1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59 #include <linux/sched/sysctl.h>
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup *target_mem_cgroup;
83 * Scan pressure balancing between anon and file LRUs
85 unsigned long anon_cost;
86 unsigned long file_cost;
88 /* Can active pages be deactivated as part of reclaim? */
89 #define DEACTIVATE_ANON 1
90 #define DEACTIVATE_FILE 2
91 unsigned int may_deactivate:2;
92 unsigned int force_deactivate:1;
93 unsigned int skipped_deactivate:1;
95 /* Writepage batching in laptop mode; RECLAIM_WRITE */
96 unsigned int may_writepage:1;
98 /* Can mapped pages be reclaimed? */
99 unsigned int may_unmap:1;
101 /* Can pages be swapped as part of reclaim? */
102 unsigned int may_swap:1;
105 * Cgroup memory below memory.low is protected as long as we
106 * don't threaten to OOM. If any cgroup is reclaimed at
107 * reduced force or passed over entirely due to its memory.low
108 * setting (memcg_low_skipped), and nothing is reclaimed as a
109 * result, then go back for one more cycle that reclaims the protected
110 * memory (memcg_low_reclaim) to avert OOM.
112 unsigned int memcg_low_reclaim:1;
113 unsigned int memcg_low_skipped:1;
115 unsigned int hibernation_mode:1;
117 /* One of the zones is ready for compaction */
118 unsigned int compaction_ready:1;
120 /* There is easily reclaimable cold cache in the current node */
121 unsigned int cache_trim_mode:1;
123 /* The file pages on the current node are dangerously low */
124 unsigned int file_is_tiny:1;
126 /* Always discard instead of demoting to lower tier memory */
127 unsigned int no_demotion:1;
129 /* Allocation order */
132 /* Scan (total_size >> priority) pages at once */
135 /* The highest zone to isolate pages for reclaim from */
138 /* This context's GFP mask */
141 /* Incremented by the number of inactive pages that were scanned */
142 unsigned long nr_scanned;
144 /* Number of pages freed so far during a call to shrink_zones() */
145 unsigned long nr_reclaimed;
149 unsigned int unqueued_dirty;
150 unsigned int congested;
151 unsigned int writeback;
152 unsigned int immediate;
153 unsigned int file_taken;
157 /* for recording the reclaimed slab by now */
158 struct reclaim_state reclaim_state;
161 #ifdef ARCH_HAS_PREFETCHW
162 #define prefetchw_prev_lru_page(_page, _base, _field) \
164 if ((_page)->lru.prev != _base) { \
167 prev = lru_to_page(&(_page->lru)); \
168 prefetchw(&prev->_field); \
172 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
176 * From 0 .. 200. Higher means more swappy.
178 int vm_swappiness = 60;
180 static void set_task_reclaim_state(struct task_struct *task,
181 struct reclaim_state *rs)
183 /* Check for an overwrite */
184 WARN_ON_ONCE(rs && task->reclaim_state);
186 /* Check for the nulling of an already-nulled member */
187 WARN_ON_ONCE(!rs && !task->reclaim_state);
189 task->reclaim_state = rs;
192 static LIST_HEAD(shrinker_list);
193 static DECLARE_RWSEM(shrinker_rwsem);
196 static int shrinker_nr_max;
198 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
199 static inline int shrinker_map_size(int nr_items)
201 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
204 static inline int shrinker_defer_size(int nr_items)
206 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
209 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
212 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
213 lockdep_is_held(&shrinker_rwsem));
216 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
217 int map_size, int defer_size,
218 int old_map_size, int old_defer_size)
220 struct shrinker_info *new, *old;
221 struct mem_cgroup_per_node *pn;
223 int size = map_size + defer_size;
226 pn = memcg->nodeinfo[nid];
227 old = shrinker_info_protected(memcg, nid);
228 /* Not yet online memcg */
232 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
236 new->nr_deferred = (atomic_long_t *)(new + 1);
237 new->map = (void *)new->nr_deferred + defer_size;
239 /* map: set all old bits, clear all new bits */
240 memset(new->map, (int)0xff, old_map_size);
241 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
242 /* nr_deferred: copy old values, clear all new values */
243 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
244 memset((void *)new->nr_deferred + old_defer_size, 0,
245 defer_size - old_defer_size);
247 rcu_assign_pointer(pn->shrinker_info, new);
248 kvfree_rcu(old, rcu);
254 void free_shrinker_info(struct mem_cgroup *memcg)
256 struct mem_cgroup_per_node *pn;
257 struct shrinker_info *info;
261 pn = memcg->nodeinfo[nid];
262 info = rcu_dereference_protected(pn->shrinker_info, true);
264 rcu_assign_pointer(pn->shrinker_info, NULL);
268 int alloc_shrinker_info(struct mem_cgroup *memcg)
270 struct shrinker_info *info;
271 int nid, size, ret = 0;
272 int map_size, defer_size = 0;
274 down_write(&shrinker_rwsem);
275 map_size = shrinker_map_size(shrinker_nr_max);
276 defer_size = shrinker_defer_size(shrinker_nr_max);
277 size = map_size + defer_size;
279 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
281 free_shrinker_info(memcg);
285 info->nr_deferred = (atomic_long_t *)(info + 1);
286 info->map = (void *)info->nr_deferred + defer_size;
287 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
289 up_write(&shrinker_rwsem);
294 static inline bool need_expand(int nr_max)
296 return round_up(nr_max, BITS_PER_LONG) >
297 round_up(shrinker_nr_max, BITS_PER_LONG);
300 static int expand_shrinker_info(int new_id)
303 int new_nr_max = new_id + 1;
304 int map_size, defer_size = 0;
305 int old_map_size, old_defer_size = 0;
306 struct mem_cgroup *memcg;
308 if (!need_expand(new_nr_max))
311 if (!root_mem_cgroup)
314 lockdep_assert_held(&shrinker_rwsem);
316 map_size = shrinker_map_size(new_nr_max);
317 defer_size = shrinker_defer_size(new_nr_max);
318 old_map_size = shrinker_map_size(shrinker_nr_max);
319 old_defer_size = shrinker_defer_size(shrinker_nr_max);
321 memcg = mem_cgroup_iter(NULL, NULL, NULL);
323 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
324 old_map_size, old_defer_size);
326 mem_cgroup_iter_break(NULL, memcg);
329 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
332 shrinker_nr_max = new_nr_max;
337 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
339 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
340 struct shrinker_info *info;
343 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
344 /* Pairs with smp mb in shrink_slab() */
345 smp_mb__before_atomic();
346 set_bit(shrinker_id, info->map);
351 static DEFINE_IDR(shrinker_idr);
353 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
355 int id, ret = -ENOMEM;
357 if (mem_cgroup_disabled())
360 down_write(&shrinker_rwsem);
361 /* This may call shrinker, so it must use down_read_trylock() */
362 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
366 if (id >= shrinker_nr_max) {
367 if (expand_shrinker_info(id)) {
368 idr_remove(&shrinker_idr, id);
375 up_write(&shrinker_rwsem);
379 static void unregister_memcg_shrinker(struct shrinker *shrinker)
381 int id = shrinker->id;
385 lockdep_assert_held(&shrinker_rwsem);
387 idr_remove(&shrinker_idr, id);
390 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
391 struct mem_cgroup *memcg)
393 struct shrinker_info *info;
395 info = shrinker_info_protected(memcg, nid);
396 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
399 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
400 struct mem_cgroup *memcg)
402 struct shrinker_info *info;
404 info = shrinker_info_protected(memcg, nid);
405 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
408 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
412 struct mem_cgroup *parent;
413 struct shrinker_info *child_info, *parent_info;
415 parent = parent_mem_cgroup(memcg);
417 parent = root_mem_cgroup;
419 /* Prevent from concurrent shrinker_info expand */
420 down_read(&shrinker_rwsem);
422 child_info = shrinker_info_protected(memcg, nid);
423 parent_info = shrinker_info_protected(parent, nid);
424 for (i = 0; i < shrinker_nr_max; i++) {
425 nr = atomic_long_read(&child_info->nr_deferred[i]);
426 atomic_long_add(nr, &parent_info->nr_deferred[i]);
429 up_read(&shrinker_rwsem);
432 static bool cgroup_reclaim(struct scan_control *sc)
434 return sc->target_mem_cgroup;
438 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
439 * @sc: scan_control in question
441 * The normal page dirty throttling mechanism in balance_dirty_pages() is
442 * completely broken with the legacy memcg and direct stalling in
443 * shrink_page_list() is used for throttling instead, which lacks all the
444 * niceties such as fairness, adaptive pausing, bandwidth proportional
445 * allocation and configurability.
447 * This function tests whether the vmscan currently in progress can assume
448 * that the normal dirty throttling mechanism is operational.
450 static bool writeback_throttling_sane(struct scan_control *sc)
452 if (!cgroup_reclaim(sc))
454 #ifdef CONFIG_CGROUP_WRITEBACK
455 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
461 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
466 static void unregister_memcg_shrinker(struct shrinker *shrinker)
470 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
471 struct mem_cgroup *memcg)
476 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
477 struct mem_cgroup *memcg)
482 static bool cgroup_reclaim(struct scan_control *sc)
487 static bool writeback_throttling_sane(struct scan_control *sc)
493 static long xchg_nr_deferred(struct shrinker *shrinker,
494 struct shrink_control *sc)
498 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
502 (shrinker->flags & SHRINKER_MEMCG_AWARE))
503 return xchg_nr_deferred_memcg(nid, shrinker,
506 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
510 static long add_nr_deferred(long nr, struct shrinker *shrinker,
511 struct shrink_control *sc)
515 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
519 (shrinker->flags & SHRINKER_MEMCG_AWARE))
520 return add_nr_deferred_memcg(nr, nid, shrinker,
523 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
526 static bool can_demote(int nid, struct scan_control *sc)
528 if (!numa_demotion_enabled)
533 /* It is pointless to do demotion in memcg reclaim */
534 if (cgroup_reclaim(sc))
537 if (next_demotion_node(nid) == NUMA_NO_NODE)
543 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
545 struct scan_control *sc)
549 * For non-memcg reclaim, is there
550 * space in any swap device?
552 if (get_nr_swap_pages() > 0)
555 /* Is the memcg below its swap limit? */
556 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
561 * The page can not be swapped.
563 * Can it be reclaimed from this node via demotion?
565 return can_demote(nid, sc);
569 * This misses isolated pages which are not accounted for to save counters.
570 * As the data only determines if reclaim or compaction continues, it is
571 * not expected that isolated pages will be a dominating factor.
573 unsigned long zone_reclaimable_pages(struct zone *zone)
577 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
578 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
579 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
580 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
581 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
587 * lruvec_lru_size - Returns the number of pages on the given LRU list.
588 * @lruvec: lru vector
590 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
592 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
595 unsigned long size = 0;
598 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
599 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
601 if (!managed_zone(zone))
604 if (!mem_cgroup_disabled())
605 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
607 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
613 * Add a shrinker callback to be called from the vm.
615 int prealloc_shrinker(struct shrinker *shrinker)
620 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
621 err = prealloc_memcg_shrinker(shrinker);
625 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
628 size = sizeof(*shrinker->nr_deferred);
629 if (shrinker->flags & SHRINKER_NUMA_AWARE)
632 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
633 if (!shrinker->nr_deferred)
639 void free_prealloced_shrinker(struct shrinker *shrinker)
641 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
642 down_write(&shrinker_rwsem);
643 unregister_memcg_shrinker(shrinker);
644 up_write(&shrinker_rwsem);
648 kfree(shrinker->nr_deferred);
649 shrinker->nr_deferred = NULL;
652 void register_shrinker_prepared(struct shrinker *shrinker)
654 down_write(&shrinker_rwsem);
655 list_add_tail(&shrinker->list, &shrinker_list);
656 shrinker->flags |= SHRINKER_REGISTERED;
657 up_write(&shrinker_rwsem);
660 int register_shrinker(struct shrinker *shrinker)
662 int err = prealloc_shrinker(shrinker);
666 register_shrinker_prepared(shrinker);
669 EXPORT_SYMBOL(register_shrinker);
674 void unregister_shrinker(struct shrinker *shrinker)
676 if (!(shrinker->flags & SHRINKER_REGISTERED))
679 down_write(&shrinker_rwsem);
680 list_del(&shrinker->list);
681 shrinker->flags &= ~SHRINKER_REGISTERED;
682 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
683 unregister_memcg_shrinker(shrinker);
684 up_write(&shrinker_rwsem);
686 kfree(shrinker->nr_deferred);
687 shrinker->nr_deferred = NULL;
689 EXPORT_SYMBOL(unregister_shrinker);
692 * synchronize_shrinkers - Wait for all running shrinkers to complete.
694 * This is equivalent to calling unregister_shrink() and register_shrinker(),
695 * but atomically and with less overhead. This is useful to guarantee that all
696 * shrinker invocations have seen an update, before freeing memory, similar to
699 void synchronize_shrinkers(void)
701 down_write(&shrinker_rwsem);
702 up_write(&shrinker_rwsem);
704 EXPORT_SYMBOL(synchronize_shrinkers);
706 #define SHRINK_BATCH 128
708 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
709 struct shrinker *shrinker, int priority)
711 unsigned long freed = 0;
712 unsigned long long delta;
717 long batch_size = shrinker->batch ? shrinker->batch
719 long scanned = 0, next_deferred;
721 freeable = shrinker->count_objects(shrinker, shrinkctl);
722 if (freeable == 0 || freeable == SHRINK_EMPTY)
726 * copy the current shrinker scan count into a local variable
727 * and zero it so that other concurrent shrinker invocations
728 * don't also do this scanning work.
730 nr = xchg_nr_deferred(shrinker, shrinkctl);
732 if (shrinker->seeks) {
733 delta = freeable >> priority;
735 do_div(delta, shrinker->seeks);
738 * These objects don't require any IO to create. Trim
739 * them aggressively under memory pressure to keep
740 * them from causing refetches in the IO caches.
