761         if (vcpu->arch.pending_external_vector != -1)
4762                 return -EEXIST;
4763
4764         vcpu->arch.pending_external_vector = irq->irq;
4765         kvm_make_request(KVM_REQ_EVENT, vcpu);
4766         return 0;
4767 }
4768
4769 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4770 {
4771         kvm_inject_nmi(vcpu);
4772
4773         return 0;
4774 }
4775
4776 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4777 {
4778         kvm_make_request(KVM_REQ_SMI, vcpu);
4779
4780         return 0;
4781 }
4782
4783 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4784                                            struct kvm_tpr_access_ctl *tac)
4785 {
4786         if (tac->flags)
4787                 return -EINVAL;
4788         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4789         return 0;
4790 }
4791
4792 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4793                                         u64 mcg_cap)
4794 {
4795         int r;
4796         unsigned bank_num = mcg_cap & 0xff, bank;
4797
4798         r = -EINVAL;
4799         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4800                 goto out;
4801         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4802                 goto out;
4803         r = 0;
4804         vcpu->arch.mcg_cap = mcg_cap;
4805         /* Init IA32_MCG_CTL to all 1s */
4806         if (mcg_cap & MCG_CTL_P)
4807                 vcpu->arch.mcg_ctl = ~(u64)0;
4808         /* Init IA32_MCi_CTL to all 1s */
4809         for (bank = 0; bank < bank_num; bank++)
4810                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4811
4812         static_call(kvm_x86_setup_mce)(vcpu);
4813 out:
4814         return r;
4815 }
4816
4817 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4818                                       struct kvm_x86_mce *mce)
4819 {
4820         u64 mcg_cap = vcpu->arch.mcg_cap;
4821         unsigned bank_num = mcg_cap & 0xff;
4822         u64 *banks = vcpu->arch.mce_banks;
4823
4824         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4825                 return -EINVAL;
4826         /*
4827          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4828          * reporting is disabled
4829          */
4830         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4831             vcpu->arch.mcg_ctl != ~(u64)0)
4832                 return 0;
4833         banks += 4 * mce->bank;
4834         /*
4835          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4836          * reporting is disabled for the bank
4837          */
4838         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4839                 return 0;
4840         if (mce->status & MCI_STATUS_UC) {
4841                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4842                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4843                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4844                         return 0;
4845                 }
4846                 if (banks[1] & MCI_STATUS_VAL)
4847                         mce->status |= MCI_STATUS_OVER;
4848                 banks[2] = mce->addr;
4849                 banks[3] = mce->misc;
4850                 vcpu->arch.mcg_status = mce->mcg_status;
4851                 banks[1] = mce->status;
4852                 kvm_queue_exception(vcpu, MC_VECTOR);
4853         } else if (!(banks[1] & MCI_STATUS_VAL)
4854                    || !(banks[1] & MCI_STATUS_UC)) {
4855                 if (banks[1] & MCI_STATUS_VAL)
4856                         mce->status |= MCI_STATUS_OVER;
4857                 banks[2] = mce->addr;
4858                 banks[3] = mce->misc;
4859                 banks[1] = mce->status;
4860         } else
4861                 banks[1] |= MCI_STATUS_OVER;
4862         return 0;
4863 }
4864
4865 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4866                                                struct kvm_vcpu_events *events)
4867 {
4868         process_nmi(vcpu);
4869
4870         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4871                 process_smi(vcpu);
4872
4873         /*
4874          * In guest mode, payload delivery should be deferred,
4875          * so that the L1 hypervisor can intercept #PF before
4876          * CR2 is modified (or intercept #DB before DR6 is
4877          * modified under nVMX). Unless the per-VM capability,
4878          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4879          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4880          * opportunistically defer the exception payload, deliver it if the
4881          * capability hasn't been requested before processing a
4882          * KVM_GET_VCPU_EVENTS.
4883          */
4884         if (!vcpu->kvm->arch.exception_payload_enabled &&
4885             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4886                 kvm_deliver_exception_payload(vcpu);
4887
4888         /*
4889          * The API doesn't provide the instruction length for software
4890          * exceptions, so don't report them. As long as the guest RIP
4891          * isn't advanced, we should expect to encounter the exception
4892          * again.
4893          */
4894         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4895                 events->exception.injected = 0;
4896                 events->exception.pending = 0;
4897         } else {
4898                 events->exception.injected = vcpu->arch.exception.injected;
4899                 events->exception.pending = vcpu->arch.exception.pending;
4900                 /*
4901                  * For ABI compatibility, deliberately conflate
4902                  * pending and injected exceptions when
4903                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4904                  */
4905                 if (!vcpu->kvm->arch.exception_payload_enabled)
4906                         events->exception.injected |=
4907                                 vcpu->arch.exception.pending;
4908         }
4909         events->exception.nr = vcpu->arch.exception.nr;
4910         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4911         events->exception.error_code = vcpu->arch.exception.error_code;
4912         events->exception_has_payload = vcpu->arch.exception.has_payload;
4913         events->exception_payload = vcpu->arch.exception.payload;
4914
4915         events->interrupt.injected =
4916                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4917         events->interrupt.nr = vcpu->arch.interrupt.nr;
4918         events->interrupt.soft = 0;
4919         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4920
4921         events->nmi.injected = vcpu->arch.nmi_injected;
4922         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4923         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4924         events->nmi.pad = 0;
4925
4926         events->sipi_vector = 0; /* never valid when reporting to user space */
4927
4928         events->smi.smm = is_smm(vcpu);
4929         events->smi.pending = vcpu->arch.smi_pending;
4930         events->smi.smm_inside_nmi =
4931                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4932         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4933
4934         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4935                          | KVM_VCPUEVENT_VALID_SHADOW
4936                          | KVM_VCPUEVENT_VALID_SMM);
4937         if (vcpu->kvm->arch.exception_payload_enabled)
4938                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4939
4940         memset(&events->reserved, 0, sizeof(events->reserved));
4941 }
4942
4943 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4944
4945 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4946                                               struct kvm_vcpu_events *events)
4947 {
4948         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4949                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4950                               | KVM_VCPUEVENT_VALID_SHADOW
4951                               | KVM_VCPUEVENT_VALID_SMM
4952                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4953                 return -EINVAL;
4954
4955         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4956                 if (!vcpu->kvm->arch.exception_payload_enabled)
4957                         return -EINVAL;
4958                 if (events->exception.pending)
4959                         events->exception.injected = 0;
4960                 else
4961                         events->exception_has_payload = 0;
4962         } else {
4963                 events->exception.pending = 0;
4964                 events->exception_has_payload = 0;
4965         }
4966
4967         if ((events->exception.injected || events->exception.pending) &&
4968             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4969                 return -EINVAL;
4970
4971         /* INITs are latched while in SMM */
4972         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4973             (events->smi.smm || events->smi.pending) &&
4974             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4975                 return -EINVAL;
4976
4977         process_nmi(vcpu);
4978         vcpu->arch.exception.injected = events->exception.injected;
4979         vcpu->arch.exception.pending = events->exception.pending;
4980         vcpu->arch.exception.nr = events->exception.nr;
4981         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4982         vcpu->arch.exception.error_code = events->exception.error_code;
4983         vcpu->arch.exception.has_payload = events->exception_has_payload;
4984         vcpu->arch.exception.payload = events->exception_payload;
4985
4986         vcpu->arch.interrupt.injected = events->interrupt.injected;
4987         vcpu->arch.interrupt.nr = events->interrupt.nr;
4988         vcpu->arch.interrupt.soft = events->interrupt.soft;
4989         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4990                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4991                                                 events->interrupt.shadow);
4992
4993         vcpu->arch.nmi_injected = events->nmi.injected;
4994         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4995                 vcpu->arch.nmi_pending = events->nmi.pending;
4996         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4997
4998         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4999             lapic_in_kernel(vcpu))
5000                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5001
5002         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5003                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5004                         kvm_x86_ops.nested_ops->leave_nested(vcpu);
5005                         kvm_smm_changed(vcpu, events->smi.smm);
5006                 }
5007
5008                 vcpu->arch.smi_pending = events->smi.pending;
5009
5010                 if (events->smi.smm) {
5011                         if (events->smi.smm_inside_nmi)
5012                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5013                         else
5014                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5015                 }
5016
5017                 if (lapic_in_kernel(vcpu)) {
5018                         if (events->smi.latched_init)
5019                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5020                         else
5021                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5022                 }
5023         }
5024
5025         kvm_make_request(KVM_REQ_EVENT, vcpu);
5026
5027         return 0;
5028 }
5029
5030 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5031                                              struct kvm_debugregs *dbgregs)
5032 {
5033         unsigned long val;
5034
5035         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5036         kvm_get_dr(vcpu, 6, &val);
5037         dbgregs->dr6 = val;
5038         dbgregs->dr7 = vcpu->arch.dr7;
5039         dbgregs->flags = 0;
5040         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5041 }
5042
5043 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5044                                             struct kvm_debugregs *dbgregs)
5045 {
5046         if (dbgregs->flags)
5047                 return -EINVAL;
5048
5049         if (!kvm_dr6_valid(dbgregs->dr6))
5050                 return -EINVAL;
5051         if (!kvm_dr7_valid(dbgregs->dr7))
5052                 return -EINVAL;
5053
5054         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5055         kvm_update_dr0123(vcpu);
5056         vcpu->arch.dr6 = dbgregs->dr6;
5057         vcpu->arch.dr7 = dbgregs->dr7;
5058         kvm_update_dr7(vcpu);
5059
5060         return 0;
5061 }
5062
5063 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5064                                          struct kvm_xsave *guest_xsave)
5065 {
5066         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5067                 return;
5068
5069         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5070                                        guest_xsave->region,
5071                                        sizeof(guest_xsave->region),
5072                                        vcpu->arch.pkru);
5073 }
5074
5075 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5076                                           u8 *state, unsigned int size)
5077 {
5078         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5079                 return;
5080
5081         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5082                                        state, size, vcpu->arch.pkru);
5083 }
5084
5085 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5086                                         struct kvm_xsave *guest_xsave)
5087 {
5088         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5089                 return 0;
5090
5091         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5092                                               guest_xsave->region,
5093                                               supported_xcr0, &vcpu->arch.pkru);
5094 }
5095
5096 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5097                                         struct kvm_xcrs *guest_xcrs)
5098 {
5099         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5100                 guest_xcrs->nr_xcrs = 0;
5101                 return;
5102         }
5103
5104         guest_xcrs->nr_xcrs = 1;
5105         guest_xcrs->flags = 0;
5106         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5107         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5108 }
5109
5110 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5111                                        struct kvm_xcrs *guest_xcrs)
5112 {
5113         int i, r = 0;
5114
5115         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5116                 return -EINVAL;
5117
5118         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5119                 return -EINVAL;
5120
5121         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5122                 /* Only support XCR0 currently */
5123                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5124                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5125                                 guest_xcrs->xcrs[i].value);
5126                         break;
5127                 }
5128         if (r)
5129                 r = -EINVAL;
5130         return r;
5131 }
5132
5133 /*
5134  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5135  * stopped by the hypervisor.  This function will be called from the host only.
5136  * EINVAL is returned when the host attempts to set the flag for a guest that
5137  * does not support pv clocks.
5138  */
5139 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5140 {
5141         if (!vcpu->arch.pv_time.active)
5142                 return -EINVAL;
5143         vcpu->arch.pvclock_set_guest_stopped_request = true;
5144         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5145         return 0;
5146 }
5147
5148 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5149                                  struct kvm_device_attr *attr)
5150 {
5151         int r;
5152
5153         switch (attr->attr) {
5154         case KVM_VCPU_TSC_OFFSET:
5155                 r = 0;
5156                 break;
5157         default:
5158                 r = -ENXIO;
5159         }
5160
5161         return r;
5162 }
5163
5164 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5165                                  struct kvm_device_attr *attr)
5166 {
5167         u64 __user *uaddr = kvm_get_attr_addr(attr);
5168         int r;
5169
5170         if (IS_ERR(uaddr))
5171                 return PTR_ERR(uaddr);
5172
5173         switch (attr->attr) {
5174         case KVM_VCPU_TSC_OFFSET:
5175                 r = -EFAULT;
5176                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5177                         break;
5178                 r = 0;
5179                 break;
5180         default:
5181                 r = -ENXIO;
5182         }
5183
5184         return r;
5185 }
5186
5187 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5188                                  struct kvm_device_attr *attr)
5189 {
5190         u64 __user *uaddr = kvm_get_attr_addr(attr);
5191         struct kvm *kvm = vcpu->kvm;
5192         int r;
5193
5194         if (IS_ERR(uaddr))
5195                 return PTR_ERR(uaddr);
5196
5197         switch (attr->attr) {
5198         case KVM_VCPU_TSC_OFFSET: {
5199                 u64 offset, tsc, ns;
5200                 unsigned long flags;
5201                 bool matched;
5202
5203                 r = -EFAULT;
5204                 if (get_user(offset, uaddr))
5205                         break;
5206
5207                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5208
5209                 matched = (vcpu->arch.virtual_tsc_khz &&
5210                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5211                            kvm->arch.last_tsc_offset == offset);
5212
5213                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5214                 ns = get_kvmclock_base_ns();
5215
5216                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5217                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5218
5219                 r = 0;
5220                 break;
5221         }
5222         default:
5223                 r = -ENXIO;
5224         }
5225
5226         return r;
5227 }
5228
5229 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5230                                       unsigned int ioctl,
5231                                       void __user *argp)
5232 {
5233         struct kvm_device_attr attr;
5234         int r;
5235
5236         if (copy_from_user(&attr, argp, sizeof(attr)))
5237                 return -EFAULT;
5238
5239         if (attr.group != KVM_VCPU_TSC_CTRL)
5240                 return -ENXIO;
5241
5242         switch (ioctl) {
5243         case KVM_HAS_DEVICE_ATTR:
5244                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5245                 break;
5246         case KVM_GET_DEVICE_ATTR:
5247                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5248                 break;
5249         case KVM_SET_DEVICE_ATTR:
5250                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5251                 break;
5252         }
5253
5254         return r;
5255 }
5256
5257 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5258                                      struct kvm_enable_cap *cap)
5259 {
5260         int r;
5261         uint16_t vmcs_version;
5262         void __user *user_ptr;
5263
5264         if (cap->flags)
5265                 return -EINVAL;
5266
5267         switch (cap->cap) {
5268         case KVM_CAP_HYPERV_SYNIC2:
5269                 if (cap->args[0])
5270                         return -EINVAL;
5271                 fallthrough;
5272
5273         case KVM_CAP_HYPERV_SYNIC:
5274                 if (!irqchip_in_kernel(vcpu->kvm))
5275                         return -EINVAL;
5276                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5277                                              KVM_CAP_HYPERV_SYNIC2);
5278         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5279                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5280                         return -ENOTTY;
5281                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5282                 if (!r) {
5283                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5284                         if (copy_to_user(user_ptr, &vmcs_version,
5285                                          sizeof(vmcs_version)))
5286                                 r = -EFAULT;
5287                 }
5288                 return r;
5289         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5290                 if (!kvm_x86_ops.enable_direct_tlbflush)
5291                         return -ENOTTY;
5292
5293                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5294
5295         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5296                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5297
5298         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5299                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5300                 if (vcpu->arch.pv_cpuid.enforce)
5301                         kvm_update_pv_runtime(vcpu);
5302
5303                 return 0;
5304         default:
5305                 return -EINVAL;
5306         }
5307 }
5308
5309 long kvm_arch_vcpu_ioctl(struct file *filp,
5310                          unsigned int ioctl, unsigned long arg)
5311 {
5312         struct kvm_vcpu *vcpu = filp->private_data;
5313         void __user *argp = (void __user *)arg;
5314         int r;
5315         union {
5316                 struct kvm_sregs2 *sregs2;
5317                 struct kvm_lapic_state *lapic;
5318                 struct kvm_xsave *xsave;
5319                 struct kvm_xcrs *xcrs;
5320                 void *buffer;
5321         } u;
5322
5323         vcpu_load(vcpu);
5324
5325         u.buffer = NULL;
5326         switch (ioctl) {
5327         case KVM_GET_LAPIC: {
5328                 r = -EINVAL;
5329                 if (!lapic_in_kernel(vcpu))
5330                         goto out;
5331                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5332                                 GFP_KERNEL_ACCOUNT);
5333
5334                 r = -ENOMEM;
5335                 if (!u.lapic)
5336                         goto out;
5337                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5338                 if (r)
5339                         goto out;
5340                 r = -EFAULT;
5341                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5342                         goto out;
5343                 r = 0;
5344                 break;
5345         }
5346         case KVM_SET_LAPIC: {
5347                 r = -EINVAL;
5348                 if (!lapic_in_kernel(vcpu))
5349                         goto out;
5350                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5351                 if (IS_ERR(u.lapic)) {
5352                         r = PTR_ERR(u.lapic);
5353                         goto out_nofree;
5354                 }
5355
5356                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5357                 break;
5358         }
5359         case KVM_INTERRUPT: {
5360                 struct kvm_interrupt irq;
5361
5362                 r = -EFAULT;
5363                 if (copy_from_user(&irq, argp, sizeof(irq)))
5364                         goto out;
5365                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5366                 break;
5367         }
5368         case KVM_NMI: {
5369                 r = kvm_vcpu_ioctl_nmi(vcpu);
5370                 break;
5371         }
5372         case KVM_SMI: {
5373                 r = kvm_vcpu_ioctl_smi(vcpu);
5374                 break;
5375         }
5376         case KVM_SET_CPUID: {
5377                 struct kvm_cpuid __user *cpuid_arg = argp;
5378                 struct kvm_cpuid cpuid;
5379
5380                 r = -EFAULT;
5381                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5382                         goto out;
5383                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5384                 break;
5385         }
5386         case KVM_SET_CPUID2: {
5387                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5388                 struct kvm_cpuid2 cpuid;
5389
5390                 r = -EFAULT;
5391                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5392                         goto out;
5393                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5394                                               cpuid_arg->entries);
5395                 break;
5396         }
5397         case KVM_GET_CPUID2: {
5398                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5399                 struct kvm_cpuid2 cpuid;
5400
5401                 r = -EFAULT;
5402                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5403                         goto out;
5404                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5405                                               cpuid_arg->entries);
5406                 if (r)
5407                         goto out;
5408                 r = -EFAULT;
5409                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5410                         goto out;
5411                 r = 0;
5412                 break;
5413         }
5414         case KVM_GET_MSRS: {
5415                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5416                 r = msr_io(vcpu, argp, do_get_msr, 1);
5417                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5418                 break;
5419         }
5420         case KVM_SET_MSRS: {
5421                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5422                 r = msr_io(vcpu, argp, do_set_msr, 0);
5423                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5424                 break;
5425         }
5426         case KVM_TPR_ACCESS_REPORTING: {
5427                 struct kvm_tpr_access_ctl tac;
5428
5429                 r = -EFAULT;
5430                 if (copy_from_user(&tac, argp, sizeof(tac)))
5431                         goto out;
5432                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5433                 if (r)
5434                         goto out;
5435                 r = -EFAULT;
5436                 if (copy_to_user(argp, &tac, sizeof(tac)))
5437                         goto out;
5438                 r = 0;
5439                 break;
5440         };
5441         case KVM_SET_VAPIC_ADDR: {
5442                 struct kvm_vapic_addr va;
5443                 int idx;
5444
5445                 r = -EINVAL;
5446                 if (!lapic_in_kernel(vcpu))
5447                         goto out;
5448                 r = -EFAULT;
5449                 if (copy_from_user(&va, argp, sizeof(va)))
5450                         goto out;
5451                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5452                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5453                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5454                 break;
5455         }
5456         case KVM_X86_SETUP_MCE: {
5457                 u64 mcg_cap;
5458
5459                 r = -EFAULT;
5460                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5461                         goto out;
5462                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5463                 break;
5464         }
5465         case KVM_X86_SET_MCE: {
5466                 struct kvm_x86_mce mce;
5467
5468                 r = -EFAULT;
5469                 if (copy_from_user(&mce, argp, sizeof(mce)))
5470                         goto out;
5471                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5472                 break;
5473         }
5474         case KVM_GET_VCPU_EVENTS: {
5475                 struct kvm_vcpu_events events;
5476
5477                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5478
5479                 r = -EFAULT;
5480                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5481                         break;
5482                 r = 0;
5483                 break;
5484         }
5485         case KVM_SET_VCPU_EVENTS: {
5486                 struct kvm_vcpu_events events;
5487
5488                 r = -EFAULT;
5489                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5490                         break;
5491
5492                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5493                 break;
5494         }
5495         case KVM_GET_DEBUGREGS: {
5496                 struct kvm_debugregs dbgregs;
5497
5498                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5499
5500                 r = -EFAULT;
5501                 if (copy_to_user(argp, &dbgregs,
5502                                  sizeof(struct kvm_debugregs)))
5503                         break;
5504                 r = 0;
5505                 break;
5506         }
5507         case KVM_SET_DEBUGREGS: {
5508                 struct kvm_debugregs dbgregs;
5509
5510                 r = -EFAULT;
5511                 if (copy_from_user(&dbgregs, argp,
5512                                    sizeof(struct kvm_debugregs)))
5513                         break;
5514
5515                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5516                 break;
5517         }
5518         case KVM_GET_XSAVE: {
5519                 r = -EINVAL;
5520                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5521                         break;
5522
5523                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5524                 r = -ENOMEM;
5525                 if (!u.xsave)
5526                         break;
5527
5528                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5529
5530                 r = -EFAULT;
5531                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5532                         break;
5533                 r = 0;
5534                 break;
5535         }
5536         case KVM_SET_XSAVE: {
5537                 int size = vcpu->arch.guest_fpu.uabi_size;
5538
5539                 u.xsave = memdup_user(argp, size);
5540                 if (IS_ERR(u.xsave)) {
5541                         r = PTR_ERR(u.xsave);
5542                         goto out_nofree;
5543                 }
5544
5545                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5546                 break;
5547         }
5548
5549         case KVM_GET_XSAVE2: {
5550                 int size = vcpu->arch.guest_fpu.uabi_size;
5551
5552                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5553                 r = -ENOMEM;
5554                 if (!u.xsave)
5555                         break;
5556
5557                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5558
5559                 r = -EFAULT;
5560                 if (copy_to_user(argp, u.xsave, size))
5561                         break;
5562
5563                 r = 0;
5564                 break;
5565         }
5566
5567         case KVM_GET_XCRS: {
5568                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5569                 r = -ENOMEM;
5570                 if (!u.xcrs)
5571                         break;
5572
5573                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5574
5575                 r = -EFAULT;
5576                 if (copy_to_user(argp, u.xcrs,
5577                                  sizeof(struct kvm_xcrs)))
5578                         break;
5579                 r = 0;
5580                 break;
5581         }
5582         case KVM_SET_XCRS: {
5583                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5584                 if (IS_ERR(u.xcrs)) {
5585                         r = PTR_ERR(u.xcrs);
5586                         goto out_nofree;
5587                 }
5588
5589                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5590                 break;
5591         }
5592         case KVM_SET_TSC_KHZ: {
5593                 u32 user_tsc_khz;
5594
5595                 r = -EINVAL;
5596                 user_tsc_khz = (u32)arg;
5597
5598                 if (kvm_has_tsc_control &&
5599                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5600                         goto out;
5601
5602                 if (user_tsc_khz == 0)
5603                         user_tsc_khz = tsc_khz;
5604
5605                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5606                         r = 0;
5607
5608                 goto out;
5609         }
5610         case KVM_GET_TSC_KHZ: {
5611                 r = vcpu->arch.virtual_tsc_khz;
5612                 goto out;
5613         }
5614         case KVM_KVMCLOCK_CTRL: {
5615                 r = kvm_set_guest_paused(vcpu);
5616                 goto out;
5617         }
5618         case KVM_ENABLE_CAP: {
5619                 struct kvm_enable_cap cap;
5620
5621                 r = -EFAULT;
5622                 if (copy_from_user(&cap, argp, sizeof(cap)))
5623                         goto out;
5624                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5625                 break;
5626         }
5627         case KVM_GET_NESTED_STATE: {
5628                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5629                 u32 user_data_size;
5630
5631                 r = -EINVAL;
5632                 if (!kvm_x86_ops.nested_ops->get_state)
5633                         break;
5634
5635                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5636                 r = -EFAULT;
5637                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5638                         break;
5639
5640                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5641                                                      user_data_size);
5642                 if (r < 0)
5643                         break;
5644
5645                 if (r > user_data_size) {
5646                         if (put_user(r, &user_kvm_nested_state->size))
5647                                 r = -EFAULT;
5648                         else
5649                                 r = -E2BIG;
5650                         break;
5651                 }
5652
5653                 r = 0;
5654                 break;
5655         }
5656         case KVM_SET_NESTED_STATE: {
5657                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5658                 struct kvm_nested_state kvm_state;
5659                 int idx;
5660
5661                 r = -EINVAL;
5662                 if (!kvm_x86_ops.nested_ops->set_state)
5663                         break;
5664
5665                 r = -EFAULT;
5666                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5667                         break;
5668
5669                 r = -EINVAL;
5670                 if (kvm_state.size < sizeof(kvm_state))
5671                         break;
5672
5673                 if (kvm_state.flags &
5674                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5675                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5676                       | KVM_STATE_NESTED_GIF_SET))
5677                         break;
5678
5679                 /* nested_run_pending implies guest_mode.  */
5680                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5681                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5682                         break;
5683
5684                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5685                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5686                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5687                 break;
5688         }
5689         case KVM_GET_SUPPORTED_HV_CPUID:
5690                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5691                 break;
5692 #ifdef CONFIG_KVM_XEN
5693         case KVM_XEN_VCPU_GET_ATTR: {
5694                 struct kvm_xen_vcpu_attr xva;
5695
5696                 r = -EFAULT;
5697                 if (copy_from_user(&xva, argp, sizeof(xva)))
5698                         goto out;
5699                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5700                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5701                         r = -EFAULT;
5702                 break;
5703         }
5704         case KVM_XEN_VCPU_SET_ATTR: {
5705                 struct kvm_xen_vcpu_attr xva;
5706
5707                 r = -EFAULT;
5708                 if (copy_from_user(&xva, argp, sizeof(xva)))
5709                         goto out;
5710                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5711                 break;
5712         }
5713 #endif
5714         case KVM_GET_SREGS2: {
5715                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5716                 r = -ENOMEM;
5717                 if (!u.sregs2)
5718                         goto out;
5719                 __get_sregs2(vcpu, u.sregs2);
5720                 r = -EFAULT;
5721                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5722                         goto out;
5723                 r = 0;
5724                 break;
5725         }
5726         case KVM_SET_SREGS2: {
5727                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5728                 if (IS_ERR(u.sregs2)) {
5729                         r = PTR_ERR(u.sregs2);
5730                         u.sregs2 = NULL;
5731                         goto out;
5732                 }
5733                 r = __set_sregs2(vcpu, u.sregs2);
5734                 break;
5735         }
5736         case KVM_HAS_DEVICE_ATTR:
5737         case KVM_GET_DEVICE_ATTR:
5738         case KVM_SET_DEVICE_ATTR:
5739                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5740                 break;
5741         default:
5742                 r = -EINVAL;
5743         }
5744 out:
5745         kfree(u.buffer);
5746 out_nofree:
5747         vcpu_put(vcpu);
5748         return r;
5749 }
5750
5751 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5752 {
5753         return VM_FAULT_SIGBUS;
5754 }
5755
5756 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5757 {
5758         int ret;
5759
5760         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5761                 return -EINVAL;
5762         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5763         return ret;
5764 }
5765
5766 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5767                                               u64 ident_addr)
5768 {
5769         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5770 }
5771
5772 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5773                                          unsigned long kvm_nr_mmu_pages)
5774 {
5775         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5776                 return -EINVAL;
5777
5778         mutex_lock(&kvm->slots_lock);
5779
5780         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5781         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5782
5783         mutex_unlock(&kvm->slots_lock);
5784         return 0;
5785 }
5786
5787 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5788 {
5789         return kvm->arch.n_max_mmu_pages;
5790 }
5791
5792 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5793 {
5794         struct kvm_pic *pic = kvm->arch.vpic;
5795         int r;
5796
5797         r = 0;
5798         switch (chip->chip_id) {
5799         case KVM_IRQCHIP_PIC_MASTER:
5800                 memcpy(&chip->chip.pic, &pic->pics[0],
5801                         sizeof(struct kvm_pic_state));
5802                 break;
5803         case KVM_IRQCHIP_PIC_SLAVE:
5804                 memcpy(&chip->chip.pic, &pic->pics[1],
5805                         sizeof(struct kvm_pic_state));
5806                 break;
5807         case KVM_IRQCHIP_IOAPIC:
5808                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5809                 break;
5810         default:
5811                 r = -EINVAL;
5812                 break;
5813         }
5814         return r;
5815 }
5816
5817 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5818 {
5819         struct kvm_pic *pic = kvm->arch.vpic;
5820         int r;
5821
5822         r = 0;
5823         switch (chip->chip_id) {
5824         case KVM_IRQCHIP_PIC_MASTER:
5825                 spin_lock(&pic->lock);
5826                 memcpy(&pic->pics[0], &chip->chip.pic,
5827                         sizeof(struct kvm_pic_state));
5828                 spin_unlock(&pic->lock);
5829                 break;
5830         case KVM_IRQCHIP_PIC_SLAVE:
5831                 spin_lock(&pic->lock);
5832                 memcpy(&pic->pics[1], &chip->chip.pic,
5833                         sizeof(struct kvm_pic_state));
5834                 spin_unlock(&pic->lock);
5835                 break;
5836         case KVM_IRQCHIP_IOAPIC:
5837                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5838                 break;
5839         default:
5840                 r = -EINVAL;
5841                 break;
5842         }
5843         kvm_pic_update_irq(pic);
5844         return r;
5845 }
5846
5847 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5848 {
5849         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5850
5851         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5852
5853         mutex_lock(&kps->lock);
5854         memcpy(ps, &kps->channels, sizeof(*ps));
5855         mutex_unlock(&kps->lock);
5856         return 0;
5857 }
5858
5859 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5860 {
5861         int i;
5862         struct kvm_pit *pit = kvm->arch.vpit;
5863
5864         mutex_lock(&pit->pit_state.lock);
5865         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5866         for (i = 0; i < 3; i++)
5867                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5868         mutex_unlock(&pit->pit_state.lock);
5869         return 0;
5870 }
5871
5872 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5873 {
5874         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5875         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5876                 sizeof(ps->channels));
5877         ps->flags = kvm->arch.vpit->pit_state.flags;
5878         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5879         memset(&ps->reserved, 0, sizeof(ps->reserved));
5880         return 0;
5881 }
5882
5883 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5884 {
5885         int start = 0;
5886         int i;
5887         u32 prev_legacy, cur_legacy;
5888         struct kvm_pit *pit = kvm->arch.vpit;
5889
5890         mutex_lock(&pit->pit_state.lock);
5891         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5892         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5893         if (!prev_legacy && cur_legacy)
5894                 start = 1;
5895         memcpy(&pit->pit_state.channels, &ps->channels,
5896                sizeof(pit->pit_state.channels));
5897         pit->pit_state.flags = ps->flags;
5898         for (i = 0; i < 3; i++)
5899                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5900                                    start && i == 0);
5901         mutex_unlock(&pit->pit_state.lock);
5902         return 0;
5903 }
5904
5905 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5906                                  struct kvm_reinject_control *control)
5907 {
5908         struct kvm_pit *pit = kvm->arch.vpit;
5909
5910         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5911          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5912          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5913          */
5914         mutex_lock(&pit->pit_state.lock);
5915         kvm_pit_set_reinject(pit, control->pit_reinject);
5916         mutex_unlock(&pit->pit_state.lock);
5917
5918         return 0;
5919 }
5920
5921 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5922 {
5923
5924         /*
5925          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5926          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5927          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5928          * VM-Exit.
