1 // SPDX-License-Identifier: GPL-2.0
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
8 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/reset.h>
18 #include <linux/spi/spi.h>
20 #define DRIVER_NAME "spi_stm32"
22 /* STM32F4 SPI registers */
23 #define STM32F4_SPI_CR1 0x00
24 #define STM32F4_SPI_CR2 0x04
25 #define STM32F4_SPI_SR 0x08
26 #define STM32F4_SPI_DR 0x0C
27 #define STM32F4_SPI_I2SCFGR 0x1C
29 /* STM32F4_SPI_CR1 bit fields */
30 #define STM32F4_SPI_CR1_CPHA BIT(0)
31 #define STM32F4_SPI_CR1_CPOL BIT(1)
32 #define STM32F4_SPI_CR1_MSTR BIT(2)
33 #define STM32F4_SPI_CR1_BR_SHIFT 3
34 #define STM32F4_SPI_CR1_BR GENMASK(5, 3)
35 #define STM32F4_SPI_CR1_SPE BIT(6)
36 #define STM32F4_SPI_CR1_LSBFRST BIT(7)
37 #define STM32F4_SPI_CR1_SSI BIT(8)
38 #define STM32F4_SPI_CR1_SSM BIT(9)
39 #define STM32F4_SPI_CR1_RXONLY BIT(10)
40 #define STM32F4_SPI_CR1_DFF BIT(11)
41 #define STM32F4_SPI_CR1_CRCNEXT BIT(12)
42 #define STM32F4_SPI_CR1_CRCEN BIT(13)
43 #define STM32F4_SPI_CR1_BIDIOE BIT(14)
44 #define STM32F4_SPI_CR1_BIDIMODE BIT(15)
45 #define STM32F4_SPI_CR1_BR_MIN 0
46 #define STM32F4_SPI_CR1_BR_MAX (GENMASK(5, 3) >> 3)
48 /* STM32F4_SPI_CR2 bit fields */
49 #define STM32F4_SPI_CR2_RXDMAEN BIT(0)
50 #define STM32F4_SPI_CR2_TXDMAEN BIT(1)
51 #define STM32F4_SPI_CR2_SSOE BIT(2)
52 #define STM32F4_SPI_CR2_FRF BIT(4)
53 #define STM32F4_SPI_CR2_ERRIE BIT(5)
54 #define STM32F4_SPI_CR2_RXNEIE BIT(6)
55 #define STM32F4_SPI_CR2_TXEIE BIT(7)
57 /* STM32F4_SPI_SR bit fields */
58 #define STM32F4_SPI_SR_RXNE BIT(0)
59 #define STM32F4_SPI_SR_TXE BIT(1)
60 #define STM32F4_SPI_SR_CHSIDE BIT(2)
61 #define STM32F4_SPI_SR_UDR BIT(3)
62 #define STM32F4_SPI_SR_CRCERR BIT(4)
63 #define STM32F4_SPI_SR_MODF BIT(5)
64 #define STM32F4_SPI_SR_OVR BIT(6)
65 #define STM32F4_SPI_SR_BSY BIT(7)
66 #define STM32F4_SPI_SR_FRE BIT(8)
68 /* STM32F4_SPI_I2SCFGR bit fields */
69 #define STM32F4_SPI_I2SCFGR_I2SMOD BIT(11)
71 /* STM32F4 SPI Baud Rate min/max divisor */
72 #define STM32F4_SPI_BR_DIV_MIN (2 << STM32F4_SPI_CR1_BR_MIN)
73 #define STM32F4_SPI_BR_DIV_MAX (2 << STM32F4_SPI_CR1_BR_MAX)
75 /* STM32H7 SPI registers */
76 #define STM32H7_SPI_CR1 0x00
77 #define STM32H7_SPI_CR2 0x04
78 #define STM32H7_SPI_CFG1 0x08
79 #define STM32H7_SPI_CFG2 0x0C
80 #define STM32H7_SPI_IER 0x10
81 #define STM32H7_SPI_SR 0x14
82 #define STM32H7_SPI_IFCR 0x18
83 #define STM32H7_SPI_TXDR 0x20
84 #define STM32H7_SPI_RXDR 0x30
85 #define STM32H7_SPI_I2SCFGR 0x50
87 /* STM32H7_SPI_CR1 bit fields */
88 #define STM32H7_SPI_CR1_SPE BIT(0)
89 #define STM32H7_SPI_CR1_MASRX BIT(8)
90 #define STM32H7_SPI_CR1_CSTART BIT(9)
91 #define STM32H7_SPI_CR1_CSUSP BIT(10)
92 #define STM32H7_SPI_CR1_HDDIR BIT(11)
93 #define STM32H7_SPI_CR1_SSI BIT(12)
95 /* STM32H7_SPI_CR2 bit fields */