742 delta = freeable / 2;
745 total_scan = nr >> priority;
747 total_scan = min(total_scan, (2 * freeable));
749 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
750 freeable, delta, total_scan, priority);
753 * Normally, we should not scan less than batch_size objects in one
754 * pass to avoid too frequent shrinker calls, but if the slab has less
755 * than batch_size objects in total and we are really tight on memory,
756 * we will try to reclaim all available objects, otherwise we can end
757 * up failing allocations although there are plenty of reclaimable
758 * objects spread over several slabs with usage less than the
761 * We detect the "tight on memory" situations by looking at the total
762 * number of objects we want to scan (total_scan). If it is greater
763 * than the total number of objects on slab (freeable), we must be
764 * scanning at high prio and therefore should try to reclaim as much as
767 while (total_scan >= batch_size ||
768 total_scan >= freeable) {
770 unsigned long nr_to_scan = min(batch_size, total_scan);
772 shrinkctl->nr_to_scan = nr_to_scan;
773 shrinkctl->nr_scanned = nr_to_scan;
774 ret = shrinker->scan_objects(shrinker, shrinkctl);
775 if (ret == SHRINK_STOP)
779 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
780 total_scan -= shrinkctl->nr_scanned;
781 scanned += shrinkctl->nr_scanned;
787 * The deferred work is increased by any new work (delta) that wasn't
788 * done, decreased by old deferred work that was done now.
790 * And it is capped to two times of the freeable items.
792 next_deferred = max_t(long, (nr + delta - scanned), 0);
793 next_deferred = min(next_deferred, (2 * freeable));
796 * move the unused scan count back into the shrinker in a
797 * manner that handles concurrent updates.
799 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
801 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
806 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
807 struct mem_cgroup *memcg, int priority)
809 struct shrinker_info *info;
810 unsigned long ret, freed = 0;
813 if (!mem_cgroup_online(memcg))
816 if (!down_read_trylock(&shrinker_rwsem))
819 info = shrinker_info_protected(memcg, nid);
823 for_each_set_bit(i, info->map, shrinker_nr_max) {
824 struct shrink_control sc = {
825 .gfp_mask = gfp_mask,
829 struct shrinker *shrinker;
831 shrinker = idr_find(&shrinker_idr, i);
832 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
834 clear_bit(i, info->map);
838 /* Call non-slab shrinkers even though kmem is disabled */
839 if (!memcg_kmem_enabled() &&
840 !(shrinker->flags & SHRINKER_NONSLAB))
843 ret = do_shrink_slab(&sc, shrinker, priority);
844 if (ret == SHRINK_EMPTY) {
845 clear_bit(i, info->map);
847 * After the shrinker reported that it had no objects to
848 * free, but before we cleared the corresponding bit in
849 * the memcg shrinker map, a new object might have been
850 * added. To make sure, we have the bit set in this
851 * case, we invoke the shrinker one more time and reset
852 * the bit if it reports that it is not empty anymore.
853 * The memory barrier here pairs with the barrier in
854 * set_shrinker_bit():
856 * list_lru_add() shrink_slab_memcg()
857 * list_add_tail() clear_bit()
859 * set_bit() do_shrink_slab()
861 smp_mb__after_atomic();
862 ret = do_shrink_slab(&sc, shrinker, priority);
863 if (ret == SHRINK_EMPTY)
866 set_shrinker_bit(memcg, nid, i);
870 if (rwsem_is_contended(&shrinker_rwsem)) {
876 up_read(&shrinker_rwsem);
879 #else /* CONFIG_MEMCG */
880 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
881 struct mem_cgroup *memcg, int priority)
885 #endif /* CONFIG_MEMCG */
888 * shrink_slab - shrink slab caches
889 * @gfp_mask: allocation context
890 * @nid: node whose slab caches to target
891 * @memcg: memory cgroup whose slab caches to target
892 * @priority: the reclaim priority
894 * Call the shrink functions to age shrinkable caches.
896 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
897 * unaware shrinkers will receive a node id of 0 instead.
899 * @memcg specifies the memory cgroup to target. Unaware shrinkers
900 * are called only if it is the root cgroup.
902 * @priority is sc->priority, we take the number of objects and >> by priority
903 * in order to get the scan target.
905 * Returns the number of reclaimed slab objects.
907 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
908 struct mem_cgroup *memcg,
911 unsigned long ret, freed = 0;
912 struct shrinker *shrinker;
915 * The root memcg might be allocated even though memcg is disabled
916 * via "cgroup_disable=memory" boot parameter. This could make
917 * mem_cgroup_is_root() return false, then just run memcg slab
918 * shrink, but skip global shrink. This may result in premature
921 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
922 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
924 if (!down_read_trylock(&shrinker_rwsem))
927 list_for_each_entry(shrinker, &shrinker_list, list) {
928 struct shrink_control sc = {
929 .gfp_mask = gfp_mask,
934 ret = do_shrink_slab(&sc, shrinker, priority);
935 if (ret == SHRINK_EMPTY)
939 * Bail out if someone want to register a new shrinker to
940 * prevent the registration from being stalled for long periods
941 * by parallel ongoing shrinking.
943 if (rwsem_is_contended(&shrinker_rwsem)) {
949 up_read(&shrinker_rwsem);
955 static void drop_slab_node(int nid)
961 struct mem_cgroup *memcg = NULL;
963 if (fatal_signal_pending(current))
967 memcg = mem_cgroup_iter(NULL, NULL, NULL);
969 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
970 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
971 } while ((freed >> shift++) > 1);
978 for_each_online_node(nid)
982 static inline int is_page_cache_freeable(struct page *page)
985 * A freeable page cache page is referenced only by the caller
986 * that isolated the page, the page cache and optional buffer
987 * heads at page->private.
989 int page_cache_pins = thp_nr_pages(page);
990 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
994 * We detected a synchronous write error writing a page out. Probably
995 * -ENOSPC. We need to propagate that into the address_space for a subsequent
996 * fsync(), msync() or close().
998 * The tricky part is that after writepage we cannot touch the mapping: nothing
999 * prevents it from being freed up. But we have a ref on the page and once
1000 * that page is locked, the mapping is pinned.
1002 * We're allowed to run sleeping lock_page() here because we know the caller has
1005 static void handle_write_error(struct address_space *mapping,
1006 struct page *page, int error)
1009 if (page_mapping(page) == mapping)
1010 mapping_set_error(mapping, error);
1014 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1016 int reclaimable = 0, write_pending = 0;
1020 * If kswapd is disabled, reschedule if necessary but do not
1021 * throttle as the system is likely near OOM.
1023 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1027 * If there are a lot of dirty/writeback pages then do not
1028 * throttle as throttling will occur when the pages cycle
1029 * towards the end of the LRU if still under writeback.
1031 for (i = 0; i < MAX_NR_ZONES; i++) {
1032 struct zone *zone = pgdat->node_zones + i;
1034 if (!populated_zone(zone))
1037 reclaimable += zone_reclaimable_pages(zone);
1038 write_pending += zone_page_state_snapshot(zone,
1039 NR_ZONE_WRITE_PENDING);
1041 if (2 * write_pending <= reclaimable)
1047 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1049 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1054 * Do not throttle IO workers, kthreads other than kswapd or
1055 * workqueues. They may be required for reclaim to make
1056 * forward progress (e.g. journalling workqueues or kthreads).
1058 if (!current_is_kswapd() &&
1059 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1065 * These figures are pulled out of thin air.
1066 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1067 * parallel reclaimers which is a short-lived event so the timeout is
1068 * short. Failing to make progress or waiting on writeback are
1069 * potentially long-lived events so use a longer timeout. This is shaky
1070 * logic as a failure to make progress could be due to anything from
1071 * writeback to a slow device to excessive references pages at the tail
1072 * of the inactive LRU.
1075 case VMSCAN_THROTTLE_WRITEBACK:
1078 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1079 WRITE_ONCE(pgdat->nr_reclaim_start,
1080 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1084 case VMSCAN_THROTTLE_CONGESTED:
1086 case VMSCAN_THROTTLE_NOPROGRESS:
1087 if (skip_throttle_noprogress(pgdat)) {
1095 case VMSCAN_THROTTLE_ISOLATED:
1104 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1105 ret = schedule_timeout(timeout);
1106 finish_wait(wqh, &wait);
1108 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1109 atomic_dec(&pgdat->nr_writeback_throttled);
1111 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1112 jiffies_to_usecs(timeout - ret),
1117 * Account for pages written if tasks are throttled waiting on dirty
1118 * pages to clean. If enough pages have been cleaned since throttling
1119 * started then wakeup the throttled tasks.
1121 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1124 unsigned long nr_written;
1126 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1129 * This is an inaccurate read as the per-cpu deltas may not
1130 * be synchronised. However, given that the system is
1131 * writeback throttled, it is not worth taking the penalty
1132 * of getting an accurate count. At worst, the throttle
1133 * timeout guarantees forward progress.
1135 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1136 READ_ONCE(pgdat->nr_reclaim_start);
1138 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1139 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1142 /* possible outcome of pageout() */
1144 /* failed to write page out, page is locked */
1146 /* move page to the active list, page is locked */
1148 /* page has been sent to the disk successfully, page is unlocked */
1150 /* page is clean and locked */
1155 * pageout is called by shrink_page_list() for each dirty page.
1156 * Calls ->writepage().
1158 static pageout_t pageout(struct page *page, struct address_space *mapping)
1161 * If the page is dirty, only perform writeback if that write
1162 * will be non-blocking. To prevent this allocation from being
1163 * stalled by pagecache activity. But note that there may be
1164 * stalls if we need to run get_block(). We could test
1165 * PagePrivate for that.
1167 * If this process is currently in __generic_file_write_iter() against
1168 * this page's queue, we can perform writeback even if that
1171 * If the page is swapcache, write it back even if that would
1172 * block, for some throttling. This happens by accident, because
1173 * swap_backing_dev_info is bust: it doesn't reflect the
1174 * congestion state of the swapdevs. Easy to fix, if needed.
1176 if (!is_page_cache_freeable(page))
1180 * Some data journaling orphaned pages can have
1181 * page->mapping == NULL while being dirty with clean buffers.
1183 if (page_has_private(page)) {
1184 if (try_to_free_buffers(page)) {
1185 ClearPageDirty(page);
1186 pr_info("%s: orphaned page\n", __func__);
1192 if (mapping->a_ops->writepage == NULL)
1193 return PAGE_ACTIVATE;
1195 if (clear_page_dirty_for_io(page)) {
1197 struct writeback_control wbc = {
1198 .sync_mode = WB_SYNC_NONE,
1199 .nr_to_write = SWAP_CLUSTER_MAX,
1201 .range_end = LLONG_MAX,
1205 SetPageReclaim(page);
1206 res = mapping->a_ops->writepage(page, &wbc);
1208 handle_write_error(mapping, page, res);
1209 if (res == AOP_WRITEPAGE_ACTIVATE) {
1210 ClearPageReclaim(page);
1211 return PAGE_ACTIVATE;
1214 if (!PageWriteback(page)) {
1215 /* synchronous write or broken a_ops? */
1216 ClearPageReclaim(page);
1218 trace_mm_vmscan_writepage(page);
1219 inc_node_page_state(page, NR_VMSCAN_WRITE);
1220 return PAGE_SUCCESS;
1227 * Same as remove_mapping, but if the page is removed from the mapping, it
1228 * gets returned with a refcount of 0.
1230 static int __remove_mapping(struct address_space *mapping, struct page *page,
1231 bool reclaimed, struct mem_cgroup *target_memcg)
1234 void *shadow = NULL;
1236 BUG_ON(!PageLocked(page));
1237 BUG_ON(mapping != page_mapping(page));
1239 if (!PageSwapCache(page))
1240 spin_lock(&mapping->host->i_lock);
1241 xa_lock_irq(&mapping->i_pages);
1243 * The non racy check for a busy page.
1245 * Must be careful with the order of the tests. When someone has
1246 * a ref to the page, it may be possible that they dirty it then
1247 * drop the reference. So if PageDirty is tested before page_count
1248 * here, then the following race may occur:
1250 * get_user_pages(&page);
1251 * [user mapping goes away]
1253 * !PageDirty(page) [good]
1254 * SetPageDirty(page);
1256 * !page_count(page) [good, discard it]
1258 * [oops, our write_to data is lost]
1260 * Reversing the order of the tests ensures such a situation cannot
1261 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1262 * load is not satisfied before that of page->_refcount.
1264 * Note that if SetPageDirty is always performed via set_page_dirty,
1265 * and thus under the i_pages lock, then this ordering is not required.
1267 refcount = 1 + compound_nr(page);
1268 if (!page_ref_freeze(page, refcount))
1270 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1271 if (unlikely(PageDirty(page))) {
1272 page_ref_unfreeze(page, refcount);
1276 if (PageSwapCache(page)) {
1277 swp_entry_t swap = { .val = page_private(page) };
1278 mem_cgroup_swapout(page, swap);
1279 if (reclaimed && !mapping_exiting(mapping))
1280 shadow = workingset_eviction(page, target_memcg);
1281 __delete_from_swap_cache(page, swap, shadow);
1282 xa_unlock_irq(&mapping->i_pages);
1283 put_swap_page(page, swap);
1285 void (*freepage)(struct page *);
1287 freepage = mapping->a_ops->freepage;
1289 * Remember a shadow entry for reclaimed file cache in
1290 * order to detect refaults, thus thrashing, later on.
1292 * But don't store shadows in an address space that is
1293 * already exiting. This is not just an optimization,
1294 * inode reclaim needs to empty out the radix tree or
1295 * the nodes are lost. Don't plant shadows behind its
1298 * We also don't store shadows for DAX mappings because the
1299 * only page cache pages found in these are zero pages
1300 * covering holes, and because we don't want to mix DAX
1301 * exceptional entries and shadow exceptional entries in the
1302 * same address_space.
1304 if (reclaimed && page_is_file_lru(page) &&
1305 !mapping_exiting(mapping) && !dax_mapping(mapping))
1306 shadow = workingset_eviction(page, target_memcg);
1307 __delete_from_page_cache(page, shadow);
1308 xa_unlock_irq(&mapping->i_pages);
1309 if (mapping_shrinkable(mapping))
1310 inode_add_lru(mapping->host);
1311 spin_unlock(&mapping->host->i_lock);
1313 if (freepage != NULL)
1320 xa_unlock_irq(&mapping->i_pages);
1321 if (!PageSwapCache(page))
1322 spin_unlock(&mapping->host->i_lock);
1327 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1328 * someone else has a ref on the page, abort and return 0. If it was
1329 * successfully detached, return 1. Assumes the caller has a single ref on
1332 int remove_mapping(struct address_space *mapping, struct page *page)
1334 if (__remove_mapping(mapping, page, false, NULL)) {
1336 * Unfreezing the refcount with 1 rather than 2 effectively
1337 * drops the pagecache ref for us without requiring another
1340 page_ref_unfreeze(page, 1);
1347 * putback_lru_page - put previously isolated page onto appropriate LRU list
1348 * @page: page to be put back to appropriate lru list
1350 * Add previously isolated @page to appropriate LRU list.
1351 * Page may still be unevictable for other reasons.