5929          */
5930         struct kvm_vcpu *vcpu;
5931         unsigned long i;
5932
5933         kvm_for_each_vcpu(i, vcpu, kvm)
5934                 kvm_vcpu_kick(vcpu);
5935 }
5936
5937 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5938                         bool line_status)
5939 {
5940         if (!irqchip_in_kernel(kvm))
5941                 return -ENXIO;
5942
5943         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5944                                         irq_event->irq, irq_event->level,
5945                                         line_status);
5946         return 0;
5947 }
5948
5949 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5950                             struct kvm_enable_cap *cap)
5951 {
5952         int r;
5953
5954         if (cap->flags)
5955                 return -EINVAL;
5956
5957         switch (cap->cap) {
5958         case KVM_CAP_DISABLE_QUIRKS2:
5959                 r = -EINVAL;
5960                 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
5961                         break;
5962                 fallthrough;
5963         case KVM_CAP_DISABLE_QUIRKS:
5964                 kvm->arch.disabled_quirks = cap->args[0];
5965                 r = 0;
5966                 break;
5967         case KVM_CAP_SPLIT_IRQCHIP: {
5968                 mutex_lock(&kvm->lock);
5969                 r = -EINVAL;
5970                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5971                         goto split_irqchip_unlock;
5972                 r = -EEXIST;
5973                 if (irqchip_in_kernel(kvm))
5974                         goto split_irqchip_unlock;
5975                 if (kvm->created_vcpus)
5976                         goto split_irqchip_unlock;
5977                 r = kvm_setup_empty_irq_routing(kvm);
5978                 if (r)
5979                         goto split_irqchip_unlock;
5980                 /* Pairs with irqchip_in_kernel. */
5981                 smp_wmb();
5982                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5983                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5984                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
5985                 r = 0;
5986 split_irqchip_unlock:
5987                 mutex_unlock(&kvm->lock);
5988                 break;
5989         }
5990         case KVM_CAP_X2APIC_API:
5991                 r = -EINVAL;
5992                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5993                         break;
5994
5995                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5996                         kvm->arch.x2apic_format = true;
5997                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5998                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5999
6000                 r = 0;
6001                 break;
6002         case KVM_CAP_X86_DISABLE_EXITS:
6003                 r = -EINVAL;
6004                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6005                         break;
6006
6007                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6008                         kvm_can_mwait_in_guest())
6009                         kvm->arch.mwait_in_guest = true;
6010                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6011                         kvm->arch.hlt_in_guest = true;
6012                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6013                         kvm->arch.pause_in_guest = true;
6014                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6015                         kvm->arch.cstate_in_guest = true;
6016                 r = 0;
6017                 break;
6018         case KVM_CAP_MSR_PLATFORM_INFO:
6019                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6020                 r = 0;
6021                 break;
6022         case KVM_CAP_EXCEPTION_PAYLOAD:
6023                 kvm->arch.exception_payload_enabled = cap->args[0];
6024                 r = 0;
6025                 break;
6026         case KVM_CAP_X86_USER_SPACE_MSR:
6027                 kvm->arch.user_space_msr_mask = cap->args[0];
6028                 r = 0;
6029                 break;
6030         case KVM_CAP_X86_BUS_LOCK_EXIT:
6031                 r = -EINVAL;
6032                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6033                         break;
6034
6035                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6036                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6037                         break;
6038
6039                 if (kvm_has_bus_lock_exit &&
6040                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6041                         kvm->arch.bus_lock_detection_enabled = true;
6042                 r = 0;
6043                 break;
6044 #ifdef CONFIG_X86_SGX_KVM
6045         case KVM_CAP_SGX_ATTRIBUTE: {
6046                 unsigned long allowed_attributes = 0;
6047
6048                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6049                 if (r)
6050                         break;
6051
6052                 /* KVM only supports the PROVISIONKEY privileged attribute. */
6053                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6054                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6055                         kvm->arch.sgx_provisioning_allowed = true;
6056                 else
6057                         r = -EINVAL;
6058                 break;
6059         }
6060 #endif
6061         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6062                 r = -EINVAL;
6063                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6064                         break;
6065
6066                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6067                 break;
6068         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6069                 r = -EINVAL;
6070                 if (!kvm_x86_ops.vm_move_enc_context_from)
6071                         break;
6072
6073                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6074                 break;
6075         case KVM_CAP_EXIT_HYPERCALL:
6076                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6077                         r = -EINVAL;
6078                         break;
6079                 }
6080                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6081                 r = 0;
6082                 break;
6083         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6084                 r = -EINVAL;
6085                 if (cap->args[0] & ~1)
6086                         break;
6087                 kvm->arch.exit_on_emulation_error = cap->args[0];
6088                 r = 0;
6089                 break;
6090         case KVM_CAP_PMU_CAPABILITY:
6091                 r = -EINVAL;
6092                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6093                         break;
6094
6095                 mutex_lock(&kvm->lock);
6096                 if (!kvm->created_vcpus) {
6097                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6098                         r = 0;
6099                 }
6100                 mutex_unlock(&kvm->lock);
6101                 break;
6102         case KVM_CAP_MAX_VCPU_ID:
6103                 r = -EINVAL;
6104                 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6105                         break;
6106
6107                 mutex_lock(&kvm->lock);
6108                 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6109                         r = 0;
6110                 } else if (!kvm->arch.max_vcpu_ids) {
6111                         kvm->arch.max_vcpu_ids = cap->args[0];
6112                         r = 0;
6113                 }
6114                 mutex_unlock(&kvm->lock);
6115                 break;
6116         default:
6117                 r = -EINVAL;
6118                 break;
6119         }
6120         return r;
6121 }
6122
6123 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6124 {
6125         struct kvm_x86_msr_filter *msr_filter;
6126
6127         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6128         if (!msr_filter)
6129                 return NULL;
6130
6131         msr_filter->default_allow = default_allow;
6132         return msr_filter;
6133 }
6134
6135 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6136 {
6137         u32 i;
6138
6139         if (!msr_filter)
6140                 return;
6141
6142         for (i = 0; i < msr_filter->count; i++)
6143                 kfree(msr_filter->ranges[i].bitmap);
6144
6145         kfree(msr_filter);
6146 }
6147
6148 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6149                               struct kvm_msr_filter_range *user_range)
6150 {
6151         unsigned long *bitmap = NULL;
6152         size_t bitmap_size;
6153
6154         if (!user_range->nmsrs)
6155                 return 0;
6156
6157         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6158                 return -EINVAL;
6159
6160         if (!user_range->flags)
6161                 return -EINVAL;
6162
6163         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6164         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6165                 return -EINVAL;
6166
6167         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6168         if (IS_ERR(bitmap))
6169                 return PTR_ERR(bitmap);
6170
6171         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6172                 .flags = user_range->flags,
6173                 .base = user_range->base,
6174                 .nmsrs = user_range->nmsrs,
6175                 .bitmap = bitmap,
6176         };
6177
6178         msr_filter->count++;
6179         return 0;
6180 }
6181
6182 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6183 {
6184         struct kvm_msr_filter __user *user_msr_filter = argp;
6185         struct kvm_x86_msr_filter *new_filter, *old_filter;
6186         struct kvm_msr_filter filter;
6187         bool default_allow;
6188         bool empty = true;
6189         int r = 0;
6190         u32 i;
6191
6192         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6193                 return -EFAULT;
6194
6195         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6196                 empty &= !filter.ranges[i].nmsrs;
6197
6198         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6199         if (empty && !default_allow)
6200                 return -EINVAL;
6201
6202         new_filter = kvm_alloc_msr_filter(default_allow);
6203         if (!new_filter)
6204                 return -ENOMEM;
6205
6206         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6207                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6208                 if (r) {
6209                         kvm_free_msr_filter(new_filter);
6210                         return r;
6211                 }
6212         }
6213
6214         mutex_lock(&kvm->lock);
6215
6216         /* The per-VM filter is protected by kvm->lock... */
6217         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6218
6219         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6220         synchronize_srcu(&kvm->srcu);
6221
6222         kvm_free_msr_filter(old_filter);
6223
6224         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6225         mutex_unlock(&kvm->lock);
6226
6227         return 0;
6228 }
6229
6230 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6231 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6232 {
6233         struct kvm_vcpu *vcpu;
6234         unsigned long i;
6235         int ret = 0;
6236
6237         mutex_lock(&kvm->lock);
6238         kvm_for_each_vcpu(i, vcpu, kvm) {
6239                 if (!vcpu->arch.pv_time.active)
6240                         continue;
6241
6242                 ret = kvm_set_guest_paused(vcpu);
6243                 if (ret) {
6244                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6245                                 vcpu->vcpu_id, ret);
6246                         break;
6247                 }
6248         }
6249         mutex_unlock(&kvm->lock);
6250
6251         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6252 }
6253
6254 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6255 {
6256         switch (state) {
6257         case PM_HIBERNATION_PREPARE:
6258         case PM_SUSPEND_PREPARE:
6259                 return kvm_arch_suspend_notifier(kvm);
6260         }
6261
6262         return NOTIFY_DONE;
6263 }
6264 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6265
6266 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6267 {
6268         struct kvm_clock_data data = { 0 };
6269
6270         get_kvmclock(kvm, &data);
6271         if (copy_to_user(argp, &data, sizeof(data)))
6272                 return -EFAULT;
6273
6274         return 0;
6275 }
6276
6277 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6278 {
6279         struct kvm_arch *ka = &kvm->arch;
6280         struct kvm_clock_data data;
6281         u64 now_raw_ns;
6282
6283         if (copy_from_user(&data, argp, sizeof(data)))
6284                 return -EFAULT;
6285
6286         /*
6287          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6288          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6289          */
6290         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6291                 return -EINVAL;
6292
6293         kvm_hv_request_tsc_page_update(kvm);
6294         kvm_start_pvclock_update(kvm);
6295         pvclock_update_vm_gtod_copy(kvm);
6296
6297         /*
6298          * This pairs with kvm_guest_time_update(): when masterclock is
6299          * in use, we use master_kernel_ns + kvmclock_offset to set
6300          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6301          * is slightly ahead) here we risk going negative on unsigned
6302          * 'system_time' when 'data.clock' is very small.
6303          */
6304         if (data.flags & KVM_CLOCK_REALTIME) {
6305                 u64 now_real_ns = ktime_get_real_ns();
6306
6307                 /*
6308                  * Avoid stepping the kvmclock backwards.
6309                  */
6310                 if (now_real_ns > data.realtime)
6311                         data.clock += now_real_ns - data.realtime;
6312         }
6313
6314         if (ka->use_master_clock)
6315                 now_raw_ns = ka->master_kernel_ns;
6316         else
6317                 now_raw_ns = get_kvmclock_base_ns();
6318         ka->kvmclock_offset = data.clock - now_raw_ns;
6319         kvm_end_pvclock_update(kvm);
6320         return 0;
6321 }
6322
6323 long kvm_arch_vm_ioctl(struct file *filp,
6324                        unsigned int ioctl, unsigned long arg)
6325 {
6326         struct kvm *kvm = filp->private_data;
6327         void __user *argp = (void __user *)arg;
6328         int r = -ENOTTY;
6329         /*
6330          * This union makes it completely explicit to gcc-3.x
6331          * that these two variables' stack usage should be
6332          * combined, not added together.
6333          */
6334         union {
6335                 struct kvm_pit_state ps;
6336                 struct kvm_pit_state2 ps2;
6337                 struct kvm_pit_config pit_config;
6338         } u;
6339
6340         switch (ioctl) {
6341         case KVM_SET_TSS_ADDR:
6342                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6343                 break;
6344         case KVM_SET_IDENTITY_MAP_ADDR: {
6345                 u64 ident_addr;
6346
6347                 mutex_lock(&kvm->lock);
6348                 r = -EINVAL;
6349                 if (kvm->created_vcpus)
6350                         goto set_identity_unlock;
6351                 r = -EFAULT;
6352                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6353                         goto set_identity_unlock;
6354                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6355 set_identity_unlock:
6356                 mutex_unlock(&kvm->lock);
6357                 break;
6358         }
6359         case KVM_SET_NR_MMU_PAGES:
6360                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6361                 break;
6362         case KVM_GET_NR_MMU_PAGES:
6363                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6364                 break;
6365         case KVM_CREATE_IRQCHIP: {
6366                 mutex_lock(&kvm->lock);
6367
6368                 r = -EEXIST;
6369                 if (irqchip_in_kernel(kvm))
6370                         goto create_irqchip_unlock;
6371
6372                 r = -EINVAL;
6373                 if (kvm->created_vcpus)
6374                         goto create_irqchip_unlock;
6375
6376                 r = kvm_pic_init(kvm);
6377                 if (r)
6378                         goto create_irqchip_unlock;
6379
6380                 r = kvm_ioapic_init(kvm);
6381                 if (r) {
6382                         kvm_pic_destroy(kvm);
6383                         goto create_irqchip_unlock;
6384                 }
6385
6386                 r = kvm_setup_default_irq_routing(kvm);
6387                 if (r) {
6388                         kvm_ioapic_destroy(kvm);
6389                         kvm_pic_destroy(kvm);
6390                         goto create_irqchip_unlock;
6391                 }
6392                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6393                 smp_wmb();
6394                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6395                 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6396         create_irqchip_unlock:
6397                 mutex_unlock(&kvm->lock);
6398                 break;
6399         }
6400         case KVM_CREATE_PIT:
6401                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6402                 goto create_pit;
6403         case KVM_CREATE_PIT2:
6404                 r = -EFAULT;
6405                 if (copy_from_user(&u.pit_config, argp,
6406                                    sizeof(struct kvm_pit_config)))
6407                         goto out;
6408         create_pit:
6409                 mutex_lock(&kvm->lock);
6410                 r = -EEXIST;
6411                 if (kvm->arch.vpit)
6412                         goto create_pit_unlock;
6413                 r = -ENOMEM;
6414                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6415                 if (kvm->arch.vpit)
6416                         r = 0;
6417         create_pit_unlock:
6418                 mutex_unlock(&kvm->lock);
6419                 break;
6420         case KVM_GET_IRQCHIP: {
6421                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6422                 struct kvm_irqchip *chip;
6423
6424                 chip = memdup_user(argp, sizeof(*chip));
6425                 if (IS_ERR(chip)) {
6426                         r = PTR_ERR(chip);
6427                         goto out;
6428                 }
6429
6430                 r = -ENXIO;
6431                 if (!irqchip_kernel(kvm))
6432                         goto get_irqchip_out;
6433                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6434                 if (r)
6435                         goto get_irqchip_out;
6436                 r = -EFAULT;
6437                 if (copy_to_user(argp, chip, sizeof(*chip)))
6438                         goto get_irqchip_out;
6439                 r = 0;
6440         get_irqchip_out:
6441                 kfree(chip);
6442                 break;
6443         }
6444         case KVM_SET_IRQCHIP: {
6445                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6446                 struct kvm_irqchip *chip;
6447
6448                 chip = memdup_user(argp, sizeof(*chip));
6449                 if (IS_ERR(chip)) {
6450                         r = PTR_ERR(chip);
6451                         goto out;
6452                 }
6453
6454                 r = -ENXIO;
6455                 if (!irqchip_kernel(kvm))
6456                         goto set_irqchip_out;
6457                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6458         set_irqchip_out:
6459                 kfree(chip);
6460                 break;
6461         }
6462         case KVM_GET_PIT: {
6463                 r = -EFAULT;
6464                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6465                         goto out;
6466                 r = -ENXIO;
6467                 if (!kvm->arch.vpit)
6468                         goto out;
6469                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6470                 if (r)
6471                         goto out;
6472                 r = -EFAULT;
6473                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6474                         goto out;
6475                 r = 0;
6476                 break;
6477         }
6478         case KVM_SET_PIT: {
6479                 r = -EFAULT;
6480                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6481                         goto out;
6482                 mutex_lock(&kvm->lock);
6483                 r = -ENXIO;
6484                 if (!kvm->arch.vpit)
6485                         goto set_pit_out;
6486                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6487 set_pit_out:
6488                 mutex_unlock(&kvm->lock);
6489                 break;
6490         }
6491         case KVM_GET_PIT2: {
6492                 r = -ENXIO;
6493                 if (!kvm->arch.vpit)
6494                         goto out;
6495                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6496                 if (r)
6497                         goto out;
6498                 r = -EFAULT;
6499                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6500                         goto out;
6501                 r = 0;
6502                 break;
6503         }
6504         case KVM_SET_PIT2: {
6505                 r = -EFAULT;
6506                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6507                         goto out;
6508                 mutex_lock(&kvm->lock);
6509                 r = -ENXIO;
6510                 if (!kvm->arch.vpit)
6511                         goto set_pit2_out;
6512                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6513 set_pit2_out:
6514                 mutex_unlock(&kvm->lock);
6515                 break;
6516         }
6517         case KVM_REINJECT_CONTROL: {
6518                 struct kvm_reinject_control control;
6519                 r =  -EFAULT;
6520                 if (copy_from_user(&control, argp, sizeof(control)))
6521                         goto out;
6522                 r = -ENXIO;
6523                 if (!kvm->arch.vpit)
6524                         goto out;
6525                 r = kvm_vm_ioctl_reinject(kvm, &control);
6526                 break;
6527         }
6528         case KVM_SET_BOOT_CPU_ID:
6529                 r = 0;
6530                 mutex_lock(&kvm->lock);
6531                 if (kvm->created_vcpus)
6532                         r = -EBUSY;
6533                 else
6534                         kvm->arch.bsp_vcpu_id = arg;
6535                 mutex_unlock(&kvm->lock);
6536                 break;
6537 #ifdef CONFIG_KVM_XEN
6538         case KVM_XEN_HVM_CONFIG: {
6539                 struct kvm_xen_hvm_config xhc;
6540                 r = -EFAULT;
6541                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6542                         goto out;
6543                 r = kvm_xen_hvm_config(kvm, &xhc);
6544                 break;
6545         }
6546         case KVM_XEN_HVM_GET_ATTR: {
6547                 struct kvm_xen_hvm_attr xha;
6548
6549                 r = -EFAULT;
6550                 if (copy_from_user(&xha, argp, sizeof(xha)))
6551                         goto out;
6552                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6553                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6554                         r = -EFAULT;
6555                 break;
6556         }
6557         case KVM_XEN_HVM_SET_ATTR: {
6558                 struct kvm_xen_hvm_attr xha;
6559
6560                 r = -EFAULT;
6561                 if (copy_from_user(&xha, argp, sizeof(xha)))
6562                         goto out;
6563                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6564                 break;
6565         }
6566         case KVM_XEN_HVM_EVTCHN_SEND: {
6567                 struct kvm_irq_routing_xen_evtchn uxe;
6568
6569                 r = -EFAULT;
6570                 if (copy_from_user(&uxe, argp, sizeof(uxe)))
6571                         goto out;
6572                 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6573                 break;
6574         }
6575 #endif
6576         case KVM_SET_CLOCK:
6577                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6578                 break;
6579         case KVM_GET_CLOCK:
6580                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6581                 break;
6582         case KVM_SET_TSC_KHZ: {
6583                 u32 user_tsc_khz;
6584
6585                 r = -EINVAL;
6586                 user_tsc_khz = (u32)arg;
6587
6588                 if (kvm_has_tsc_control &&
6589                     user_tsc_khz >= kvm_max_guest_tsc_khz)
6590                         goto out;
6591
6592                 if (user_tsc_khz == 0)
6593                         user_tsc_khz = tsc_khz;
6594
6595                 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6596                 r = 0;
6597
6598                 goto out;
6599         }
6600         case KVM_GET_TSC_KHZ: {
6601                 r = READ_ONCE(kvm->arch.default_tsc_khz);
6602                 goto out;
6603         }
6604         case KVM_MEMORY_ENCRYPT_OP: {
6605                 r = -ENOTTY;
6606                 if (!kvm_x86_ops.mem_enc_ioctl)
6607                         goto out;
6608
6609                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6610                 break;
6611         }
6612         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6613                 struct kvm_enc_region region;
6614
6615                 r = -EFAULT;
6616                 if (copy_from_user(&region, argp, sizeof(region)))
6617                         goto out;
6618
6619                 r = -ENOTTY;
6620                 if (!kvm_x86_ops.mem_enc_register_region)
6621                         goto out;
6622
6623                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6624                 break;
6625         }
6626         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6627                 struct kvm_enc_region region;
6628
6629                 r = -EFAULT;
6630                 if (copy_from_user(&region, argp, sizeof(region)))
6631                         goto out;
6632
6633                 r = -ENOTTY;
6634                 if (!kvm_x86_ops.mem_enc_unregister_region)
6635                         goto out;
6636
6637                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6638                 break;
6639         }
6640         case KVM_HYPERV_EVENTFD: {
6641                 struct kvm_hyperv_eventfd hvevfd;
6642
6643                 r = -EFAULT;
6644                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6645                         goto out;
6646                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6647                 break;
6648         }
6649         case KVM_SET_PMU_EVENT_FILTER:
6650                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6651                 break;
6652         case KVM_X86_SET_MSR_FILTER:
6653                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6654                 break;
6655         default:
6656                 r = -ENOTTY;
6657         }
6658 out:
6659         return r;
6660 }
6661
6662 static void kvm_init_msr_list(void)
6663 {
6664         struct x86_pmu_capability x86_pmu;
6665         u32 dummy[2];
6666         unsigned i;
6667
6668         BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6669                          "Please update the fixed PMCs in msrs_to_saved_all[]");
6670
6671         perf_get_x86_pmu_capability(&x86_pmu);
6672
6673         num_msrs_to_save = 0;
6674         num_emulated_msrs = 0;
6675         num_msr_based_features = 0;
6676
6677         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6678                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6679                         continue;
6680
6681                 /*
6682                  * Even MSRs that are valid in the host may not be exposed
6683                  * to the guests in some cases.
6684                  */
6685                 switch (msrs_to_save_all[i]) {
6686                 case MSR_IA32_BNDCFGS:
6687                         if (!kvm_mpx_supported())
6688                                 continue;
6689                         break;
6690                 case MSR_TSC_AUX:
6691                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6692                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6693                                 continue;
6694                         break;
6695                 case MSR_IA32_UMWAIT_CONTROL:
6696                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6697                                 continue;
6698                         break;
6699                 case MSR_IA32_RTIT_CTL:
6700                 case MSR_IA32_RTIT_STATUS:
6701                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6702                                 continue;
6703                         break;
6704                 case MSR_IA32_RTIT_CR3_MATCH:
6705                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6706                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6707                                 continue;
6708                         break;
6709                 case MSR_IA32_RTIT_OUTPUT_BASE:
6710                 case MSR_IA32_RTIT_OUTPUT_MASK:
6711                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6712                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6713                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6714                                 continue;
6715                         break;
6716                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6717                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6718                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6719                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6720                                 continue;
6721                         break;
6722                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6723                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6724                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6725                                 continue;
6726                         break;
6727                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6728                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6729                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6730                                 continue;
6731                         break;
6732                 case MSR_IA32_XFD:
6733                 case MSR_IA32_XFD_ERR:
6734                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6735                                 continue;
6736                         break;
6737                 default:
6738                         break;
6739                 }
6740
6741                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6742         }
6743
6744         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6745                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6746                         continue;
6747
6748                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6749         }
6750
6751         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6752                 struct kvm_msr_entry msr;
6753
6754                 msr.index = msr_based_features_all[i];
6755                 if (kvm_get_msr_feature(&msr))
6756                         continue;
6757
6758                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6759         }
6760 }
6761
6762 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6763                            const void *v)
6764 {
6765         int handled = 0;
6766         int n;
6767
6768         do {
6769                 n = min(len, 8);
6770                 if (!(lapic_in_kernel(vcpu) &&
6771                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6772                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6773                         break;
6774                 handled += n;
6775                 addr += n;
6776                 len -= n;
6777                 v += n;
6778         } while (len);
6779
6780         return handled;
6781 }
6782
6783 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6784 {
6785         int handled = 0;
6786         int n;
6787
6788         do {
6789                 n = min(len, 8);
6790                 if (!(lapic_in_kernel(vcpu) &&
6791                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6792                                          addr, n, v))
6793                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6794                         break;
6795                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6796                 handled += n;
6797                 addr += n;
6798                 len -= n;
6799                 v += n;
6800         } while (len);
6801
6802         return handled;
6803 }
6804
6805 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6806                         struct kvm_segment *var, int seg)
6807 {
6808         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6809 }
6810
6811 void kvm_get_segment(struct kvm_vcpu *vcpu,
6812                      struct kvm_segment *var, int seg)
6813 {
6814         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6815 }
6816
6817 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
6818                            struct x86_exception *exception)
6819 {
6820         struct kvm_mmu *mmu = vcpu->arch.mmu;
6821         gpa_t t_gpa;
6822
6823         BUG_ON(!mmu_is_nested(vcpu));
6824
6825         /* NPT walks are always user-walks */
6826         access |= PFERR_USER_MASK;
6827         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6828
6829         return t_gpa;
6830 }
6831
6832 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6833                               struct x86_exception *exception)
6834 {
6835         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6836
6837         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6838         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6839 }
6840 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6841
6842  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6843                                 struct x86_exception *exception)
6844 {
6845         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6846
6847         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6848         access |= PFERR_FETCH_MASK;
6849         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6850 }
6851
6852 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6853                                struct x86_exception *exception)
6854 {
6855         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6856
6857         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6858         access |= PFERR_WRITE_MASK;
6859         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6860 }
6861 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6862
6863 /* uses this to access any guest's mapped memory without checking CPL */
6864 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6865                                 struct x86_exception *exception)
6866 {
6867         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6868
6869         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6870 }
6871
6872 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6873                                       struct kvm_vcpu *vcpu, u64 access,
6874                                       struct x86_exception *exception)
6875 {
6876         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6877         void *data = val;
6878         int r = X86EMUL_CONTINUE;
6879
6880         while (bytes) {
6881                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6882                 unsigned offset = addr & (PAGE_SIZE-1);
6883                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6884                 int ret;
6885
6886                 if (gpa == UNMAPPED_GVA)
6887                         return X86EMUL_PROPAGATE_FAULT;
6888                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6889                                                offset, toread);
6890                 if (ret < 0) {
6891                         r = X86EMUL_IO_NEEDED;
6892                         goto out;
6893                 }
6894
6895                 bytes -= toread;
6896                 data += toread;
6897                 addr += toread;
6898         }
6899 out:
6900         return r;
6901 }
6902
6903 /* used for instruction fetching */
6904 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6905                                 gva_t addr, void *val, unsigned int bytes,
6906                                 struct x86_exception *exception)
6907 {
6908         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6909         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6910         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6911         unsigned offset;
6912         int ret;
6913
6914         /* Inline kvm_read_guest_virt_helper for speed.  */
6915         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6916                                     exception);
6917         if (unlikely(gpa == UNMAPPED_GVA))
6918                 return X86EMUL_PROPAGATE_FAULT;
6919
6920         offset = addr & (PAGE_SIZE-1);
6921         if (WARN_ON(offset + bytes > PAGE_SIZE))
6922                 bytes = (unsigned)PAGE_SIZE - offset;
6923         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6924                                        offset, bytes);
6925         if (unlikely(ret < 0))
6926                 return X86EMUL_IO_NEEDED;
6927
6928         return X86EMUL_CONTINUE;
6929 }
6930
6931 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6932                                gva_t addr, void *val, unsigned int bytes,
6933                                struct x86_exception *exception)
6934 {
6935         u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6936
6937         /*
6938          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6939          * is returned, but our callers are not ready for that and they blindly
6940          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6941          * uninitialized kernel stack memory into cr2 and error code.