96 #define STM32H7_SPI_CR2_TSIZE_SHIFT 0
97 #define STM32H7_SPI_CR2_TSIZE GENMASK(15, 0)
99 /* STM32H7_SPI_CFG1 bit fields */
100 #define STM32H7_SPI_CFG1_DSIZE_SHIFT 0
101 #define STM32H7_SPI_CFG1_DSIZE GENMASK(4, 0)
102 #define STM32H7_SPI_CFG1_FTHLV_SHIFT 5
103 #define STM32H7_SPI_CFG1_FTHLV GENMASK(8, 5)
104 #define STM32H7_SPI_CFG1_RXDMAEN BIT(14)
105 #define STM32H7_SPI_CFG1_TXDMAEN BIT(15)
106 #define STM32H7_SPI_CFG1_MBR_SHIFT 28
107 #define STM32H7_SPI_CFG1_MBR GENMASK(30, 28)
108 #define STM32H7_SPI_CFG1_MBR_MIN 0
109 #define STM32H7_SPI_CFG1_MBR_MAX (GENMASK(30, 28) >> 28)
111 /* STM32H7_SPI_CFG2 bit fields */
112 #define STM32H7_SPI_CFG2_MIDI_SHIFT 4
113 #define STM32H7_SPI_CFG2_MIDI GENMASK(7, 4)
114 #define STM32H7_SPI_CFG2_COMM_SHIFT 17
115 #define STM32H7_SPI_CFG2_COMM GENMASK(18, 17)
116 #define STM32H7_SPI_CFG2_SP_SHIFT 19
117 #define STM32H7_SPI_CFG2_SP GENMASK(21, 19)
118 #define STM32H7_SPI_CFG2_MASTER BIT(22)
119 #define STM32H7_SPI_CFG2_LSBFRST BIT(23)
120 #define STM32H7_SPI_CFG2_CPHA BIT(24)
121 #define STM32H7_SPI_CFG2_CPOL BIT(25)
122 #define STM32H7_SPI_CFG2_SSM BIT(26)
123 #define STM32H7_SPI_CFG2_AFCNTR BIT(31)
125 /* STM32H7_SPI_IER bit fields */
126 #define STM32H7_SPI_IER_RXPIE BIT(0)
127 #define STM32H7_SPI_IER_TXPIE BIT(1)
128 #define STM32H7_SPI_IER_DXPIE BIT(2)
129 #define STM32H7_SPI_IER_EOTIE BIT(3)
130 #define STM32H7_SPI_IER_TXTFIE BIT(4)
131 #define STM32H7_SPI_IER_OVRIE BIT(6)
132 #define STM32H7_SPI_IER_MODFIE BIT(9)
133 #define STM32H7_SPI_IER_ALL GENMASK(10, 0)
135 /* STM32H7_SPI_SR bit fields */
136 #define STM32H7_SPI_SR_RXP BIT(0)
137 #define STM32H7_SPI_SR_TXP BIT(1)
138 #define STM32H7_SPI_SR_EOT BIT(3)
139 #define STM32H7_SPI_SR_OVR BIT(6)
140 #define STM32H7_SPI_SR_MODF BIT(9)
141 #define STM32H7_SPI_SR_SUSP BIT(11)
142 #define STM32H7_SPI_SR_RXPLVL_SHIFT 13
143 #define STM32H7_SPI_SR_RXPLVL GENMASK(14, 13)
144 #define STM32H7_SPI_SR_RXWNE BIT(15)
146 /* STM32H7_SPI_IFCR bit fields */
147 #define STM32H7_SPI_IFCR_ALL GENMASK(11, 3)
149 /* STM32H7_SPI_I2SCFGR bit fields */
150 #define STM32H7_SPI_I2SCFGR_I2SMOD BIT(0)
152 /* STM32H7 SPI Master Baud Rate min/max divisor */
153 #define STM32H7_SPI_MBR_DIV_MIN (2 << STM32H7_SPI_CFG1_MBR_MIN)
154 #define STM32H7_SPI_MBR_DIV_MAX (2 << STM32H7_SPI_CFG1_MBR_MAX)
156 /* STM32H7 SPI Communication mode */
157 #define STM32H7_SPI_FULL_DUPLEX 0
158 #define STM32H7_SPI_SIMPLEX_TX 1
159 #define STM32H7_SPI_SIMPLEX_RX 2
160 #define STM32H7_SPI_HALF_DUPLEX 3
162 /* SPI Communication type */
163 #define SPI_FULL_DUPLEX 0
164 #define SPI_SIMPLEX_TX 1
165 #define SPI_SIMPLEX_RX 2
166 #define SPI_3WIRE_TX 3
167 #define SPI_3WIRE_RX 4
169 #define SPI_1HZ_NS 1000000000
172 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
173 * without fifo buffers.