1353 * lru_lock must not be held, interrupts must be enabled.
1355 void putback_lru_page(struct page *page)
1357 lru_cache_add(page);
1358 put_page(page); /* drop ref from isolate */
1361 enum page_references {
1363 PAGEREF_RECLAIM_CLEAN,
1368 static enum page_references page_check_references(struct page *page,
1369 struct scan_control *sc)
1371 int referenced_ptes, referenced_page;
1372 unsigned long vm_flags;
1374 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1376 referenced_page = TestClearPageReferenced(page);
1379 * Mlock lost the isolation race with us. Let try_to_unmap()
1380 * move the page to the unevictable list.
1382 if (vm_flags & VM_LOCKED)
1383 return PAGEREF_RECLAIM;
1385 if (referenced_ptes) {
1387 * All mapped pages start out with page table
1388 * references from the instantiating fault, so we need
1389 * to look twice if a mapped file/anon page is used more
1392 * Mark it and spare it for another trip around the
1393 * inactive list. Another page table reference will
1394 * lead to its activation.
1396 * Note: the mark is set for activated pages as well
1397 * so that recently deactivated but used pages are
1398 * quickly recovered.
1400 SetPageReferenced(page);
1402 if (referenced_page || referenced_ptes > 1)
1403 return PAGEREF_ACTIVATE;
1406 * Activate file-backed executable pages after first usage.
1408 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1409 return PAGEREF_ACTIVATE;
1411 return PAGEREF_KEEP;
1414 /* Reclaim if clean, defer dirty pages to writeback */
1415 if (referenced_page && !PageSwapBacked(page))
1416 return PAGEREF_RECLAIM_CLEAN;
1418 return PAGEREF_RECLAIM;
1421 /* Check if a page is dirty or under writeback */
1422 static void page_check_dirty_writeback(struct page *page,
1423 bool *dirty, bool *writeback)
1425 struct address_space *mapping;
1428 * Anonymous pages are not handled by flushers and must be written
1429 * from reclaim context. Do not stall reclaim based on them
1431 if (!page_is_file_lru(page) ||
1432 (PageAnon(page) && !PageSwapBacked(page))) {
1438 /* By default assume that the page flags are accurate */
1439 *dirty = PageDirty(page);
1440 *writeback = PageWriteback(page);
1442 /* Verify dirty/writeback state if the filesystem supports it */
1443 if (!page_has_private(page))
1446 mapping = page_mapping(page);
1447 if (mapping && mapping->a_ops->is_dirty_writeback)
1448 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1451 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1453 struct migration_target_control mtc = {
1455 * Allocate from 'node', or fail quickly and quietly.
1456 * When this happens, 'page' will likely just be discarded
1457 * instead of migrated.
1459 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1460 __GFP_THISNODE | __GFP_NOWARN |
1461 __GFP_NOMEMALLOC | GFP_NOWAIT,
1465 return alloc_migration_target(page, (unsigned long)&mtc);
1469 * Take pages on @demote_list and attempt to demote them to
1470 * another node. Pages which are not demoted are left on
1473 static unsigned int demote_page_list(struct list_head *demote_pages,
1474 struct pglist_data *pgdat)
1476 int target_nid = next_demotion_node(pgdat->node_id);
1477 unsigned int nr_succeeded;
1479 if (list_empty(demote_pages))
1482 if (target_nid == NUMA_NO_NODE)
1485 /* Demotion ignores all cpuset and mempolicy settings */
1486 migrate_pages(demote_pages, alloc_demote_page, NULL,
1487 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1490 if (current_is_kswapd())
1491 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1493 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1495 return nr_succeeded;
1499 * shrink_page_list() returns the number of reclaimed pages
1501 static unsigned int shrink_page_list(struct list_head *page_list,
1502 struct pglist_data *pgdat,
1503 struct scan_control *sc,
1504 struct reclaim_stat *stat,
1505 bool ignore_references)
1507 LIST_HEAD(ret_pages);
1508 LIST_HEAD(free_pages);
1509 LIST_HEAD(demote_pages);
1510 unsigned int nr_reclaimed = 0;
1511 unsigned int pgactivate = 0;
1512 bool do_demote_pass;
1514 memset(stat, 0, sizeof(*stat));
1516 do_demote_pass = can_demote(pgdat->node_id, sc);
1519 while (!list_empty(page_list)) {
1520 struct address_space *mapping;
1522 enum page_references references = PAGEREF_RECLAIM;
1523 bool dirty, writeback, may_enter_fs;
1524 unsigned int nr_pages;
1528 page = lru_to_page(page_list);
1529 list_del(&page->lru);
1531 if (!trylock_page(page))
1534 VM_BUG_ON_PAGE(PageActive(page), page);
1536 nr_pages = compound_nr(page);
1538 /* Account the number of base pages even though THP */
1539 sc->nr_scanned += nr_pages;
1541 if (unlikely(!page_evictable(page)))
1542 goto activate_locked;
1544 if (!sc->may_unmap && page_mapped(page))
1547 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1548 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1551 * The number of dirty pages determines if a node is marked
1552 * reclaim_congested. kswapd will stall and start writing
1553 * pages if the tail of the LRU is all dirty unqueued pages.
1555 page_check_dirty_writeback(page, &dirty, &writeback);
1556 if (dirty || writeback)
1559 if (dirty && !writeback)
1560 stat->nr_unqueued_dirty++;
1563 * Treat this page as congested if the underlying BDI is or if
1564 * pages are cycling through the LRU so quickly that the
1565 * pages marked for immediate reclaim are making it to the
1566 * end of the LRU a second time.
1568 mapping = page_mapping(page);
1569 if (writeback && PageReclaim(page))
1570 stat->nr_congested++;
1573 * If a page at the tail of the LRU is under writeback, there
1574 * are three cases to consider.
1576 * 1) If reclaim is encountering an excessive number of pages
1577 * under writeback and this page is both under writeback and
1578 * PageReclaim then it indicates that pages are being queued
1579 * for IO but are being recycled through the LRU before the
1580 * IO can complete. Waiting on the page itself risks an
1581 * indefinite stall if it is impossible to writeback the
1582 * page due to IO error or disconnected storage so instead
1583 * note that the LRU is being scanned too quickly and the
1584 * caller can stall after page list has been processed.
1586 * 2) Global or new memcg reclaim encounters a page that is
1587 * not marked for immediate reclaim, or the caller does not
1588 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1589 * not to fs). In this case mark the page for immediate
1590 * reclaim and continue scanning.
1592 * Require may_enter_fs because we would wait on fs, which
1593 * may not have submitted IO yet. And the loop driver might
1594 * enter reclaim, and deadlock if it waits on a page for
1595 * which it is needed to do the write (loop masks off
1596 * __GFP_IO|__GFP_FS for this reason); but more thought
1597 * would probably show more reasons.
1599 * 3) Legacy memcg encounters a page that is already marked
1600 * PageReclaim. memcg does not have any dirty pages
1601 * throttling so we could easily OOM just because too many
1602 * pages are in writeback and there is nothing else to
1603 * reclaim. Wait for the writeback to complete.
1605 * In cases 1) and 2) we activate the pages to get them out of
1606 * the way while we continue scanning for clean pages on the
1607 * inactive list and refilling from the active list. The
1608 * observation here is that waiting for disk writes is more
1609 * expensive than potentially causing reloads down the line.
1610 * Since they're marked for immediate reclaim, they won't put
1611 * memory pressure on the cache working set any longer than it
1612 * takes to write them to disk.
1614 if (PageWriteback(page)) {
1616 if (current_is_kswapd() &&
1617 PageReclaim(page) &&
1618 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1619 stat->nr_immediate++;
1620 goto activate_locked;
1623 } else if (writeback_throttling_sane(sc) ||
1624 !PageReclaim(page) || !may_enter_fs) {
1626 * This is slightly racy - end_page_writeback()
1627 * might have just cleared PageReclaim, then
1628 * setting PageReclaim here end up interpreted
1629 * as PageReadahead - but that does not matter
1630 * enough to care. What we do want is for this
1631 * page to have PageReclaim set next time memcg
1632 * reclaim reaches the tests above, so it will
1633 * then wait_on_page_writeback() to avoid OOM;
1634 * and it's also appropriate in global reclaim.
1636 SetPageReclaim(page);
1637 stat->nr_writeback++;
1638 goto activate_locked;
1643 wait_on_page_writeback(page);
1644 /* then go back and try same page again */
1645 list_add_tail(&page->lru, page_list);
1650 if (!ignore_references)
1651 references = page_check_references(page, sc);
1653 switch (references) {
1654 case PAGEREF_ACTIVATE:
1655 goto activate_locked;
1657 stat->nr_ref_keep += nr_pages;
1659 case PAGEREF_RECLAIM:
1660 case PAGEREF_RECLAIM_CLEAN:
1661 ; /* try to reclaim the page below */
1665 * Before reclaiming the page, try to relocate
1666 * its contents to another node.
1668 if (do_demote_pass &&
1669 (thp_migration_supported() || !PageTransHuge(page))) {
1670 list_add(&page->lru, &demote_pages);
1676 * Anonymous process memory has backing store?
1677 * Try to allocate it some swap space here.
1678 * Lazyfree page could be freed directly
1680 if (PageAnon(page) && PageSwapBacked(page)) {
1681 if (!PageSwapCache(page)) {
1682 if (!(sc->gfp_mask & __GFP_IO))
1684 if (page_maybe_dma_pinned(page))
1686 if (PageTransHuge(page)) {
1687 /* cannot split THP, skip it */
1688 if (!can_split_huge_page(page, NULL))
1689 goto activate_locked;
1691 * Split pages without a PMD map right
1692 * away. Chances are some or all of the
1693 * tail pages can be freed without IO.
1695 if (!compound_mapcount(page) &&
1696 split_huge_page_to_list(page,
1698 goto activate_locked;
1700 if (!add_to_swap(page)) {
1701 if (!PageTransHuge(page))
1702 goto activate_locked_split;
1703 /* Fallback to swap normal pages */
1704 if (split_huge_page_to_list(page,
1706 goto activate_locked;
1707 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1708 count_vm_event(THP_SWPOUT_FALLBACK);
1710 if (!add_to_swap(page))
1711 goto activate_locked_split;
1714 may_enter_fs = true;
1716 /* Adding to swap updated mapping */
1717 mapping = page_mapping(page);
1719 } else if (unlikely(PageTransHuge(page))) {
1720 /* Split file THP */
1721 if (split_huge_page_to_list(page, page_list))
1726 * THP may get split above, need minus tail pages and update
1727 * nr_pages to avoid accounting tail pages twice.
1729 * The tail pages that are added into swap cache successfully
1732 if ((nr_pages > 1) && !PageTransHuge(page)) {
1733 sc->nr_scanned -= (nr_pages - 1);
1738 * The page is mapped into the page tables of one or more
1739 * processes. Try to unmap it here.
1741 if (page_mapped(page)) {
1742 enum ttu_flags flags = TTU_BATCH_FLUSH;
1743 bool was_swapbacked = PageSwapBacked(page);
1745 if (unlikely(PageTransHuge(page)))
1746 flags |= TTU_SPLIT_HUGE_PMD;
1748 try_to_unmap(page, flags);
1749 if (page_mapped(page)) {
1750 stat->nr_unmap_fail += nr_pages;
1751 if (!was_swapbacked && PageSwapBacked(page))
1752 stat->nr_lazyfree_fail += nr_pages;
1753 goto activate_locked;
1757 if (PageDirty(page)) {
1759 * Only kswapd can writeback filesystem pages
1760 * to avoid risk of stack overflow. But avoid
1761 * injecting inefficient single-page IO into
1762 * flusher writeback as much as possible: only
1763 * write pages when we've encountered many
1764 * dirty pages, and when we've already scanned
1765 * the rest of the LRU for clean pages and see
1766 * the same dirty pages again (PageReclaim).
1768 if (page_is_file_lru(page) &&
1769 (!current_is_kswapd() || !PageReclaim(page) ||
1770 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1772 * Immediately reclaim when written back.
1773 * Similar in principal to deactivate_page()
1774 * except we already have the page isolated
1775 * and know it's dirty
1777 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1778 SetPageReclaim(page);
1780 goto activate_locked;
1783 if (references == PAGEREF_RECLAIM_CLEAN)
1787 if (!sc->may_writepage)
1791 * Page is dirty. Flush the TLB if a writable entry
1792 * potentially exists to avoid CPU writes after IO
1793 * starts and then write it out here.
1795 try_to_unmap_flush_dirty();
1796 switch (pageout(page, mapping)) {
1800 goto activate_locked;
1802 stat->nr_pageout += thp_nr_pages(page);
1804 if (PageWriteback(page))
1806 if (PageDirty(page))
1810 * A synchronous write - probably a ramdisk. Go
1811 * ahead and try to reclaim the page.
1813 if (!trylock_page(page))
1815 if (PageDirty(page) || PageWriteback(page))
1817 mapping = page_mapping(page);
1820 ; /* try to free the page below */
1825 * If the page has buffers, try to free the buffer mappings
1826 * associated with this page. If we succeed we try to free
1829 * We do this even if the page is PageDirty().
1830 * try_to_release_page() does not perform I/O, but it is
1831 * possible for a page to have PageDirty set, but it is actually
1832 * clean (all its buffers are clean). This happens if the
1833 * buffers were written out directly, with submit_bh(). ext3
1834 * will do this, as well as the blockdev mapping.
1835 * try_to_release_page() will discover that cleanness and will
1836 * drop the buffers and mark the page clean - it can be freed.
1838 * Rarely, pages can have buffers and no ->mapping. These are
1839 * the pages which were not successfully invalidated in
1840 * truncate_cleanup_page(). We try to drop those buffers here
1841 * and if that worked, and the page is no longer mapped into
1842 * process address space (page_count == 1) it can be freed.
1843 * Otherwise, leave the page on the LRU so it is swappable.
1845 if (page_has_private(page)) {
1846 if (!try_to_release_page(page, sc->gfp_mask))
1847 goto activate_locked;
1848 if (!mapping && page_count(page) == 1) {
1850 if (put_page_testzero(page))
1854 * rare race with speculative reference.
1855 * the speculative reference will free
1856 * this page shortly, so we may
1857 * increment nr_reclaimed here (and
1858 * leave it off the LRU).