6942          */
6943         memset(exception, 0, sizeof(*exception));
6944         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6945                                           exception);
6946 }
6947 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6948
6949 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6950                              gva_t addr, void *val, unsigned int bytes,
6951                              struct x86_exception *exception, bool system)
6952 {
6953         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6954         u64 access = 0;
6955
6956         if (system)
6957                 access |= PFERR_IMPLICIT_ACCESS;
6958         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
6959                 access |= PFERR_USER_MASK;
6960
6961         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6962 }
6963
6964 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6965                 unsigned long addr, void *val, unsigned int bytes)
6966 {
6967         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6968         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6969
6970         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6971 }
6972
6973 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6974                                       struct kvm_vcpu *vcpu, u64 access,
6975                                       struct x86_exception *exception)
6976 {
6977         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6978         void *data = val;
6979         int r = X86EMUL_CONTINUE;
6980
6981         while (bytes) {
6982                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6983                 unsigned offset = addr & (PAGE_SIZE-1);
6984                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6985                 int ret;
6986
6987                 if (gpa == UNMAPPED_GVA)
6988                         return X86EMUL_PROPAGATE_FAULT;
6989                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6990                 if (ret < 0) {
6991                         r = X86EMUL_IO_NEEDED;
6992                         goto out;
6993                 }
6994
6995                 bytes -= towrite;
6996                 data += towrite;
6997                 addr += towrite;
6998         }
6999 out:
7000         return r;
7001 }
7002
7003 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7004                               unsigned int bytes, struct x86_exception *exception,
7005                               bool system)
7006 {
7007         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7008         u64 access = PFERR_WRITE_MASK;
7009
7010         if (system)
7011                 access |= PFERR_IMPLICIT_ACCESS;
7012         else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7013                 access |= PFERR_USER_MASK;
7014
7015         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7016                                            access, exception);
7017 }
7018
7019 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7020                                 unsigned int bytes, struct x86_exception *exception)
7021 {
7022         /* kvm_write_guest_virt_system can pull in tons of pages. */
7023         vcpu->arch.l1tf_flush_l1d = true;
7024
7025         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7026                                            PFERR_WRITE_MASK, exception);
7027 }
7028 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7029
7030 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7031                                 void *insn, int insn_len)
7032 {
7033         return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7034                                                             insn, insn_len);
7035 }
7036
7037 int handle_ud(struct kvm_vcpu *vcpu)
7038 {
7039         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7040         int emul_type = EMULTYPE_TRAP_UD;
7041         char sig[5]; /* ud2; .ascii "kvm" */
7042         struct x86_exception e;
7043
7044         if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7045                 return 1;
7046
7047         if (force_emulation_prefix &&
7048             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7049                                 sig, sizeof(sig), &e) == 0 &&
7050             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7051                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7052                 emul_type = EMULTYPE_TRAP_UD_FORCED;
7053         }
7054
7055         return kvm_emulate_instruction(vcpu, emul_type);
7056 }
7057 EXPORT_SYMBOL_GPL(handle_ud);
7058
7059 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7060                             gpa_t gpa, bool write)
7061 {
7062         /* For APIC access vmexit */
7063         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7064                 return 1;
7065
7066         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7067                 trace_vcpu_match_mmio(gva, gpa, write, true);
7068                 return 1;
7069         }
7070
7071         return 0;
7072 }
7073
7074 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7075                                 gpa_t *gpa, struct x86_exception *exception,
7076                                 bool write)
7077 {
7078         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7079         u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7080                 | (write ? PFERR_WRITE_MASK : 0);
7081
7082         /*
7083          * currently PKRU is only applied to ept enabled guest so
7084          * there is no pkey in EPT page table for L1 guest or EPT
7085          * shadow page table for L2 guest.
7086          */
7087         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7088             !permission_fault(vcpu, vcpu->arch.walk_mmu,
7089                               vcpu->arch.mmio_access, 0, access))) {
7090                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7091                                         (gva & (PAGE_SIZE - 1));
7092                 trace_vcpu_match_mmio(gva, *gpa, write, false);
7093                 return 1;
7094         }
7095
7096         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7097
7098         if (*gpa == UNMAPPED_GVA)
7099                 return -1;
7100
7101         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7102 }
7103
7104 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7105                         const void *val, int bytes)
7106 {
7107         int ret;
7108
7109         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7110         if (ret < 0)
7111                 return 0;
7112         kvm_page_track_write(vcpu, gpa, val, bytes);
7113         return 1;
7114 }
7115
7116 struct read_write_emulator_ops {
7117         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7118                                   int bytes);
7119         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7120                                   void *val, int bytes);
7121         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7122                                int bytes, void *val);
7123         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7124                                     void *val, int bytes);
7125         bool write;
7126 };
7127
7128 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7129 {
7130         if (vcpu->mmio_read_completed) {
7131                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7132                                vcpu->mmio_fragments[0].gpa, val);
7133                 vcpu->mmio_read_completed = 0;
7134                 return 1;
7135         }
7136
7137         return 0;
7138 }
7139
7140 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7141                         void *val, int bytes)
7142 {
7143         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7144 }
7145
7146 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7147                          void *val, int bytes)
7148 {
7149         return emulator_write_phys(vcpu, gpa, val, bytes);
7150 }
7151
7152 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7153 {
7154         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7155         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7156 }
7157
7158 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7159                           void *val, int bytes)
7160 {
7161         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7162         return X86EMUL_IO_NEEDED;
7163 }
7164
7165 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7166                            void *val, int bytes)
7167 {
7168         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7169
7170         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7171         return X86EMUL_CONTINUE;
7172 }
7173
7174 static const struct read_write_emulator_ops read_emultor = {
7175         .read_write_prepare = read_prepare,
7176         .read_write_emulate = read_emulate,
7177         .read_write_mmio = vcpu_mmio_read,
7178         .read_write_exit_mmio = read_exit_mmio,
7179 };
7180
7181 static const struct read_write_emulator_ops write_emultor = {
7182         .read_write_emulate = write_emulate,
7183         .read_write_mmio = write_mmio,
7184         .read_write_exit_mmio = write_exit_mmio,
7185         .write = true,
7186 };
7187
7188 static int emulator_read_write_onepage(unsigned long addr, void *val,
7189                                        unsigned int bytes,
7190                                        struct x86_exception *exception,
7191                                        struct kvm_vcpu *vcpu,
7192                                        const struct read_write_emulator_ops *ops)
7193 {
7194         gpa_t gpa;
7195         int handled, ret;
7196         bool write = ops->write;
7197         struct kvm_mmio_fragment *frag;
7198         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7199
7200         /*
7201          * If the exit was due to a NPF we may already have a GPA.
7202          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7203          * Note, this cannot be used on string operations since string
7204          * operation using rep will only have the initial GPA from the NPF
7205          * occurred.
7206          */
7207         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7208             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7209                 gpa = ctxt->gpa_val;
7210                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7211         } else {
7212                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7213                 if (ret < 0)
7214                         return X86EMUL_PROPAGATE_FAULT;
7215         }
7216
7217         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7218                 return X86EMUL_CONTINUE;
7219
7220         /*
7221          * Is this MMIO handled locally?
7222          */
7223         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7224         if (handled == bytes)
7225                 return X86EMUL_CONTINUE;
7226
7227         gpa += handled;
7228         bytes -= handled;
7229         val += handled;
7230
7231         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7232         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7233         frag->gpa = gpa;
7234         frag->data = val;
7235         frag->len = bytes;
7236         return X86EMUL_CONTINUE;
7237 }
7238
7239 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7240                         unsigned long addr,
7241                         void *val, unsigned int bytes,
7242                         struct x86_exception *exception,
7243                         const struct read_write_emulator_ops *ops)
7244 {
7245         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7246         gpa_t gpa;
7247         int rc;
7248
7249         if (ops->read_write_prepare &&
7250                   ops->read_write_prepare(vcpu, val, bytes))
7251                 return X86EMUL_CONTINUE;
7252
7253         vcpu->mmio_nr_fragments = 0;
7254
7255         /* Crossing a page boundary? */
7256         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7257                 int now;
7258
7259                 now = -addr & ~PAGE_MASK;
7260                 rc = emulator_read_write_onepage(addr, val, now, exception,
7261                                                  vcpu, ops);
7262
7263                 if (rc != X86EMUL_CONTINUE)
7264                         return rc;
7265                 addr += now;
7266                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7267                         addr = (u32)addr;
7268                 val += now;
7269                 bytes -= now;
7270         }
7271
7272         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7273                                          vcpu, ops);
7274         if (rc != X86EMUL_CONTINUE)
7275                 return rc;
7276
7277         if (!vcpu->mmio_nr_fragments)
7278                 return rc;
7279
7280         gpa = vcpu->mmio_fragments[0].gpa;
7281
7282         vcpu->mmio_needed = 1;
7283         vcpu->mmio_cur_fragment = 0;
7284
7285         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7286         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7287         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7288         vcpu->run->mmio.phys_addr = gpa;
7289
7290         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7291 }
7292
7293 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7294                                   unsigned long addr,
7295                                   void *val,
7296                                   unsigned int bytes,
7297                                   struct x86_exception *exception)
7298 {
7299         return emulator_read_write(ctxt, addr, val, bytes,
7300                                    exception, &read_emultor);
7301 }
7302
7303 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7304                             unsigned long addr,
7305                             const void *val,
7306                             unsigned int bytes,
7307                             struct x86_exception *exception)
7308 {
7309         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7310                                    exception, &write_emultor);
7311 }
7312
7313 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7314         (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7315
7316 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7317                                      unsigned long addr,
7318                                      const void *old,
7319                                      const void *new,
7320                                      unsigned int bytes,
7321                                      struct x86_exception *exception)
7322 {
7323         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7324         u64 page_line_mask;
7325         unsigned long hva;
7326         gpa_t gpa;
7327         int r;
7328
7329         /* guests cmpxchg8b have to be emulated atomically */
7330         if (bytes > 8 || (bytes & (bytes - 1)))
7331                 goto emul_write;
7332
7333         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7334
7335         if (gpa == UNMAPPED_GVA ||
7336             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7337                 goto emul_write;
7338
7339         /*
7340          * Emulate the atomic as a straight write to avoid #AC if SLD is
7341          * enabled in the host and the access splits a cache line.
7342          */
7343         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7344                 page_line_mask = ~(cache_line_size() - 1);
7345         else
7346                 page_line_mask = PAGE_MASK;
7347
7348         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7349                 goto emul_write;
7350
7351         hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7352         if (kvm_is_error_hva(hva))
7353                 goto emul_write;
7354
7355         hva += offset_in_page(gpa);
7356
7357         switch (bytes) {
7358         case 1:
7359                 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7360                 break;
7361         case 2:
7362                 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7363                 break;
7364         case 4:
7365                 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7366                 break;
7367         case 8:
7368                 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7369                 break;
7370         default:
7371                 BUG();
7372         }
7373
7374         if (r < 0)
7375                 return X86EMUL_UNHANDLEABLE;
7376         if (r)
7377                 return X86EMUL_CMPXCHG_FAILED;
7378
7379         kvm_page_track_write(vcpu, gpa, new, bytes);
7380
7381         return X86EMUL_CONTINUE;
7382
7383 emul_write:
7384         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7385
7386         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7387 }
7388
7389 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7390 {
7391         int r = 0, i;
7392
7393         for (i = 0; i < vcpu->arch.pio.count; i++) {
7394                 if (vcpu->arch.pio.in)
7395                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7396                                             vcpu->arch.pio.size, pd);
7397                 else
7398                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7399                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
7400                                              pd);
7401                 if (r)
7402                         break;
7403                 pd += vcpu->arch.pio.size;
7404         }
7405         return r;
7406 }
7407
7408 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7409                                unsigned short port,
7410                                unsigned int count, bool in)
7411 {
7412         vcpu->arch.pio.port = port;
7413         vcpu->arch.pio.in = in;
7414         vcpu->arch.pio.count  = count;
7415         vcpu->arch.pio.size = size;
7416
7417         if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7418                 return 1;
7419
7420         vcpu->run->exit_reason = KVM_EXIT_IO;
7421         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7422         vcpu->run->io.size = size;
7423         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7424         vcpu->run->io.count = count;
7425         vcpu->run->io.port = port;
7426
7427         return 0;
7428 }
7429
7430 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7431                              unsigned short port, unsigned int count)
7432 {
7433         WARN_ON(vcpu->arch.pio.count);
7434         memset(vcpu->arch.pio_data, 0, size * count);
7435         return emulator_pio_in_out(vcpu, size, port, count, true);
7436 }
7437
7438 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7439 {
7440         int size = vcpu->arch.pio.size;
7441         unsigned count = vcpu->arch.pio.count;
7442         memcpy(val, vcpu->arch.pio_data, size * count);
7443         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7444         vcpu->arch.pio.count = 0;
7445 }
7446
7447 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7448                            unsigned short port, void *val, unsigned int count)
7449 {
7450         if (vcpu->arch.pio.count) {
7451                 /*
7452                  * Complete a previous iteration that required userspace I/O.
7453                  * Note, @count isn't guaranteed to match pio.count as userspace
7454                  * can modify ECX before rerunning the vCPU.  Ignore any such
7455                  * shenanigans as KVM doesn't support modifying the rep count,
7456                  * and the emulator ensures @count doesn't overflow the buffer.
7457                  */
7458         } else {
7459                 int r = __emulator_pio_in(vcpu, size, port, count);
7460                 if (!r)
7461                         return r;
7462
7463                 /* Results already available, fall through.  */
7464         }
7465
7466         complete_emulator_pio_in(vcpu, val);
7467         return 1;
7468 }
7469
7470 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7471                                     int size, unsigned short port, void *val,
7472                                     unsigned int count)
7473 {
7474         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7475
7476 }
7477
7478 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7479                             unsigned short port, const void *val,
7480                             unsigned int count)
7481 {
7482         int ret;
7483
7484         memcpy(vcpu->arch.pio_data, val, size * count);
7485         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7486         ret = emulator_pio_in_out(vcpu, size, port, count, false);
7487         if (ret)
7488                 vcpu->arch.pio.count = 0;
7489
7490         return ret;
7491 }
7492
7493 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7494                                      int size, unsigned short port,
7495                                      const void *val, unsigned int count)
7496 {
7497         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7498 }
7499
7500 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7501 {
7502         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7503 }
7504
7505 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7506 {
7507         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7508 }
7509
7510 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7511 {
7512         if (!need_emulate_wbinvd(vcpu))
7513                 return X86EMUL_CONTINUE;
7514
7515         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7516                 int cpu = get_cpu();
7517
7518                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7519                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7520                                 wbinvd_ipi, NULL, 1);
7521                 put_cpu();
7522                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7523         } else
7524                 wbinvd();
7525         return X86EMUL_CONTINUE;
7526 }
7527
7528 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7529 {
7530         kvm_emulate_wbinvd_noskip(vcpu);
7531         return kvm_skip_emulated_instruction(vcpu);
7532 }
7533 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7534
7535
7536
7537 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7538 {
7539         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7540 }
7541
7542 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7543                             unsigned long *dest)
7544 {
7545         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7546 }
7547
7548 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7549                            unsigned long value)
7550 {
7551
7552         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7553 }
7554
7555 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7556 {
7557         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7558 }
7559
7560 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7561 {
7562         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7563         unsigned long value;
7564
7565         switch (cr) {
7566         case 0:
7567                 value = kvm_read_cr0(vcpu);
7568                 break;
7569         case 2:
7570                 value = vcpu->arch.cr2;
7571                 break;
7572         case 3:
7573                 value = kvm_read_cr3(vcpu);
7574                 break;
7575         case 4:
7576                 value = kvm_read_cr4(vcpu);
7577                 break;
7578         case 8:
7579                 value = kvm_get_cr8(vcpu);
7580                 break;
7581         default:
7582                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7583                 return 0;
7584         }
7585
7586         return value;
7587 }
7588
7589 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7590 {
7591         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7592         int res = 0;
7593
7594         switch (cr) {
7595         case 0:
7596                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7597                 break;
7598         case 2:
7599                 vcpu->arch.cr2 = val;
7600                 break;
7601         case 3:
7602                 res = kvm_set_cr3(vcpu, val);
7603                 break;
7604         case 4:
7605                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7606                 break;
7607         case 8:
7608                 res = kvm_set_cr8(vcpu, val);
7609                 break;
7610         default:
7611                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7612                 res = -1;
7613         }
7614
7615         return res;
7616 }
7617
7618 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7619 {
7620         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7621 }
7622
7623 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7624 {
7625         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7626 }
7627
7628 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7629 {
7630         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7631 }
7632
7633 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7634 {
7635         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7636 }
7637
7638 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7639 {
7640         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7641 }
7642
7643 static unsigned long emulator_get_cached_segment_base(
7644         struct x86_emulate_ctxt *ctxt, int seg)
7645 {
7646         return get_segment_base(emul_to_vcpu(ctxt), seg);
7647 }
7648
7649 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7650                                  struct desc_struct *desc, u32 *base3,
7651                                  int seg)
7652 {
7653         struct kvm_segment var;
7654
7655         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7656         *selector = var.selector;
7657
7658         if (var.unusable) {
7659                 memset(desc, 0, sizeof(*desc));
7660                 if (base3)
7661                         *base3 = 0;
7662                 return false;
7663         }
7664
7665         if (var.g)
7666                 var.limit >>= 12;
7667         set_desc_limit(desc, var.limit);
7668         set_desc_base(desc, (unsigned long)var.base);
7669 #ifdef CONFIG_X86_64
7670         if (base3)
7671                 *base3 = var.base >> 32;
7672 #endif
7673         desc->type = var.type;
7674         desc->s = var.s;
7675         desc->dpl = var.dpl;
7676         desc->p = var.present;
7677         desc->avl = var.avl;
7678         desc->l = var.l;
7679         desc->d = var.db;
7680         desc->g = var.g;
7681
7682         return true;
7683 }
7684
7685 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7686                                  struct desc_struct *desc, u32 base3,
7687                                  int seg)
7688 {
7689         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7690         struct kvm_segment var;
7691
7692         var.selector = selector;
7693         var.base = get_desc_base(desc);
7694 #ifdef CONFIG_X86_64
7695         var.base |= ((u64)base3) << 32;
7696 #endif
7697         var.limit = get_desc_limit(desc);
7698         if (desc->g)
7699                 var.limit = (var.limit << 12) | 0xfff;
7700         var.type = desc->type;
7701         var.dpl = desc->dpl;
7702         var.db = desc->d;
7703         var.s = desc->s;
7704         var.l = desc->l;
7705         var.g = desc->g;
7706         var.avl = desc->avl;
7707         var.present = desc->p;
7708         var.unusable = !var.present;
7709         var.padding = 0;
7710
7711         kvm_set_segment(vcpu, &var, seg);
7712         return;
7713 }
7714
7715 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7716                                         u32 msr_index, u64 *pdata)
7717 {
7718         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7719         int r;
7720
7721         r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
7722
7723         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7724                                     complete_emulated_rdmsr, r)) {
7725                 /* Bounce to user space */
7726                 return X86EMUL_IO_NEEDED;
7727         }
7728
7729         return r;
7730 }
7731
7732 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
7733                                         u32 msr_index, u64 data)
7734 {
7735         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7736         int r;
7737
7738         r = kvm_set_msr_with_filter(vcpu, msr_index, data);
7739
7740         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7741                                     complete_emulated_msr_access, r)) {
7742                 /* Bounce to user space */
7743                 return X86EMUL_IO_NEEDED;
7744         }
7745
7746         return r;
7747 }
7748
7749 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7750                             u32 msr_index, u64 *pdata)
7751 {
7752         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
7753 }
7754
7755 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7756                             u32 msr_index, u64 data)
7757 {
7758         return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
7759 }
7760
7761 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7762 {
7763         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7764
7765         return vcpu->arch.smbase;
7766 }
7767
7768 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7769 {
7770         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7771
7772         vcpu->arch.smbase = smbase;
7773 }
7774
7775 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7776                               u32 pmc)
7777 {
7778         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7779                 return 0;
7780         return -EINVAL;
7781 }
7782
7783 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7784                              u32 pmc, u64 *pdata)
7785 {
7786         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7787 }
7788
7789 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7790 {
7791         emul_to_vcpu(ctxt)->arch.halt_request = 1;
7792 }
7793
7794 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7795                               struct x86_instruction_info *info,
7796                               enum x86_intercept_stage stage)
7797 {
7798         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7799                                             &ctxt->exception);
7800 }
7801
7802 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7803                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7804                               bool exact_only)
7805 {
7806         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7807 }
7808
7809 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7810 {
7811         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7812 }
7813
7814 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7815 {
7816         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7817 }
7818
7819 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7820 {
7821         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7822 }
7823
7824 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7825 {
7826         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7827 }
7828
7829 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7830 {
7831         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7832 }
7833
7834 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7835 {
7836         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7837 }
7838
7839 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7840 {
7841         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7842 }
7843
7844 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7845 {
7846         return emul_to_vcpu(ctxt)->arch.hflags;
7847 }
7848
7849 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7850 {
7851         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7852
7853         kvm_smm_changed(vcpu, false);
7854 }
7855
7856 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7857                                   const char *smstate)
7858 {
7859         return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7860 }
7861
7862 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7863 {
7864         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7865 }
7866
7867 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7868 {
7869         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7870 }
7871
7872 static const struct x86_emulate_ops emulate_ops = {
7873         .read_gpr            = emulator_read_gpr,
7874         .write_gpr           = emulator_write_gpr,
7875         .read_std            = emulator_read_std,
7876         .write_std           = emulator_write_std,
7877         .read_phys           = kvm_read_guest_phys_system,
7878         .fetch               = kvm_fetch_guest_virt,
7879         .read_emulated       = emulator_read_emulated,
7880         .write_emulated      = emulator_write_emulated,
7881         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7882         .invlpg              = emulator_invlpg,
7883         .pio_in_emulated     = emulator_pio_in_emulated,
7884         .pio_out_emulated    = emulator_pio_out_emulated,
7885         .get_segment         = emulator_get_segment,
7886         .set_segment         = emulator_set_segment,
7887         .get_cached_segment_base = emulator_get_cached_segment_base,
7888         .get_gdt             = emulator_get_gdt,
7889         .get_idt             = emulator_get_idt,
7890         .set_gdt             = emulator_set_gdt,
7891         .set_idt             = emulator_set_idt,
7892         .get_cr              = emulator_get_cr,
7893         .set_cr              = emulator_set_cr,
7894         .cpl                 = emulator_get_cpl,
7895         .get_dr              = emulator_get_dr,
7896         .set_dr              = emulator_set_dr,
7897         .get_smbase          = emulator_get_smbase,
7898         .set_smbase          = emulator_set_smbase,
7899         .set_msr_with_filter = emulator_set_msr_with_filter,
7900         .get_msr_with_filter = emulator_get_msr_with_filter,
7901         .set_msr             = emulator_set_msr,
7902         .get_msr             = emulator_get_msr,
7903         .check_pmc           = emulator_check_pmc,
7904         .read_pmc            = emulator_read_pmc,
7905         .halt                = emulator_halt,
7906         .wbinvd              = emulator_wbinvd,
7907         .fix_hypercall       = emulator_fix_hypercall,
7908         .intercept           = emulator_intercept,
7909         .get_cpuid           = emulator_get_cpuid,
7910         .guest_has_long_mode = emulator_guest_has_long_mode,
7911         .guest_has_movbe     = emulator_guest_has_movbe,
7912         .guest_has_fxsr      = emulator_guest_has_fxsr,
7913         .guest_has_rdpid     = emulator_guest_has_rdpid,
7914         .set_nmi_mask        = emulator_set_nmi_mask,
7915         .get_hflags          = emulator_get_hflags,
7916         .exiting_smm         = emulator_exiting_smm,
7917         .leave_smm           = emulator_leave_smm,
7918         .triple_fault        = emulator_triple_fault,
7919         .set_xcr             = emulator_set_xcr,
7920 };
7921
7922 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7923 {
7924         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7925         /*
7926          * an sti; sti; sequence only disable interrupts for the first
7927          * instruction. So, if the last instruction, be it emulated or
7928          * not, left the system with the INT_STI flag enabled, it
7929          * means that the last instruction is an sti. We should not
7930          * leave the flag on in this case. The same goes for mov ss
7931          */
7932         if (int_shadow & mask)
7933                 mask = 0;
7934         if (unlikely(int_shadow || mask)) {
7935                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7936                 if (!mask)
7937                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7938         }
7939 }
7940
7941 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7942 {
7943         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7944         if (ctxt->exception.vector == PF_VECTOR)
7945                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7946
7947         if (ctxt->exception.error_code_valid)
7948                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7949                                       ctxt->exception.error_code);
7950         else
7951                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7952         return false;
7953 }
7954
7955 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7956 {
7957         struct x86_emulate_ctxt *ctxt;
7958
7959         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7960         if (!ctxt) {
7961                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7962                 return NULL;
7963         }
7964
7965         ctxt->vcpu = vcpu;
7966         ctxt->ops = &emulate_ops;
7967         vcpu->arch.emulate_ctxt = ctxt;
7968
7969         return ctxt;
7970 }
7971
7972 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7973 {
7974         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7975         int cs_db, cs_l;
7976
7977         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7978
7979         ctxt->gpa_available = false;
7980         ctxt->eflags = kvm_get_rflags(vcpu);
7981         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7982
7983         ctxt->eip = kvm_rip_read(vcpu);
7984         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7985                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7986                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7987                      cs_db                              ? X86EMUL_MODE_PROT32 :
7988                                                           X86EMUL_MODE_PROT16;
7989         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7990         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7991         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7992
7993         ctxt->interruptibility = 0;
7994         ctxt->have_exception = false;
7995         ctxt->exception.vector = -1;
7996         ctxt->perm_ok = false;
7997
7998         init_decode_cache(ctxt);
7999         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8000 }
8001
8002 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8003 {
8004         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8005         int ret;
8006
8007         init_emulate_ctxt(vcpu);
8008
8009         ctxt->op_bytes = 2;
8010         ctxt->ad_bytes = 2;
8011         ctxt->_eip = ctxt->eip + inc_eip;
8012         ret = emulate_int_real(ctxt, irq);
8013
8014         if (ret != X86EMUL_CONTINUE) {
8015                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8016         } else {
8017                 ctxt->eip = ctxt->_eip;
8018                 kvm_rip_write(vcpu, ctxt->eip);
8019                 kvm_set_rflags(vcpu, ctxt->eflags);
8020         }
8021 }
8022 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8023
8024 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8025                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
8026 {
8027         struct kvm_run *run = vcpu->run;
8028         u64 info[5];
8029         u8 info_start;
8030
8031         /*
8032          * Zero the whole array used to retrieve the exit info, as casting to
8033          * u32 for select entries will leave some chunks uninitialized.