175 #define SPI_DMA_MIN_BYTES 16
178 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
179 * @reg: register offset
180 * @mask: bitfield mask
183 struct stm32_spi_reg {
190 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
191 * @en: enable register and SPI enable bit
192 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
193 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
194 * @cpol: clock polarity register and polarity bit
195 * @cpha: clock phase register and phase bit
196 * @lsb_first: LSB transmitted first register and bit
197 * @br: baud rate register and bitfields
198 * @rx: SPI RX data register
199 * @tx: SPI TX data register
201 struct stm32_spi_regspec {
202 const struct stm32_spi_reg en;
203 const struct stm32_spi_reg dma_rx_en;
204 const struct stm32_spi_reg dma_tx_en;
205 const struct stm32_spi_reg cpol;
206 const struct stm32_spi_reg cpha;
207 const struct stm32_spi_reg lsb_first;
208 const struct stm32_spi_reg br;
209 const struct stm32_spi_reg rx;
210 const struct stm32_spi_reg tx;
216 * struct stm32_spi_cfg - stm32 compatible configuration data
217 * @regs: registers descriptions
218 * @get_fifo_size: routine to get fifo size
219 * @get_bpw_mask: routine to get bits per word mask
220 * @disable: routine to disable controller
221 * @config: routine to configure controller as SPI Master
222 * @set_bpw: routine to configure registers to for bits per word
223 * @set_mode: routine to configure registers to desired mode
224 * @set_data_idleness: optional routine to configure registers to desired idle
225 * time between frames (if driver has this functionality)
226 * @set_number_of_data: optional routine to configure registers to desired
227 * number of data (if driver has this functionality)
228 * @can_dma: routine to determine if the transfer is eligible for DMA use
229 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
231 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
232 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
233 * @transfer_one_irq: routine to configure interrupts for driver
234 * @irq_handler_event: Interrupt handler for SPI controller events
235 * @irq_handler_thread: thread of interrupt handler for SPI controller
236 * @baud_rate_div_min: minimum baud rate divisor
237 * @baud_rate_div_max: maximum baud rate divisor
238 * @has_fifo: boolean to know if fifo is used for driver
239 * @has_startbit: boolean to know if start bit is used to start transfer
241 struct stm32_spi_cfg {
242 const struct stm32_spi_regspec *regs;
243 int (*get_fifo_size)(struct stm32_spi *spi);
244 int (*get_bpw_mask)(struct stm32_spi *spi);
245 void (*disable)(struct stm32_spi *spi);
246 int (*config)(struct stm32_spi *spi);
247 void (*set_bpw)(struct stm32_spi *spi);
248 int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
249 void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
250 int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
251 void (*transfer_one_dma_start)(struct stm32_spi *spi);
252 void (*dma_rx_cb)(void *data);
253 void (*dma_tx_cb)(void *data);
254 int (*transfer_one_irq)(struct stm32_spi *spi);
255 irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
256 irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
257 unsigned int baud_rate_div_min;
258 unsigned int baud_rate_div_max;
263 * struct stm32_spi - private data of the SPI controller
264 * @dev: driver model representation of the controller
265 * @master: controller master interface
266 * @cfg: compatible configuration data
267 * @base: virtual memory area
268 * @clk: hw kernel clock feeding the SPI clock generator
269 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
270 * @rst: SPI controller reset line
271 * @lock: prevent I/O concurrent access
272 * @irq: SPI controller interrupt line
273 * @fifo_size: size of the embedded fifo in bytes
274 * @cur_midi: master inter-data idleness in ns
275 * @cur_speed: speed configured in Hz
276 * @cur_bpw: number of bits in a single SPI data frame
277 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
278 * @cur_comm: SPI communication mode
279 * @cur_xferlen: current transfer length in bytes
280 * @cur_usedma: boolean to know if dma is used in current transfer
281 * @tx_buf: data to be written, or NULL
282 * @rx_buf: data to be read, or NULL
283 * @tx_len: number of data to be written in bytes
284 * @rx_len: number of data to be read in bytes
285 * @dma_tx: dma channel for TX transfer
286 * @dma_rx: dma channel for RX transfer
287 * @phys_addr: SPI registers physical base address
291 struct spi_master *master;
292 const struct stm32_spi_cfg *cfg;
296 struct reset_control *rst;
297 spinlock_t lock; /* prevent I/O concurrent access */
299 unsigned int fifo_size;
301 unsigned int cur_midi;
302 unsigned int cur_speed;
303 unsigned int cur_bpw;
304 unsigned int cur_fthlv;
305 unsigned int cur_comm;
306 unsigned int cur_xferlen;
313 struct dma_chan *dma_tx;
314 struct dma_chan *dma_rx;
315 dma_addr_t phys_addr;
318 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
319 .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
321 .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
322 .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
324 .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
325 .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
326 .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
327 .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
329 .rx = { STM32F4_SPI_DR },
330 .tx = { STM32F4_SPI_DR },
333 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
334 /* SPI data transfer is enabled but spi_ker_ck is idle.