1866 if (PageAnon(page) && !PageSwapBacked(page)) {
1867 /* follow __remove_mapping for reference */
1868 if (!page_ref_freeze(page, 1))
1871 * The page has only one reference left, which is
1872 * from the isolation. After the caller puts the
1873 * page back on lru and drops the reference, the
1874 * page will be freed anyway. It doesn't matter
1875 * which lru it goes. So we don't bother checking
1878 count_vm_event(PGLAZYFREED);
1879 count_memcg_page_event(page, PGLAZYFREED);
1880 } else if (!mapping || !__remove_mapping(mapping, page, true,
1881 sc->target_mem_cgroup))
1887 * THP may get swapped out in a whole, need account
1890 nr_reclaimed += nr_pages;
1893 * Is there need to periodically free_page_list? It would
1894 * appear not as the counts should be low
1896 if (unlikely(PageTransHuge(page)))
1897 destroy_compound_page(page);
1899 list_add(&page->lru, &free_pages);
1902 activate_locked_split:
1904 * The tail pages that are failed to add into swap cache
1905 * reach here. Fixup nr_scanned and nr_pages.
1908 sc->nr_scanned -= (nr_pages - 1);
1912 /* Not a candidate for swapping, so reclaim swap space. */
1913 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1915 try_to_free_swap(page);
1916 VM_BUG_ON_PAGE(PageActive(page), page);
1917 if (!PageMlocked(page)) {
1918 int type = page_is_file_lru(page);
1919 SetPageActive(page);
1920 stat->nr_activate[type] += nr_pages;
1921 count_memcg_page_event(page, PGACTIVATE);
1926 list_add(&page->lru, &ret_pages);
1927 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1929 /* 'page_list' is always empty here */
1931 /* Migrate pages selected for demotion */
1932 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1933 /* Pages that could not be demoted are still in @demote_pages */
1934 if (!list_empty(&demote_pages)) {
1935 /* Pages which failed to demoted go back on @page_list for retry: */
1936 list_splice_init(&demote_pages, page_list);
1937 do_demote_pass = false;
1941 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1943 mem_cgroup_uncharge_list(&free_pages);
1944 try_to_unmap_flush();
1945 free_unref_page_list(&free_pages);
1947 list_splice(&ret_pages, page_list);
1948 count_vm_events(PGACTIVATE, pgactivate);
1950 return nr_reclaimed;
1953 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1954 struct list_head *page_list)
1956 struct scan_control sc = {
1957 .gfp_mask = GFP_KERNEL,
1960 struct reclaim_stat stat;
1961 unsigned int nr_reclaimed;
1962 struct page *page, *next;
1963 LIST_HEAD(clean_pages);
1964 unsigned int noreclaim_flag;
1966 list_for_each_entry_safe(page, next, page_list, lru) {
1967 if (!PageHuge(page) && page_is_file_lru(page) &&
1968 !PageDirty(page) && !__PageMovable(page) &&
1969 !PageUnevictable(page)) {
1970 ClearPageActive(page);
1971 list_move(&page->lru, &clean_pages);
1976 * We should be safe here since we are only dealing with file pages and
1977 * we are not kswapd and therefore cannot write dirty file pages. But
1978 * call memalloc_noreclaim_save() anyway, just in case these conditions
1979 * change in the future.
1981 noreclaim_flag = memalloc_noreclaim_save();
1982 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1984 memalloc_noreclaim_restore(noreclaim_flag);
1986 list_splice(&clean_pages, page_list);
1987 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1988 -(long)nr_reclaimed);
1990 * Since lazyfree pages are isolated from file LRU from the beginning,
1991 * they will rotate back to anonymous LRU in the end if it failed to
1992 * discard so isolated count will be mismatched.
1993 * Compensate the isolated count for both LRU lists.
1995 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1996 stat.nr_lazyfree_fail);
1997 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1998 -(long)stat.nr_lazyfree_fail);
1999 return nr_reclaimed;
2003 * Update LRU sizes after isolating pages. The LRU size updates must
2004 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2006 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2007 enum lru_list lru, unsigned long *nr_zone_taken)
2011 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2012 if (!nr_zone_taken[zid])
2015 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2021 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2023 * lruvec->lru_lock is heavily contended. Some of the functions that
2024 * shrink the lists perform better by taking out a batch of pages
2025 * and working on them outside the LRU lock.
2027 * For pagecache intensive workloads, this function is the hottest
2028 * spot in the kernel (apart from copy_*_user functions).
2030 * Lru_lock must be held before calling this function.
2032 * @nr_to_scan: The number of eligible pages to look through on the list.
2033 * @lruvec: The LRU vector to pull pages from.
2034 * @dst: The temp list to put pages on to.
2035 * @nr_scanned: The number of pages that were scanned.
2036 * @sc: The scan_control struct for this reclaim session
2037 * @lru: LRU list id for isolating
2039 * returns how many pages were moved onto *@dst.
2041 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2042 struct lruvec *lruvec, struct list_head *dst,
2043 unsigned long *nr_scanned, struct scan_control *sc,
2046 struct list_head *src = &lruvec->lists[lru];
2047 unsigned long nr_taken = 0;
2048 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2049 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2050 unsigned long skipped = 0;
2051 unsigned long scan, total_scan, nr_pages;
2052 LIST_HEAD(pages_skipped);
2056 while (scan < nr_to_scan && !list_empty(src)) {
2057 struct list_head *move_to = src;
2060 page = lru_to_page(src);
2061 prefetchw_prev_lru_page(page, src, flags);
2063 nr_pages = compound_nr(page);
2064 total_scan += nr_pages;
2066 if (page_zonenum(page) > sc->reclaim_idx) {
2067 nr_skipped[page_zonenum(page)] += nr_pages;
2068 move_to = &pages_skipped;
2073 * Do not count skipped pages because that makes the function
2074 * return with no isolated pages if the LRU mostly contains
2075 * ineligible pages. This causes the VM to not reclaim any
2076 * pages, triggering a premature OOM.
2077 * Account all tail pages of THP.
2083 if (!sc->may_unmap && page_mapped(page))
2087 * Be careful not to clear PageLRU until after we're
2088 * sure the page is not being freed elsewhere -- the
2089 * page release code relies on it.
2091 if (unlikely(!get_page_unless_zero(page)))
2094 if (!TestClearPageLRU(page)) {
2095 /* Another thread is already isolating this page */
2100 nr_taken += nr_pages;
2101 nr_zone_taken[page_zonenum(page)] += nr_pages;
2104 list_move(&page->lru, move_to);
2108 * Splice any skipped pages to the start of the LRU list. Note that
2109 * this disrupts the LRU order when reclaiming for lower zones but
2110 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2111 * scanning would soon rescan the same pages to skip and put the
2112 * system at risk of premature OOM.
2114 if (!list_empty(&pages_skipped)) {
2117 list_splice(&pages_skipped, src);
2118 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2119 if (!nr_skipped[zid])
2122 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2123 skipped += nr_skipped[zid];
2126 *nr_scanned = total_scan;
2127 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2128 total_scan, skipped, nr_taken,
2129 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2130 update_lru_sizes(lruvec, lru, nr_zone_taken);
2135 * isolate_lru_page - tries to isolate a page from its LRU list
2136 * @page: page to isolate from its LRU list
2138 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2139 * vmstat statistic corresponding to whatever LRU list the page was on.
2141 * Returns 0 if the page was removed from an LRU list.
2142 * Returns -EBUSY if the page was not on an LRU list.
2144 * The returned page will have PageLRU() cleared. If it was found on
2145 * the active list, it will have PageActive set. If it was found on
2146 * the unevictable list, it will have the PageUnevictable bit set. That flag
2147 * may need to be cleared by the caller before letting the page go.
2149 * The vmstat statistic corresponding to the list on which the page was
2150 * found will be decremented.
2154 * (1) Must be called with an elevated refcount on the page. This is a
2155 * fundamental difference from isolate_lru_pages (which is called
2156 * without a stable reference).
2157 * (2) the lru_lock must not be held.
2158 * (3) interrupts must be enabled.
2160 int isolate_lru_page(struct page *page)
2162 struct folio *folio = page_folio(page);
2165 VM_BUG_ON_PAGE(!page_count(page), page);
2166 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2168 if (TestClearPageLRU(page)) {
2169 struct lruvec *lruvec;
2172 lruvec = folio_lruvec_lock_irq(folio);
2173 del_page_from_lru_list(page, lruvec);
2174 unlock_page_lruvec_irq(lruvec);
2182 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2183 * then get rescheduled. When there are massive number of tasks doing page
2184 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2185 * the LRU list will go small and be scanned faster than necessary, leading to
2186 * unnecessary swapping, thrashing and OOM.
2188 static int too_many_isolated(struct pglist_data *pgdat, int file,
2189 struct scan_control *sc)
2191 unsigned long inactive, isolated;
2194 if (current_is_kswapd())
2197 if (!writeback_throttling_sane(sc))
2201 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2202 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2204 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2205 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2209 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2210 * won't get blocked by normal direct-reclaimers, forming a circular
2213 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2216 too_many = isolated > inactive;
2218 /* Wake up tasks throttled due to too_many_isolated. */
2220 wake_throttle_isolated(pgdat);
2226 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2227 * On return, @list is reused as a list of pages to be freed by the caller.
2229 * Returns the number of pages moved to the given lruvec.
2231 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2232 struct list_head *list)
2234 int nr_pages, nr_moved = 0;
2235 LIST_HEAD(pages_to_free);
2238 while (!list_empty(list)) {
2239 page = lru_to_page(list);
2240 VM_BUG_ON_PAGE(PageLRU(page), page);
2241 list_del(&page->lru);
2242 if (unlikely(!page_evictable(page))) {
2243 spin_unlock_irq(&lruvec->lru_lock);
2244 putback_lru_page(page);
2245 spin_lock_irq(&lruvec->lru_lock);
2250 * The SetPageLRU needs to be kept here for list integrity.
2252 * #0 move_pages_to_lru #1 release_pages
2253 * if !put_page_testzero
2254 * if (put_page_testzero())
2255 * !PageLRU //skip lru_lock
2257 * list_add(&page->lru,)
2258 * list_add(&page->lru,)
2262 if (unlikely(put_page_testzero(page))) {
2263 __clear_page_lru_flags(page);
2265 if (unlikely(PageCompound(page))) {
2266 spin_unlock_irq(&lruvec->lru_lock);
2267 destroy_compound_page(page);
2268 spin_lock_irq(&lruvec->lru_lock);
2270 list_add(&page->lru, &pages_to_free);
2276 * All pages were isolated from the same lruvec (and isolation
2277 * inhibits memcg migration).
2279 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2280 add_page_to_lru_list(page, lruvec);
2281 nr_pages = thp_nr_pages(page);
2282 nr_moved += nr_pages;
2283 if (PageActive(page))
2284 workingset_age_nonresident(lruvec, nr_pages);
2288 * To save our caller's stack, now use input list for pages to free.
2290 list_splice(&pages_to_free, list);
2296 * If a kernel thread (such as nfsd for loop-back mounts) services
2297 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2298 * In that case we should only throttle if the backing device it is
2299 * writing to is congested. In other cases it is safe to throttle.
2301 static int current_may_throttle(void)
2303 return !(current->flags & PF_LOCAL_THROTTLE);
2307 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2308 * of reclaimed pages
2310 static unsigned long
2311 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2312 struct scan_control *sc, enum lru_list lru)
2314 LIST_HEAD(page_list);
2315 unsigned long nr_scanned;
2316 unsigned int nr_reclaimed = 0;
2317 unsigned long nr_taken;
2318 struct reclaim_stat stat;
2319 bool file = is_file_lru(lru);
2320 enum vm_event_item item;
2321 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2322 bool stalled = false;
2324 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2328 /* wait a bit for the reclaimer. */
2330 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2332 /* We are about to die and free our memory. Return now. */
2333 if (fatal_signal_pending(current))
2334 return SWAP_CLUSTER_MAX;
2339 spin_lock_irq(&lruvec->lru_lock);
2341 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2342 &nr_scanned, sc, lru);
2344 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2345 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2346 if (!cgroup_reclaim(sc))
2347 __count_vm_events(item, nr_scanned);
2348 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2349 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2351 spin_unlock_irq(&lruvec->lru_lock);
2356 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2358 spin_lock_irq(&lruvec->lru_lock);
2359 move_pages_to_lru(lruvec, &page_list);
2361 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2362 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2363 if (!cgroup_reclaim(sc))
2364 __count_vm_events(item, nr_reclaimed);
2365 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2366 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2367 spin_unlock_irq(&lruvec->lru_lock);
2369 lru_note_cost(lruvec, file, stat.nr_pageout);
2370 mem_cgroup_uncharge_list(&page_list);
2371 free_unref_page_list(&page_list);
2374 * If dirty pages are scanned that are not queued for IO, it
2375 * implies that flushers are not doing their job. This can
2376 * happen when memory pressure pushes dirty pages to the end of
2377 * the LRU before the dirty limits are breached and the dirty
2378 * data has expired. It can also happen when the proportion of
2379 * dirty pages grows not through writes but through memory
2380 * pressure reclaiming all the clean cache. And in some cases,
2381 * the flushers simply cannot keep up with the allocation
2382 * rate. Nudge the flusher threads in case they are asleep.
2384 if (stat.nr_unqueued_dirty == nr_taken)
2385 wakeup_flusher_threads(WB_REASON_VMSCAN);
2387 sc->nr.dirty += stat.nr_dirty;
2388 sc->nr.congested += stat.nr_congested;
2389 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2390 sc->nr.writeback += stat.nr_writeback;
2391 sc->nr.immediate += stat.nr_immediate;
2392 sc->nr.taken += nr_taken;
2394 sc->nr.file_taken += nr_taken;
2396 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2397 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2398 return nr_reclaimed;
2402 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2404 * We move them the other way if the page is referenced by one or more
2407 * If the pages are mostly unmapped, the processing is fast and it is
2408 * appropriate to hold lru_lock across the whole operation. But if
2409 * the pages are mapped, the processing is slow (page_referenced()), so
2410 * we should drop lru_lock around each page. It's impossible to balance
2411 * this, so instead we remove the pages from the LRU while processing them.
2412 * It is safe to rely on PG_active against the non-LRU pages in here because
2413 * nobody will play with that bit on a non-LRU page.
2415 * The downside is that we have to touch page->_refcount against each page.
2416 * But we had to alter page->flags anyway.