8034          */
8035         memset(&info, 0, sizeof(info));
8036
8037         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8038                                            &info[2], (u32 *)&info[3],
8039                                            (u32 *)&info[4]);
8040
8041         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8042         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8043
8044         /*
8045          * There's currently space for 13 entries, but 5 are used for the exit
8046          * reason and info.  Restrict to 4 to reduce the maintenance burden
8047          * when expanding kvm_run.emulation_failure in the future.
8048          */
8049         if (WARN_ON_ONCE(ndata > 4))
8050                 ndata = 4;
8051
8052         /* Always include the flags as a 'data' entry. */
8053         info_start = 1;
8054         run->emulation_failure.flags = 0;
8055
8056         if (insn_size) {
8057                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8058                               sizeof(run->emulation_failure.insn_bytes) != 16));
8059                 info_start += 2;
8060                 run->emulation_failure.flags |=
8061                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8062                 run->emulation_failure.insn_size = insn_size;
8063                 memset(run->emulation_failure.insn_bytes, 0x90,
8064                        sizeof(run->emulation_failure.insn_bytes));
8065                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8066         }
8067
8068         memcpy(&run->internal.data[info_start], info, sizeof(info));
8069         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8070                ndata * sizeof(data[0]));
8071
8072         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8073 }
8074
8075 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8076 {
8077         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8078
8079         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8080                                        ctxt->fetch.end - ctxt->fetch.data);
8081 }
8082
8083 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8084                                           u8 ndata)
8085 {
8086         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8087 }
8088 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8089
8090 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8091 {
8092         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8093 }
8094 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8095
8096 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8097 {
8098         struct kvm *kvm = vcpu->kvm;
8099
8100         ++vcpu->stat.insn_emulation_fail;
8101         trace_kvm_emulate_insn_failed(vcpu);
8102
8103         if (emulation_type & EMULTYPE_VMWARE_GP) {
8104                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8105                 return 1;
8106         }
8107
8108         if (kvm->arch.exit_on_emulation_error ||
8109             (emulation_type & EMULTYPE_SKIP)) {
8110                 prepare_emulation_ctxt_failure_exit(vcpu);
8111                 return 0;
8112         }
8113
8114         kvm_queue_exception(vcpu, UD_VECTOR);
8115
8116         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8117                 prepare_emulation_ctxt_failure_exit(vcpu);
8118                 return 0;
8119         }
8120
8121         return 1;
8122 }
8123
8124 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8125                                   bool write_fault_to_shadow_pgtable,
8126                                   int emulation_type)
8127 {
8128         gpa_t gpa = cr2_or_gpa;
8129         kvm_pfn_t pfn;
8130
8131         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8132                 return false;
8133
8134         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8135             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8136                 return false;
8137
8138         if (!vcpu->arch.mmu->root_role.direct) {
8139                 /*
8140                  * Write permission should be allowed since only
8141                  * write access need to be emulated.
8142                  */
8143                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8144
8145                 /*
8146                  * If the mapping is invalid in guest, let cpu retry
8147                  * it to generate fault.
8148                  */
8149                 if (gpa == UNMAPPED_GVA)
8150                         return true;
8151         }
8152
8153         /*
8154          * Do not retry the unhandleable instruction if it faults on the
8155          * readonly host memory, otherwise it will goto a infinite loop:
8156          * retry instruction -> write #PF -> emulation fail -> retry
8157          * instruction -> ...
8158          */
8159         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8160
8161         /*
8162          * If the instruction failed on the error pfn, it can not be fixed,
8163          * report the error to userspace.
8164          */
8165         if (is_error_noslot_pfn(pfn))
8166                 return false;
8167
8168         kvm_release_pfn_clean(pfn);
8169
8170         /* The instructions are well-emulated on direct mmu. */
8171         if (vcpu->arch.mmu->root_role.direct) {
8172                 unsigned int indirect_shadow_pages;
8173
8174                 write_lock(&vcpu->kvm->mmu_lock);
8175                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8176                 write_unlock(&vcpu->kvm->mmu_lock);
8177
8178                 if (indirect_shadow_pages)
8179                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8180
8181                 return true;
8182         }
8183
8184         /*
8185          * if emulation was due to access to shadowed page table
8186          * and it failed try to unshadow page and re-enter the
8187          * guest to let CPU execute the instruction.
8188          */
8189         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8190
8191         /*
8192          * If the access faults on its page table, it can not
8193          * be fixed by unprotecting shadow page and it should
8194          * be reported to userspace.
8195          */
8196         return !write_fault_to_shadow_pgtable;
8197 }
8198
8199 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8200                               gpa_t cr2_or_gpa,  int emulation_type)
8201 {
8202         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8203         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8204
8205         last_retry_eip = vcpu->arch.last_retry_eip;
8206         last_retry_addr = vcpu->arch.last_retry_addr;
8207
8208         /*
8209          * If the emulation is caused by #PF and it is non-page_table
8210          * writing instruction, it means the VM-EXIT is caused by shadow
8211          * page protected, we can zap the shadow page and retry this
8212          * instruction directly.
8213          *
8214          * Note: if the guest uses a non-page-table modifying instruction
8215          * on the PDE that points to the instruction, then we will unmap
8216          * the instruction and go to an infinite loop. So, we cache the
8217          * last retried eip and the last fault address, if we meet the eip
8218          * and the address again, we can break out of the potential infinite
8219          * loop.
8220          */
8221         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8222
8223         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8224                 return false;
8225
8226         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8227             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8228                 return false;
8229
8230         if (x86_page_table_writing_insn(ctxt))
8231                 return false;
8232
8233         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8234                 return false;
8235
8236         vcpu->arch.last_retry_eip = ctxt->eip;
8237         vcpu->arch.last_retry_addr = cr2_or_gpa;
8238
8239         if (!vcpu->arch.mmu->root_role.direct)
8240                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8241
8242         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8243
8244         return true;
8245 }
8246
8247 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8248 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8249
8250 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8251 {
8252         trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8253
8254         if (entering_smm) {
8255                 vcpu->arch.hflags |= HF_SMM_MASK;
8256         } else {
8257                 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8258
8259                 /* Process a latched INIT or SMI, if any.  */
8260                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8261
8262                 /*
8263                  * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8264                  * on SMM exit we still need to reload them from
8265                  * guest memory
8266                  */
8267                 vcpu->arch.pdptrs_from_userspace = false;
8268         }
8269
8270         kvm_mmu_reset_context(vcpu);
8271 }
8272
8273 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8274                                 unsigned long *db)
8275 {
8276         u32 dr6 = 0;
8277         int i;
8278         u32 enable, rwlen;
8279
8280         enable = dr7;
8281         rwlen = dr7 >> 16;
8282         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8283                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8284                         dr6 |= (1 << i);
8285         return dr6;
8286 }
8287
8288 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8289 {
8290         struct kvm_run *kvm_run = vcpu->run;
8291
8292         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8293                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8294                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8295                 kvm_run->debug.arch.exception = DB_VECTOR;
8296                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8297                 return 0;
8298         }
8299         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8300         return 1;
8301 }
8302
8303 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8304 {
8305         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8306         int r;
8307
8308         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8309         if (unlikely(!r))
8310                 return 0;
8311
8312         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8313
8314         /*
8315          * rflags is the old, "raw" value of the flags.  The new value has
8316          * not been saved yet.
8317          *
8318          * This is correct even for TF set by the guest, because "the
8319          * processor will not generate this exception after the instruction
8320          * that sets the TF flag".
8321          */
8322         if (unlikely(rflags & X86_EFLAGS_TF))
8323                 r = kvm_vcpu_do_singlestep(vcpu);
8324         return r;
8325 }
8326 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8327
8328 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
8329 {
8330         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8331             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8332                 struct kvm_run *kvm_run = vcpu->run;
8333                 unsigned long eip = kvm_get_linear_rip(vcpu);
8334                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8335                                            vcpu->arch.guest_debug_dr7,
8336                                            vcpu->arch.eff_db);
8337
8338                 if (dr6 != 0) {
8339                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8340                         kvm_run->debug.arch.pc = eip;
8341                         kvm_run->debug.arch.exception = DB_VECTOR;
8342                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8343                         *r = 0;
8344                         return true;
8345                 }
8346         }
8347
8348         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8349             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8350                 unsigned long eip = kvm_get_linear_rip(vcpu);
8351                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8352                                            vcpu->arch.dr7,
8353                                            vcpu->arch.db);
8354
8355                 if (dr6 != 0) {
8356                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8357                         *r = 1;
8358                         return true;
8359                 }
8360         }
8361
8362         return false;
8363 }
8364
8365 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8366 {
8367         switch (ctxt->opcode_len) {
8368         case 1:
8369                 switch (ctxt->b) {
8370                 case 0xe4:      /* IN */
8371                 case 0xe5:
8372                 case 0xec:
8373                 case 0xed:
8374                 case 0xe6:      /* OUT */
8375                 case 0xe7:
8376                 case 0xee:
8377                 case 0xef:
8378                 case 0x6c:      /* INS */
8379                 case 0x6d:
8380                 case 0x6e:      /* OUTS */
8381                 case 0x6f:
8382                         return true;
8383                 }
8384                 break;
8385         case 2:
8386                 switch (ctxt->b) {
8387                 case 0x33:      /* RDPMC */
8388                         return true;
8389                 }
8390                 break;
8391         }
8392
8393         return false;
8394 }
8395
8396 /*
8397  * Decode an instruction for emulation.  The caller is responsible for handling
8398  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8399  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8400  * code breakpoints have higher priority and thus have already been done by
8401  * hardware.
8402  *
8403  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8404  *     response to a machine check.
8405  */
8406 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8407                                     void *insn, int insn_len)
8408 {
8409         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8410         int r;
8411
8412         init_emulate_ctxt(vcpu);
8413
8414         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8415
8416         trace_kvm_emulate_insn_start(vcpu);
8417         ++vcpu->stat.insn_emulation;
8418
8419         return r;
8420 }
8421 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8422
8423 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8424                             int emulation_type, void *insn, int insn_len)
8425 {
8426         int r;
8427         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8428         bool writeback = true;
8429         bool write_fault_to_spt;
8430
8431         if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8432                 return 1;
8433
8434         vcpu->arch.l1tf_flush_l1d = true;
8435
8436         /*
8437          * Clear write_fault_to_shadow_pgtable here to ensure it is
8438          * never reused.
8439          */
8440         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8441         vcpu->arch.write_fault_to_shadow_pgtable = false;
8442
8443         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8444                 kvm_clear_exception_queue(vcpu);
8445
8446                 /*
8447                  * Return immediately if RIP hits a code breakpoint, such #DBs
8448                  * are fault-like and are higher priority than any faults on
8449                  * the code fetch itself.
8450                  */
8451                 if (!(emulation_type & EMULTYPE_SKIP) &&
8452                     kvm_vcpu_check_code_breakpoint(vcpu, &r))
8453                         return r;
8454
8455                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8456                                                     insn, insn_len);
8457                 if (r != EMULATION_OK)  {
8458                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8459                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8460                                 kvm_queue_exception(vcpu, UD_VECTOR);
8461                                 return 1;
8462                         }
8463                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8464                                                   write_fault_to_spt,
8465                                                   emulation_type))
8466                                 return 1;
8467                         if (ctxt->have_exception) {
8468                                 /*
8469                                  * #UD should result in just EMULATION_FAILED, and trap-like
8470                                  * exception should not be encountered during decode.
8471                                  */
8472                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8473                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8474                                 inject_emulated_exception(vcpu);
8475                                 return 1;
8476                         }
8477                         return handle_emulation_failure(vcpu, emulation_type);
8478                 }
8479         }
8480
8481         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8482             !is_vmware_backdoor_opcode(ctxt)) {
8483                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8484                 return 1;
8485         }
8486
8487         /*
8488          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8489          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8490          * The caller is responsible for updating interruptibility state and
8491          * injecting single-step #DBs.
8492          */
8493         if (emulation_type & EMULTYPE_SKIP) {
8494                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8495                         ctxt->eip = (u32)ctxt->_eip;
8496                 else
8497                         ctxt->eip = ctxt->_eip;
8498
8499                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8500                         r = 1;
8501                         goto writeback;
8502                 }
8503
8504                 kvm_rip_write(vcpu, ctxt->eip);
8505                 if (ctxt->eflags & X86_EFLAGS_RF)
8506                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8507                 return 1;
8508         }
8509
8510         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8511                 return 1;
8512
8513         /* this is needed for vmware backdoor interface to work since it
8514            changes registers values  during IO operation */
8515         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8516                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8517                 emulator_invalidate_register_cache(ctxt);
8518         }
8519
8520 restart:
8521         if (emulation_type & EMULTYPE_PF) {
8522                 /* Save the faulting GPA (cr2) in the address field */
8523                 ctxt->exception.address = cr2_or_gpa;
8524
8525                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8526                 if (vcpu->arch.mmu->root_role.direct) {
8527                         ctxt->gpa_available = true;
8528                         ctxt->gpa_val = cr2_or_gpa;
8529                 }
8530         } else {
8531                 /* Sanitize the address out of an abundance of paranoia. */
8532                 ctxt->exception.address = 0;
8533         }
8534
8535         r = x86_emulate_insn(ctxt);
8536
8537         if (r == EMULATION_INTERCEPTED)
8538                 return 1;
8539
8540         if (r == EMULATION_FAILED) {
8541                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8542                                         emulation_type))
8543                         return 1;
8544
8545                 return handle_emulation_failure(vcpu, emulation_type);
8546         }
8547
8548         if (ctxt->have_exception) {
8549                 r = 1;
8550                 if (inject_emulated_exception(vcpu))
8551                         return r;
8552         } else if (vcpu->arch.pio.count) {
8553                 if (!vcpu->arch.pio.in) {
8554                         /* FIXME: return into emulator if single-stepping.  */
8555                         vcpu->arch.pio.count = 0;
8556                 } else {
8557                         writeback = false;
8558                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8559                 }
8560                 r = 0;
8561         } else if (vcpu->mmio_needed) {
8562                 ++vcpu->stat.mmio_exits;
8563
8564                 if (!vcpu->mmio_is_write)
8565                         writeback = false;
8566                 r = 0;
8567                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8568         } else if (vcpu->arch.complete_userspace_io) {
8569                 writeback = false;
8570                 r = 0;
8571         } else if (r == EMULATION_RESTART)
8572                 goto restart;
8573         else
8574                 r = 1;
8575
8576 writeback:
8577         if (writeback) {
8578                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8579                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8580                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8581                 if (!ctxt->have_exception ||
8582                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8583                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8584                         if (ctxt->is_branch)
8585                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8586                         kvm_rip_write(vcpu, ctxt->eip);
8587                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8588                                 r = kvm_vcpu_do_singlestep(vcpu);
8589                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8590                         __kvm_set_rflags(vcpu, ctxt->eflags);
8591                 }
8592
8593                 /*
8594                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8595                  * do nothing, and it will be requested again as soon as
8596                  * the shadow expires.  But we still need to check here,
8597                  * because POPF has no interrupt shadow.
8598                  */
8599                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8600                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8601         } else
8602                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8603
8604         return r;
8605 }
8606
8607 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8608 {
8609         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8610 }
8611 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8612
8613 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8614                                         void *insn, int insn_len)
8615 {
8616         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8617 }
8618 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8619
8620 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8621 {
8622         vcpu->arch.pio.count = 0;
8623         return 1;
8624 }
8625
8626 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8627 {
8628         vcpu->arch.pio.count = 0;
8629
8630         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8631                 return 1;
8632
8633         return kvm_skip_emulated_instruction(vcpu);
8634 }
8635
8636 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8637                             unsigned short port)
8638 {
8639         unsigned long val = kvm_rax_read(vcpu);
8640         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8641
8642         if (ret)
8643                 return ret;
8644
8645         /*
8646          * Workaround userspace that relies on old KVM behavior of %rip being
8647          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8648          */
8649         if (port == 0x7e &&
8650             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8651                 vcpu->arch.complete_userspace_io =
8652                         complete_fast_pio_out_port_0x7e;
8653                 kvm_skip_emulated_instruction(vcpu);
8654         } else {
8655                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8656                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8657         }
8658         return 0;
8659 }
8660
8661 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8662 {
8663         unsigned long val;
8664
8665         /* We should only ever be called with arch.pio.count equal to 1 */
8666         BUG_ON(vcpu->arch.pio.count != 1);
8667
8668         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8669                 vcpu->arch.pio.count = 0;
8670                 return 1;
8671         }
8672
8673         /* For size less than 4 we merge, else we zero extend */
8674         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8675
8676         /*
8677          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8678          * the copy and tracing
8679          */
8680         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8681         kvm_rax_write(vcpu, val);
8682
8683         return kvm_skip_emulated_instruction(vcpu);
8684 }
8685
8686 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8687                            unsigned short port)
8688 {
8689         unsigned long val;
8690         int ret;
8691
8692         /* For size less than 4 we merge, else we zero extend */
8693         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8694
8695         ret = emulator_pio_in(vcpu, size, port, &val, 1);
8696         if (ret) {
8697                 kvm_rax_write(vcpu, val);
8698                 return ret;
8699         }
8700
8701         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8702         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8703
8704         return 0;
8705 }
8706
8707 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8708 {
8709         int ret;
8710
8711         if (in)
8712                 ret = kvm_fast_pio_in(vcpu, size, port);
8713         else
8714                 ret = kvm_fast_pio_out(vcpu, size, port);
8715         return ret && kvm_skip_emulated_instruction(vcpu);
8716 }
8717 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8718
8719 static int kvmclock_cpu_down_prep(unsigned int cpu)
8720 {
8721         __this_cpu_write(cpu_tsc_khz, 0);
8722         return 0;
8723 }
8724
8725 static void tsc_khz_changed(void *data)
8726 {
8727         struct cpufreq_freqs *freq = data;
8728         unsigned long khz = 0;
8729
8730         if (data)
8731                 khz = freq->new;
8732         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8733                 khz = cpufreq_quick_get(raw_smp_processor_id());
8734         if (!khz)
8735                 khz = tsc_khz;
8736         __this_cpu_write(cpu_tsc_khz, khz);
8737 }
8738
8739 #ifdef CONFIG_X86_64
8740 static void kvm_hyperv_tsc_notifier(void)
8741 {
8742         struct kvm *kvm;
8743         int cpu;
8744
8745         mutex_lock(&kvm_lock);
8746         list_for_each_entry(kvm, &vm_list, vm_list)
8747                 kvm_make_mclock_inprogress_request(kvm);
8748
8749         /* no guest entries from this point */
8750         hyperv_stop_tsc_emulation();
8751
8752         /* TSC frequency always matches when on Hyper-V */
8753         for_each_present_cpu(cpu)
8754                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8755         kvm_max_guest_tsc_khz = tsc_khz;
8756
8757         list_for_each_entry(kvm, &vm_list, vm_list) {
8758                 __kvm_start_pvclock_update(kvm);
8759                 pvclock_update_vm_gtod_copy(kvm);
8760                 kvm_end_pvclock_update(kvm);
8761         }
8762
8763         mutex_unlock(&kvm_lock);
8764 }
8765 #endif
8766
8767 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8768 {
8769         struct kvm *kvm;
8770         struct kvm_vcpu *vcpu;
8771         int send_ipi = 0;
8772         unsigned long i;
8773
8774         /*
8775          * We allow guests to temporarily run on slowing clocks,
8776          * provided we notify them after, or to run on accelerating
8777          * clocks, provided we notify them before.  Thus time never
8778          * goes backwards.
8779          *
8780          * However, we have a problem.  We can't atomically update
8781          * the frequency of a given CPU from this function; it is
8782          * merely a notifier, which can be called from any CPU.
8783          * Changing the TSC frequency at arbitrary points in time
8784          * requires a recomputation of local variables related to
8785          * the TSC for each VCPU.  We must flag these local variables
8786          * to be updated and be sure the update takes place with the
8787          * new frequency before any guests proceed.
8788          *
8789          * Unfortunately, the combination of hotplug CPU and frequency
8790          * change creates an intractable locking scenario; the order
8791          * of when these callouts happen is undefined with respect to
8792          * CPU hotplug, and they can race with each other.  As such,
8793          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8794          * undefined; you can actually have a CPU frequency change take
8795          * place in between the computation of X and the setting of the
8796          * variable.  To protect against this problem, all updates of
8797          * the per_cpu tsc_khz variable are done in an interrupt
8798          * protected IPI, and all callers wishing to update the value
8799          * must wait for a synchronous IPI to complete (which is trivial
8800          * if the caller is on the CPU already).  This establishes the
8801          * necessary total order on variable updates.
8802          *
8803          * Note that because a guest time update may take place
8804          * anytime after the setting of the VCPU's request bit, the
8805          * correct TSC value must be set before the request.  However,
8806          * to ensure the update actually makes it to any guest which
8807          * starts running in hardware virtualization between the set
8808          * and the acquisition of the spinlock, we must also ping the
8809          * CPU after setting the request bit.
8810          *
8811          */
8812
8813         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8814
8815         mutex_lock(&kvm_lock);
8816         list_for_each_entry(kvm, &vm_list, vm_list) {
8817                 kvm_for_each_vcpu(i, vcpu, kvm) {
8818                         if (vcpu->cpu != cpu)
8819                                 continue;
8820                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8821                         if (vcpu->cpu != raw_smp_processor_id())
8822                                 send_ipi = 1;
8823                 }
8824         }
8825         mutex_unlock(&kvm_lock);
8826
8827         if (freq->old < freq->new && send_ipi) {
8828                 /*
8829                  * We upscale the frequency.  Must make the guest
8830                  * doesn't see old kvmclock values while running with
8831                  * the new frequency, otherwise we risk the guest sees
8832                  * time go backwards.
8833                  *
8834                  * In case we update the frequency for another cpu
8835                  * (which might be in guest context) send an interrupt
8836                  * to kick the cpu out of guest context.  Next time
8837                  * guest context is entered kvmclock will be updated,
8838                  * so the guest will not see stale values.
8839                  */
8840                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8841         }
8842 }
8843
8844 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8845                                      void *data)
8846 {
8847         struct cpufreq_freqs *freq = data;
8848         int cpu;
8849
8850         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8851                 return 0;
8852         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8853                 return 0;
8854
8855         for_each_cpu(cpu, freq->policy->cpus)
8856                 __kvmclock_cpufreq_notifier(freq, cpu);
8857
8858         return 0;
8859 }
8860
8861 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8862         .notifier_call  = kvmclock_cpufreq_notifier
8863 };
8864
8865 static int kvmclock_cpu_online(unsigned int cpu)
8866 {
8867         tsc_khz_changed(NULL);
8868         return 0;
8869 }
8870
8871 static void kvm_timer_init(void)
8872 {
8873         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8874                 max_tsc_khz = tsc_khz;
8875
8876                 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
8877                         struct cpufreq_policy *policy;
8878                         int cpu;
8879
8880                         cpu = get_cpu();
8881                         policy = cpufreq_cpu_get(cpu);
8882                         if (policy) {
8883                                 if (policy->cpuinfo.max_freq)
8884                                         max_tsc_khz = policy->cpuinfo.max_freq;
8885                                 cpufreq_cpu_put(policy);
8886                         }
8887                         put_cpu();
8888                 }
8889                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8890                                           CPUFREQ_TRANSITION_NOTIFIER);
8891         }
8892
8893         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8894                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
8895 }
8896
8897 #ifdef CONFIG_X86_64
8898 static void pvclock_gtod_update_fn(struct work_struct *work)
8899 {
8900         struct kvm *kvm;
8901         struct kvm_vcpu *vcpu;
8902         unsigned long i;
8903
8904         mutex_lock(&kvm_lock);
8905         list_for_each_entry(kvm, &vm_list, vm_list)
8906                 kvm_for_each_vcpu(i, vcpu, kvm)
8907                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8908         atomic_set(&kvm_guest_has_master_clock, 0);
8909         mutex_unlock(&kvm_lock);
8910 }
8911
8912 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8913
8914 /*
8915  * Indirection to move queue_work() out of the tk_core.seq write held
8916  * region to prevent possible deadlocks against time accessors which
8917  * are invoked with work related locks held.
8918  */
8919 static void pvclock_irq_work_fn(struct irq_work *w)
8920 {
8921         queue_work(system_long_wq, &pvclock_gtod_work);
8922 }
8923
8924 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8925
8926 /*
8927  * Notification about pvclock gtod data update.
8928  */
8929 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8930                                void *priv)
8931 {
8932         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8933         struct timekeeper *tk = priv;
8934
8935         update_pvclock_gtod(tk);
8936
8937         /*
8938          * Disable master clock if host does not trust, or does not use,
8939          * TSC based clocksource. Delegate queue_work() to irq_work as
8940          * this is invoked with tk_core.seq write held.
8941          */
8942         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8943             atomic_read(&kvm_guest_has_master_clock) != 0)
8944                 irq_work_queue(&pvclock_irq_work);
8945         return 0;
8946 }
8947
8948 static struct notifier_block pvclock_gtod_notifier = {
8949         .notifier_call = pvclock_gtod_notify,
8950 };
8951 #endif
8952
8953 int kvm_arch_init(void *opaque)
8954 {
8955         struct kvm_x86_init_ops *ops = opaque;
8956         int r;
8957
8958         if (kvm_x86_ops.hardware_enable) {
8959                 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8960                 r = -EEXIST;
8961                 goto out;
8962         }
8963
8964         if (!ops->cpu_has_kvm_support()) {
8965                 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8966                                    ops->runtime_ops->name);
8967                 r = -EOPNOTSUPP;
8968                 goto out;
8969         }
8970         if (ops->disabled_by_bios()) {
8971                 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8972                                    ops->runtime_ops->name);
8973                 r = -EOPNOTSUPP;
8974                 goto out;
8975         }
8976
8977         /*
8978          * KVM explicitly assumes that the guest has an FPU and
8979          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8980          * vCPU's FPU state as a fxregs_state struct.
8981          */
8982         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8983                 printk(KERN_ERR "kvm: inadequate fpu\n");
8984                 r = -EOPNOTSUPP;
8985                 goto out;
8986         }
8987
8988         if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8989                 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
8990                 r = -EOPNOTSUPP;
8991                 goto out;
8992         }
8993
8994         r = -ENOMEM;
8995
8996         x86_emulator_cache = kvm_alloc_emulator_cache();
8997         if (!x86_emulator_cache) {
8998                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8999                 goto out;
9000         }
9001
9002         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9003         if (!user_return_msrs) {
9004                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9005                 goto out_free_x86_emulator_cache;
9006         }
9007         kvm_nr_uret_msrs = 0;
9008
9009         r = kvm_mmu_vendor_module_init();
9010         if (r)
9011                 goto out_free_percpu;
9012
9013         kvm_timer_init();
9014
9015         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9016                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9017                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9018         }
9019
9020         if (pi_inject_timer == -1)
9021                 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9022 #ifdef CONFIG_X86_64
9023         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9024
9025         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9026                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9027 #endif
9028
9029         return 0;
9030
9031 out_free_percpu:
9032         free_percpu(user_return_msrs);
9033 out_free_x86_emulator_cache:
9034         kmem_cache_destroy(x86_emulator_cache);
9035 out:
9036         return r;
9037 }
9038
9039 void kvm_arch_exit(void)
9040 {
9041 #ifdef CONFIG_X86_64
9042         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9043                 clear_hv_tscchange_cb();
9044 #endif
9045         kvm_lapic_exit();
9046
9047         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9048                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9049                                             CPUFREQ_TRANSITION_NOTIFIER);
9050         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9051 #ifdef CONFIG_X86_64
9052         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9053         irq_work_sync(&pvclock_irq_work);
9054         cancel_work_sync(&pvclock_gtod_work);
9055 #endif
9056         kvm_x86_ops.hardware_enable = NULL;
9057         kvm_mmu_vendor_module_exit();
9058         free_percpu(user_return_msrs);
9059         kmem_cache_destroy(x86_emulator_cache);
9060 #ifdef CONFIG_KVM_XEN
9061         static_key_deferred_flush(&kvm_xen_enabled);
9062         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9063 #endif
9064 }
9065
9066 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9067 {
9068         /*
9069          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9070          * local APIC is in-kernel, the run loop will detect the non-runnable
9071          * state and halt the vCPU.  Exit to userspace if the local APIC is
9072          * managed by userspace, in which case userspace is responsible for
9073          * handling wake events.