335 * CFG1 and CFG2 registers are write protected when SPE is enabled.
337 .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
339 .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
340 .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
342 .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
343 .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
344 .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
345 .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
346 STM32H7_SPI_CFG1_MBR_SHIFT },
348 .rx = { STM32H7_SPI_RXDR },
349 .tx = { STM32H7_SPI_TXDR },
352 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
353 u32 offset, u32 bits)
355 writel_relaxed(readl_relaxed(spi->base + offset) | bits,
359 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
360 u32 offset, u32 bits)
362 writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
367 * stm32h7_spi_get_fifo_size - Return fifo size
368 * @spi: pointer to the spi controller data structure
370 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
375 spin_lock_irqsave(&spi->lock, flags);
377 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379 while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
380 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384 spin_unlock_irqrestore(&spi->lock, flags);
386 dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
392 * stm32f4_spi_get_bpw_mask - Return bits per word mask
393 * @spi: pointer to the spi controller data structure
395 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
397 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
398 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
402 * stm32h7_spi_get_bpw_mask - Return bits per word mask
403 * @spi: pointer to the spi controller data structure
405 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
410 spin_lock_irqsave(&spi->lock, flags);
413 * The most significant bit at DSIZE bit field is reserved when the
414 * maximum data size of periperal instances is limited to 16-bit
416 stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418 cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
419 max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
420 STM32H7_SPI_CFG1_DSIZE_SHIFT;
423 spin_unlock_irqrestore(&spi->lock, flags);
425 dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
427 return SPI_BPW_RANGE_MASK(4, max_bpw);
431 * stm32_spi_prepare_mbr - Determine baud rate divisor value
432 * @spi: pointer to the spi controller data structure
433 * @speed_hz: requested speed
434 * @min_div: minimum baud rate divisor
435 * @max_div: maximum baud rate divisor
437 * Return baud rate divisor value in case of success or -EINVAL
439 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
440 u32 min_div, u32 max_div)
444 div = DIV_ROUND_UP(spi->clk_rate, speed_hz);
447 * SPI framework set xfer->speed_hz to master->max_speed_hz if
448 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
449 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
450 * no need to check it there.
451 * However, we need to ensure the following calculations.
453 if ((div < min_div) || (div > max_div))
456 /* Determine the first power of 2 greater than or equal to div */
460 mbrdiv = fls(div) - 1;
462 spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
468 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
469 * @spi: pointer to the spi controller data structure
471 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi)
473 u32 fthlv, half_fifo;
475 /* data packet should not exceed 1/2 of fifo space */
476 half_fifo = (spi->fifo_size / 2);
478 if (spi->cur_bpw <= 8)
480 else if (spi->cur_bpw <= 16)
481 fthlv = half_fifo / 2;
483 fthlv = half_fifo / 4;
485 /* align packet size with data registers access */
486 if (spi->cur_bpw > 8)
487 fthlv -= (fthlv % 2); /* multiple of 2 */
489 fthlv -= (fthlv % 4); /* multiple of 4 */
495 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
496 * @spi: pointer to the spi controller data structure
498 * Read from tx_buf depends on remaining bytes to avoid to read beyond
501 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
503 if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
504 STM32F4_SPI_SR_TXE)) {
505 u32 offs = spi->cur_xferlen - spi->tx_len;
507 if (spi->cur_bpw == 16) {
508 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
510 writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
511 spi->tx_len -= sizeof(u16);
513 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
515 writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
516 spi->tx_len -= sizeof(u8);
520 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
524 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
525 * @spi: pointer to the spi controller data structure
527 * Read from tx_buf depends on remaining bytes to avoid to read beyond
530 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
532 while ((spi->tx_len > 0) &&
533 (readl_relaxed(spi->base + STM32H7_SPI_SR) &
534 STM32H7_SPI_SR_TXP)) {
535 u32 offs = spi->cur_xferlen - spi->tx_len;
537 if (spi->tx_len >= sizeof(u32)) {