2418 static void shrink_active_list(unsigned long nr_to_scan,
2419 struct lruvec *lruvec,
2420 struct scan_control *sc,
2423 unsigned long nr_taken;
2424 unsigned long nr_scanned;
2425 unsigned long vm_flags;
2426 LIST_HEAD(l_hold); /* The pages which were snipped off */
2427 LIST_HEAD(l_active);
2428 LIST_HEAD(l_inactive);
2430 unsigned nr_deactivate, nr_activate;
2431 unsigned nr_rotated = 0;
2432 int file = is_file_lru(lru);
2433 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2437 spin_lock_irq(&lruvec->lru_lock);
2439 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2440 &nr_scanned, sc, lru);
2442 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2444 if (!cgroup_reclaim(sc))
2445 __count_vm_events(PGREFILL, nr_scanned);
2446 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2448 spin_unlock_irq(&lruvec->lru_lock);
2450 while (!list_empty(&l_hold)) {
2452 page = lru_to_page(&l_hold);
2453 list_del(&page->lru);
2455 if (unlikely(!page_evictable(page))) {
2456 putback_lru_page(page);
2460 if (unlikely(buffer_heads_over_limit)) {
2461 if (page_has_private(page) && trylock_page(page)) {
2462 if (page_has_private(page))
2463 try_to_release_page(page, 0);
2468 if (page_referenced(page, 0, sc->target_mem_cgroup,
2471 * Identify referenced, file-backed active pages and
2472 * give them one more trip around the active list. So
2473 * that executable code get better chances to stay in
2474 * memory under moderate memory pressure. Anon pages
2475 * are not likely to be evicted by use-once streaming
2476 * IO, plus JVM can create lots of anon VM_EXEC pages,
2477 * so we ignore them here.
2479 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2480 nr_rotated += thp_nr_pages(page);
2481 list_add(&page->lru, &l_active);
2486 ClearPageActive(page); /* we are de-activating */
2487 SetPageWorkingset(page);
2488 list_add(&page->lru, &l_inactive);
2492 * Move pages back to the lru list.
2494 spin_lock_irq(&lruvec->lru_lock);
2496 nr_activate = move_pages_to_lru(lruvec, &l_active);
2497 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2498 /* Keep all free pages in l_active list */
2499 list_splice(&l_inactive, &l_active);
2501 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2502 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2504 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2505 spin_unlock_irq(&lruvec->lru_lock);
2507 mem_cgroup_uncharge_list(&l_active);
2508 free_unref_page_list(&l_active);
2509 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2510 nr_deactivate, nr_rotated, sc->priority, file);
2513 unsigned long reclaim_pages(struct list_head *page_list)
2515 int nid = NUMA_NO_NODE;
2516 unsigned int nr_reclaimed = 0;
2517 LIST_HEAD(node_page_list);
2518 struct reclaim_stat dummy_stat;
2520 unsigned int noreclaim_flag;
2521 struct scan_control sc = {
2522 .gfp_mask = GFP_KERNEL,
2529 noreclaim_flag = memalloc_noreclaim_save();
2531 while (!list_empty(page_list)) {
2532 page = lru_to_page(page_list);
2533 if (nid == NUMA_NO_NODE) {
2534 nid = page_to_nid(page);
2535 INIT_LIST_HEAD(&node_page_list);
2538 if (nid == page_to_nid(page)) {
2539 ClearPageActive(page);
2540 list_move(&page->lru, &node_page_list);
2544 nr_reclaimed += shrink_page_list(&node_page_list,
2546 &sc, &dummy_stat, false);
2547 while (!list_empty(&node_page_list)) {
2548 page = lru_to_page(&node_page_list);
2549 list_del(&page->lru);
2550 putback_lru_page(page);
2556 if (!list_empty(&node_page_list)) {
2557 nr_reclaimed += shrink_page_list(&node_page_list,
2559 &sc, &dummy_stat, false);
2560 while (!list_empty(&node_page_list)) {
2561 page = lru_to_page(&node_page_list);
2562 list_del(&page->lru);
2563 putback_lru_page(page);
2567 memalloc_noreclaim_restore(noreclaim_flag);
2569 return nr_reclaimed;
2572 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2573 struct lruvec *lruvec, struct scan_control *sc)
2575 if (is_active_lru(lru)) {
2576 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2577 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2579 sc->skipped_deactivate = 1;
2583 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2587 * The inactive anon list should be small enough that the VM never has
2588 * to do too much work.
2590 * The inactive file list should be small enough to leave most memory
2591 * to the established workingset on the scan-resistant active list,
2592 * but large enough to avoid thrashing the aggregate readahead window.
2594 * Both inactive lists should also be large enough that each inactive
2595 * page has a chance to be referenced again before it is reclaimed.
2597 * If that fails and refaulting is observed, the inactive list grows.
2599 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2600 * on this LRU, maintained by the pageout code. An inactive_ratio
2601 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2604 * memory ratio inactive
2605 * -------------------------------------
2614 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2616 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2617 unsigned long inactive, active;
2618 unsigned long inactive_ratio;
2621 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2622 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2624 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2626 inactive_ratio = int_sqrt(10 * gb);
2630 return inactive * inactive_ratio < active;
2641 * Determine how aggressively the anon and file LRU lists should be
2642 * scanned. The relative value of each set of LRU lists is determined
2643 * by looking at the fraction of the pages scanned we did rotate back
2644 * onto the active list instead of evict.
2646 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2647 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2649 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2652 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2653 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2654 unsigned long anon_cost, file_cost, total_cost;
2655 int swappiness = mem_cgroup_swappiness(memcg);
2656 u64 fraction[ANON_AND_FILE];
2657 u64 denominator = 0; /* gcc */
2658 enum scan_balance scan_balance;
2659 unsigned long ap, fp;
2662 /* If we have no swap space, do not bother scanning anon pages. */
2663 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2664 scan_balance = SCAN_FILE;
2669 * Global reclaim will swap to prevent OOM even with no
2670 * swappiness, but memcg users want to use this knob to
2671 * disable swapping for individual groups completely when
2672 * using the memory controller's swap limit feature would be
2675 if (cgroup_reclaim(sc) && !swappiness) {
2676 scan_balance = SCAN_FILE;
2681 * Do not apply any pressure balancing cleverness when the
2682 * system is close to OOM, scan both anon and file equally
2683 * (unless the swappiness setting disagrees with swapping).
2685 if (!sc->priority && swappiness) {
2686 scan_balance = SCAN_EQUAL;
2691 * If the system is almost out of file pages, force-scan anon.
2693 if (sc->file_is_tiny) {
2694 scan_balance = SCAN_ANON;
2699 * If there is enough inactive page cache, we do not reclaim
2700 * anything from the anonymous working right now.
2702 if (sc->cache_trim_mode) {
2703 scan_balance = SCAN_FILE;
2707 scan_balance = SCAN_FRACT;
2709 * Calculate the pressure balance between anon and file pages.
2711 * The amount of pressure we put on each LRU is inversely
2712 * proportional to the cost of reclaiming each list, as
2713 * determined by the share of pages that are refaulting, times
2714 * the relative IO cost of bringing back a swapped out
2715 * anonymous page vs reloading a filesystem page (swappiness).
2717 * Although we limit that influence to ensure no list gets
2718 * left behind completely: at least a third of the pressure is
2719 * applied, before swappiness.
2721 * With swappiness at 100, anon and file have equal IO cost.
2723 total_cost = sc->anon_cost + sc->file_cost;
2724 anon_cost = total_cost + sc->anon_cost;
2725 file_cost = total_cost + sc->file_cost;
2726 total_cost = anon_cost + file_cost;
2728 ap = swappiness * (total_cost + 1);
2729 ap /= anon_cost + 1;
2731 fp = (200 - swappiness) * (total_cost + 1);
2732 fp /= file_cost + 1;
2736 denominator = ap + fp;
2738 for_each_evictable_lru(lru) {
2739 int file = is_file_lru(lru);
2740 unsigned long lruvec_size;
2741 unsigned long low, min;
2744 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2745 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2750 * Scale a cgroup's reclaim pressure by proportioning
2751 * its current usage to its memory.low or memory.min
2754 * This is important, as otherwise scanning aggression
2755 * becomes extremely binary -- from nothing as we
2756 * approach the memory protection threshold, to totally
2757 * nominal as we exceed it. This results in requiring
2758 * setting extremely liberal protection thresholds. It
2759 * also means we simply get no protection at all if we
2760 * set it too low, which is not ideal.
2762 * If there is any protection in place, we reduce scan
2763 * pressure by how much of the total memory used is
2764 * within protection thresholds.
2766 * There is one special case: in the first reclaim pass,
2767 * we skip over all groups that are within their low
2768 * protection. If that fails to reclaim enough pages to
2769 * satisfy the reclaim goal, we come back and override
2770 * the best-effort low protection. However, we still
2771 * ideally want to honor how well-behaved groups are in
2772 * that case instead of simply punishing them all
2773 * equally. As such, we reclaim them based on how much
2774 * memory they are using, reducing the scan pressure
2775 * again by how much of the total memory used is under
2778 unsigned long cgroup_size = mem_cgroup_size(memcg);
2779 unsigned long protection;
2781 /* memory.low scaling, make sure we retry before OOM */
2782 if (!sc->memcg_low_reclaim && low > min) {
2784 sc->memcg_low_skipped = 1;
2789 /* Avoid TOCTOU with earlier protection check */
2790 cgroup_size = max(cgroup_size, protection);
2792 scan = lruvec_size - lruvec_size * protection /
2796 * Minimally target SWAP_CLUSTER_MAX pages to keep
2797 * reclaim moving forwards, avoiding decrementing
2798 * sc->priority further than desirable.
2800 scan = max(scan, SWAP_CLUSTER_MAX);
2805 scan >>= sc->priority;
2808 * If the cgroup's already been deleted, make sure to
2809 * scrape out the remaining cache.
2811 if (!scan && !mem_cgroup_online(memcg))
2812 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2814 switch (scan_balance) {
2816 /* Scan lists relative to size */
2820 * Scan types proportional to swappiness and
2821 * their relative recent reclaim efficiency.
2822 * Make sure we don't miss the last page on
2823 * the offlined memory cgroups because of a
2826 scan = mem_cgroup_online(memcg) ?
2827 div64_u64(scan * fraction[file], denominator) :
2828 DIV64_U64_ROUND_UP(scan * fraction[file],
2833 /* Scan one type exclusively */
2834 if ((scan_balance == SCAN_FILE) != file)
2838 /* Look ma, no brain */
2847 * Anonymous LRU management is a waste if there is
2848 * ultimately no way to reclaim the memory.
2850 static bool can_age_anon_pages(struct pglist_data *pgdat,
2851 struct scan_control *sc)
2853 /* Aging the anon LRU is valuable if swap is present: */
2854 if (total_swap_pages > 0)
2857 /* Also valuable if anon pages can be demoted: */
2858 return can_demote(pgdat->node_id, sc);
2861 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2863 unsigned long nr[NR_LRU_LISTS];
2864 unsigned long targets[NR_LRU_LISTS];
2865 unsigned long nr_to_scan;
2867 unsigned long nr_reclaimed = 0;
2868 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2869 struct blk_plug plug;
2872 get_scan_count(lruvec, sc, nr);
2874 /* Record the original scan target for proportional adjustments later */
2875 memcpy(targets, nr, sizeof(nr));
2878 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2879 * event that can occur when there is little memory pressure e.g.
2880 * multiple streaming readers/writers. Hence, we do not abort scanning
2881 * when the requested number of pages are reclaimed when scanning at
2882 * DEF_PRIORITY on the assumption that the fact we are direct
2883 * reclaiming implies that kswapd is not keeping up and it is best to
2884 * do a batch of work at once. For memcg reclaim one check is made to
2885 * abort proportional reclaim if either the file or anon lru has already
2886 * dropped to zero at the first pass.
2888 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2889 sc->priority == DEF_PRIORITY);
2891 blk_start_plug(&plug);
2892 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2893 nr[LRU_INACTIVE_FILE]) {
2894 unsigned long nr_anon, nr_file, percentage;
2895 unsigned long nr_scanned;
2897 for_each_evictable_lru(lru) {
2899 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2900 nr[lru] -= nr_to_scan;
2902 nr_reclaimed += shrink_list(lru, nr_to_scan,
2909 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2913 * For kswapd and memcg, reclaim at least the number of pages
2914 * requested. Ensure that the anon and file LRUs are scanned
2915 * proportionally what was requested by get_scan_count(). We
2916 * stop reclaiming one LRU and reduce the amount scanning
2917 * proportional to the original scan target.
2919 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2920 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2923 * It's just vindictive to attack the larger once the smaller
2924 * has gone to zero. And given the way we stop scanning the
2925 * smaller below, this makes sure that we only make one nudge
2926 * towards proportionality once we've got nr_to_reclaim.
2928 if (!nr_file || !nr_anon)
2931 if (nr_file > nr_anon) {
2932 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2933 targets[LRU_ACTIVE_ANON] + 1;
2935 percentage = nr_anon * 100 / scan_target;
2937 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2938 targets[LRU_ACTIVE_FILE] + 1;
2940 percentage = nr_file * 100 / scan_target;
2943 /* Stop scanning the smaller of the LRU */
2945 nr[lru + LRU_ACTIVE] = 0;
2948 * Recalculate the other LRU scan count based on its original
2949 * scan target and the percentage scanning already complete
2951 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2952 nr_scanned = targets[lru] - nr[lru];
2953 nr[lru] = targets[lru] * (100 - percentage) / 100;
2954 nr[lru] -= min(nr[lru], nr_scanned);
2957 nr_scanned = targets[lru] - nr[lru];
2958 nr[lru] = targets[lru] * (100 - percentage) / 100;
2959 nr[lru] -= min(nr[lru], nr_scanned);
2961 scan_adjusted = true;
2963 blk_finish_plug(&plug);
2964 sc->nr_reclaimed += nr_reclaimed;
2967 * Even if we did not try to evict anon pages at all, we want to
2968 * rebalance the anon lru active/inactive ratio.
2970 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
2971 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
2972 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2973 sc, LRU_ACTIVE_ANON);
2976 /* Use reclaim/compaction for costly allocs or under memory pressure */
2977 static bool in_reclaim_compaction(struct scan_control *sc)
2979 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2980 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2981 sc->priority < DEF_PRIORITY - 2))
2988 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2989 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2990 * true if more pages should be reclaimed such that when the page allocator
2991 * calls try_to_compact_pages() that it will have enough free pages to succeed.
2992 * It will give up earlier than that if there is difficulty reclaiming pages.
2994 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2995 unsigned long nr_reclaimed,
2996 struct scan_control *sc)
2998 unsigned long pages_for_compaction;
2999 unsigned long inactive_lru_pages;
3002 /* If not in reclaim/compaction mode, stop */
3003 if (!in_reclaim_compaction(sc))
3007 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3008 * number of pages that were scanned. This will return to the caller
3009 * with the risk reclaim/compaction and the resulting allocation attempt
3010 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3011 * allocations through requiring that the full LRU list has been scanned
3012 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3013 * scan, but that approximation was wrong, and there were corner cases
3014 * where always a non-zero amount of pages were scanned.