9074          */
9075         ++vcpu->stat.halt_exits;
9076         if (lapic_in_kernel(vcpu)) {
9077                 vcpu->arch.mp_state = state;
9078                 return 1;
9079         } else {
9080                 vcpu->run->exit_reason = reason;
9081                 return 0;
9082         }
9083 }
9084
9085 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9086 {
9087         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9088 }
9089 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9090
9091 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9092 {
9093         int ret = kvm_skip_emulated_instruction(vcpu);
9094         /*
9095          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9096          * KVM_EXIT_DEBUG here.
9097          */
9098         return kvm_emulate_halt_noskip(vcpu) && ret;
9099 }
9100 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9101
9102 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9103 {
9104         int ret = kvm_skip_emulated_instruction(vcpu);
9105
9106         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9107                                         KVM_EXIT_AP_RESET_HOLD) && ret;
9108 }
9109 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9110
9111 #ifdef CONFIG_X86_64
9112 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9113                                 unsigned long clock_type)
9114 {
9115         struct kvm_clock_pairing clock_pairing;
9116         struct timespec64 ts;
9117         u64 cycle;
9118         int ret;
9119
9120         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9121                 return -KVM_EOPNOTSUPP;
9122
9123         /*
9124          * When tsc is in permanent catchup mode guests won't be able to use
9125          * pvclock_read_retry loop to get consistent view of pvclock
9126          */
9127         if (vcpu->arch.tsc_always_catchup)
9128                 return -KVM_EOPNOTSUPP;
9129
9130         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9131                 return -KVM_EOPNOTSUPP;
9132
9133         clock_pairing.sec = ts.tv_sec;
9134         clock_pairing.nsec = ts.tv_nsec;
9135         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9136         clock_pairing.flags = 0;
9137         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9138
9139         ret = 0;
9140         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9141                             sizeof(struct kvm_clock_pairing)))
9142                 ret = -KVM_EFAULT;
9143
9144         return ret;
9145 }
9146 #endif
9147
9148 /*
9149  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9150  *
9151  * @apicid - apicid of vcpu to be kicked.
9152  */
9153 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9154 {
9155         struct kvm_lapic_irq lapic_irq;
9156
9157         lapic_irq.shorthand = APIC_DEST_NOSHORT;
9158         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
9159         lapic_irq.level = 0;
9160         lapic_irq.dest_id = apicid;
9161         lapic_irq.msi_redir_hint = false;
9162
9163         lapic_irq.delivery_mode = APIC_DM_REMRD;
9164         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9165 }
9166
9167 bool kvm_apicv_activated(struct kvm *kvm)
9168 {
9169         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9170 }
9171 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9172
9173 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9174 {
9175         ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9176         ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9177
9178         return (vm_reasons | vcpu_reasons) == 0;
9179 }
9180 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9181
9182 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9183                                        enum kvm_apicv_inhibit reason, bool set)
9184 {
9185         if (set)
9186                 __set_bit(reason, inhibits);
9187         else
9188                 __clear_bit(reason, inhibits);
9189
9190         trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9191 }
9192
9193 static void kvm_apicv_init(struct kvm *kvm)
9194 {
9195         unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9196
9197         init_rwsem(&kvm->arch.apicv_update_lock);
9198
9199         set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9200
9201         if (!enable_apicv)
9202                 set_or_clear_apicv_inhibit(inhibits,
9203                                            APICV_INHIBIT_REASON_DISABLE, true);
9204 }
9205
9206 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9207 {
9208         struct kvm_vcpu *target = NULL;
9209         struct kvm_apic_map *map;
9210
9211         vcpu->stat.directed_yield_attempted++;
9212
9213         if (single_task_running())
9214                 goto no_yield;
9215
9216         rcu_read_lock();
9217         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9218
9219         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9220                 target = map->phys_map[dest_id]->vcpu;
9221
9222         rcu_read_unlock();
9223
9224         if (!target || !READ_ONCE(target->ready))
9225                 goto no_yield;
9226
9227         /* Ignore requests to yield to self */
9228         if (vcpu == target)
9229                 goto no_yield;
9230
9231         if (kvm_vcpu_yield_to(target) <= 0)
9232                 goto no_yield;
9233
9234         vcpu->stat.directed_yield_successful++;
9235
9236 no_yield:
9237         return;
9238 }
9239
9240 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9241 {
9242         u64 ret = vcpu->run->hypercall.ret;
9243
9244         if (!is_64_bit_mode(vcpu))
9245                 ret = (u32)ret;
9246         kvm_rax_write(vcpu, ret);
9247         ++vcpu->stat.hypercalls;
9248         return kvm_skip_emulated_instruction(vcpu);
9249 }
9250
9251 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9252 {
9253         unsigned long nr, a0, a1, a2, a3, ret;
9254         int op_64_bit;
9255
9256         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9257                 return kvm_xen_hypercall(vcpu);
9258
9259         if (kvm_hv_hypercall_enabled(vcpu))
9260                 return kvm_hv_hypercall(vcpu);
9261
9262         nr = kvm_rax_read(vcpu);
9263         a0 = kvm_rbx_read(vcpu);
9264         a1 = kvm_rcx_read(vcpu);
9265         a2 = kvm_rdx_read(vcpu);
9266         a3 = kvm_rsi_read(vcpu);
9267
9268         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9269
9270         op_64_bit = is_64_bit_hypercall(vcpu);
9271         if (!op_64_bit) {
9272                 nr &= 0xFFFFFFFF;
9273                 a0 &= 0xFFFFFFFF;
9274                 a1 &= 0xFFFFFFFF;
9275                 a2 &= 0xFFFFFFFF;
9276                 a3 &= 0xFFFFFFFF;
9277         }
9278
9279         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9280                 ret = -KVM_EPERM;
9281                 goto out;
9282         }
9283
9284         ret = -KVM_ENOSYS;
9285
9286         switch (nr) {
9287         case KVM_HC_VAPIC_POLL_IRQ:
9288                 ret = 0;
9289                 break;
9290         case KVM_HC_KICK_CPU:
9291                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9292                         break;
9293
9294                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9295                 kvm_sched_yield(vcpu, a1);
9296                 ret = 0;
9297                 break;
9298 #ifdef CONFIG_X86_64
9299         case KVM_HC_CLOCK_PAIRING:
9300                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9301                 break;
9302 #endif
9303         case KVM_HC_SEND_IPI:
9304                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9305                         break;
9306
9307                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9308                 break;
9309         case KVM_HC_SCHED_YIELD:
9310                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9311                         break;
9312
9313                 kvm_sched_yield(vcpu, a0);
9314                 ret = 0;
9315                 break;
9316         case KVM_HC_MAP_GPA_RANGE: {
9317                 u64 gpa = a0, npages = a1, attrs = a2;
9318
9319                 ret = -KVM_ENOSYS;
9320                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9321                         break;
9322
9323                 if (!PAGE_ALIGNED(gpa) || !npages ||
9324                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9325                         ret = -KVM_EINVAL;
9326                         break;
9327                 }
9328
9329                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9330                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9331                 vcpu->run->hypercall.args[0]  = gpa;
9332                 vcpu->run->hypercall.args[1]  = npages;
9333                 vcpu->run->hypercall.args[2]  = attrs;
9334                 vcpu->run->hypercall.longmode = op_64_bit;
9335                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9336                 return 0;
9337         }
9338         default:
9339                 ret = -KVM_ENOSYS;
9340                 break;
9341         }
9342 out:
9343         if (!op_64_bit)
9344                 ret = (u32)ret;
9345         kvm_rax_write(vcpu, ret);
9346
9347         ++vcpu->stat.hypercalls;
9348         return kvm_skip_emulated_instruction(vcpu);
9349 }
9350 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9351
9352 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9353 {
9354         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9355         char instruction[3];
9356         unsigned long rip = kvm_rip_read(vcpu);
9357
9358         /*
9359          * If the quirk is disabled, synthesize a #UD and let the guest pick up
9360          * the pieces.
9361          */
9362         if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9363                 ctxt->exception.error_code_valid = false;
9364                 ctxt->exception.vector = UD_VECTOR;
9365                 ctxt->have_exception = true;
9366                 return X86EMUL_PROPAGATE_FAULT;
9367         }
9368
9369         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9370
9371         return emulator_write_emulated(ctxt, rip, instruction, 3,
9372                 &ctxt->exception);
9373 }
9374
9375 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9376 {
9377         return vcpu->run->request_interrupt_window &&
9378                 likely(!pic_in_kernel(vcpu->kvm));
9379 }
9380
9381 /* Called within kvm->srcu read side.  */
9382 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9383 {
9384         struct kvm_run *kvm_run = vcpu->run;
9385
9386         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9387         kvm_run->cr8 = kvm_get_cr8(vcpu);
9388         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9389
9390         kvm_run->ready_for_interrupt_injection =
9391                 pic_in_kernel(vcpu->kvm) ||
9392                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9393
9394         if (is_smm(vcpu))
9395                 kvm_run->flags |= KVM_RUN_X86_SMM;
9396 }
9397
9398 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9399 {
9400         int max_irr, tpr;
9401
9402         if (!kvm_x86_ops.update_cr8_intercept)
9403                 return;
9404
9405         if (!lapic_in_kernel(vcpu))
9406                 return;
9407
9408         if (vcpu->arch.apicv_active)
9409                 return;
9410
9411         if (!vcpu->arch.apic->vapic_addr)
9412                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9413         else
9414                 max_irr = -1;
9415
9416         if (max_irr != -1)
9417                 max_irr >>= 4;
9418
9419         tpr = kvm_lapic_get_cr8(vcpu);
9420
9421         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9422 }
9423
9424
9425 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9426 {
9427         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9428                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9429                 return 1;
9430         }
9431
9432         return kvm_x86_ops.nested_ops->check_events(vcpu);
9433 }
9434
9435 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9436 {
9437         trace_kvm_inj_exception(vcpu->arch.exception.nr,
9438                                 vcpu->arch.exception.has_error_code,
9439                                 vcpu->arch.exception.error_code,
9440                                 vcpu->arch.exception.injected);
9441
9442         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9443                 vcpu->arch.exception.error_code = false;
9444         static_call(kvm_x86_queue_exception)(vcpu);
9445 }
9446
9447 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9448 {
9449         int r;
9450         bool can_inject = true;
9451
9452         /* try to reinject previous events if any */
9453
9454         if (vcpu->arch.exception.injected) {
9455                 kvm_inject_exception(vcpu);
9456                 can_inject = false;
9457         }
9458         /*
9459          * Do not inject an NMI or interrupt if there is a pending
9460          * exception.  Exceptions and interrupts are recognized at
9461          * instruction boundaries, i.e. the start of an instruction.
9462          * Trap-like exceptions, e.g. #DB, have higher priority than
9463          * NMIs and interrupts, i.e. traps are recognized before an
9464          * NMI/interrupt that's pending on the same instruction.
9465          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9466          * priority, but are only generated (pended) during instruction
9467          * execution, i.e. a pending fault-like exception means the
9468          * fault occurred on the *previous* instruction and must be
9469          * serviced prior to recognizing any new events in order to
9470          * fully complete the previous instruction.
9471          */
9472         else if (!vcpu->arch.exception.pending) {
9473                 if (vcpu->arch.nmi_injected) {
9474                         static_call(kvm_x86_inject_nmi)(vcpu);
9475                         can_inject = false;
9476                 } else if (vcpu->arch.interrupt.injected) {
9477                         static_call(kvm_x86_inject_irq)(vcpu, true);
9478                         can_inject = false;
9479                 }
9480         }
9481
9482         WARN_ON_ONCE(vcpu->arch.exception.injected &&
9483                      vcpu->arch.exception.pending);
9484
9485         /*
9486          * Call check_nested_events() even if we reinjected a previous event
9487          * in order for caller to determine if it should require immediate-exit
9488          * from L2 to L1 due to pending L1 events which require exit
9489          * from L2 to L1.
9490          */
9491         if (is_guest_mode(vcpu)) {
9492                 r = kvm_check_nested_events(vcpu);
9493                 if (r < 0)
9494                         goto out;
9495         }
9496
9497         /* try to inject new event if pending */
9498         if (vcpu->arch.exception.pending) {
9499                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9500                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9501                                              X86_EFLAGS_RF);
9502
9503                 if (vcpu->arch.exception.nr == DB_VECTOR) {
9504                         kvm_deliver_exception_payload(vcpu);
9505                         if (vcpu->arch.dr7 & DR7_GD) {
9506                                 vcpu->arch.dr7 &= ~DR7_GD;
9507                                 kvm_update_dr7(vcpu);
9508                         }
9509                 }
9510
9511                 kvm_inject_exception(vcpu);
9512
9513                 vcpu->arch.exception.pending = false;
9514                 vcpu->arch.exception.injected = true;
9515
9516                 can_inject = false;
9517         }
9518
9519         /* Don't inject interrupts if the user asked to avoid doing so */
9520         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9521                 return 0;
9522
9523         /*
9524          * Finally, inject interrupt events.  If an event cannot be injected
9525          * due to architectural conditions (e.g. IF=0) a window-open exit
9526          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9527          * and can architecturally be injected, but we cannot do it right now:
9528          * an interrupt could have arrived just now and we have to inject it
9529          * as a vmexit, or there could already an event in the queue, which is
9530          * indicated by can_inject.  In that case we request an immediate exit
9531          * in order to make progress and get back here for another iteration.
9532          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9533          */
9534         if (vcpu->arch.smi_pending) {
9535                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9536                 if (r < 0)
9537                         goto out;
9538                 if (r) {
9539                         vcpu->arch.smi_pending = false;
9540                         ++vcpu->arch.smi_count;
9541                         enter_smm(vcpu);
9542                         can_inject = false;
9543                 } else
9544                         static_call(kvm_x86_enable_smi_window)(vcpu);
9545         }
9546
9547         if (vcpu->arch.nmi_pending) {
9548                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9549                 if (r < 0)
9550                         goto out;
9551                 if (r) {
9552                         --vcpu->arch.nmi_pending;
9553                         vcpu->arch.nmi_injected = true;
9554                         static_call(kvm_x86_inject_nmi)(vcpu);
9555                         can_inject = false;
9556                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9557                 }
9558                 if (vcpu->arch.nmi_pending)
9559                         static_call(kvm_x86_enable_nmi_window)(vcpu);
9560         }
9561
9562         if (kvm_cpu_has_injectable_intr(vcpu)) {
9563                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9564                 if (r < 0)
9565                         goto out;
9566                 if (r) {
9567                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9568                         static_call(kvm_x86_inject_irq)(vcpu, false);
9569                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9570                 }
9571                 if (kvm_cpu_has_injectable_intr(vcpu))
9572                         static_call(kvm_x86_enable_irq_window)(vcpu);
9573         }
9574
9575         if (is_guest_mode(vcpu) &&
9576             kvm_x86_ops.nested_ops->hv_timer_pending &&
9577             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9578                 *req_immediate_exit = true;
9579
9580         WARN_ON(vcpu->arch.exception.pending);
9581         return 0;
9582
9583 out:
9584         if (r == -EBUSY) {
9585                 *req_immediate_exit = true;
9586                 r = 0;
9587         }
9588         return r;
9589 }
9590
9591 static void process_nmi(struct kvm_vcpu *vcpu)
9592 {
9593         unsigned limit = 2;
9594
9595         /*
9596          * x86 is limited to one NMI running, and one NMI pending after it.
9597          * If an NMI is already in progress, limit further NMIs to just one.
9598          * Otherwise, allow two (and we'll inject the first one immediately).
9599          */
9600         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9601                 limit = 1;
9602
9603         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9604         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9605         kvm_make_request(KVM_REQ_EVENT, vcpu);
9606 }
9607
9608 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9609 {
9610         u32 flags = 0;
9611         flags |= seg->g       << 23;
9612         flags |= seg->db      << 22;
9613         flags |= seg->l       << 21;
9614         flags |= seg->avl     << 20;
9615         flags |= seg->present << 15;
9616         flags |= seg->dpl     << 13;
9617         flags |= seg->s       << 12;
9618         flags |= seg->type    << 8;
9619         return flags;
9620 }
9621
9622 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9623 {
9624         struct kvm_segment seg;
9625         int offset;
9626
9627         kvm_get_segment(vcpu, &seg, n);
9628         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9629
9630         if (n < 3)
9631                 offset = 0x7f84 + n * 12;
9632         else
9633                 offset = 0x7f2c + (n - 3) * 12;
9634
9635         put_smstate(u32, buf, offset + 8, seg.base);
9636         put_smstate(u32, buf, offset + 4, seg.limit);
9637         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9638 }
9639
9640 #ifdef CONFIG_X86_64
9641 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9642 {
9643         struct kvm_segment seg;
9644         int offset;
9645         u16 flags;
9646
9647         kvm_get_segment(vcpu, &seg, n);
9648         offset = 0x7e00 + n * 16;
9649
9650         flags = enter_smm_get_segment_flags(&seg) >> 8;
9651         put_smstate(u16, buf, offset, seg.selector);
9652         put_smstate(u16, buf, offset + 2, flags);
9653         put_smstate(u32, buf, offset + 4, seg.limit);
9654         put_smstate(u64, buf, offset + 8, seg.base);
9655 }
9656 #endif
9657
9658 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9659 {
9660         struct desc_ptr dt;
9661         struct kvm_segment seg;
9662         unsigned long val;
9663         int i;
9664
9665         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9666         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9667         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9668         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9669
9670         for (i = 0; i < 8; i++)
9671                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9672
9673         kvm_get_dr(vcpu, 6, &val);
9674         put_smstate(u32, buf, 0x7fcc, (u32)val);
9675         kvm_get_dr(vcpu, 7, &val);
9676         put_smstate(u32, buf, 0x7fc8, (u32)val);
9677
9678         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9679         put_smstate(u32, buf, 0x7fc4, seg.selector);
9680         put_smstate(u32, buf, 0x7f64, seg.base);
9681         put_smstate(u32, buf, 0x7f60, seg.limit);
9682         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9683
9684         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9685         put_smstate(u32, buf, 0x7fc0, seg.selector);
9686         put_smstate(u32, buf, 0x7f80, seg.base);
9687         put_smstate(u32, buf, 0x7f7c, seg.limit);
9688         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9689
9690         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9691         put_smstate(u32, buf, 0x7f74, dt.address);
9692         put_smstate(u32, buf, 0x7f70, dt.size);
9693
9694         static_call(kvm_x86_get_idt)(vcpu, &dt);
9695         put_smstate(u32, buf, 0x7f58, dt.address);
9696         put_smstate(u32, buf, 0x7f54, dt.size);
9697
9698         for (i = 0; i < 6; i++)
9699                 enter_smm_save_seg_32(vcpu, buf, i);
9700
9701         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9702
9703         /* revision id */
9704         put_smstate(u32, buf, 0x7efc, 0x00020000);
9705         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9706 }
9707
9708 #ifdef CONFIG_X86_64
9709 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9710 {
9711         struct desc_ptr dt;
9712         struct kvm_segment seg;
9713         unsigned long val;
9714         int i;
9715
9716         for (i = 0; i < 16; i++)
9717                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9718
9719         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9720         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9721
9722         kvm_get_dr(vcpu, 6, &val);
9723         put_smstate(u64, buf, 0x7f68, val);
9724         kvm_get_dr(vcpu, 7, &val);
9725         put_smstate(u64, buf, 0x7f60, val);
9726
9727         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9728         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9729         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9730
9731         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9732
9733         /* revision id */
9734         put_smstate(u32, buf, 0x7efc, 0x00020064);
9735
9736         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9737
9738         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9739         put_smstate(u16, buf, 0x7e90, seg.selector);
9740         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9741         put_smstate(u32, buf, 0x7e94, seg.limit);
9742         put_smstate(u64, buf, 0x7e98, seg.base);
9743
9744         static_call(kvm_x86_get_idt)(vcpu, &dt);
9745         put_smstate(u32, buf, 0x7e84, dt.size);
9746         put_smstate(u64, buf, 0x7e88, dt.address);
9747
9748         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9749         put_smstate(u16, buf, 0x7e70, seg.selector);
9750         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9751         put_smstate(u32, buf, 0x7e74, seg.limit);
9752         put_smstate(u64, buf, 0x7e78, seg.base);
9753
9754         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9755         put_smstate(u32, buf, 0x7e64, dt.size);
9756         put_smstate(u64, buf, 0x7e68, dt.address);
9757
9758         for (i = 0; i < 6; i++)
9759                 enter_smm_save_seg_64(vcpu, buf, i);
9760 }
9761 #endif
9762
9763 static void enter_smm(struct kvm_vcpu *vcpu)
9764 {
9765         struct kvm_segment cs, ds;
9766         struct desc_ptr dt;
9767         unsigned long cr0;
9768         char buf[512];
9769
9770         memset(buf, 0, 512);
9771 #ifdef CONFIG_X86_64
9772         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9773                 enter_smm_save_state_64(vcpu, buf);
9774         else
9775 #endif
9776                 enter_smm_save_state_32(vcpu, buf);
9777
9778         /*
9779          * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9780          * state (e.g. leave guest mode) after we've saved the state into the
9781          * SMM state-save area.
9782          */
9783         static_call(kvm_x86_enter_smm)(vcpu, buf);
9784
9785         kvm_smm_changed(vcpu, true);
9786         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9787
9788         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9789                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9790         else
9791                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9792
9793         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9794         kvm_rip_write(vcpu, 0x8000);
9795
9796         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9797         static_call(kvm_x86_set_cr0)(vcpu, cr0);
9798         vcpu->arch.cr0 = cr0;
9799
9800         static_call(kvm_x86_set_cr4)(vcpu, 0);
9801
9802         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9803         dt.address = dt.size = 0;
9804         static_call(kvm_x86_set_idt)(vcpu, &dt);
9805
9806         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9807
9808         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9809         cs.base = vcpu->arch.smbase;
9810
9811         ds.selector = 0;
9812         ds.base = 0;
9813
9814         cs.limit    = ds.limit = 0xffffffff;
9815         cs.type     = ds.type = 0x3;
9816         cs.dpl      = ds.dpl = 0;
9817         cs.db       = ds.db = 0;
9818         cs.s        = ds.s = 1;
9819         cs.l        = ds.l = 0;
9820         cs.g        = ds.g = 1;
9821         cs.avl      = ds.avl = 0;
9822         cs.present  = ds.present = 1;
9823         cs.unusable = ds.unusable = 0;
9824         cs.padding  = ds.padding = 0;
9825
9826         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9827         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9828         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9829         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9830         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9831         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9832
9833 #ifdef CONFIG_X86_64
9834         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9835                 static_call(kvm_x86_set_efer)(vcpu, 0);
9836 #endif
9837
9838         kvm_update_cpuid_runtime(vcpu);
9839         kvm_mmu_reset_context(vcpu);
9840 }
9841
9842 static void process_smi(struct kvm_vcpu *vcpu)
9843 {
9844         vcpu->arch.smi_pending = true;
9845         kvm_make_request(KVM_REQ_EVENT, vcpu);
9846 }
9847
9848 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9849                                        unsigned long *vcpu_bitmap)
9850 {
9851         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9852 }
9853
9854 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9855 {
9856         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9857 }
9858
9859 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9860 {
9861         bool activate;
9862
9863         if (!lapic_in_kernel(vcpu))
9864                 return;
9865
9866         down_read(&vcpu->kvm->arch.apicv_update_lock);
9867
9868         activate = kvm_vcpu_apicv_activated(vcpu);
9869
9870         if (vcpu->arch.apicv_active == activate)
9871                 goto out;
9872
9873         vcpu->arch.apicv_active = activate;
9874         kvm_apic_update_apicv(vcpu);
9875         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9876
9877         /*
9878          * When APICv gets disabled, we may still have injected interrupts
9879          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9880          * still active when the interrupt got accepted. Make sure
9881          * inject_pending_event() is called to check for that.
9882          */
9883         if (!vcpu->arch.apicv_active)
9884                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9885
9886 out:
9887         up_read(&vcpu->kvm->arch.apicv_update_lock);
9888 }
9889 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9890
9891 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9892                                       enum kvm_apicv_inhibit reason, bool set)
9893 {
9894         unsigned long old, new;
9895
9896         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9897
9898         if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
9899                 return;
9900
9901         old = new = kvm->arch.apicv_inhibit_reasons;
9902
9903         set_or_clear_apicv_inhibit(&new, reason, set);
9904
9905         if (!!old != !!new) {
9906                 /*
9907                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9908                  * false positives in the sanity check WARN in svm_vcpu_run().
9909                  * This task will wait for all vCPUs to ack the kick IRQ before
9910                  * updating apicv_inhibit_reasons, and all other vCPUs will
9911                  * block on acquiring apicv_update_lock so that vCPUs can't
9912                  * redo svm_vcpu_run() without seeing the new inhibit state.
9913                  *
9914                  * Note, holding apicv_update_lock and taking it in the read
9915                  * side (handling the request) also prevents other vCPUs from
9916                  * servicing the request with a stale apicv_inhibit_reasons.
9917                  */
9918                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9919                 kvm->arch.apicv_inhibit_reasons = new;
9920                 if (new) {
9921                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9922                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
9923                 }
9924         } else {
9925                 kvm->arch.apicv_inhibit_reasons = new;
9926         }
9927 }
9928
9929 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
9930                                     enum kvm_apicv_inhibit reason, bool set)
9931 {
9932         if (!enable_apicv)
9933                 return;
9934
9935         down_write(&kvm->arch.apicv_update_lock);
9936         __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
9937         up_write(&kvm->arch.apicv_update_lock);
9938 }
9939 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
9940
9941 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9942 {
9943         if (!kvm_apic_present(vcpu))
9944                 return;
9945
9946         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9947
9948         if (irqchip_split(vcpu->kvm))
9949                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9950         else {
9951                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9952                 if (ioapic_in_kernel(vcpu->kvm))
9953                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9954         }
9955
9956         if (is_guest_mode(vcpu))
9957                 vcpu->arch.load_eoi_exitmap_pending = true;
9958         else
9959                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9960 }
9961
9962 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9963 {
9964         u64 eoi_exit_bitmap[4];
9965
9966         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9967                 return;
9968
9969         if (to_hv_vcpu(vcpu)) {
9970                 bitmap_or((ulong *)eoi_exit_bitmap,
9971                           vcpu->arch.ioapic_handled_vectors,
9972                           to_hv_synic(vcpu)->vec_bitmap, 256);
9973                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9974                 return;
9975         }
9976
9977         static_call_cond(kvm_x86_load_eoi_exitmap)(
9978                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9979 }
9980
9981 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9982                                             unsigned long start, unsigned long end)
9983 {
9984         unsigned long apic_address;
9985
9986         /*
9987          * The physical address of apic access page is stored in the VMCS.
9988          * Update it when it becomes invalid.
9989          */
9990         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9991         if (start <= apic_address && apic_address < end)
9992                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9993 }
9994
9995 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9996 {
9997         static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
9998 }
9999
10000 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10001 {
10002         if (!lapic_in_kernel(vcpu))
10003                 return;
10004
10005         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10006 }
10007
10008 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10009 {
10010         smp_send_reschedule(vcpu->cpu);
10011 }
10012 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10013
10014 /*
10015  * Called within kvm->srcu read side.
10016  * Returns 1 to let vcpu_run() continue the guest execution loop without
10017  * exiting to the userspace.  Otherwise, the value will be returned to the
10018  * userspace.