538 const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
540 writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
541 spi->tx_len -= sizeof(u32);
542 } else if (spi->tx_len >= sizeof(u16)) {
543 const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
545 writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
546 spi->tx_len -= sizeof(u16);
548 const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
550 writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
551 spi->tx_len -= sizeof(u8);
555 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
559 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
560 * @spi: pointer to the spi controller data structure
562 * Write in rx_buf depends on remaining bytes to avoid to write beyond
565 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
567 if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
568 STM32F4_SPI_SR_RXNE)) {
569 u32 offs = spi->cur_xferlen - spi->rx_len;
571 if (spi->cur_bpw == 16) {
572 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
574 *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
575 spi->rx_len -= sizeof(u16);
577 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
579 *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
580 spi->rx_len -= sizeof(u8);
584 dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
588 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
589 * @spi: pointer to the spi controller data structure
590 * @flush: boolean indicating that FIFO should be flushed
592 * Write in rx_buf depends on remaining bytes to avoid to write beyond
595 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
597 u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
598 u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
599 STM32H7_SPI_SR_RXPLVL_SHIFT;
601 while ((spi->rx_len > 0) &&
602 ((sr & STM32H7_SPI_SR_RXP) ||
603 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
604 u32 offs = spi->cur_xferlen - spi->rx_len;
606 if ((spi->rx_len >= sizeof(u32)) ||
607 (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
608 u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
610 *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
611 spi->rx_len -= sizeof(u32);
612 } else if ((spi->rx_len >= sizeof(u16)) ||
613 (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
614 u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
616 *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
617 spi->rx_len -= sizeof(u16);
619 u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
621 *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
622 spi->rx_len -= sizeof(u8);
625 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
626 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
627 STM32H7_SPI_SR_RXPLVL_SHIFT;
630 dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
631 flush ? "(flush)" : "", spi->rx_len);
635 * stm32_spi_enable - Enable SPI controller
636 * @spi: pointer to the spi controller data structure
638 static void stm32_spi_enable(struct stm32_spi *spi)
640 dev_dbg(spi->dev, "enable controller\n");
642 stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
643 spi->cfg->regs->en.mask);
647 * stm32f4_spi_disable - Disable SPI controller
648 * @spi: pointer to the spi controller data structure
650 static void stm32f4_spi_disable(struct stm32_spi *spi)
655 dev_dbg(spi->dev, "disable controller\n");
657 spin_lock_irqsave(&spi->lock, flags);
659 if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
660 STM32F4_SPI_CR1_SPE)) {
661 spin_unlock_irqrestore(&spi->lock, flags);
665 /* Disable interrupts */
666 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
667 STM32F4_SPI_CR2_RXNEIE |
668 STM32F4_SPI_CR2_ERRIE);
670 /* Wait until BSY = 0 */
671 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
672 sr, !(sr & STM32F4_SPI_SR_BSY),
674 dev_warn(spi->dev, "disabling condition timeout\n");
677 if (spi->cur_usedma && spi->dma_tx)
678 dmaengine_terminate_all(spi->dma_tx);
679 if (spi->cur_usedma && spi->dma_rx)
680 dmaengine_terminate_all(spi->dma_rx);
682 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
684 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
685 STM32F4_SPI_CR2_RXDMAEN);
687 /* Sequence to clear OVR flag */
688 readl_relaxed(spi->base + STM32F4_SPI_DR);
689 readl_relaxed(spi->base + STM32F4_SPI_SR);
691 spin_unlock_irqrestore(&spi->lock, flags);
695 * stm32h7_spi_disable - Disable SPI controller
696 * @spi: pointer to the spi controller data structure
698 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
699 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
701 * Normally, if TSIZE has been configured, we should relax the hardware at the
702 * reception of the EOT interrupt. But in case of error, EOT will not be
703 * raised. So the subsystem unprepare_message call allows us to properly
704 * complete the transfer from an hardware point of view.
706 static void stm32h7_spi_disable(struct stm32_spi *spi)
711 dev_dbg(spi->dev, "disable controller\n");
713 spin_lock_irqsave(&spi->lock, flags);
715 cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
717 if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