3019 /* If compaction would go ahead or the allocation would succeed, stop */
3020 for (z = 0; z <= sc->reclaim_idx; z++) {
3021 struct zone *zone = &pgdat->node_zones[z];
3022 if (!managed_zone(zone))
3025 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3026 case COMPACT_SUCCESS:
3027 case COMPACT_CONTINUE:
3030 /* check next zone */
3036 * If we have not reclaimed enough pages for compaction and the
3037 * inactive lists are large enough, continue reclaiming
3039 pages_for_compaction = compact_gap(sc->order);
3040 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3041 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3042 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3044 return inactive_lru_pages > pages_for_compaction;
3047 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3049 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3050 struct mem_cgroup *memcg;
3052 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3054 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3055 unsigned long reclaimed;
3056 unsigned long scanned;
3059 * This loop can become CPU-bound when target memcgs
3060 * aren't eligible for reclaim - either because they
3061 * don't have any reclaimable pages, or because their
3062 * memory is explicitly protected. Avoid soft lockups.
3066 mem_cgroup_calculate_protection(target_memcg, memcg);
3068 if (mem_cgroup_below_min(memcg)) {
3071 * If there is no reclaimable memory, OOM.
3074 } else if (mem_cgroup_below_low(memcg)) {
3077 * Respect the protection only as long as
3078 * there is an unprotected supply
3079 * of reclaimable memory from other cgroups.
3081 if (!sc->memcg_low_reclaim) {
3082 sc->memcg_low_skipped = 1;
3085 memcg_memory_event(memcg, MEMCG_LOW);
3088 reclaimed = sc->nr_reclaimed;
3089 scanned = sc->nr_scanned;
3091 shrink_lruvec(lruvec, sc);
3093 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3096 /* Record the group's reclaim efficiency */
3097 vmpressure(sc->gfp_mask, memcg, false,
3098 sc->nr_scanned - scanned,
3099 sc->nr_reclaimed - reclaimed);
3101 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3104 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3106 struct reclaim_state *reclaim_state = current->reclaim_state;
3107 unsigned long nr_reclaimed, nr_scanned;
3108 struct lruvec *target_lruvec;
3109 bool reclaimable = false;
3112 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3116 * Flush the memory cgroup stats, so that we read accurate per-memcg
3117 * lruvec stats for heuristics.
3119 mem_cgroup_flush_stats();
3121 memset(&sc->nr, 0, sizeof(sc->nr));
3123 nr_reclaimed = sc->nr_reclaimed;
3124 nr_scanned = sc->nr_scanned;
3127 * Determine the scan balance between anon and file LRUs.
3129 spin_lock_irq(&target_lruvec->lru_lock);
3130 sc->anon_cost = target_lruvec->anon_cost;
3131 sc->file_cost = target_lruvec->file_cost;
3132 spin_unlock_irq(&target_lruvec->lru_lock);
3135 * Target desirable inactive:active list ratios for the anon
3136 * and file LRU lists.
3138 if (!sc->force_deactivate) {
3139 unsigned long refaults;
3141 refaults = lruvec_page_state(target_lruvec,
3142 WORKINGSET_ACTIVATE_ANON);
3143 if (refaults != target_lruvec->refaults[0] ||
3144 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3145 sc->may_deactivate |= DEACTIVATE_ANON;
3147 sc->may_deactivate &= ~DEACTIVATE_ANON;
3150 * When refaults are being observed, it means a new
3151 * workingset is being established. Deactivate to get
3152 * rid of any stale active pages quickly.
3154 refaults = lruvec_page_state(target_lruvec,
3155 WORKINGSET_ACTIVATE_FILE);
3156 if (refaults != target_lruvec->refaults[1] ||
3157 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3158 sc->may_deactivate |= DEACTIVATE_FILE;
3160 sc->may_deactivate &= ~DEACTIVATE_FILE;
3162 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3165 * If we have plenty of inactive file pages that aren't
3166 * thrashing, try to reclaim those first before touching
3169 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3170 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3171 sc->cache_trim_mode = 1;
3173 sc->cache_trim_mode = 0;
3176 * Prevent the reclaimer from falling into the cache trap: as
3177 * cache pages start out inactive, every cache fault will tip
3178 * the scan balance towards the file LRU. And as the file LRU
3179 * shrinks, so does the window for rotation from references.
3180 * This means we have a runaway feedback loop where a tiny
3181 * thrashing file LRU becomes infinitely more attractive than
3182 * anon pages. Try to detect this based on file LRU size.
3184 if (!cgroup_reclaim(sc)) {
3185 unsigned long total_high_wmark = 0;
3186 unsigned long free, anon;
3189 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3190 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3191 node_page_state(pgdat, NR_INACTIVE_FILE);
3193 for (z = 0; z < MAX_NR_ZONES; z++) {
3194 struct zone *zone = &pgdat->node_zones[z];
3195 if (!managed_zone(zone))
3198 total_high_wmark += high_wmark_pages(zone);
3202 * Consider anon: if that's low too, this isn't a
3203 * runaway file reclaim problem, but rather just
3204 * extreme pressure. Reclaim as per usual then.
3206 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3209 file + free <= total_high_wmark &&
3210 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3211 anon >> sc->priority;
3214 shrink_node_memcgs(pgdat, sc);
3216 if (reclaim_state) {
3217 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3218 reclaim_state->reclaimed_slab = 0;
3221 /* Record the subtree's reclaim efficiency */
3222 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3223 sc->nr_scanned - nr_scanned,
3224 sc->nr_reclaimed - nr_reclaimed);
3226 if (sc->nr_reclaimed - nr_reclaimed)
3229 if (current_is_kswapd()) {
3231 * If reclaim is isolating dirty pages under writeback,
3232 * it implies that the long-lived page allocation rate
3233 * is exceeding the page laundering rate. Either the
3234 * global limits are not being effective at throttling
3235 * processes due to the page distribution throughout
3236 * zones or there is heavy usage of a slow backing
3237 * device. The only option is to throttle from reclaim
3238 * context which is not ideal as there is no guarantee
3239 * the dirtying process is throttled in the same way
3240 * balance_dirty_pages() manages.
3242 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3243 * count the number of pages under pages flagged for
3244 * immediate reclaim and stall if any are encountered
3245 * in the nr_immediate check below.
3247 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3248 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3250 /* Allow kswapd to start writing pages during reclaim.*/
3251 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3252 set_bit(PGDAT_DIRTY, &pgdat->flags);
3255 * If kswapd scans pages marked for immediate
3256 * reclaim and under writeback (nr_immediate), it
3257 * implies that pages are cycling through the LRU
3258 * faster than they are written so forcibly stall
3259 * until some pages complete writeback.
3261 if (sc->nr.immediate)
3262 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3266 * Tag a node/memcg as congested if all the dirty pages were marked
3267 * for writeback and immediate reclaim (counted in nr.congested).
3269 * Legacy memcg will stall in page writeback so avoid forcibly
3270 * stalling in reclaim_throttle().
3272 if ((current_is_kswapd() ||
3273 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3274 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3275 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3278 * Stall direct reclaim for IO completions if the lruvec is
3279 * node is congested. Allow kswapd to continue until it
3280 * starts encountering unqueued dirty pages or cycling through
3281 * the LRU too quickly.
3283 if (!current_is_kswapd() && current_may_throttle() &&
3284 !sc->hibernation_mode &&
3285 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3286 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
3288 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3293 * Kswapd gives up on balancing particular nodes after too
3294 * many failures to reclaim anything from them and goes to
3295 * sleep. On reclaim progress, reset the failure counter. A
3296 * successful direct reclaim run will revive a dormant kswapd.
3299 pgdat->kswapd_failures = 0;
3303 * Returns true if compaction should go ahead for a costly-order request, or
3304 * the allocation would already succeed without compaction. Return false if we
3305 * should reclaim first.
3307 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3309 unsigned long watermark;
3310 enum compact_result suitable;
3312 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3313 if (suitable == COMPACT_SUCCESS)
3314 /* Allocation should succeed already. Don't reclaim. */
3316 if (suitable == COMPACT_SKIPPED)
3317 /* Compaction cannot yet proceed. Do reclaim. */
3321 * Compaction is already possible, but it takes time to run and there
3322 * are potentially other callers using the pages just freed. So proceed
3323 * with reclaim to make a buffer of free pages available to give
3324 * compaction a reasonable chance of completing and allocating the page.
3325 * Note that we won't actually reclaim the whole buffer in one attempt
3326 * as the target watermark in should_continue_reclaim() is lower. But if
3327 * we are already above the high+gap watermark, don't reclaim at all.
3329 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3331 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3334 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3337 * If reclaim is making progress greater than 12% efficiency then
3338 * wake all the NOPROGRESS throttled tasks.
3340 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3341 wait_queue_head_t *wqh;
3343 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3344 if (waitqueue_active(wqh))
3351 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
3352 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
3353 * under writeback and marked for immediate reclaim at the tail of the
3356 if (current_is_kswapd() || cgroup_reclaim(sc))
3359 /* Throttle if making no progress at high prioities. */
3360 if (sc->priority == 1 && !sc->nr_reclaimed)
3361 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3365 * This is the direct reclaim path, for page-allocating processes. We only
3366 * try to reclaim pages from zones which will satisfy the caller's allocation
3369 * If a zone is deemed to be full of pinned pages then just give it a light
3370 * scan then give up on it.
3372 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3376 unsigned long nr_soft_reclaimed;
3377 unsigned long nr_soft_scanned;
3379 pg_data_t *last_pgdat = NULL;
3380 pg_data_t *first_pgdat = NULL;
3383 * If the number of buffer_heads in the machine exceeds the maximum
3384 * allowed level, force direct reclaim to scan the highmem zone as
3385 * highmem pages could be pinning lowmem pages storing buffer_heads
3387 orig_mask = sc->gfp_mask;
3388 if (buffer_heads_over_limit) {
3389 sc->gfp_mask |= __GFP_HIGHMEM;
3390 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3393 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3394 sc->reclaim_idx, sc->nodemask) {
3396 * Take care memory controller reclaiming has small influence
3399 if (!cgroup_reclaim(sc)) {
3400 if (!cpuset_zone_allowed(zone,
3401 GFP_KERNEL | __GFP_HARDWALL))
3405 * If we already have plenty of memory free for
3406 * compaction in this zone, don't free any more.
3407 * Even though compaction is invoked for any
3408 * non-zero order, only frequent costly order
3409 * reclamation is disruptive enough to become a
3410 * noticeable problem, like transparent huge
3413 if (IS_ENABLED(CONFIG_COMPACTION) &&
3414 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3415 compaction_ready(zone, sc)) {
3416 sc->compaction_ready = true;
3421 * Shrink each node in the zonelist once. If the
3422 * zonelist is ordered by zone (not the default) then a
3423 * node may be shrunk multiple times but in that case
3424 * the user prefers lower zones being preserved.
3426 if (zone->zone_pgdat == last_pgdat)
3430 * This steals pages from memory cgroups over softlimit
3431 * and returns the number of reclaimed pages and
3432 * scanned pages. This works for global memory pressure
3433 * and balancing, not for a memcg's limit.
3435 nr_soft_scanned = 0;
3436 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3437 sc->order, sc->gfp_mask,
3439 sc->nr_reclaimed += nr_soft_reclaimed;
3440 sc->nr_scanned += nr_soft_scanned;
3441 /* need some check for avoid more shrink_zone() */
3445 first_pgdat = zone->zone_pgdat;
3447 /* See comment about same check for global reclaim above */
3448 if (zone->zone_pgdat == last_pgdat)
3450 last_pgdat = zone->zone_pgdat;
3451 shrink_node(zone->zone_pgdat, sc);
3455 consider_reclaim_throttle(first_pgdat, sc);
3458 * Restore to original mask to avoid the impact on the caller if we
3459 * promoted it to __GFP_HIGHMEM.
3461 sc->gfp_mask = orig_mask;
3464 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3466 struct lruvec *target_lruvec;
3467 unsigned long refaults;
3469 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3470 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3471 target_lruvec->refaults[0] = refaults;
3472 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3473 target_lruvec->refaults[1] = refaults;
3477 * This is the main entry point to direct page reclaim.
3479 * If a full scan of the inactive list fails to free enough memory then we
3480 * are "out of memory" and something needs to be killed.
3482 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3483 * high - the zone may be full of dirty or under-writeback pages, which this
3484 * caller can't do much about. We kick the writeback threads and take explicit
3485 * naps in the hope that some of these pages can be written. But if the
3486 * allocating task holds filesystem locks which prevent writeout this might not
3487 * work, and the allocation attempt will fail.
3489 * returns: 0, if no pages reclaimed
3490 * else, the number of pages reclaimed
3492 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3493 struct scan_control *sc)
3495 int initial_priority = sc->priority;
3496 pg_data_t *last_pgdat;
3500 delayacct_freepages_start();
3502 if (!cgroup_reclaim(sc))
3503 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3506 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3509 shrink_zones(zonelist, sc);
3511 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3514 if (sc->compaction_ready)
3518 * If we're getting trouble reclaiming, start doing
3519 * writepage even in laptop mode.
3521 if (sc->priority < DEF_PRIORITY - 2)
3522 sc->may_writepage = 1;
3523 } while (--sc->priority >= 0);
3526 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3528 if (zone->zone_pgdat == last_pgdat)
3530 last_pgdat = zone->zone_pgdat;
3532 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3534 if (cgroup_reclaim(sc)) {
3535 struct lruvec *lruvec;
3537 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3539 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3543 delayacct_freepages_end();
3545 if (sc->nr_reclaimed)
3546 return sc->nr_reclaimed;
3548 /* Aborted reclaim to try compaction? don't OOM, then */
3549 if (sc->compaction_ready)
3553 * We make inactive:active ratio decisions based on the node's
3554 * composition of memory, but a restrictive reclaim_idx or a
3555 * memory.low cgroup setting can exempt large amounts of
3556 * memory from reclaim. Neither of which are very common, so
3557 * instead of doing costly eligibility calculations of the
3558 * entire cgroup subtree up front, we assume the estimates are
3559 * good, and retry with forcible deactivation if that fails.