10019  */
10020 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10021 {
10022         int r;
10023         bool req_int_win =
10024                 dm_request_for_irq_injection(vcpu) &&
10025                 kvm_cpu_accept_dm_intr(vcpu);
10026         fastpath_t exit_fastpath;
10027
10028         bool req_immediate_exit = false;
10029
10030         /* Forbid vmenter if vcpu dirty ring is soft-full */
10031         if (unlikely(vcpu->kvm->dirty_ring_size &&
10032                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10033                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10034                 trace_kvm_dirty_ring_exit(vcpu);
10035                 r = 0;
10036                 goto out;
10037         }
10038
10039         if (kvm_request_pending(vcpu)) {
10040                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10041                         r = -EIO;
10042                         goto out;
10043                 }
10044                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10045                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10046                                 r = 0;
10047                                 goto out;
10048                         }
10049                 }
10050                 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10051                         kvm_mmu_free_obsolete_roots(vcpu);
10052                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10053                         __kvm_migrate_timers(vcpu);
10054                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10055                         kvm_update_masterclock(vcpu->kvm);
10056                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10057                         kvm_gen_kvmclock_update(vcpu);
10058                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10059                         r = kvm_guest_time_update(vcpu);
10060                         if (unlikely(r))
10061                                 goto out;
10062                 }
10063                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10064                         kvm_mmu_sync_roots(vcpu);
10065                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10066                         kvm_mmu_load_pgd(vcpu);
10067                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10068                         kvm_vcpu_flush_tlb_all(vcpu);
10069
10070                         /* Flushing all ASIDs flushes the current ASID... */
10071                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10072                 }
10073                 kvm_service_local_tlb_flush_requests(vcpu);
10074
10075                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10076                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10077                         r = 0;
10078                         goto out;
10079                 }
10080                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10081                         if (is_guest_mode(vcpu)) {
10082                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10083                         } else {
10084                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10085                                 vcpu->mmio_needed = 0;
10086                                 r = 0;
10087                                 goto out;
10088                         }
10089                 }
10090                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10091                         /* Page is swapped out. Do synthetic halt */
10092                         vcpu->arch.apf.halted = true;
10093                         r = 1;
10094                         goto out;
10095                 }
10096                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10097                         record_steal_time(vcpu);
10098                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10099                         process_smi(vcpu);
10100                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10101                         process_nmi(vcpu);
10102                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10103                         kvm_pmu_handle_event(vcpu);
10104                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10105                         kvm_pmu_deliver_pmi(vcpu);
10106                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10107                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10108                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
10109                                      vcpu->arch.ioapic_handled_vectors)) {
10110                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10111                                 vcpu->run->eoi.vector =
10112                                                 vcpu->arch.pending_ioapic_eoi;
10113                                 r = 0;
10114                                 goto out;
10115                         }
10116                 }
10117                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10118                         vcpu_scan_ioapic(vcpu);
10119                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10120                         vcpu_load_eoi_exitmap(vcpu);
10121                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10122                         kvm_vcpu_reload_apic_access_page(vcpu);
10123                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10124                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10125                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10126                         vcpu->run->system_event.ndata = 0;
10127                         r = 0;
10128                         goto out;
10129                 }
10130                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10131                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10132                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10133                         vcpu->run->system_event.ndata = 0;
10134                         r = 0;
10135                         goto out;
10136                 }
10137                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10138                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10139
10140                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10141                         vcpu->run->hyperv = hv_vcpu->exit;
10142                         r = 0;
10143                         goto out;
10144                 }
10145
10146                 /*
10147                  * KVM_REQ_HV_STIMER has to be processed after
10148                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10149                  * depend on the guest clock being up-to-date
10150                  */
10151                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10152                         kvm_hv_process_stimers(vcpu);
10153                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10154                         kvm_vcpu_update_apicv(vcpu);
10155                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10156                         kvm_check_async_pf_completion(vcpu);
10157                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10158                         static_call(kvm_x86_msr_filter_changed)(vcpu);
10159
10160                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10161                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10162         }
10163
10164         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10165             kvm_xen_has_interrupt(vcpu)) {
10166                 ++vcpu->stat.req_event;
10167                 r = kvm_apic_accept_events(vcpu);
10168                 if (r < 0) {
10169                         r = 0;
10170                         goto out;
10171                 }
10172                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10173                         r = 1;
10174                         goto out;
10175                 }
10176
10177                 r = inject_pending_event(vcpu, &req_immediate_exit);
10178                 if (r < 0) {
10179                         r = 0;
10180                         goto out;
10181                 }
10182                 if (req_int_win)
10183                         static_call(kvm_x86_enable_irq_window)(vcpu);
10184
10185                 if (kvm_lapic_enabled(vcpu)) {
10186                         update_cr8_intercept(vcpu);
10187                         kvm_lapic_sync_to_vapic(vcpu);
10188                 }
10189         }
10190
10191         r = kvm_mmu_reload(vcpu);
10192         if (unlikely(r)) {
10193                 goto cancel_injection;
10194         }
10195
10196         preempt_disable();
10197
10198         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10199
10200         /*
10201          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10202          * IPI are then delayed after guest entry, which ensures that they
10203          * result in virtual interrupt delivery.
10204          */
10205         local_irq_disable();
10206
10207         /* Store vcpu->apicv_active before vcpu->mode.  */
10208         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10209
10210         kvm_vcpu_srcu_read_unlock(vcpu);
10211
10212         /*
10213          * 1) We should set ->mode before checking ->requests.  Please see
10214          * the comment in kvm_vcpu_exiting_guest_mode().
10215          *
10216          * 2) For APICv, we should set ->mode before checking PID.ON. This
10217          * pairs with the memory barrier implicit in pi_test_and_set_on
10218          * (see vmx_deliver_posted_interrupt).
10219          *
10220          * 3) This also orders the write to mode from any reads to the page
10221          * tables done while the VCPU is running.  Please see the comment
10222          * in kvm_flush_remote_tlbs.
10223          */
10224         smp_mb__after_srcu_read_unlock();
10225
10226         /*
10227          * Process pending posted interrupts to handle the case where the
10228          * notification IRQ arrived in the host, or was never sent (because the
10229          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10230          * status, KVM doesn't update assigned devices when APICv is inhibited,
10231          * i.e. they can post interrupts even if APICv is temporarily disabled.
10232          */
10233         if (kvm_lapic_enabled(vcpu))
10234                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10235
10236         if (kvm_vcpu_exit_request(vcpu)) {
10237                 vcpu->mode = OUTSIDE_GUEST_MODE;
10238                 smp_wmb();
10239                 local_irq_enable();
10240                 preempt_enable();
10241                 kvm_vcpu_srcu_read_lock(vcpu);
10242                 r = 1;
10243                 goto cancel_injection;
10244         }
10245
10246         if (req_immediate_exit) {
10247                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10248                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10249         }
10250
10251         fpregs_assert_state_consistent();
10252         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10253                 switch_fpu_return();
10254
10255         if (vcpu->arch.guest_fpu.xfd_err)
10256                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10257
10258         if (unlikely(vcpu->arch.switch_db_regs)) {
10259                 set_debugreg(0, 7);
10260                 set_debugreg(vcpu->arch.eff_db[0], 0);
10261                 set_debugreg(vcpu->arch.eff_db[1], 1);
10262                 set_debugreg(vcpu->arch.eff_db[2], 2);
10263                 set_debugreg(vcpu->arch.eff_db[3], 3);
10264         } else if (unlikely(hw_breakpoint_active())) {
10265                 set_debugreg(0, 7);
10266         }
10267
10268         guest_timing_enter_irqoff();
10269
10270         for (;;) {
10271                 /*
10272                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10273                  * update must kick and wait for all vCPUs before toggling the
10274                  * per-VM state, and responsing vCPUs must wait for the update
10275                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10276                  */
10277                 WARN_ON_ONCE(kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu));
10278
10279                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10280                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10281                         break;
10282
10283                 if (kvm_lapic_enabled(vcpu))
10284                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10285
10286                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10287                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10288                         break;
10289                 }
10290         }
10291
10292         /*
10293          * Do this here before restoring debug registers on the host.  And
10294          * since we do this before handling the vmexit, a DR access vmexit
10295          * can (a) read the correct value of the debug registers, (b) set
10296          * KVM_DEBUGREG_WONT_EXIT again.
10297          */
10298         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10299                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10300                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10301                 kvm_update_dr0123(vcpu);
10302                 kvm_update_dr7(vcpu);
10303         }
10304
10305         /*
10306          * If the guest has used debug registers, at least dr7
10307          * will be disabled while returning to the host.
10308          * If we don't have active breakpoints in the host, we don't
10309          * care about the messed up debug address registers. But if
10310          * we have some of them active, restore the old state.
10311          */
10312         if (hw_breakpoint_active())
10313                 hw_breakpoint_restore();
10314
10315         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10316         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10317
10318         vcpu->mode = OUTSIDE_GUEST_MODE;
10319         smp_wmb();
10320
10321         /*
10322          * Sync xfd before calling handle_exit_irqoff() which may
10323          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10324          * in #NM irqoff handler).
10325          */
10326         if (vcpu->arch.xfd_no_write_intercept)
10327                 fpu_sync_guest_vmexit_xfd_state();
10328
10329         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10330
10331         if (vcpu->arch.guest_fpu.xfd_err)
10332                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10333
10334         /*
10335          * Consume any pending interrupts, including the possible source of
10336          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10337          * An instruction is required after local_irq_enable() to fully unblock
10338          * interrupts on processors that implement an interrupt shadow, the
10339          * stat.exits increment will do nicely.
10340          */
10341         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10342         local_irq_enable();
10343         ++vcpu->stat.exits;
10344         local_irq_disable();
10345         kvm_after_interrupt(vcpu);
10346
10347         /*
10348          * Wait until after servicing IRQs to account guest time so that any
10349          * ticks that occurred while running the guest are properly accounted
10350          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10351          * of accounting via context tracking, but the loss of accuracy is
10352          * acceptable for all known use cases.
10353          */
10354         guest_timing_exit_irqoff();
10355
10356         local_irq_enable();
10357         preempt_enable();
10358
10359         kvm_vcpu_srcu_read_lock(vcpu);
10360
10361         /*
10362          * Profile KVM exit RIPs:
10363          */
10364         if (unlikely(prof_on == KVM_PROFILING)) {
10365                 unsigned long rip = kvm_rip_read(vcpu);
10366                 profile_hit(KVM_PROFILING, (void *)rip);
10367         }
10368
10369         if (unlikely(vcpu->arch.tsc_always_catchup))
10370                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10371
10372         if (vcpu->arch.apic_attention)
10373                 kvm_lapic_sync_from_vapic(vcpu);
10374
10375         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10376         return r;
10377
10378 cancel_injection:
10379         if (req_immediate_exit)
10380                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10381         static_call(kvm_x86_cancel_injection)(vcpu);
10382         if (unlikely(vcpu->arch.apic_attention))
10383                 kvm_lapic_sync_from_vapic(vcpu);
10384 out:
10385         return r;
10386 }
10387
10388 /* Called within kvm->srcu read side.  */
10389 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10390 {
10391         bool hv_timer;
10392
10393         if (!kvm_arch_vcpu_runnable(vcpu)) {
10394                 /*
10395                  * Switch to the software timer before halt-polling/blocking as
10396                  * the guest's timer may be a break event for the vCPU, and the
10397                  * hypervisor timer runs only when the CPU is in guest mode.
10398                  * Switch before halt-polling so that KVM recognizes an expired
10399                  * timer before blocking.
10400                  */
10401                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10402                 if (hv_timer)
10403                         kvm_lapic_switch_to_sw_timer(vcpu);
10404
10405                 kvm_vcpu_srcu_read_unlock(vcpu);
10406                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10407                         kvm_vcpu_halt(vcpu);
10408                 else
10409                         kvm_vcpu_block(vcpu);
10410                 kvm_vcpu_srcu_read_lock(vcpu);
10411
10412                 if (hv_timer)
10413                         kvm_lapic_switch_to_hv_timer(vcpu);
10414
10415                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10416                         return 1;
10417         }
10418
10419         if (kvm_apic_accept_events(vcpu) < 0)
10420                 return 0;
10421         switch(vcpu->arch.mp_state) {
10422         case KVM_MP_STATE_HALTED:
10423         case KVM_MP_STATE_AP_RESET_HOLD:
10424                 vcpu->arch.pv.pv_unhalted = false;
10425                 vcpu->arch.mp_state =
10426                         KVM_MP_STATE_RUNNABLE;
10427                 fallthrough;
10428         case KVM_MP_STATE_RUNNABLE:
10429                 vcpu->arch.apf.halted = false;
10430                 break;
10431         case KVM_MP_STATE_INIT_RECEIVED:
10432                 break;
10433         default:
10434                 return -EINTR;
10435         }
10436         return 1;
10437 }
10438
10439 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10440 {
10441         if (is_guest_mode(vcpu))
10442                 kvm_check_nested_events(vcpu);
10443
10444         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10445                 !vcpu->arch.apf.halted);
10446 }
10447
10448 /* Called within kvm->srcu read side.  */
10449 static int vcpu_run(struct kvm_vcpu *vcpu)
10450 {
10451         int r;
10452
10453         vcpu->arch.l1tf_flush_l1d = true;
10454
10455         for (;;) {
10456                 if (kvm_vcpu_running(vcpu)) {
10457                         r = vcpu_enter_guest(vcpu);
10458                 } else {
10459                         r = vcpu_block(vcpu);
10460                 }
10461
10462                 if (r <= 0)
10463                         break;
10464
10465                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10466                 if (kvm_xen_has_pending_events(vcpu))
10467                         kvm_xen_inject_pending_events(vcpu);
10468
10469                 if (kvm_cpu_has_pending_timer(vcpu))
10470                         kvm_inject_pending_timer_irqs(vcpu);
10471
10472                 if (dm_request_for_irq_injection(vcpu) &&
10473                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10474                         r = 0;
10475                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10476                         ++vcpu->stat.request_irq_exits;
10477                         break;
10478                 }
10479
10480                 if (__xfer_to_guest_mode_work_pending()) {
10481                         kvm_vcpu_srcu_read_unlock(vcpu);
10482                         r = xfer_to_guest_mode_handle_work(vcpu);
10483                         kvm_vcpu_srcu_read_lock(vcpu);
10484                         if (r)
10485                                 return r;
10486                 }
10487         }
10488
10489         return r;
10490 }
10491
10492 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10493 {
10494         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10495 }
10496
10497 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10498 {
10499         BUG_ON(!vcpu->arch.pio.count);
10500
10501         return complete_emulated_io(vcpu);
10502 }
10503
10504 /*
10505  * Implements the following, as a state machine:
10506  *
10507  * read:
10508  *   for each fragment
10509  *     for each mmio piece in the fragment
10510  *       write gpa, len
10511  *       exit
10512  *       copy data
10513  *   execute insn
10514  *
10515  * write:
10516  *   for each fragment
10517  *     for each mmio piece in the fragment
10518  *       write gpa, len
10519  *       copy data
10520  *       exit
10521  */
10522 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10523 {
10524         struct kvm_run *run = vcpu->run;
10525         struct kvm_mmio_fragment *frag;
10526         unsigned len;
10527
10528         BUG_ON(!vcpu->mmio_needed);
10529
10530         /* Complete previous fragment */
10531         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10532         len = min(8u, frag->len);
10533         if (!vcpu->mmio_is_write)
10534                 memcpy(frag->data, run->mmio.data, len);
10535
10536         if (frag->len <= 8) {
10537                 /* Switch to the next fragment. */
10538                 frag++;
10539                 vcpu->mmio_cur_fragment++;
10540         } else {
10541                 /* Go forward to the next mmio piece. */
10542                 frag->data += len;
10543                 frag->gpa += len;
10544                 frag->len -= len;
10545         }
10546
10547         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10548                 vcpu->mmio_needed = 0;
10549
10550                 /* FIXME: return into emulator if single-stepping.  */
10551                 if (vcpu->mmio_is_write)
10552                         return 1;
10553                 vcpu->mmio_read_completed = 1;
10554                 return complete_emulated_io(vcpu);
10555         }
10556
10557         run->exit_reason = KVM_EXIT_MMIO;
10558         run->mmio.phys_addr = frag->gpa;
10559         if (vcpu->mmio_is_write)
10560                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10561         run->mmio.len = min(8u, frag->len);
10562         run->mmio.is_write = vcpu->mmio_is_write;
10563         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10564         return 0;
10565 }
10566
10567 /* Swap (qemu) user FPU context for the guest FPU context. */
10568 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10569 {
10570         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10571         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10572         trace_kvm_fpu(1);
10573 }
10574
10575 /* When vcpu_run ends, restore user space FPU context. */
10576 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10577 {
10578         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10579         ++vcpu->stat.fpu_reload;
10580         trace_kvm_fpu(0);
10581 }
10582
10583 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10584 {
10585         struct kvm_run *kvm_run = vcpu->run;
10586         int r;
10587
10588         vcpu_load(vcpu);
10589         kvm_sigset_activate(vcpu);
10590         kvm_run->flags = 0;
10591         kvm_load_guest_fpu(vcpu);
10592
10593         kvm_vcpu_srcu_read_lock(vcpu);
10594         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10595                 if (kvm_run->immediate_exit) {
10596                         r = -EINTR;
10597                         goto out;
10598                 }
10599                 /*
10600                  * It should be impossible for the hypervisor timer to be in
10601                  * use before KVM has ever run the vCPU.
10602                  */
10603                 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10604
10605                 kvm_vcpu_srcu_read_unlock(vcpu);
10606                 kvm_vcpu_block(vcpu);
10607                 kvm_vcpu_srcu_read_lock(vcpu);
10608
10609                 if (kvm_apic_accept_events(vcpu) < 0) {
10610                         r = 0;
10611                         goto out;
10612                 }
10613                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10614                 r = -EAGAIN;
10615                 if (signal_pending(current)) {
10616                         r = -EINTR;
10617                         kvm_run->exit_reason = KVM_EXIT_INTR;
10618                         ++vcpu->stat.signal_exits;
10619                 }
10620                 goto out;
10621         }
10622
10623         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10624             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10625                 r = -EINVAL;
10626                 goto out;
10627         }
10628
10629         if (kvm_run->kvm_dirty_regs) {
10630                 r = sync_regs(vcpu);
10631                 if (r != 0)
10632                         goto out;
10633         }
10634
10635         /* re-sync apic's tpr */
10636         if (!lapic_in_kernel(vcpu)) {
10637                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10638                         r = -EINVAL;
10639                         goto out;
10640                 }
10641         }
10642
10643         if (unlikely(vcpu->arch.complete_userspace_io)) {
10644                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10645                 vcpu->arch.complete_userspace_io = NULL;
10646                 r = cui(vcpu);
10647                 if (r <= 0)
10648                         goto out;
10649         } else
10650                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10651
10652         if (kvm_run->immediate_exit) {
10653                 r = -EINTR;
10654                 goto out;
10655         }
10656
10657         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10658         if (r <= 0)
10659                 goto out;
10660
10661         r = vcpu_run(vcpu);
10662
10663 out:
10664         kvm_put_guest_fpu(vcpu);
10665         if (kvm_run->kvm_valid_regs)
10666                 store_regs(vcpu);
10667         post_kvm_run_save(vcpu);
10668         kvm_vcpu_srcu_read_unlock(vcpu);
10669
10670         kvm_sigset_deactivate(vcpu);
10671         vcpu_put(vcpu);
10672         return r;
10673 }
10674
10675 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10676 {
10677         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10678                 /*
10679                  * We are here if userspace calls get_regs() in the middle of
10680                  * instruction emulation. Registers state needs to be copied
10681                  * back from emulation context to vcpu. Userspace shouldn't do
10682                  * that usually, but some bad designed PV devices (vmware
10683                  * backdoor interface) need this to work
10684                  */
10685                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10686                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10687         }
10688         regs->rax = kvm_rax_read(vcpu);
10689         regs->rbx = kvm_rbx_read(vcpu);
10690         regs->rcx = kvm_rcx_read(vcpu);
10691         regs->rdx = kvm_rdx_read(vcpu);
10692         regs->rsi = kvm_rsi_read(vcpu);
10693         regs->rdi = kvm_rdi_read(vcpu);
10694         regs->rsp = kvm_rsp_read(vcpu);
10695         regs->rbp = kvm_rbp_read(vcpu);
10696 #ifdef CONFIG_X86_64
10697         regs->r8 = kvm_r8_read(vcpu);
10698         regs->r9 = kvm_r9_read(vcpu);
10699         regs->r10 = kvm_r10_read(vcpu);
10700         regs->r11 = kvm_r11_read(vcpu);
10701         regs->r12 = kvm_r12_read(vcpu);
10702         regs->r13 = kvm_r13_read(vcpu);
10703         regs->r14 = kvm_r14_read(vcpu);
10704         regs->r15 = kvm_r15_read(vcpu);
10705 #endif
10706
10707         regs->rip = kvm_rip_read(vcpu);
10708         regs->rflags = kvm_get_rflags(vcpu);
10709 }
10710
10711 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10712 {
10713         vcpu_load(vcpu);
10714         __get_regs(vcpu, regs);
10715         vcpu_put(vcpu);
10716         return 0;
10717 }
10718
10719 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10720 {
10721         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10722         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10723
10724         kvm_rax_write(vcpu, regs->rax);
10725         kvm_rbx_write(vcpu, regs->rbx);
10726         kvm_rcx_write(vcpu, regs->rcx);
10727         kvm_rdx_write(vcpu, regs->rdx);
10728         kvm_rsi_write(vcpu, regs->rsi);
10729         kvm_rdi_write(vcpu, regs->rdi);
10730         kvm_rsp_write(vcpu, regs->rsp);
10731         kvm_rbp_write(vcpu, regs->rbp);
10732 #ifdef CONFIG_X86_64
10733         kvm_r8_write(vcpu, regs->r8);
10734         kvm_r9_write(vcpu, regs->r9);
10735         kvm_r10_write(vcpu, regs->r10);
10736         kvm_r11_write(vcpu, regs->r11);
10737         kvm_r12_write(vcpu, regs->r12);
10738         kvm_r13_write(vcpu, regs->r13);
10739         kvm_r14_write(vcpu, regs->r14);
10740         kvm_r15_write(vcpu, regs->r15);
10741 #endif
10742
10743         kvm_rip_write(vcpu, regs->rip);
10744         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10745
10746         vcpu->arch.exception.pending = false;
10747
10748         kvm_make_request(KVM_REQ_EVENT, vcpu);
10749 }
10750
10751 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10752 {
10753         vcpu_load(vcpu);
10754         __set_regs(vcpu, regs);
10755         vcpu_put(vcpu);
10756         return 0;
10757 }
10758
10759 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10760 {
10761         struct desc_ptr dt;
10762
10763         if (vcpu->arch.guest_state_protected)
10764                 goto skip_protected_regs;
10765
10766         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10767         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10768         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10769         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10770         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10771         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10772
10773         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10774         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10775
10776         static_call(kvm_x86_get_idt)(vcpu, &dt);
10777         sregs->idt.limit = dt.size;
10778         sregs->idt.base = dt.address;
10779         static_call(kvm_x86_get_gdt)(vcpu, &dt);
10780         sregs->gdt.limit = dt.size;
10781         sregs->gdt.base = dt.address;
10782
10783         sregs->cr2 = vcpu->arch.cr2;
10784         sregs->cr3 = kvm_read_cr3(vcpu);
10785
10786 skip_protected_regs:
10787         sregs->cr0 = kvm_read_cr0(vcpu);
10788         sregs->cr4 = kvm_read_cr4(vcpu);
10789         sregs->cr8 = kvm_get_cr8(vcpu);
10790         sregs->efer = vcpu->arch.efer;
10791         sregs->apic_base = kvm_get_apic_base(vcpu);
10792 }
10793
10794 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10795 {
10796         __get_sregs_common(vcpu, sregs);
10797
10798         if (vcpu->arch.guest_state_protected)
10799                 return;
10800
10801         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10802                 set_bit(vcpu->arch.interrupt.nr,
10803                         (unsigned long *)sregs->interrupt_bitmap);
10804 }
10805
10806 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10807 {
10808         int i;
10809
10810         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10811
10812         if (vcpu->arch.guest_state_protected)
10813                 return;
10814
10815         if (is_pae_paging(vcpu)) {
10816                 for (i = 0 ; i < 4 ; i++)
10817                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10818                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10819         }
10820 }
10821
10822 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10823                                   struct kvm_sregs *sregs)
10824 {
10825         vcpu_load(vcpu);
10826         __get_sregs(vcpu, sregs);
10827         vcpu_put(vcpu);
10828         return 0;
10829 }
10830
10831 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10832                                     struct kvm_mp_state *mp_state)
10833 {
10834         int r;
10835
10836         vcpu_load(vcpu);
10837         if (kvm_mpx_supported())
10838                 kvm_load_guest_fpu(vcpu);
10839
10840         r = kvm_apic_accept_events(vcpu);
10841         if (r < 0)
10842                 goto out;
10843         r = 0;
10844
10845         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10846              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10847             vcpu->arch.pv.pv_unhalted)
10848                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10849         else
10850                 mp_state->mp_state = vcpu->arch.mp_state;
10851
10852 out:
10853         if (kvm_mpx_supported())
10854                 kvm_put_guest_fpu(vcpu);
10855         vcpu_put(vcpu);
10856         return r;
10857 }
10858
10859 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10860                                     struct kvm_mp_state *mp_state)
10861 {
10862         int ret = -EINVAL;
10863
10864         vcpu_load(vcpu);
10865
10866         if (!lapic_in_kernel(vcpu) &&
10867             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10868                 goto out;
10869
10870         /*
10871          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10872          * INIT state; latched init should be reported using
10873          * KVM_SET_VCPU_EVENTS, so reject it here.
10874          */
10875         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10876             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10877              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10878                 goto out;
10879
10880         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10881                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10882                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10883         } else
10884                 vcpu->arch.mp_state = mp_state->mp_state;
10885         kvm_make_request(KVM_REQ_EVENT, vcpu);
10886
10887         ret = 0;
10888 out:
10889         vcpu_put(vcpu);
10890         return ret;
10891 }
10892
10893 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10894                     int reason, bool has_error_code, u32 error_code)
10895 {
10896         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10897         int ret;
10898
10899         init_emulate_ctxt(vcpu);
10900
10901         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10902                                    has_error_code, error_code);
10903         if (ret) {
10904                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10905                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10906                 vcpu->run->internal.ndata = 0;
10907                 return 0;
10908         }
10909
10910         kvm_rip_write(vcpu, ctxt->eip);
10911         kvm_set_rflags(vcpu, ctxt->eflags);
10912         return 1;
10913 }
10914 EXPORT_SYMBOL_GPL(kvm_task_switch);
10915
10916 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10917 {
10918         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10919                 /*
10920                  * When EFER.LME and CR0.PG are set, the processor is in
10921                  * 64-bit mode (though maybe in a 32-bit code segment).
10922                  * CR4.PAE and EFER.LMA must be set.
10923                  */
10924                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10925                         return false;
10926                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10927                         return false;
10928         } else {
10929                 /*
10930                  * Not in 64-bit mode: EFER.LMA is clear and the code
10931                  * segment cannot be 64-bit.