718 spin_unlock_irqrestore(&spi->lock, flags);
722 /* Wait on EOT or suspend the flow */
723 if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
724 sr, !(sr & STM32H7_SPI_SR_EOT),
726 if (cr1 & STM32H7_SPI_CR1_CSTART) {
727 writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
728 spi->base + STM32H7_SPI_CR1);
729 if (readl_relaxed_poll_timeout_atomic(
730 spi->base + STM32H7_SPI_SR,
731 sr, !(sr & STM32H7_SPI_SR_SUSP),
734 "Suspend request timeout\n");
738 if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
739 stm32h7_spi_read_rxfifo(spi, true);
741 if (spi->cur_usedma && spi->dma_tx)
742 dmaengine_terminate_all(spi->dma_tx);
743 if (spi->cur_usedma && spi->dma_rx)
744 dmaengine_terminate_all(spi->dma_rx);
746 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
748 stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
749 STM32H7_SPI_CFG1_RXDMAEN);
751 /* Disable interrupts and clear status flags */
752 writel_relaxed(0, spi->base + STM32H7_SPI_IER);
753 writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
755 spin_unlock_irqrestore(&spi->lock, flags);
759 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
760 * @master: controller master interface
761 * @spi_dev: pointer to the spi device
762 * @transfer: pointer to spi transfer
764 * If driver has fifo and the current transfer size is greater than fifo size,
765 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
767 static bool stm32_spi_can_dma(struct spi_master *master,
768 struct spi_device *spi_dev,
769 struct spi_transfer *transfer)
771 unsigned int dma_size;
772 struct stm32_spi *spi = spi_master_get_devdata(master);
774 if (spi->cfg->has_fifo)
775 dma_size = spi->fifo_size;
777 dma_size = SPI_DMA_MIN_BYTES;
779 dev_dbg(spi->dev, "%s: %s\n", __func__,
780 (transfer->len > dma_size) ? "true" : "false");
782 return (transfer->len > dma_size);
786 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
787 * @irq: interrupt line
788 * @dev_id: SPI controller master interface
790 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
792 struct spi_master *master = dev_id;
793 struct stm32_spi *spi = spi_master_get_devdata(master);
798 spin_lock_irqsave(&spi->lock, flags);
800 sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
802 * BSY flag is not handled in interrupt but it is normal behavior when
805 sr &= ~STM32F4_SPI_SR_BSY;
807 if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
808 spi->cur_comm == SPI_3WIRE_TX)) {
809 /* OVR flag shouldn't be handled for TX only mode */
810 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
811 mask |= STM32F4_SPI_SR_TXE;
814 if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
815 spi->cur_comm == SPI_SIMPLEX_RX ||
816 spi->cur_comm == SPI_3WIRE_RX)) {
817 /* TXE flag is set and is handled when RXNE flag occurs */
818 sr &= ~STM32F4_SPI_SR_TXE;
819 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
823 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
824 spin_unlock_irqrestore(&spi->lock, flags);
828 if (sr & STM32F4_SPI_SR_OVR) {
829 dev_warn(spi->dev, "Overrun: received value discarded\n");
831 /* Sequence to clear OVR flag */
832 readl_relaxed(spi->base + STM32F4_SPI_DR);
833 readl_relaxed(spi->base + STM32F4_SPI_SR);
836 * If overrun is detected, it means that something went wrong,
837 * so stop the current transfer. Transfer can wait for next
838 * RXNE but DR is already read and end never happens.
844 if (sr & STM32F4_SPI_SR_TXE) {
846 stm32f4_spi_write_tx(spi);
847 if (spi->tx_len == 0)
851 if (sr & STM32F4_SPI_SR_RXNE) {
852 stm32f4_spi_read_rx(spi);
853 if (spi->rx_len == 0)
855 else if (spi->tx_buf)/* Load data for discontinuous mode */
856 stm32f4_spi_write_tx(spi);
861 /* Immediately disable interrupts to do not generate new one */
862 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
863 STM32F4_SPI_CR2_TXEIE |
864 STM32F4_SPI_CR2_RXNEIE |
865 STM32F4_SPI_CR2_ERRIE);
866 spin_unlock_irqrestore(&spi->lock, flags);
867 return IRQ_WAKE_THREAD;
870 spin_unlock_irqrestore(&spi->lock, flags);
875 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
876 * @irq: interrupt line
877 * @dev_id: SPI controller master interface
879 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
881 struct spi_master *master = dev_id;
882 struct stm32_spi *spi = spi_master_get_devdata(master);
884 spi_finalize_current_transfer(master);
885 stm32f4_spi_disable(spi);
891 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
892 * @irq: interrupt line
893 * @dev_id: SPI controller master interface
895 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
897 struct spi_master *master = dev_id;
898 struct stm32_spi *spi = spi_master_get_devdata(master);
903 spin_lock_irqsave(&spi->lock, flags);
905 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
906 ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
909 /* EOTIE is triggered on EOT, SUSP and TXC events. */
910 mask |= STM32H7_SPI_SR_SUSP;
912 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
913 * Full-Duplex, need to poll RXP event to know if there are remaining
914 * data, before disabling SPI.