3561 if (sc->skipped_deactivate) {
3562 sc->priority = initial_priority;
3563 sc->force_deactivate = 1;
3564 sc->skipped_deactivate = 0;
3568 /* Untapped cgroup reserves? Don't OOM, retry. */
3569 if (sc->memcg_low_skipped) {
3570 sc->priority = initial_priority;
3571 sc->force_deactivate = 0;
3572 sc->memcg_low_reclaim = 1;
3573 sc->memcg_low_skipped = 0;
3580 static bool allow_direct_reclaim(pg_data_t *pgdat)
3583 unsigned long pfmemalloc_reserve = 0;
3584 unsigned long free_pages = 0;
3588 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3591 for (i = 0; i <= ZONE_NORMAL; i++) {
3592 zone = &pgdat->node_zones[i];
3593 if (!managed_zone(zone))
3596 if (!zone_reclaimable_pages(zone))
3599 pfmemalloc_reserve += min_wmark_pages(zone);
3600 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3603 /* If there are no reserves (unexpected config) then do not throttle */
3604 if (!pfmemalloc_reserve)
3607 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3609 /* kswapd must be awake if processes are being throttled */
3610 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3611 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3612 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3614 wake_up_interruptible(&pgdat->kswapd_wait);
3621 * Throttle direct reclaimers if backing storage is backed by the network
3622 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3623 * depleted. kswapd will continue to make progress and wake the processes
3624 * when the low watermark is reached.
3626 * Returns true if a fatal signal was delivered during throttling. If this
3627 * happens, the page allocator should not consider triggering the OOM killer.
3629 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3630 nodemask_t *nodemask)
3634 pg_data_t *pgdat = NULL;
3637 * Kernel threads should not be throttled as they may be indirectly
3638 * responsible for cleaning pages necessary for reclaim to make forward
3639 * progress. kjournald for example may enter direct reclaim while
3640 * committing a transaction where throttling it could forcing other
3641 * processes to block on log_wait_commit().
3643 if (current->flags & PF_KTHREAD)
3647 * If a fatal signal is pending, this process should not throttle.
3648 * It should return quickly so it can exit and free its memory
3650 if (fatal_signal_pending(current))
3654 * Check if the pfmemalloc reserves are ok by finding the first node
3655 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3656 * GFP_KERNEL will be required for allocating network buffers when
3657 * swapping over the network so ZONE_HIGHMEM is unusable.
3659 * Throttling is based on the first usable node and throttled processes
3660 * wait on a queue until kswapd makes progress and wakes them. There
3661 * is an affinity then between processes waking up and where reclaim
3662 * progress has been made assuming the process wakes on the same node.
3663 * More importantly, processes running on remote nodes will not compete
3664 * for remote pfmemalloc reserves and processes on different nodes
3665 * should make reasonable progress.
3667 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3668 gfp_zone(gfp_mask), nodemask) {
3669 if (zone_idx(zone) > ZONE_NORMAL)
3672 /* Throttle based on the first usable node */
3673 pgdat = zone->zone_pgdat;
3674 if (allow_direct_reclaim(pgdat))
3679 /* If no zone was usable by the allocation flags then do not throttle */
3683 /* Account for the throttling */
3684 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3687 * If the caller cannot enter the filesystem, it's possible that it
3688 * is due to the caller holding an FS lock or performing a journal
3689 * transaction in the case of a filesystem like ext[3|4]. In this case,
3690 * it is not safe to block on pfmemalloc_wait as kswapd could be
3691 * blocked waiting on the same lock. Instead, throttle for up to a
3692 * second before continuing.
3694 if (!(gfp_mask & __GFP_FS))
3695 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3696 allow_direct_reclaim(pgdat), HZ);
3698 /* Throttle until kswapd wakes the process */
3699 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3700 allow_direct_reclaim(pgdat));
3702 if (fatal_signal_pending(current))
3709 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3710 gfp_t gfp_mask, nodemask_t *nodemask)
3712 unsigned long nr_reclaimed;
3713 struct scan_control sc = {
3714 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3715 .gfp_mask = current_gfp_context(gfp_mask),
3716 .reclaim_idx = gfp_zone(gfp_mask),
3718 .nodemask = nodemask,
3719 .priority = DEF_PRIORITY,
3720 .may_writepage = !laptop_mode,
3726 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3727 * Confirm they are large enough for max values.
3729 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3730 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3731 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3734 * Do not enter reclaim if fatal signal was delivered while throttled.
3735 * 1 is returned so that the page allocator does not OOM kill at this
3738 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3741 set_task_reclaim_state(current, &sc.reclaim_state);
3742 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3744 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3746 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3747 set_task_reclaim_state(current, NULL);
3749 return nr_reclaimed;
3754 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3755 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3756 gfp_t gfp_mask, bool noswap,
3758 unsigned long *nr_scanned)
3760 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3761 struct scan_control sc = {
3762 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3763 .target_mem_cgroup = memcg,
3764 .may_writepage = !laptop_mode,
3766 .reclaim_idx = MAX_NR_ZONES - 1,
3767 .may_swap = !noswap,
3770 WARN_ON_ONCE(!current->reclaim_state);
3772 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3773 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3775 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3779 * NOTE: Although we can get the priority field, using it
3780 * here is not a good idea, since it limits the pages we can scan.
3781 * if we don't reclaim here, the shrink_node from balance_pgdat
3782 * will pick up pages from other mem cgroup's as well. We hack
3783 * the priority and make it zero.
3785 shrink_lruvec(lruvec, &sc);
3787 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3789 *nr_scanned = sc.nr_scanned;
3791 return sc.nr_reclaimed;
3794 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3795 unsigned long nr_pages,
3799 unsigned long nr_reclaimed;
3800 unsigned int noreclaim_flag;
3801 struct scan_control sc = {
3802 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3803 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3804 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3805 .reclaim_idx = MAX_NR_ZONES - 1,
3806 .target_mem_cgroup = memcg,
3807 .priority = DEF_PRIORITY,
3808 .may_writepage = !laptop_mode,
3810 .may_swap = may_swap,
3813 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3814 * equal pressure on all the nodes. This is based on the assumption that
3815 * the reclaim does not bail out early.
3817 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3819 set_task_reclaim_state(current, &sc.reclaim_state);
3820 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3821 noreclaim_flag = memalloc_noreclaim_save();
3823 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3825 memalloc_noreclaim_restore(noreclaim_flag);
3826 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3827 set_task_reclaim_state(current, NULL);
3829 return nr_reclaimed;
3833 static void age_active_anon(struct pglist_data *pgdat,
3834 struct scan_control *sc)
3836 struct mem_cgroup *memcg;
3837 struct lruvec *lruvec;
3839 if (!can_age_anon_pages(pgdat, sc))
3842 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3843 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3846 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3848 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3849 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3850 sc, LRU_ACTIVE_ANON);
3851 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3855 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3861 * Check for watermark boosts top-down as the higher zones
3862 * are more likely to be boosted. Both watermarks and boosts
3863 * should not be checked at the same time as reclaim would
3864 * start prematurely when there is no boosting and a lower
3867 for (i = highest_zoneidx; i >= 0; i--) {
3868 zone = pgdat->node_zones + i;
3869 if (!managed_zone(zone))
3872 if (zone->watermark_boost)
3880 * Returns true if there is an eligible zone balanced for the request order
3881 * and highest_zoneidx
3883 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3886 unsigned long mark = -1;
3890 * Check watermarks bottom-up as lower zones are more likely to
3893 for (i = 0; i <= highest_zoneidx; i++) {
3894 zone = pgdat->node_zones + i;
3896 if (!managed_zone(zone))
3899 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
3900 mark = wmark_pages(zone, WMARK_PROMO);
3902 mark = high_wmark_pages(zone);
3903 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3908 * If a node has no populated zone within highest_zoneidx, it does not
3909 * need balancing by definition. This can happen if a zone-restricted
3910 * allocation tries to wake a remote kswapd.
3918 /* Clear pgdat state for congested, dirty or under writeback. */
3919 static void clear_pgdat_congested(pg_data_t *pgdat)
3921 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3923 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3924 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3925 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3929 * Prepare kswapd for sleeping. This verifies that there are no processes
3930 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3932 * Returns true if kswapd is ready to sleep
3934 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3935 int highest_zoneidx)
3938 * The throttled processes are normally woken up in balance_pgdat() as
3939 * soon as allow_direct_reclaim() is true. But there is a potential
3940 * race between when kswapd checks the watermarks and a process gets
3941 * throttled. There is also a potential race if processes get
3942 * throttled, kswapd wakes, a large process exits thereby balancing the
3943 * zones, which causes kswapd to exit balance_pgdat() before reaching
3944 * the wake up checks. If kswapd is going to sleep, no process should
3945 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3946 * the wake up is premature, processes will wake kswapd and get
3947 * throttled again. The difference from wake ups in balance_pgdat() is
3948 * that here we are under prepare_to_wait().
3950 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3951 wake_up_all(&pgdat->pfmemalloc_wait);
3953 /* Hopeless node, leave it to direct reclaim */
3954 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3957 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3958 clear_pgdat_congested(pgdat);
3966 * kswapd shrinks a node of pages that are at or below the highest usable
3967 * zone that is currently unbalanced.
3969 * Returns true if kswapd scanned at least the requested number of pages to
3970 * reclaim or if the lack of progress was due to pages under writeback.
3971 * This is used to determine if the scanning priority needs to be raised.
3973 static bool kswapd_shrink_node(pg_data_t *pgdat,
3974 struct scan_control *sc)
3979 /* Reclaim a number of pages proportional to the number of zones */
3980 sc->nr_to_reclaim = 0;
3981 for (z = 0; z <= sc->reclaim_idx; z++) {
3982 zone = pgdat->node_zones + z;
3983 if (!managed_zone(zone))
3986 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3990 * Historically care was taken to put equal pressure on all zones but
3991 * now pressure is applied based on node LRU order.
3993 shrink_node(pgdat, sc);
3996 * Fragmentation may mean that the system cannot be rebalanced for
3997 * high-order allocations. If twice the allocation size has been
3998 * reclaimed then recheck watermarks only at order-0 to prevent
3999 * excessive reclaim. Assume that a process requested a high-order
4000 * can direct reclaim/compact.
4002 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4005 return sc->nr_scanned >= sc->nr_to_reclaim;
4008 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4010 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4015 for (i = 0; i <= highest_zoneidx; i++) {
4016 zone = pgdat->node_zones + i;
4018 if (!managed_zone(zone))
4022 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4024 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4029 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4031 update_reclaim_active(pgdat, highest_zoneidx, true);
4035 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4037 update_reclaim_active(pgdat, highest_zoneidx, false);
4041 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4042 * that are eligible for use by the caller until at least one zone is
4045 * Returns the order kswapd finished reclaiming at.
4047 * kswapd scans the zones in the highmem->normal->dma direction. It skips
4048 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4049 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4050 * or lower is eligible for reclaim until at least one usable zone is
4053 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4056 unsigned long nr_soft_reclaimed;
4057 unsigned long nr_soft_scanned;
4058 unsigned long pflags;
4059 unsigned long nr_boost_reclaim;
4060 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4063 struct scan_control sc = {
4064 .gfp_mask = GFP_KERNEL,
4069 set_task_reclaim_state(current, &sc.reclaim_state);
4070 psi_memstall_enter(&pflags);
4071 __fs_reclaim_acquire(_THIS_IP_);
4073 count_vm_event(PAGEOUTRUN);
4076 * Account for the reclaim boost. Note that the zone boost is left in
4077 * place so that parallel allocations that are near the watermark will
4078 * stall or direct reclaim until kswapd is finished.
4080 nr_boost_reclaim = 0;
4081 for (i = 0; i <= highest_zoneidx; i++) {
4082 zone = pgdat->node_zones + i;
4083 if (!managed_zone(zone))
4086 nr_boost_reclaim += zone->watermark_boost;
4087 zone_boosts[i] = zone->watermark_boost;
4089 boosted = nr_boost_reclaim;
4092 set_reclaim_active(pgdat, highest_zoneidx);
4093 sc.priority = DEF_PRIORITY;
4095 unsigned long nr_reclaimed = sc.nr_reclaimed;
4096 bool raise_priority = true;
4100 sc.reclaim_idx = highest_zoneidx;
4103 * If the number of buffer_heads exceeds the maximum allowed
4104 * then consider reclaiming from all zones. This has a dual
4105 * purpose -- on 64-bit systems it is expected that
4106 * buffer_heads are stripped during active rotation. On 32-bit
4107 * systems, highmem pages can pin lowmem memory and shrinking
4108 * buffers can relieve lowmem pressure. Reclaim may still not
4109 * go ahead if all eligible zones for the original allocation
4110 * request are balanced to avoid excessive reclaim from kswapd.
4112 if (buffer_heads_over_limit) {
4113 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4114 zone = pgdat->node_zones + i;
4115 if (!managed_zone(zone))
4124 * If the pgdat is imbalanced then ignore boosting and preserve
4125 * the watermarks for a later time and restart. Note that the
4126 * zone watermarks will be still reset at the end of balancing
4127 * on the grounds that the normal reclaim should be enough to
4128 * re-evaluate if boosting is required when kswapd next wakes.
4130 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4131 if (!balanced && nr_boost_reclaim) {
4132 nr_boost_reclaim = 0;
4137 * If boosting is not active then only reclaim if there are no
4138 * eligible zones. Note that sc.reclaim_idx is not used as
4139 * buffer_heads_over_limit may have adjusted it.
4141 if (!nr_boost_reclaim && balanced)
4144 /* Limit the priority of boosting to avoid reclaim writeback */
4145 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4146 raise_priority = false;
4149 * Do not writeback or swap pages for boosted reclaim. The
4150 * intent is to relieve pressure not issue sub-optimal IO
4151 * from reclaim context. If no pages are reclaimed, the
4152 * reclaim will be aborted.
4154 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4155 sc.may_swap = !nr_boost_reclaim;
4158 * Do some background aging of the anon list, to give
4159 * pages a chance to be referenced before reclaiming. All
4160 * pages are rotated regardless of classzone as this is
4161 * about consistent aging.
4163 age_active_anon(pgdat, &sc);
4166 * If we're getting trouble reclaiming, start doing writepage
4167 * even in laptop mode.
4169 if (sc.priority < DEF_PRIORITY - 2)
4170 sc.may_writepage = 1;
4172 /* Call soft limit reclaim before calling shrink_node. */
4174 nr_soft_scanned = 0;
4175 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4176 sc.gfp_mask, &nr_soft_scanned);
4177 sc.nr_reclaimed += nr_soft_reclaimed;
4180 * There should be no need to raise the scanning priority if
4181 * enough pages are already being scanned that that high
4182 * watermark would be met at 100% efficiency.