10932                  */
10933                 if (sregs->efer & EFER_LMA || sregs->cs.l)
10934                         return false;
10935         }
10936
10937         return kvm_is_valid_cr4(vcpu, sregs->cr4);
10938 }
10939
10940 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10941                 int *mmu_reset_needed, bool update_pdptrs)
10942 {
10943         struct msr_data apic_base_msr;
10944         int idx;
10945         struct desc_ptr dt;
10946
10947         if (!kvm_is_valid_sregs(vcpu, sregs))
10948                 return -EINVAL;
10949
10950         apic_base_msr.data = sregs->apic_base;
10951         apic_base_msr.host_initiated = true;
10952         if (kvm_set_apic_base(vcpu, &apic_base_msr))
10953                 return -EINVAL;
10954
10955         if (vcpu->arch.guest_state_protected)
10956                 return 0;
10957
10958         dt.size = sregs->idt.limit;
10959         dt.address = sregs->idt.base;
10960         static_call(kvm_x86_set_idt)(vcpu, &dt);
10961         dt.size = sregs->gdt.limit;
10962         dt.address = sregs->gdt.base;
10963         static_call(kvm_x86_set_gdt)(vcpu, &dt);
10964
10965         vcpu->arch.cr2 = sregs->cr2;
10966         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10967         vcpu->arch.cr3 = sregs->cr3;
10968         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10969         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10970
10971         kvm_set_cr8(vcpu, sregs->cr8);
10972
10973         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10974         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10975
10976         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10977         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10978         vcpu->arch.cr0 = sregs->cr0;
10979
10980         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10981         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10982
10983         if (update_pdptrs) {
10984                 idx = srcu_read_lock(&vcpu->kvm->srcu);
10985                 if (is_pae_paging(vcpu)) {
10986                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10987                         *mmu_reset_needed = 1;
10988                 }
10989                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10990         }
10991
10992         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10993         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10994         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10995         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10996         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10997         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10998
10999         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11000         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11001
11002         update_cr8_intercept(vcpu);
11003
11004         /* Older userspace won't unhalt the vcpu on reset. */
11005         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11006             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11007             !is_protmode(vcpu))
11008                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11009
11010         return 0;
11011 }
11012
11013 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11014 {
11015         int pending_vec, max_bits;
11016         int mmu_reset_needed = 0;
11017         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11018
11019         if (ret)
11020                 return ret;
11021
11022         if (mmu_reset_needed)
11023                 kvm_mmu_reset_context(vcpu);
11024
11025         max_bits = KVM_NR_INTERRUPTS;
11026         pending_vec = find_first_bit(
11027                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11028
11029         if (pending_vec < max_bits) {
11030                 kvm_queue_interrupt(vcpu, pending_vec, false);
11031                 pr_debug("Set back pending irq %d\n", pending_vec);
11032                 kvm_make_request(KVM_REQ_EVENT, vcpu);
11033         }
11034         return 0;
11035 }
11036
11037 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11038 {
11039         int mmu_reset_needed = 0;
11040         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11041         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11042                 !(sregs2->efer & EFER_LMA);
11043         int i, ret;
11044
11045         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11046                 return -EINVAL;
11047
11048         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11049                 return -EINVAL;
11050
11051         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11052                                  &mmu_reset_needed, !valid_pdptrs);
11053         if (ret)
11054                 return ret;
11055
11056         if (valid_pdptrs) {
11057                 for (i = 0; i < 4 ; i++)
11058                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11059
11060                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11061                 mmu_reset_needed = 1;
11062                 vcpu->arch.pdptrs_from_userspace = true;
11063         }
11064         if (mmu_reset_needed)
11065                 kvm_mmu_reset_context(vcpu);
11066         return 0;
11067 }
11068
11069 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11070                                   struct kvm_sregs *sregs)
11071 {
11072         int ret;
11073
11074         vcpu_load(vcpu);
11075         ret = __set_sregs(vcpu, sregs);
11076         vcpu_put(vcpu);
11077         return ret;
11078 }
11079
11080 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11081 {
11082         bool set = false;
11083         struct kvm_vcpu *vcpu;
11084         unsigned long i;
11085
11086         if (!enable_apicv)
11087                 return;
11088
11089         down_write(&kvm->arch.apicv_update_lock);
11090
11091         kvm_for_each_vcpu(i, vcpu, kvm) {
11092                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11093                         set = true;
11094                         break;
11095                 }
11096         }
11097         __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11098         up_write(&kvm->arch.apicv_update_lock);
11099 }
11100
11101 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11102                                         struct kvm_guest_debug *dbg)
11103 {
11104         unsigned long rflags;
11105         int i, r;
11106
11107         if (vcpu->arch.guest_state_protected)
11108                 return -EINVAL;
11109
11110         vcpu_load(vcpu);
11111
11112         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11113                 r = -EBUSY;
11114                 if (vcpu->arch.exception.pending)
11115                         goto out;
11116                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11117                         kvm_queue_exception(vcpu, DB_VECTOR);
11118                 else
11119                         kvm_queue_exception(vcpu, BP_VECTOR);
11120         }
11121
11122         /*
11123          * Read rflags as long as potentially injected trace flags are still
11124          * filtered out.
11125          */
11126         rflags = kvm_get_rflags(vcpu);
11127
11128         vcpu->guest_debug = dbg->control;
11129         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11130                 vcpu->guest_debug = 0;
11131
11132         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11133                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11134                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11135                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11136         } else {
11137                 for (i = 0; i < KVM_NR_DB_REGS; i++)
11138                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11139         }
11140         kvm_update_dr7(vcpu);
11141
11142         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11143                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11144
11145         /*
11146          * Trigger an rflags update that will inject or remove the trace
11147          * flags.
11148          */
11149         kvm_set_rflags(vcpu, rflags);
11150
11151         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11152
11153         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11154
11155         r = 0;
11156
11157 out:
11158         vcpu_put(vcpu);
11159         return r;
11160 }
11161
11162 /*
11163  * Translate a guest virtual address to a guest physical address.
11164  */
11165 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11166                                     struct kvm_translation *tr)
11167 {
11168         unsigned long vaddr = tr->linear_address;
11169         gpa_t gpa;
11170         int idx;
11171
11172         vcpu_load(vcpu);
11173
11174         idx = srcu_read_lock(&vcpu->kvm->srcu);
11175         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11176         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11177         tr->physical_address = gpa;
11178         tr->valid = gpa != UNMAPPED_GVA;
11179         tr->writeable = 1;
11180         tr->usermode = 0;
11181
11182         vcpu_put(vcpu);
11183         return 0;
11184 }
11185
11186 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11187 {
11188         struct fxregs_state *fxsave;
11189
11190         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11191                 return 0;
11192
11193         vcpu_load(vcpu);
11194
11195         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11196         memcpy(fpu->fpr, fxsave->st_space, 128);
11197         fpu->fcw = fxsave->cwd;
11198         fpu->fsw = fxsave->swd;
11199         fpu->ftwx = fxsave->twd;
11200         fpu->last_opcode = fxsave->fop;
11201         fpu->last_ip = fxsave->rip;
11202         fpu->last_dp = fxsave->rdp;
11203         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11204
11205         vcpu_put(vcpu);
11206         return 0;
11207 }
11208
11209 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11210 {
11211         struct fxregs_state *fxsave;
11212
11213         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11214                 return 0;
11215
11216         vcpu_load(vcpu);
11217
11218         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11219
11220         memcpy(fxsave->st_space, fpu->fpr, 128);
11221         fxsave->cwd = fpu->fcw;
11222         fxsave->swd = fpu->fsw;
11223         fxsave->twd = fpu->ftwx;
11224         fxsave->fop = fpu->last_opcode;
11225         fxsave->rip = fpu->last_ip;
11226         fxsave->rdp = fpu->last_dp;
11227         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11228
11229         vcpu_put(vcpu);
11230         return 0;
11231 }
11232
11233 static void store_regs(struct kvm_vcpu *vcpu)
11234 {
11235         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11236
11237         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11238                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11239
11240         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11241                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11242
11243         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11244                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11245                                 vcpu, &vcpu->run->s.regs.events);
11246 }
11247
11248 static int sync_regs(struct kvm_vcpu *vcpu)
11249 {
11250         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11251                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11252                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11253         }
11254         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11255                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11256                         return -EINVAL;
11257                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11258         }
11259         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11260                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11261                                 vcpu, &vcpu->run->s.regs.events))
11262                         return -EINVAL;
11263                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11264         }
11265
11266         return 0;
11267 }
11268
11269 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11270 {
11271         if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11272                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11273                              "guest TSC will not be reliable\n");
11274
11275         if (!kvm->arch.max_vcpu_ids)
11276                 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11277
11278         if (id >= kvm->arch.max_vcpu_ids)
11279                 return -EINVAL;
11280
11281         return static_call(kvm_x86_vcpu_precreate)(kvm);
11282 }
11283
11284 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11285 {
11286         struct page *page;
11287         int r;
11288
11289         vcpu->arch.last_vmentry_cpu = -1;
11290         vcpu->arch.regs_avail = ~0;
11291         vcpu->arch.regs_dirty = ~0;
11292
11293         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11294                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11295         else
11296                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11297
11298         r = kvm_mmu_create(vcpu);
11299         if (r < 0)
11300                 return r;
11301
11302         if (irqchip_in_kernel(vcpu->kvm)) {
11303                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11304                 if (r < 0)
11305                         goto fail_mmu_destroy;
11306
11307                 /*
11308                  * Defer evaluating inhibits until the vCPU is first run, as
11309                  * this vCPU will not get notified of any changes until this
11310                  * vCPU is visible to other vCPUs (marked online and added to
11311                  * the set of vCPUs).  Opportunistically mark APICv active as
11312                  * VMX in particularly is highly unlikely to have inhibits.
11313                  * Ignore the current per-VM APICv state so that vCPU creation
11314                  * is guaranteed to run with a deterministic value, the request
11315                  * will ensure the vCPU gets the correct state before VM-Entry.
11316                  */
11317                 if (enable_apicv) {
11318                         vcpu->arch.apicv_active = true;
11319                         kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11320                 }
11321         } else
11322                 static_branch_inc(&kvm_has_noapic_vcpu);
11323
11324         r = -ENOMEM;
11325
11326         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11327         if (!page)
11328                 goto fail_free_lapic;
11329         vcpu->arch.pio_data = page_address(page);
11330
11331         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11332                                        GFP_KERNEL_ACCOUNT);
11333         if (!vcpu->arch.mce_banks)
11334                 goto fail_free_pio_data;
11335         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11336
11337         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11338                                 GFP_KERNEL_ACCOUNT))
11339                 goto fail_free_mce_banks;
11340
11341         if (!alloc_emulate_ctxt(vcpu))
11342                 goto free_wbinvd_dirty_mask;
11343
11344         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11345                 pr_err("kvm: failed to allocate vcpu's fpu\n");
11346                 goto free_emulate_ctxt;
11347         }
11348
11349         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11350         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11351
11352         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11353
11354         kvm_async_pf_hash_reset(vcpu);
11355         kvm_pmu_init(vcpu);
11356
11357         vcpu->arch.pending_external_vector = -1;
11358         vcpu->arch.preempted_in_kernel = false;
11359
11360 #if IS_ENABLED(CONFIG_HYPERV)
11361         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11362 #endif
11363
11364         r = static_call(kvm_x86_vcpu_create)(vcpu);
11365         if (r)
11366                 goto free_guest_fpu;
11367
11368         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11369         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11370         kvm_xen_init_vcpu(vcpu);
11371         kvm_vcpu_mtrr_init(vcpu);
11372         vcpu_load(vcpu);
11373         kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11374         kvm_vcpu_reset(vcpu, false);
11375         kvm_init_mmu(vcpu);
11376         vcpu_put(vcpu);
11377         return 0;
11378
11379 free_guest_fpu:
11380         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11381 free_emulate_ctxt:
11382         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11383 free_wbinvd_dirty_mask:
11384         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11385 fail_free_mce_banks:
11386         kfree(vcpu->arch.mce_banks);
11387 fail_free_pio_data:
11388         free_page((unsigned long)vcpu->arch.pio_data);
11389 fail_free_lapic:
11390         kvm_free_lapic(vcpu);
11391 fail_mmu_destroy:
11392         kvm_mmu_destroy(vcpu);
11393         return r;
11394 }
11395
11396 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11397 {
11398         struct kvm *kvm = vcpu->kvm;
11399
11400         if (mutex_lock_killable(&vcpu->mutex))
11401                 return;
11402         vcpu_load(vcpu);
11403         kvm_synchronize_tsc(vcpu, 0);
11404         vcpu_put(vcpu);
11405
11406         /* poll control enabled by default */
11407         vcpu->arch.msr_kvm_poll_control = 1;
11408
11409         mutex_unlock(&vcpu->mutex);
11410
11411         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11412                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11413                                                 KVMCLOCK_SYNC_PERIOD);
11414 }
11415
11416 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11417 {
11418         int idx;
11419
11420         kvmclock_reset(vcpu);
11421
11422         static_call(kvm_x86_vcpu_free)(vcpu);
11423
11424         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11425         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11426         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11427
11428         kvm_xen_destroy_vcpu(vcpu);
11429         kvm_hv_vcpu_uninit(vcpu);
11430         kvm_pmu_destroy(vcpu);
11431         kfree(vcpu->arch.mce_banks);
11432         kvm_free_lapic(vcpu);
11433         idx = srcu_read_lock(&vcpu->kvm->srcu);
11434         kvm_mmu_destroy(vcpu);
11435         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11436         free_page((unsigned long)vcpu->arch.pio_data);
11437         kvfree(vcpu->arch.cpuid_entries);
11438         if (!lapic_in_kernel(vcpu))
11439                 static_branch_dec(&kvm_has_noapic_vcpu);
11440 }
11441
11442 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11443 {
11444         struct kvm_cpuid_entry2 *cpuid_0x1;
11445         unsigned long old_cr0 = kvm_read_cr0(vcpu);
11446         unsigned long new_cr0;
11447
11448         /*
11449          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11450          * to handle side effects.  RESET emulation hits those flows and relies
11451          * on emulated/virtualized registers, including those that are loaded
11452          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11453          * to detect improper or missing initialization.
11454          */
11455         WARN_ON_ONCE(!init_event &&
11456                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11457
11458         kvm_lapic_reset(vcpu, init_event);
11459
11460         vcpu->arch.hflags = 0;
11461
11462         vcpu->arch.smi_pending = 0;
11463         vcpu->arch.smi_count = 0;
11464         atomic_set(&vcpu->arch.nmi_queued, 0);
11465         vcpu->arch.nmi_pending = 0;
11466         vcpu->arch.nmi_injected = false;
11467         kvm_clear_interrupt_queue(vcpu);
11468         kvm_clear_exception_queue(vcpu);
11469
11470         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11471         kvm_update_dr0123(vcpu);
11472         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11473         vcpu->arch.dr7 = DR7_FIXED_1;
11474         kvm_update_dr7(vcpu);
11475
11476         vcpu->arch.cr2 = 0;
11477
11478         kvm_make_request(KVM_REQ_EVENT, vcpu);
11479         vcpu->arch.apf.msr_en_val = 0;
11480         vcpu->arch.apf.msr_int_val = 0;
11481         vcpu->arch.st.msr_val = 0;
11482
11483         kvmclock_reset(vcpu);
11484
11485         kvm_clear_async_pf_completion_queue(vcpu);
11486         kvm_async_pf_hash_reset(vcpu);
11487         vcpu->arch.apf.halted = false;
11488
11489         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11490                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11491
11492                 /*
11493                  * To avoid have the INIT path from kvm_apic_has_events() that be
11494                  * called with loaded FPU and does not let userspace fix the state.
11495                  */
11496                 if (init_event)
11497                         kvm_put_guest_fpu(vcpu);
11498
11499                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11500                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11501
11502                 if (init_event)
11503                         kvm_load_guest_fpu(vcpu);
11504         }
11505
11506         if (!init_event) {
11507                 kvm_pmu_reset(vcpu);
11508                 vcpu->arch.smbase = 0x30000;
11509
11510                 vcpu->arch.msr_misc_features_enables = 0;
11511
11512                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11513                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11514         }
11515
11516         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11517         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11518         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11519
11520         /*
11521          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11522          * if no CPUID match is found.  Note, it's impossible to get a match at
11523          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11524          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11525          * on RESET.  But, go through the motions in case that's ever remedied.
11526          */
11527         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11528         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11529
11530         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11531
11532         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11533         kvm_rip_write(vcpu, 0xfff0);
11534
11535         vcpu->arch.cr3 = 0;
11536         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11537
11538         /*
11539          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11540          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11541          * (or qualify) that with a footnote stating that CD/NW are preserved.
11542          */
11543         new_cr0 = X86_CR0_ET;
11544         if (init_event)
11545                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11546         else
11547                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11548
11549         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11550         static_call(kvm_x86_set_cr4)(vcpu, 0);
11551         static_call(kvm_x86_set_efer)(vcpu, 0);
11552         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11553
11554         /*
11555          * On the standard CR0/CR4/EFER modification paths, there are several
11556          * complex conditions determining whether the MMU has to be reset and/or
11557          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11558          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11559          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11560          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11561          */
11562         if (old_cr0 & X86_CR0_PG) {
11563                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11564                 kvm_mmu_reset_context(vcpu);
11565         }
11566
11567         /*
11568          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11569          * APM states the TLBs are untouched by INIT, but it also states that
11570          * the TLBs are flushed on "External initialization of the processor."
11571          * Flush the guest TLB regardless of vendor, there is no meaningful
11572          * benefit in relying on the guest to flush the TLB immediately after
11573          * INIT.  A spurious TLB flush is benign and likely negligible from a
11574          * performance perspective.
11575          */
11576         if (init_event)
11577                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11578 }
11579 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11580
11581 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11582 {
11583         struct kvm_segment cs;
11584
11585         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11586         cs.selector = vector << 8;
11587         cs.base = vector << 12;
11588         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11589         kvm_rip_write(vcpu, 0);
11590 }
11591 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11592
11593 int kvm_arch_hardware_enable(void)
11594 {
11595         struct kvm *kvm;
11596         struct kvm_vcpu *vcpu;
11597         unsigned long i;
11598         int ret;
11599         u64 local_tsc;
11600         u64 max_tsc = 0;
11601         bool stable, backwards_tsc = false;
11602
11603         kvm_user_return_msr_cpu_online();
11604         ret = static_call(kvm_x86_hardware_enable)();
11605         if (ret != 0)
11606                 return ret;
11607
11608         local_tsc = rdtsc();
11609         stable = !kvm_check_tsc_unstable();
11610         list_for_each_entry(kvm, &vm_list, vm_list) {
11611                 kvm_for_each_vcpu(i, vcpu, kvm) {
11612                         if (!stable && vcpu->cpu == smp_processor_id())
11613                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11614                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11615                                 backwards_tsc = true;
11616                                 if (vcpu->arch.last_host_tsc > max_tsc)
11617                                         max_tsc = vcpu->arch.last_host_tsc;
11618                         }
11619                 }
11620         }
11621
11622         /*
11623          * Sometimes, even reliable TSCs go backwards.  This happens on
11624          * platforms that reset TSC during suspend or hibernate actions, but
11625          * maintain synchronization.  We must compensate.  Fortunately, we can
11626          * detect that condition here, which happens early in CPU bringup,
11627          * before any KVM threads can be running.  Unfortunately, we can't
11628          * bring the TSCs fully up to date with real time, as we aren't yet far
11629          * enough into CPU bringup that we know how much real time has actually
11630          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11631          * variables that haven't been updated yet.
11632          *
11633          * So we simply find the maximum observed TSC above, then record the
11634          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11635          * the adjustment will be applied.  Note that we accumulate
11636          * adjustments, in case multiple suspend cycles happen before some VCPU
11637          * gets a chance to run again.  In the event that no KVM threads get a
11638          * chance to run, we will miss the entire elapsed period, as we'll have
11639          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11640          * loose cycle time.  This isn't too big a deal, since the loss will be
11641          * uniform across all VCPUs (not to mention the scenario is extremely
11642          * unlikely). It is possible that a second hibernate recovery happens
11643          * much faster than a first, causing the observed TSC here to be
11644          * smaller; this would require additional padding adjustment, which is
11645          * why we set last_host_tsc to the local tsc observed here.
11646          *
11647          * N.B. - this code below runs only on platforms with reliable TSC,
11648          * as that is the only way backwards_tsc is set above.  Also note
11649          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11650          * have the same delta_cyc adjustment applied if backwards_tsc
11651          * is detected.  Note further, this adjustment is only done once,
11652          * as we reset last_host_tsc on all VCPUs to stop this from being
11653          * called multiple times (one for each physical CPU bringup).
11654          *
11655          * Platforms with unreliable TSCs don't have to deal with this, they
11656          * will be compensated by the logic in vcpu_load, which sets the TSC to
11657          * catchup mode.  This will catchup all VCPUs to real time, but cannot
11658          * guarantee that they stay in perfect synchronization.
11659          */
11660         if (backwards_tsc) {
11661                 u64 delta_cyc = max_tsc - local_tsc;
11662                 list_for_each_entry(kvm, &vm_list, vm_list) {
11663                         kvm->arch.backwards_tsc_observed = true;
11664                         kvm_for_each_vcpu(i, vcpu, kvm) {
11665                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11666                                 vcpu->arch.last_host_tsc = local_tsc;
11667                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11668                         }
11669
11670                         /*
11671                          * We have to disable TSC offset matching.. if you were
11672                          * booting a VM while issuing an S4 host suspend....
11673                          * you may have some problem.  Solving this issue is
11674                          * left as an exercise to the reader.
11675                          */
11676                         kvm->arch.last_tsc_nsec = 0;
11677                         kvm->arch.last_tsc_write = 0;
11678                 }
11679
11680         }
11681         return 0;
11682 }
11683
11684 void kvm_arch_hardware_disable(void)
11685 {
11686         static_call(kvm_x86_hardware_disable)();
11687         drop_user_return_notifiers();
11688 }
11689
11690 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
11691 {
11692         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11693
11694 #define __KVM_X86_OP(func) \
11695         static_call_update(kvm_x86_##func, kvm_x86_ops.func);
11696 #define KVM_X86_OP(func) \
11697         WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
11698 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
11699 #define KVM_X86_OP_OPTIONAL_RET0(func) \
11700         static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
11701                                            (void *)__static_call_return0);
11702 #include <asm/kvm-x86-ops.h>
11703 #undef __KVM_X86_OP
11704
11705         kvm_pmu_ops_update(ops->pmu_ops);
11706 }
11707
11708 int kvm_arch_hardware_setup(void *opaque)
11709 {
11710         struct kvm_x86_init_ops *ops = opaque;
11711         int r;
11712
11713         rdmsrl_safe(MSR_EFER, &host_efer);
11714
11715         if (boot_cpu_has(X86_FEATURE_XSAVES))
11716                 rdmsrl(MSR_IA32_XSS, host_xss);
11717
11718         r = ops->hardware_setup();
11719         if (r != 0)
11720                 return r;
11721
11722         kvm_ops_update(ops);
11723
11724         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11725
11726         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11727                 supported_xss = 0;
11728
11729 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11730         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11731 #undef __kvm_cpu_cap_has
11732
11733         if (kvm_has_tsc_control) {
11734                 /*
11735                  * Make sure the user can only configure tsc_khz values that
11736                  * fit into a signed integer.
11737                  * A min value is not calculated because it will always
11738                  * be 1 on all machines.
11739                  */
11740                 u64 max = min(0x7fffffffULL,
11741                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11742                 kvm_max_guest_tsc_khz = max;
11743         }
11744         kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11745         kvm_init_msr_list();
11746         return 0;
11747 }
11748
11749 void kvm_arch_hardware_unsetup(void)
11750 {
11751         kvm_unregister_perf_callbacks();
11752
11753         static_call(kvm_x86_hardware_unsetup)();
11754 }
11755
11756 int kvm_arch_check_processor_compat(void *opaque)
11757 {
11758         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11759         struct kvm_x86_init_ops *ops = opaque;
11760
11761         WARN_ON(!irqs_disabled());
11762
11763         if (__cr4_reserved_bits(cpu_has, c) !=
11764             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11765                 return -EIO;
11766
11767         return ops->check_processor_compatibility();
11768 }
11769
11770 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11771 {
11772         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11773 }
11774 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11775
11776 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11777 {
11778         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11779 }
11780
11781 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11782 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11783
11784 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11785 {
11786         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11787
11788         vcpu->arch.l1tf_flush_l1d = true;
11789         if (pmu->version && unlikely(pmu->event_count)) {
11790                 pmu->need_cleanup = true;
11791                 kvm_make_request(KVM_REQ_PMU, vcpu);
11792         }
11793         static_call(kvm_x86_sched_in)(vcpu, cpu);
11794 }
11795
11796 void kvm_arch_free_vm(struct kvm *kvm)
11797 {
11798         kfree(to_kvm_hv(kvm)->hv_pa_pg);
11799         __kvm_arch_free_vm(kvm);
11800 }
11801
11802
11803 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11804 {
11805         int ret;
11806         unsigned long flags;
11807
11808         if (type)
11809                 return -EINVAL;
11810
11811         ret = kvm_page_track_init(kvm);
11812         if (ret)
11813                 goto out;
11814
11815         ret = kvm_mmu_init_vm(kvm);
11816         if (ret)
11817                 goto out_page_track;
11818
11819         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11820         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11821         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11822
11823         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11824         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11825         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11826         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11827                 &kvm->arch.irq_sources_bitmap);
11828
11829         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11830         mutex_init(&kvm->arch.apic_map_lock);
11831         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11832         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11833
11834         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11835         pvclock_update_vm_gtod_copy(kvm);
11836         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11837
11838         kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
11839         kvm->arch.guest_can_read_msr_platform_info = true;
11840         kvm->arch.enable_pmu = enable_pmu;
11841
11842 #if IS_ENABLED(CONFIG_HYPERV)
11843         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11844         kvm->arch.hv_root_tdp = INVALID_PAGE;
11845 #endif
11846
11847         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11848         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11849
11850         kvm_apicv_init(kvm);
11851         kvm_hv_init_vm(kvm);
11852         kvm_xen_init_vm(kvm);
11853
11854         return static_call(kvm_x86_vm_init)(kvm);
11855
11856 out_page_track:
11857         kvm_page_track_cleanup(kvm);
11858 out:
11859         return ret;
11860 }
11861
11862 int kvm_arch_post_init_vm(struct kvm *kvm)
11863 {
11864         return kvm_mmu_post_init_vm(kvm);
11865 }
11866
11867 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11868 {
11869         vcpu_load(vcpu);
11870         kvm_mmu_unload(vcpu);
11871         vcpu_put(vcpu);
11872 }
11873
11874 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
11875 {
11876         unsigned long i;
11877         struct kvm_vcpu *vcpu;
11878
11879         kvm_for_each_vcpu(i, vcpu, kvm) {
11880                 kvm_clear_async_pf_completion_queue(vcpu);
11881                 kvm_unload_vcpu_mmu(vcpu);
11882         }
11883 }
11884
11885 void kvm_arch_sync_events(struct kvm *kvm)
11886 {
11887         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11888         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11889         kvm_free_pit(kvm);
11890 }
11891
11892 /**
11893  * __x86_set_memory_region: Setup KVM internal memory slot
11894  *
11895  * @kvm: the kvm pointer to the VM.
11896  * @id: the slot ID to setup.
11897  * @gpa: the GPA to install the slot (unused when @size == 0).
11898  * @size: the size of the slot. Set to zero to uninstall a slot.
11899  *
11900  * This function helps to setup a KVM internal memory slot.  Specify
11901  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11902  * slot.  The return code can be one of the following:
11903  *
11904  *   HVA:           on success (uninstall will return a bogus HVA)
11905  *   -errno:        on error
11906  *
11907  * The caller should always use IS_ERR() to check the return value
11908  * before use.  Note, the KVM internal memory slots are guaranteed to
11909  * remain valid and unchanged until the VM is destroyed, i.e., the
11910  * GPA->HVA translation will not change.  However, the HVA is a user
11911  * address, i.e. its accessibility is not guaranteed, and must be
11912  * accessed via __copy_{to,from}_user().
11913  */
11914 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11915                                       u32 size)
11916 {
11917         int i, r;
11918         unsigned long hva, old_npages;
11919         struct kvm_memslots *slots = kvm_memslots(kvm);
11920         struct kvm_memory_slot *slot;
11921
11922         /* Called with kvm->slots_lock held.  */
11923         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11924                 return ERR_PTR_USR(-EINVAL);
11925
11926         slot = id_to_memslot(slots, id);
11927         if (size) {
11928                 if (slot && slot->npages)
11929                         return ERR_PTR_USR(-EEXIST);
11930
11931                 /*
11932                  * MAP_SHARED to prevent internal slot pages from being moved
11933                  * by fork()/COW.
11934                  */
11935                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11936                               MAP_SHARED | MAP_ANONYMOUS, 0);
11937                 if (IS_ERR((void *)hva))
11938                         return (void __user *)hva;
11939         } else {
11940                 if (!slot || !slot->npages)
11941                         return NULL;
11942
11943                 old_npages = slot->npages;
11944                 hva = slot->userspace_addr;
11945         }
11946
11947         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11948                 struct kvm_userspace_memory_region m;
11949
11950                 m.slot = id | (i << 16);
11951                 m.flags = 0;
11952                 m.guest_phys_addr = gpa;
11953                 m.userspace_addr = hva;
11954                 m.memory_size = size;
11955                 r = __kvm_set_memory_region(kvm, &m);
11956                 if (r < 0)
11957                         return ERR_PTR_USR(r);
11958         }
11959
11960         if (!size)
11961                 vm_munmap(hva, old_npages * PAGE_SIZE);
11962
11963         return (void __user *)hva;
11964 }
11965 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11966
11967 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11968 {
11969         kvm_mmu_pre_destroy_vm(kvm);
11970 }
11971
11972 void kvm_arch_destroy_vm(struct kvm *kvm)
11973 {
11974         if (current->mm == kvm->mm) {
11975                 /*
11976                  * Free memory regions allocated on behalf of userspace,
11977                  * unless the memory map has changed due to process exit
11978                  * or fd copying.