916 if (spi->rx_buf && !spi->cur_usedma)
917 mask |= STM32H7_SPI_SR_RXP;
920 dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
922 spin_unlock_irqrestore(&spi->lock, flags);
926 if (sr & STM32H7_SPI_SR_SUSP) {
927 dev_warn(spi->dev, "Communication suspended\n");
928 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
929 stm32h7_spi_read_rxfifo(spi, false);
931 * If communication is suspended while using DMA, it means
932 * that something went wrong, so stop the current transfer
938 if (sr & STM32H7_SPI_SR_MODF) {
939 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
943 if (sr & STM32H7_SPI_SR_OVR) {
944 dev_warn(spi->dev, "Overrun: received value discarded\n");
945 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
946 stm32h7_spi_read_rxfifo(spi, false);
948 * If overrun is detected while using DMA, it means that
949 * something went wrong, so stop the current transfer
955 if (sr & STM32H7_SPI_SR_EOT) {
956 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
957 stm32h7_spi_read_rxfifo(spi, true);
961 if (sr & STM32H7_SPI_SR_TXP)
962 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
963 stm32h7_spi_write_txfifo(spi);
965 if (sr & STM32H7_SPI_SR_RXP)
966 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
967 stm32h7_spi_read_rxfifo(spi, false);
969 writel_relaxed(mask, spi->base + STM32H7_SPI_IFCR);
971 spin_unlock_irqrestore(&spi->lock, flags);
974 spi_finalize_current_transfer(master);
975 stm32h7_spi_disable(spi);
982 * stm32_spi_prepare_msg - set up the controller to transfer a single message
983 * @master: controller master interface
984 * @msg: pointer to spi message
986 static int stm32_spi_prepare_msg(struct spi_master *master,
987 struct spi_message *msg)
989 struct stm32_spi *spi = spi_master_get_devdata(master);
990 struct spi_device *spi_dev = msg->spi;
991 struct device_node *np = spi_dev->dev.of_node;
993 u32 clrb = 0, setb = 0;
995 /* SPI slave device may need time between data frames */
997 if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
998 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1000 if (spi_dev->mode & SPI_CPOL)
1001 setb |= spi->cfg->regs->cpol.mask;
1003 clrb |= spi->cfg->regs->cpol.mask;
1005 if (spi_dev->mode & SPI_CPHA)
1006 setb |= spi->cfg->regs->cpha.mask;
1008 clrb |= spi->cfg->regs->cpha.mask;
1010 if (spi_dev->mode & SPI_LSB_FIRST)
1011 setb |= spi->cfg->regs->lsb_first.mask;
1013 clrb |= spi->cfg->regs->lsb_first.mask;
1015 dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1016 spi_dev->mode & SPI_CPOL,
1017 spi_dev->mode & SPI_CPHA,
1018 spi_dev->mode & SPI_LSB_FIRST,
1019 spi_dev->mode & SPI_CS_HIGH);
1021 spin_lock_irqsave(&spi->lock, flags);
1023 /* CPOL, CPHA and LSB FIRST bits have common register */
1026 (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1028 spi->base + spi->cfg->regs->cpol.reg);
1030 spin_unlock_irqrestore(&spi->lock, flags);
1036 * stm32f4_spi_dma_tx_cb - dma callback
1037 * @data: pointer to the spi controller data structure
1039 * DMA callback is called when the transfer is complete for DMA TX channel.
1041 static void stm32f4_spi_dma_tx_cb(void *data)
1043 struct stm32_spi *spi = data;
1045 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1046 spi_finalize_current_transfer(spi->master);
1047 stm32f4_spi_disable(spi);
1052 * stm32f4_spi_dma_rx_cb - dma callback
1053 * @data: pointer to the spi controller data structure
1055 * DMA callback is called when the transfer is complete for DMA RX channel.
1057 static void stm32f4_spi_dma_rx_cb(void *data)
1059 struct stm32_spi *spi = data;
1061 spi_finalize_current_transfer(spi->master);
1062 stm32f4_spi_disable(spi);
1066 * stm32h7_spi_dma_cb - dma callback
1067 * @data: pointer to the spi controller data structure
1069 * DMA callback is called when the transfer is complete or when an error
1070 * occurs. If the transfer is complete, EOT flag is raised.
1072 static void stm32h7_spi_dma_cb(void *data)
1074 struct stm32_spi *spi = data;
1075 unsigned long flags;
1078 spin_lock_irqsave(&spi->lock, flags);
1080 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1082 spin_unlock_irqrestore(&spi->lock, flags);
1084 if (!(sr & STM32H7_SPI_SR_EOT))
1085 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1087 /* Now wait for EOT, or SUSP or OVR in case of error */
1091 * stm32_spi_dma_config - configure dma slave channel depending on current
1092 * transfer bits_per_word.
1093 * @spi: pointer to the spi controller data structure
1094 * @dma_conf: pointer to the dma_slave_config structure
1095 * @dir: direction of the dma transfer
1097 static void stm32_spi_dma_config(struct stm32_spi *spi,
1098 struct dma_slave_config *dma_conf,
1099 enum dma_transfer_direction dir)
1101 enum dma_slave_buswidth buswidth;
1104 if (spi->cur_bpw <= 8)
1105 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1106 else if (spi->cur_bpw <= 16)
1107 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1109 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1111 if (spi->cfg->has_fifo) {
1112 /* Valid for DMA Half or Full Fifo threshold */
1113 if (spi->cur_fthlv == 2)
1116 maxburst = spi->cur_fthlv;
1121 memset(dma_conf, 0, sizeof(struct dma_slave_config));
1122 dma_conf->direction = dir;
1123 if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1124 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1125 dma_conf->src_addr_width = buswidth;
1126 dma_conf->src_maxburst = maxburst;
1128 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1129 buswidth, maxburst);
1130 } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1131 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1132 dma_conf->dst_addr_width = buswidth;
1133 dma_conf->dst_maxburst = maxburst;
1135 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1136 buswidth, maxburst);
1141 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1143 * @spi: pointer to the spi controller data structure
1145 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1148 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1150 unsigned long flags;
1153 /* Enable the interrupts relative to the current communication mode */
1154 if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1155 cr2 |= STM32F4_SPI_CR2_TXEIE;
1156 } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1157 spi->cur_comm == SPI_SIMPLEX_RX ||
1158 spi->cur_comm == SPI_3WIRE_RX) {
1159 /* In transmit-only mode, the OVR flag is set in the SR register
1160 * since the received data are never read. Therefore set OVR
1161 * interrupt only when rx buffer is available.