4184 if (kswapd_shrink_node(pgdat, &sc))
4185 raise_priority = false;
4188 * If the low watermark is met there is no need for processes
4189 * to be throttled on pfmemalloc_wait as they should not be
4190 * able to safely make forward progress. Wake them
4192 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4193 allow_direct_reclaim(pgdat))
4194 wake_up_all(&pgdat->pfmemalloc_wait);
4196 /* Check if kswapd should be suspending */
4197 __fs_reclaim_release(_THIS_IP_);
4198 ret = try_to_freeze();
4199 __fs_reclaim_acquire(_THIS_IP_);
4200 if (ret || kthread_should_stop())
4204 * Raise priority if scanning rate is too low or there was no
4205 * progress in reclaiming pages
4207 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4208 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4211 * If reclaim made no progress for a boost, stop reclaim as
4212 * IO cannot be queued and it could be an infinite loop in
4213 * extreme circumstances.
4215 if (nr_boost_reclaim && !nr_reclaimed)
4218 if (raise_priority || !nr_reclaimed)
4220 } while (sc.priority >= 1);
4222 if (!sc.nr_reclaimed)
4223 pgdat->kswapd_failures++;
4226 clear_reclaim_active(pgdat, highest_zoneidx);
4228 /* If reclaim was boosted, account for the reclaim done in this pass */
4230 unsigned long flags;
4232 for (i = 0; i <= highest_zoneidx; i++) {
4233 if (!zone_boosts[i])
4236 /* Increments are under the zone lock */
4237 zone = pgdat->node_zones + i;
4238 spin_lock_irqsave(&zone->lock, flags);
4239 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4240 spin_unlock_irqrestore(&zone->lock, flags);
4244 * As there is now likely space, wakeup kcompact to defragment
4247 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4250 snapshot_refaults(NULL, pgdat);
4251 __fs_reclaim_release(_THIS_IP_);
4252 psi_memstall_leave(&pflags);
4253 set_task_reclaim_state(current, NULL);
4256 * Return the order kswapd stopped reclaiming at as
4257 * prepare_kswapd_sleep() takes it into account. If another caller
4258 * entered the allocator slow path while kswapd was awake, order will
4259 * remain at the higher level.
4265 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4266 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4267 * not a valid index then either kswapd runs for first time or kswapd couldn't
4268 * sleep after previous reclaim attempt (node is still unbalanced). In that
4269 * case return the zone index of the previous kswapd reclaim cycle.
4271 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4272 enum zone_type prev_highest_zoneidx)
4274 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4276 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4279 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4280 unsigned int highest_zoneidx)
4285 if (freezing(current) || kthread_should_stop())
4288 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4291 * Try to sleep for a short interval. Note that kcompactd will only be
4292 * woken if it is possible to sleep for a short interval. This is
4293 * deliberate on the assumption that if reclaim cannot keep an
4294 * eligible zone balanced that it's also unlikely that compaction will
4297 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4299 * Compaction records what page blocks it recently failed to
4300 * isolate pages from and skips them in the future scanning.
4301 * When kswapd is going to sleep, it is reasonable to assume
4302 * that pages and compaction may succeed so reset the cache.
4304 reset_isolation_suitable(pgdat);
4307 * We have freed the memory, now we should compact it to make
4308 * allocation of the requested order possible.
4310 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4312 remaining = schedule_timeout(HZ/10);
4315 * If woken prematurely then reset kswapd_highest_zoneidx and
4316 * order. The values will either be from a wakeup request or
4317 * the previous request that slept prematurely.
4320 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4321 kswapd_highest_zoneidx(pgdat,
4324 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4325 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4328 finish_wait(&pgdat->kswapd_wait, &wait);
4329 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4333 * After a short sleep, check if it was a premature sleep. If not, then
4334 * go fully to sleep until explicitly woken up.
4337 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4338 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4341 * vmstat counters are not perfectly accurate and the estimated
4342 * value for counters such as NR_FREE_PAGES can deviate from the
4343 * true value by nr_online_cpus * threshold. To avoid the zone
4344 * watermarks being breached while under pressure, we reduce the
4345 * per-cpu vmstat threshold while kswapd is awake and restore
4346 * them before going back to sleep.
4348 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4350 if (!kthread_should_stop())
4353 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4356 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4358 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4360 finish_wait(&pgdat->kswapd_wait, &wait);
4364 * The background pageout daemon, started as a kernel thread
4365 * from the init process.
4367 * This basically trickles out pages so that we have _some_
4368 * free memory available even if there is no other activity
4369 * that frees anything up. This is needed for things like routing
4370 * etc, where we otherwise might have all activity going on in
4371 * asynchronous contexts that cannot page things out.
4373 * If there are applications that are active memory-allocators
4374 * (most normal use), this basically shouldn't matter.
4376 static int kswapd(void *p)
4378 unsigned int alloc_order, reclaim_order;
4379 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4380 pg_data_t *pgdat = (pg_data_t *)p;
4381 struct task_struct *tsk = current;
4382 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4384 if (!cpumask_empty(cpumask))
4385 set_cpus_allowed_ptr(tsk, cpumask);
4388 * Tell the memory management that we're a "memory allocator",
4389 * and that if we need more memory we should get access to it
4390 * regardless (see "__alloc_pages()"). "kswapd" should
4391 * never get caught in the normal page freeing logic.
4393 * (Kswapd normally doesn't need memory anyway, but sometimes
4394 * you need a small amount of memory in order to be able to
4395 * page out something else, and this flag essentially protects
4396 * us from recursively trying to free more memory as we're
4397 * trying to free the first piece of memory in the first place).
4399 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
4402 WRITE_ONCE(pgdat->kswapd_order, 0);
4403 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4404 atomic_set(&pgdat->nr_writeback_throttled, 0);
4408 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4409 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4413 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4416 /* Read the new order and highest_zoneidx */
4417 alloc_order = READ_ONCE(pgdat->kswapd_order);
4418 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4420 WRITE_ONCE(pgdat->kswapd_order, 0);
4421 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4423 ret = try_to_freeze();
4424 if (kthread_should_stop())
4428 * We can speed up thawing tasks if we don't call balance_pgdat
4429 * after returning from the refrigerator
4435 * Reclaim begins at the requested order but if a high-order
4436 * reclaim fails then kswapd falls back to reclaiming for
4437 * order-0. If that happens, kswapd will consider sleeping
4438 * for the order it finished reclaiming at (reclaim_order)
4439 * but kcompactd is woken to compact for the original
4440 * request (alloc_order).
4442 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4444 reclaim_order = balance_pgdat(pgdat, alloc_order,
4446 if (reclaim_order < alloc_order)
4447 goto kswapd_try_sleep;
4450 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
4456 * A zone is low on free memory or too fragmented for high-order memory. If
4457 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4458 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4459 * has failed or is not needed, still wake up kcompactd if only compaction is
4462 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4463 enum zone_type highest_zoneidx)
4466 enum zone_type curr_idx;
4468 if (!managed_zone(zone))
4471 if (!cpuset_zone_allowed(zone, gfp_flags))
4474 pgdat = zone->zone_pgdat;
4475 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4477 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4478 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4480 if (READ_ONCE(pgdat->kswapd_order) < order)
4481 WRITE_ONCE(pgdat->kswapd_order, order);
4483 if (!waitqueue_active(&pgdat->kswapd_wait))
4486 /* Hopeless node, leave it to direct reclaim if possible */
4487 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4488 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4489 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4491 * There may be plenty of free memory available, but it's too
4492 * fragmented for high-order allocations. Wake up kcompactd
4493 * and rely on compaction_suitable() to determine if it's
4494 * needed. If it fails, it will defer subsequent attempts to
4495 * ratelimit its work.
4497 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4498 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4502 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4504 wake_up_interruptible(&pgdat->kswapd_wait);
4507 #ifdef CONFIG_HIBERNATION
4509 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4512 * Rather than trying to age LRUs the aim is to preserve the overall
4513 * LRU order by reclaiming preferentially
4514 * inactive > active > active referenced > active mapped
4516 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4518 struct scan_control sc = {
4519 .nr_to_reclaim = nr_to_reclaim,
4520 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4521 .reclaim_idx = MAX_NR_ZONES - 1,
4522 .priority = DEF_PRIORITY,
4526 .hibernation_mode = 1,
4528 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4529 unsigned long nr_reclaimed;
4530 unsigned int noreclaim_flag;
4532 fs_reclaim_acquire(sc.gfp_mask);
4533 noreclaim_flag = memalloc_noreclaim_save();
4534 set_task_reclaim_state(current, &sc.reclaim_state);
4536 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4538 set_task_reclaim_state(current, NULL);
4539 memalloc_noreclaim_restore(noreclaim_flag);
4540 fs_reclaim_release(sc.gfp_mask);
4542 return nr_reclaimed;
4544 #endif /* CONFIG_HIBERNATION */
4547 * This kswapd start function will be called by init and node-hot-add.
4548 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4550 void kswapd_run(int nid)
4552 pg_data_t *pgdat = NODE_DATA(nid);
4557 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4558 if (IS_ERR(pgdat->kswapd)) {
4559 /* failure at boot is fatal */
4560 BUG_ON(system_state < SYSTEM_RUNNING);
4561 pr_err("Failed to start kswapd on node %d\n", nid);
4562 pgdat->kswapd = NULL;
4567 * Called by memory hotplug when all memory in a node is offlined. Caller must
4568 * hold mem_hotplug_begin/end().
4570 void kswapd_stop(int nid)
4572 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4575 kthread_stop(kswapd);
4576 NODE_DATA(nid)->kswapd = NULL;
4580 static int __init kswapd_init(void)
4585 for_each_node_state(nid, N_MEMORY)
4590 module_init(kswapd_init)
4596 * If non-zero call node_reclaim when the number of free pages falls below
4599 int node_reclaim_mode __read_mostly;
4602 * Priority for NODE_RECLAIM. This determines the fraction of pages
4603 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4606 #define NODE_RECLAIM_PRIORITY 4
4609 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4612 int sysctl_min_unmapped_ratio = 1;
4615 * If the number of slab pages in a zone grows beyond this percentage then
4616 * slab reclaim needs to occur.
4618 int sysctl_min_slab_ratio = 5;
4620 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4622 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4623 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4624 node_page_state(pgdat, NR_ACTIVE_FILE);
4627 * It's possible for there to be more file mapped pages than
4628 * accounted for by the pages on the file LRU lists because
4629 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4631 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4634 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4635 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4637 unsigned long nr_pagecache_reclaimable;
4638 unsigned long delta = 0;
4641 * If RECLAIM_UNMAP is set, then all file pages are considered
4642 * potentially reclaimable. Otherwise, we have to worry about
4643 * pages like swapcache and node_unmapped_file_pages() provides
4646 if (node_reclaim_mode & RECLAIM_UNMAP)
4647 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4649 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4651 /* If we can't clean pages, remove dirty pages from consideration */
4652 if (!(node_reclaim_mode & RECLAIM_WRITE))
4653 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4655 /* Watch for any possible underflows due to delta */
4656 if (unlikely(delta > nr_pagecache_reclaimable))
4657 delta = nr_pagecache_reclaimable;
4659 return nr_pagecache_reclaimable - delta;
4663 * Try to free up some pages from this node through reclaim.
4665 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4667 /* Minimum pages needed in order to stay on node */
4668 const unsigned long nr_pages = 1 << order;
4669 struct task_struct *p = current;
4670 unsigned int noreclaim_flag;
4671 struct scan_control sc = {
4672 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4673 .gfp_mask = current_gfp_context(gfp_mask),
4675 .priority = NODE_RECLAIM_PRIORITY,
4676 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4677 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4679 .reclaim_idx = gfp_zone(gfp_mask),
4681 unsigned long pflags;
4683 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4687 psi_memstall_enter(&pflags);
4688 fs_reclaim_acquire(sc.gfp_mask);
4690 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4692 noreclaim_flag = memalloc_noreclaim_save();
4693 set_task_reclaim_state(p, &sc.reclaim_state);
4695 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4697 * Free memory by calling shrink node with increasing
4698 * priorities until we have enough memory freed.
4701 shrink_node(pgdat, &sc);
4702 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4705 set_task_reclaim_state(p, NULL);
4706 memalloc_noreclaim_restore(noreclaim_flag);
4707 fs_reclaim_release(sc.gfp_mask);
4708 psi_memstall_leave(&pflags);
4710 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4712 return sc.nr_reclaimed >= nr_pages;
4715 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4720 * Node reclaim reclaims unmapped file backed pages and
4721 * slab pages if we are over the defined limits.
4723 * A small portion of unmapped file backed pages is needed for
4724 * file I/O otherwise pages read by file I/O will be immediately
4725 * thrown out if the node is overallocated. So we do not reclaim
4726 * if less than a specified percentage of the node is used by
4727 * unmapped file backed pages.
4729 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4730 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4731 pgdat->min_slab_pages)
4732 return NODE_RECLAIM_FULL;
4735 * Do not scan if the allocation should not be delayed.
4737 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4738 return NODE_RECLAIM_NOSCAN;
4741 * Only run node reclaim on the local node or on nodes that do not
4742 * have associated processors. This will favor the local processor
4743 * over remote processors and spread off node memory allocations
4744 * as wide as possible.
4746 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4747 return NODE_RECLAIM_NOSCAN;
4749 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4750 return NODE_RECLAIM_NOSCAN;
4752 ret = __node_reclaim(pgdat, gfp_mask, order);
4753 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4756 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4763 * check_move_unevictable_pages - check pages for evictability and move to
4764 * appropriate zone lru list
4765 * @pvec: pagevec with lru pages to check
4767 * Checks pages for evictability, if an evictable page is in the unevictable
4768 * lru list, moves it to the appropriate evictable lru list. This function
4769 * should be only used for lru pages.
4771 void check_move_unevictable_pages(struct pagevec *pvec)
4773 struct lruvec *lruvec = NULL;
4778 for (i = 0; i < pvec->nr; i++) {
4779 struct page *page = pvec->pages[i];
4780 struct folio *folio = page_folio(page);
4783 if (PageTransTail(page))
4786 nr_pages = thp_nr_pages(page);
4787 pgscanned += nr_pages;
4789 /* block memcg migration during page moving between lru */
4790 if (!TestClearPageLRU(page))
4793 lruvec = folio_lruvec_relock_irq(folio, lruvec);
4794 if (page_evictable(page) && PageUnevictable(page)) {
4795 del_page_from_lru_list(page, lruvec);
4796 ClearPageUnevictable(page);
4797 add_page_to_lru_list(page, lruvec);
4798 pgrescued += nr_pages;
4804 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4805 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4806 unlock_page_lruvec_irq(lruvec);
4807 } else if (pgscanned) {
4808 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4811 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);