11979                  */
11980                 mutex_lock(&kvm->slots_lock);
11981                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11982                                         0, 0);
11983                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11984                                         0, 0);
11985                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11986                 mutex_unlock(&kvm->slots_lock);
11987         }
11988         kvm_unload_vcpu_mmus(kvm);
11989         static_call_cond(kvm_x86_vm_destroy)(kvm);
11990         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11991         kvm_pic_destroy(kvm);
11992         kvm_ioapic_destroy(kvm);
11993         kvm_destroy_vcpus(kvm);
11994         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11995         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11996         kvm_mmu_uninit_vm(kvm);
11997         kvm_page_track_cleanup(kvm);
11998         kvm_xen_destroy_vm(kvm);
11999         kvm_hv_destroy_vm(kvm);
12000 }
12001
12002 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12003 {
12004         int i;
12005
12006         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12007                 kvfree(slot->arch.rmap[i]);
12008                 slot->arch.rmap[i] = NULL;
12009         }
12010 }
12011
12012 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12013 {
12014         int i;
12015
12016         memslot_rmap_free(slot);
12017
12018         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12019                 kvfree(slot->arch.lpage_info[i - 1]);
12020                 slot->arch.lpage_info[i - 1] = NULL;
12021         }
12022
12023         kvm_page_track_free_memslot(slot);
12024 }
12025
12026 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12027 {
12028         const int sz = sizeof(*slot->arch.rmap[0]);
12029         int i;
12030
12031         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12032                 int level = i + 1;
12033                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12034
12035                 if (slot->arch.rmap[i])
12036                         continue;
12037
12038                 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12039                 if (!slot->arch.rmap[i]) {
12040                         memslot_rmap_free(slot);
12041                         return -ENOMEM;
12042                 }
12043         }
12044
12045         return 0;
12046 }
12047
12048 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12049                                       struct kvm_memory_slot *slot)
12050 {
12051         unsigned long npages = slot->npages;
12052         int i, r;
12053
12054         /*
12055          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12056          * old arrays will be freed by __kvm_set_memory_region() if installing
12057          * the new memslot is successful.
12058          */
12059         memset(&slot->arch, 0, sizeof(slot->arch));
12060
12061         if (kvm_memslots_have_rmaps(kvm)) {
12062                 r = memslot_rmap_alloc(slot, npages);
12063                 if (r)
12064                         return r;
12065         }
12066
12067         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12068                 struct kvm_lpage_info *linfo;
12069                 unsigned long ugfn;
12070                 int lpages;
12071                 int level = i + 1;
12072
12073                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12074
12075                 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12076                 if (!linfo)
12077                         goto out_free;
12078
12079                 slot->arch.lpage_info[i - 1] = linfo;
12080
12081                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12082                         linfo[0].disallow_lpage = 1;
12083                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12084                         linfo[lpages - 1].disallow_lpage = 1;
12085                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12086                 /*
12087                  * If the gfn and userspace address are not aligned wrt each
12088                  * other, disable large page support for this slot.
12089                  */
12090                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12091                         unsigned long j;
12092
12093                         for (j = 0; j < lpages; ++j)
12094                                 linfo[j].disallow_lpage = 1;
12095                 }
12096         }
12097
12098         if (kvm_page_track_create_memslot(kvm, slot, npages))
12099                 goto out_free;
12100
12101         return 0;
12102
12103 out_free:
12104         memslot_rmap_free(slot);
12105
12106         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12107                 kvfree(slot->arch.lpage_info[i - 1]);
12108                 slot->arch.lpage_info[i - 1] = NULL;
12109         }
12110         return -ENOMEM;
12111 }
12112
12113 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12114 {
12115         struct kvm_vcpu *vcpu;
12116         unsigned long i;
12117
12118         /*
12119          * memslots->generation has been incremented.
12120          * mmio generation may have reached its maximum value.
12121          */
12122         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12123
12124         /* Force re-initialization of steal_time cache */
12125         kvm_for_each_vcpu(i, vcpu, kvm)
12126                 kvm_vcpu_kick(vcpu);
12127 }
12128
12129 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12130                                    const struct kvm_memory_slot *old,
12131                                    struct kvm_memory_slot *new,
12132                                    enum kvm_mr_change change)
12133 {
12134         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12135                 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12136                         return -EINVAL;
12137
12138                 return kvm_alloc_memslot_metadata(kvm, new);
12139         }
12140
12141         if (change == KVM_MR_FLAGS_ONLY)
12142                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12143         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12144                 return -EIO;
12145
12146         return 0;
12147 }
12148
12149
12150 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12151 {
12152         struct kvm_arch *ka = &kvm->arch;
12153
12154         if (!kvm_x86_ops.cpu_dirty_log_size)
12155                 return;
12156
12157         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12158             (!enable && --ka->cpu_dirty_logging_count == 0))
12159                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12160
12161         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12162 }
12163
12164 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12165                                      struct kvm_memory_slot *old,
12166                                      const struct kvm_memory_slot *new,
12167                                      enum kvm_mr_change change)
12168 {
12169         u32 old_flags = old ? old->flags : 0;
12170         u32 new_flags = new ? new->flags : 0;
12171         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12172
12173         /*
12174          * Update CPU dirty logging if dirty logging is being toggled.  This
12175          * applies to all operations.
12176          */
12177         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12178                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12179
12180         /*
12181          * Nothing more to do for RO slots (which can't be dirtied and can't be
12182          * made writable) or CREATE/MOVE/DELETE of a slot.
12183          *
12184          * For a memslot with dirty logging disabled:
12185          * CREATE:      No dirty mappings will already exist.
12186          * MOVE/DELETE: The old mappings will already have been cleaned up by
12187          *              kvm_arch_flush_shadow_memslot()
12188          *
12189          * For a memslot with dirty logging enabled:
12190          * CREATE:      No shadow pages exist, thus nothing to write-protect
12191          *              and no dirty bits to clear.
12192          * MOVE/DELETE: The old mappings will already have been cleaned up by
12193          *              kvm_arch_flush_shadow_memslot().
12194          */
12195         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12196                 return;
12197
12198         /*
12199          * READONLY and non-flags changes were filtered out above, and the only
12200          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12201          * logging isn't being toggled on or off.
12202          */
12203         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12204                 return;
12205
12206         if (!log_dirty_pages) {
12207                 /*
12208                  * Dirty logging tracks sptes in 4k granularity, meaning that
12209                  * large sptes have to be split.  If live migration succeeds,
12210                  * the guest in the source machine will be destroyed and large
12211                  * sptes will be created in the destination.  However, if the
12212                  * guest continues to run in the source machine (for example if
12213                  * live migration fails), small sptes will remain around and
12214                  * cause bad performance.
12215                  *
12216                  * Scan sptes if dirty logging has been stopped, dropping those
12217                  * which can be collapsed into a single large-page spte.  Later
12218                  * page faults will create the large-page sptes.
12219                  */
12220                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12221         } else {
12222                 /*
12223                  * Initially-all-set does not require write protecting any page,
12224                  * because they're all assumed to be dirty.
12225                  */
12226                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12227                         return;
12228
12229                 if (READ_ONCE(eager_page_split))
12230                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12231
12232                 if (kvm_x86_ops.cpu_dirty_log_size) {
12233                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12234                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12235                 } else {
12236                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12237                 }
12238         }
12239 }
12240
12241 void kvm_arch_commit_memory_region(struct kvm *kvm,
12242                                 struct kvm_memory_slot *old,
12243                                 const struct kvm_memory_slot *new,
12244                                 enum kvm_mr_change change)
12245 {
12246         if (!kvm->arch.n_requested_mmu_pages &&
12247             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12248                 unsigned long nr_mmu_pages;
12249
12250                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12251                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12252                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12253         }
12254
12255         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12256
12257         /* Free the arrays associated with the old memslot. */
12258         if (change == KVM_MR_MOVE)
12259                 kvm_arch_free_memslot(kvm, old);
12260 }
12261
12262 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12263 {
12264         kvm_mmu_zap_all(kvm);
12265 }
12266
12267 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12268                                    struct kvm_memory_slot *slot)
12269 {
12270         kvm_page_track_flush_slot(kvm, slot);
12271 }
12272
12273 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12274 {
12275         return (is_guest_mode(vcpu) &&
12276                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12277 }
12278
12279 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12280 {
12281         if (!list_empty_careful(&vcpu->async_pf.done))
12282                 return true;
12283
12284         if (kvm_apic_has_events(vcpu))
12285                 return true;
12286
12287         if (vcpu->arch.pv.pv_unhalted)
12288                 return true;
12289
12290         if (vcpu->arch.exception.pending)
12291                 return true;
12292
12293         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12294             (vcpu->arch.nmi_pending &&
12295              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12296                 return true;
12297
12298         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12299             (vcpu->arch.smi_pending &&
12300              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12301                 return true;
12302
12303         if (kvm_arch_interrupt_allowed(vcpu) &&
12304             (kvm_cpu_has_interrupt(vcpu) ||
12305             kvm_guest_apic_has_interrupt(vcpu)))
12306                 return true;
12307
12308         if (kvm_hv_has_stimer_pending(vcpu))
12309                 return true;
12310
12311         if (is_guest_mode(vcpu) &&
12312             kvm_x86_ops.nested_ops->hv_timer_pending &&
12313             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12314                 return true;
12315
12316         if (kvm_xen_has_pending_events(vcpu))
12317                 return true;
12318
12319         if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu))
12320                 return true;
12321
12322         return false;
12323 }
12324
12325 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12326 {
12327         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12328 }
12329
12330 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12331 {
12332         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12333                 return true;
12334
12335         return false;
12336 }
12337
12338 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12339 {
12340         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12341                 return true;
12342
12343         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12344                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12345                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12346                 return true;
12347
12348         return kvm_arch_dy_has_pending_interrupt(vcpu);
12349 }
12350
12351 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12352 {
12353         if (vcpu->arch.guest_state_protected)
12354                 return true;
12355
12356         return vcpu->arch.preempted_in_kernel;
12357 }
12358
12359 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12360 {
12361         return kvm_rip_read(vcpu);
12362 }
12363
12364 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12365 {
12366         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12367 }
12368
12369 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12370 {
12371         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12372 }
12373
12374 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12375 {
12376         /* Can't read the RIP when guest state is protected, just return 0 */
12377         if (vcpu->arch.guest_state_protected)
12378                 return 0;
12379
12380         if (is_64_bit_mode(vcpu))
12381                 return kvm_rip_read(vcpu);
12382         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12383                      kvm_rip_read(vcpu));
12384 }
12385 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12386
12387 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12388 {
12389         return kvm_get_linear_rip(vcpu) == linear_rip;
12390 }
12391 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12392
12393 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12394 {
12395         unsigned long rflags;
12396
12397         rflags = static_call(kvm_x86_get_rflags)(vcpu);
12398         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12399                 rflags &= ~X86_EFLAGS_TF;
12400         return rflags;
12401 }
12402 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12403
12404 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12405 {
12406         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12407             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12408                 rflags |= X86_EFLAGS_TF;
12409         static_call(kvm_x86_set_rflags)(vcpu, rflags);
12410 }
12411
12412 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12413 {
12414         __kvm_set_rflags(vcpu, rflags);
12415         kvm_make_request(KVM_REQ_EVENT, vcpu);
12416 }
12417 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12418
12419 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12420 {
12421         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12422
12423         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12424 }
12425
12426 static inline u32 kvm_async_pf_next_probe(u32 key)
12427 {
12428         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12429 }
12430
12431 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12432 {
12433         u32 key = kvm_async_pf_hash_fn(gfn);
12434
12435         while (vcpu->arch.apf.gfns[key] != ~0)
12436                 key = kvm_async_pf_next_probe(key);
12437
12438         vcpu->arch.apf.gfns[key] = gfn;
12439 }
12440
12441 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12442 {
12443         int i;
12444         u32 key = kvm_async_pf_hash_fn(gfn);
12445
12446         for (i = 0; i < ASYNC_PF_PER_VCPU &&
12447                      (vcpu->arch.apf.gfns[key] != gfn &&
12448                       vcpu->arch.apf.gfns[key] != ~0); i++)
12449                 key = kvm_async_pf_next_probe(key);
12450
12451         return key;
12452 }
12453
12454 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12455 {
12456         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12457 }
12458
12459 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12460 {
12461         u32 i, j, k;
12462
12463         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12464
12465         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12466                 return;
12467
12468         while (true) {
12469                 vcpu->arch.apf.gfns[i] = ~0;
12470                 do {
12471                         j = kvm_async_pf_next_probe(j);
12472                         if (vcpu->arch.apf.gfns[j] == ~0)
12473                                 return;
12474                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12475                         /*
12476                          * k lies cyclically in ]i,j]
12477                          * |    i.k.j |
12478                          * |....j i.k.| or  |.k..j i...|
12479                          */
12480                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12481                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12482                 i = j;
12483         }
12484 }
12485
12486 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12487 {
12488         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12489
12490         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12491                                       sizeof(reason));
12492 }
12493
12494 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12495 {
12496         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12497
12498         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12499                                              &token, offset, sizeof(token));
12500 }
12501
12502 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12503 {
12504         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12505         u32 val;
12506
12507         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12508                                          &val, offset, sizeof(val)))
12509                 return false;
12510
12511         return !val;
12512 }
12513
12514 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12515 {
12516
12517         if (!kvm_pv_async_pf_enabled(vcpu))
12518                 return false;
12519
12520         if (vcpu->arch.apf.send_user_only &&
12521             static_call(kvm_x86_get_cpl)(vcpu) == 0)
12522                 return false;
12523
12524         if (is_guest_mode(vcpu)) {
12525                 /*
12526                  * L1 needs to opt into the special #PF vmexits that are
12527                  * used to deliver async page faults.
12528                  */
12529                 return vcpu->arch.apf.delivery_as_pf_vmexit;
12530         } else {
12531                 /*
12532                  * Play it safe in case the guest temporarily disables paging.
12533                  * The real mode IDT in particular is unlikely to have a #PF
12534                  * exception setup.
12535                  */
12536                 return is_paging(vcpu);
12537         }
12538 }
12539
12540 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12541 {
12542         if (unlikely(!lapic_in_kernel(vcpu) ||
12543                      kvm_event_needs_reinjection(vcpu) ||
12544                      vcpu->arch.exception.pending))
12545                 return false;
12546
12547         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12548                 return false;
12549
12550         /*
12551          * If interrupts are off we cannot even use an artificial
12552          * halt state.
12553          */
12554         return kvm_arch_interrupt_allowed(vcpu);
12555 }
12556
12557 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12558                                      struct kvm_async_pf *work)
12559 {
12560         struct x86_exception fault;
12561
12562         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12563         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12564
12565         if (kvm_can_deliver_async_pf(vcpu) &&
12566             !apf_put_user_notpresent(vcpu)) {
12567                 fault.vector = PF_VECTOR;
12568                 fault.error_code_valid = true;
12569                 fault.error_code = 0;
12570                 fault.nested_page_fault = false;
12571                 fault.address = work->arch.token;
12572                 fault.async_page_fault = true;
12573                 kvm_inject_page_fault(vcpu, &fault);
12574                 return true;
12575         } else {
12576                 /*
12577                  * It is not possible to deliver a paravirtualized asynchronous
12578                  * page fault, but putting the guest in an artificial halt state
12579                  * can be beneficial nevertheless: if an interrupt arrives, we
12580                  * can deliver it timely and perhaps the guest will schedule
12581                  * another process.  When the instruction that triggered a page
12582                  * fault is retried, hopefully the page will be ready in the host.
12583                  */
12584                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12585                 return false;
12586         }
12587 }
12588
12589 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12590                                  struct kvm_async_pf *work)
12591 {
12592         struct kvm_lapic_irq irq = {
12593                 .delivery_mode = APIC_DM_FIXED,
12594                 .vector = vcpu->arch.apf.vec
12595         };
12596
12597         if (work->wakeup_all)
12598                 work->arch.token = ~0; /* broadcast wakeup */
12599         else
12600                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12601         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12602
12603         if ((work->wakeup_all || work->notpresent_injected) &&
12604             kvm_pv_async_pf_enabled(vcpu) &&
12605             !apf_put_user_ready(vcpu, work->arch.token)) {
12606                 vcpu->arch.apf.pageready_pending = true;
12607                 kvm_apic_set_irq(vcpu, &irq, NULL);
12608         }
12609
12610         vcpu->arch.apf.halted = false;
12611         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12612 }
12613
12614 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12615 {
12616         kvm_make_request(KVM_REQ_APF_READY, vcpu);
12617         if (!vcpu->arch.apf.pageready_pending)
12618                 kvm_vcpu_kick(vcpu);
12619 }
12620
12621 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12622 {
12623         if (!kvm_pv_async_pf_enabled(vcpu))
12624                 return true;
12625         else
12626                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12627 }
12628
12629 void kvm_arch_start_assignment(struct kvm *kvm)
12630 {
12631         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12632                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12633 }
12634 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12635
12636 void kvm_arch_end_assignment(struct kvm *kvm)
12637 {
12638         atomic_dec(&kvm->arch.assigned_device_count);
12639 }
12640 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12641
12642 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12643 {
12644         return atomic_read(&kvm->arch.assigned_device_count);
12645 }
12646 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12647
12648 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12649 {
12650         atomic_inc(&kvm->arch.noncoherent_dma_count);
12651 }
12652 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12653
12654 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12655 {
12656         atomic_dec(&kvm->arch.noncoherent_dma_count);
12657 }
12658 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12659
12660 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12661 {
12662         return atomic_read(&kvm->arch.noncoherent_dma_count);
12663 }
12664 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12665
12666 bool kvm_arch_has_irq_bypass(void)
12667 {
12668         return true;
12669 }
12670
12671 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12672                                       struct irq_bypass_producer *prod)
12673 {
12674         struct kvm_kernel_irqfd *irqfd =
12675                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12676         int ret;
12677
12678         irqfd->producer = prod;
12679         kvm_arch_start_assignment(irqfd->kvm);
12680         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12681                                          prod->irq, irqfd->gsi, 1);
12682
12683         if (ret)
12684                 kvm_arch_end_assignment(irqfd->kvm);
12685
12686         return ret;
12687 }
12688
12689 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12690                                       struct irq_bypass_producer *prod)
12691 {
12692         int ret;
12693         struct kvm_kernel_irqfd *irqfd =
12694                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12695
12696         WARN_ON(irqfd->producer != prod);
12697         irqfd->producer = NULL;
12698
12699         /*
12700          * When producer of consumer is unregistered, we change back to
12701          * remapped mode, so we can re-use the current implementation
12702          * when the irq is masked/disabled or the consumer side (KVM
12703          * int this case doesn't want to receive the interrupts.
12704         */
12705         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12706         if (ret)
12707                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12708                        " fails: %d\n", irqfd->consumer.token, ret);
12709
12710         kvm_arch_end_assignment(irqfd->kvm);
12711 }
12712
12713 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12714                                    uint32_t guest_irq, bool set)
12715 {
12716         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12717 }
12718
12719 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12720                                   struct kvm_kernel_irq_routing_entry *new)
12721 {
12722         if (new->type != KVM_IRQ_ROUTING_MSI)
12723                 return true;
12724
12725         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12726 }
12727
12728 bool kvm_vector_hashing_enabled(void)
12729 {
12730         return vector_hashing;
12731 }
12732
12733 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12734 {
12735         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12736 }
12737 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12738
12739
12740 int kvm_spec_ctrl_test_value(u64 value)
12741 {
12742         /*
12743          * test that setting IA32_SPEC_CTRL to given value
12744          * is allowed by the host processor
12745          */
12746
12747         u64 saved_value;
12748         unsigned long flags;
12749         int ret = 0;
12750
12751         local_irq_save(flags);
12752
12753         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12754                 ret = 1;
12755         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12756                 ret = 1;
12757         else
12758                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12759
12760         local_irq_restore(flags);
12761
12762         return ret;
12763 }
12764 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12765
12766 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12767 {
12768         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12769         struct x86_exception fault;
12770         u64 access = error_code &
12771                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12772
12773         if (!(error_code & PFERR_PRESENT_MASK) ||
12774             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12775                 /*
12776                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12777                  * tables probably do not match the TLB.  Just proceed
12778                  * with the error code that the processor gave.
12779                  */
12780                 fault.vector = PF_VECTOR;
12781                 fault.error_code_valid = true;
12782                 fault.error_code = error_code;
12783                 fault.nested_page_fault = false;
12784                 fault.address = gva;
12785         }
12786         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12787 }
12788 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12789
12790 /*
12791  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12792  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12793  * indicates whether exit to userspace is needed.
12794  */
12795 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12796                               struct x86_exception *e)
12797 {
12798         if (r == X86EMUL_PROPAGATE_FAULT) {
12799                 kvm_inject_emulated_page_fault(vcpu, e);
12800                 return 1;
12801         }
12802
12803         /*
12804          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12805          * while handling a VMX instruction KVM could've handled the request
12806          * correctly by exiting to userspace and performing I/O but there
12807          * doesn't seem to be a real use-case behind such requests, just return
12808          * KVM_EXIT_INTERNAL_ERROR for now.
12809          */
12810         kvm_prepare_emulation_failure_exit(vcpu);
12811
12812         return 0;
12813 }
12814 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12815
12816 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12817 {
12818         bool pcid_enabled;
12819         struct x86_exception e;
12820         struct {
12821                 u64 pcid;
12822                 u64 gla;
12823         } operand;
12824         int r;
12825
12826         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12827         if (r != X86EMUL_CONTINUE)
12828                 return kvm_handle_memory_failure(vcpu, r, &e);
12829
12830         if (operand.pcid >> 12 != 0) {
12831                 kvm_inject_gp(vcpu, 0);
12832                 return 1;
12833         }
12834
12835         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12836
12837         switch (type) {
12838         case INVPCID_TYPE_INDIV_ADDR:
12839                 if ((!pcid_enabled && (operand.pcid != 0)) ||
12840                     is_noncanonical_address(operand.gla, vcpu)) {
12841                         kvm_inject_gp(vcpu, 0);
12842                         return 1;
12843                 }
12844                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12845                 return kvm_skip_emulated_instruction(vcpu);
12846
12847         case INVPCID_TYPE_SINGLE_CTXT:
12848                 if (!pcid_enabled && (operand.pcid != 0)) {
12849                         kvm_inject_gp(vcpu, 0);
12850                         return 1;
12851                 }
12852
12853                 kvm_invalidate_pcid(vcpu, operand.pcid);
12854                 return kvm_skip_emulated_instruction(vcpu);
12855
12856         case INVPCID_TYPE_ALL_NON_GLOBAL:
12857                 /*
12858                  * Currently, KVM doesn't mark global entries in the shadow
12859                  * page tables, so a non-global flush just degenerates to a
12860                  * global flush. If needed, we could optimize this later by
12861                  * keeping track of global entries in shadow page tables.
12862                  */
12863
12864                 fallthrough;
12865         case INVPCID_TYPE_ALL_INCL_GLOBAL:
12866                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12867                 return kvm_skip_emulated_instruction(vcpu);
12868
12869         default:
12870                 kvm_inject_gp(vcpu, 0);
12871                 return 1;
12872         }
12873 }
12874 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12875
12876 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12877 {
12878         struct kvm_run *run = vcpu->run;
12879         struct kvm_mmio_fragment *frag;
12880         unsigned int len;
12881
12882         BUG_ON(!vcpu->mmio_needed);
12883
12884         /* Complete previous fragment */
12885         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12886         len = min(8u, frag->len);
12887         if (!vcpu->mmio_is_write)
12888                 memcpy(frag->data, run->mmio.data, len);
12889
12890         if (frag->len <= 8) {
12891                 /* Switch to the next fragment. */
12892                 frag++;
12893                 vcpu->mmio_cur_fragment++;
12894         } else {
12895                 /* Go forward to the next mmio piece. */
12896                 frag->data += len;
12897                 frag->gpa += len;
12898                 frag->len -= len;
12899         }
12900
12901         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12902                 vcpu->mmio_needed = 0;
12903
12904                 // VMG change, at this point, we're always done
12905                 // RIP has already been advanced
12906                 return 1;
12907         }
12908
12909         // More MMIO is needed
12910         run->mmio.phys_addr = frag->gpa;
12911         run->mmio.len = min(8u, frag->len);
12912         run->mmio.is_write = vcpu->mmio_is_write;
12913         if (run->mmio.is_write)
12914                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12915         run->exit_reason = KVM_EXIT_MMIO;
12916
12917         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12918
12919         return 0;
12920 }
12921
12922 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12923                           void *data)
12924 {
12925         int handled;
12926         struct kvm_mmio_fragment *frag;
12927
12928         if (!data)
12929                 return -EINVAL;
12930
12931         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12932         if (handled == bytes)
12933                 return 1;
12934
12935         bytes -= handled;
12936         gpa += handled;
12937         data += handled;
12938
12939         /*TODO: Check if need to increment number of frags */
12940         frag = vcpu->mmio_fragments;
12941         vcpu->mmio_nr_fragments = 1;
12942         frag->len = bytes;
12943         frag->gpa = gpa;
12944         frag->data = data;
12945
12946         vcpu->mmio_needed = 1;
12947         vcpu->mmio_cur_fragment = 0;
12948
12949         vcpu->run->mmio.phys_addr = gpa;
12950         vcpu->run->mmio.len = min(8u, frag->len);
12951         vcpu->run->mmio.is_write = 1;
12952         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12953         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12954
12955         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12956
12957         return 0;
12958 }
12959 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12960
12961 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12962                          void *data)
12963 {
12964         int handled;
12965         struct kvm_mmio_fragment *frag;
12966
12967         if (!data)
12968                 return -EINVAL;
12969
12970         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12971         if (handled == bytes)
12972                 return 1;
12973
12974         bytes -= handled;
12975         gpa += handled;
12976         data += handled;
12977
12978         /*TODO: Check if need to increment number of frags */
12979         frag = vcpu->mmio_fragments;
12980         vcpu->mmio_nr_fragments = 1;
12981         frag->len = bytes;
12982         frag->gpa = gpa;
12983         frag->data = data;
12984
12985         vcpu->mmio_needed = 1;
12986         vcpu->mmio_cur_fragment = 0;
12987
12988         vcpu->run->mmio.phys_addr = gpa;
12989         vcpu->run->mmio.len = min(8u, frag->len);
12990         vcpu->run->mmio.is_write = 0;
12991         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12992
12993         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12994
12995         return 0;
12996 }
12997 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12998
12999 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13000                            unsigned int port);
13001
13002 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13003 {
13004         int size = vcpu->arch.pio.size;
13005         int port = vcpu->arch.pio.port;
13006
13007         vcpu->arch.pio.count = 0;
13008         if (vcpu->arch.sev_pio_count)
13009                 return kvm_sev_es_outs(vcpu, size, port);
13010         return 1;
13011 }
13012
13013 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13014                            unsigned int port)
13015 {
13016         for (;;) {
13017                 unsigned int count =
13018                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13019                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13020
13021                 /* memcpy done already by emulator_pio_out.  */
13022                 vcpu->arch.sev_pio_count -= count;
13023                 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13024                 if (!ret)
13025                         break;
13026
13027                 /* Emulation done by the kernel.  */
13028                 if (!vcpu->arch.sev_pio_count)
13029                         return 1;
13030         }
13031
13032         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13033         return 0;
13034 }
13035
13036 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13037                           unsigned int port);
13038
13039 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13040 {
13041         unsigned count = vcpu->arch.pio.count;
13042         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13043         vcpu->arch.sev_pio_count -= count;
13044         vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
13045 }
13046
13047 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13048 {
13049         int size = vcpu->arch.pio.size;
13050         int port = vcpu->arch.pio.port;
13051
13052         advance_sev_es_emulated_ins(vcpu);
13053         if (vcpu->arch.sev_pio_count)
13054                 return kvm_sev_es_ins(vcpu, size, port);
13055         return 1;
13056 }
13057
13058 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13059                           unsigned int port)
13060 {
13061         for (;;) {
13062                 unsigned int count =
13063                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13064                 if (!__emulator_pio_in(vcpu, size, port, count))
13065                         break;
13066
13067                 /* Emulation done by the kernel.  */
13068                 advance_sev_es_emulated_ins(vcpu);
13069                 if (!vcpu->arch.sev_pio_count)
13070                         return 1;
13071         }
13072
13073         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13074         return 0;
13075 }
13076
13077 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13078                          unsigned int port, void *data,  unsigned int count,
13079                          int in)
13080 {
13081         vcpu->arch.sev_pio_data = data;
13082         vcpu->arch.sev_pio_count = count;
13083         return in ? kvm_sev_es_ins(vcpu, size, port)
13084                   : kvm_sev_es_outs(vcpu, size, port);
13085 }
13086 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13087
13088 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13089 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13090 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13091 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13092 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13093 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13094 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13095 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
13096 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13097 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13098 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13099 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13100 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13101 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13102 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13103 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13104 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13105 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13106 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13107 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13108 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13109 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13110 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13111 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13112 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13113 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13114 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13115 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13116
13117 static int __init kvm_x86_init(void)
13118 {
13119         kvm_mmu_x86_module_init();
13120         return 0;
13121 }
13122 module_init(kvm_x86_init);
13123
13124 static void __exit kvm_x86_exit(void)
13125 {
13126         /*
13127          * If module_init() is implemented, module_exit() must also be
13128          * implemented to allow module unload.
13129          */
13130 }
13131 module_exit(kvm_x86_exit);
This page took 0.815883 seconds and 4 git commands to generate.