1163 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1168 spin_lock_irqsave(&spi->lock, flags);
1170 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1172 stm32_spi_enable(spi);
1174 /* starting data transfer when buffer is loaded */
1176 stm32f4_spi_write_tx(spi);
1178 spin_unlock_irqrestore(&spi->lock, flags);
1184 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1186 * @spi: pointer to the spi controller data structure
1188 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1191 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1193 unsigned long flags;
1196 /* Enable the interrupts relative to the current communication mode */
1197 if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1198 ier |= STM32H7_SPI_IER_DXPIE;
1199 else if (spi->tx_buf) /* Half-Duplex TX dir or Simplex TX */
1200 ier |= STM32H7_SPI_IER_TXPIE;
1201 else if (spi->rx_buf) /* Half-Duplex RX dir or Simplex RX */
1202 ier |= STM32H7_SPI_IER_RXPIE;
1204 /* Enable the interrupts relative to the end of transfer */
1205 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1206 STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1208 spin_lock_irqsave(&spi->lock, flags);
1210 stm32_spi_enable(spi);
1212 /* Be sure to have data in fifo before starting data transfer */
1214 stm32h7_spi_write_txfifo(spi);
1216 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1218 writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1220 spin_unlock_irqrestore(&spi->lock, flags);
1226 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1227 * transfer using DMA
1228 * @spi: pointer to the spi controller data structure
1230 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1232 /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1233 if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1234 spi->cur_comm == SPI_FULL_DUPLEX) {
1236 * In transmit-only mode, the OVR flag is set in the SR register
1237 * since the received data are never read. Therefore set OVR
1238 * interrupt only when rx buffer is available.
1240 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1243 stm32_spi_enable(spi);
1247 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1248 * transfer using DMA
1249 * @spi: pointer to the spi controller data structure
1251 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1253 /* Enable the interrupts relative to the end of transfer */
1254 stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1255 STM32H7_SPI_IER_TXTFIE |
1256 STM32H7_SPI_IER_OVRIE |
1257 STM32H7_SPI_IER_MODFIE);
1259 stm32_spi_enable(spi);
1261 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1265 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1266 * @spi: pointer to the spi controller data structure
1267 * @xfer: pointer to the spi_transfer structure
1269 * It must returns 0 if the transfer is finished or 1 if the transfer is still
1272 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1273 struct spi_transfer *xfer)
1275 struct dma_slave_config tx_dma_conf, rx_dma_conf;
1276 struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1277 unsigned long flags;
1279 spin_lock_irqsave(&spi->lock, flags);
1282 if (spi->rx_buf && spi->dma_rx) {
1283 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1284 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1286 /* Enable Rx DMA request */
1287 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1288 spi->cfg->regs->dma_rx_en.mask);
1290 rx_dma_desc = dmaengine_prep_slave_sg(
1291 spi->dma_rx, xfer->rx_sg.sgl,
1293 rx_dma_conf.direction,
1294 DMA_PREP_INTERRUPT);
1298 if (spi->tx_buf && spi->dma_tx) {
1299 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1300 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1302 tx_dma_desc = dmaengine_prep_slave_sg(
1303 spi->dma_tx, xfer->tx_sg.sgl,
1305 tx_dma_conf.direction,
1306 DMA_PREP_INTERRUPT);
1309 if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1310 (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1311 goto dma_desc_error;
1313 if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1314 goto dma_desc_error;
1317 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1318 rx_dma_desc->callback_param = spi;
1320 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1321 dev_err(spi->dev, "Rx DMA submit failed\n");
1322 goto dma_desc_error;
1324 /* Enable Rx DMA channel */
1325 dma_async_issue_pending(spi->dma_rx);
1329 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1330 spi->cur_comm == SPI_3WIRE_TX) {
1331 tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1332 tx_dma_desc->callback_param = spi;
1335 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1336 dev_err(spi->dev, "Tx DMA submit failed\n");
1337 goto dma_submit_error;
1339 /* Enable Tx DMA channel */
1340 dma_async_issue_pending(spi->dma_tx);
1342 /* Enable Tx DMA request */
1343 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1344 spi->cfg->regs->dma_tx_en.mask);
1347 spi->cfg->transfer_one_dma_start(spi);
1349 spin_unlock_irqrestore(&spi->lock, flags);
1355 dmaengine_terminate_all(spi->dma_rx);
1358 stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1359 spi->cfg->regs->dma_rx_en.mask);
1361 spin_unlock_irqrestore(&spi->lock, flags);
1363 dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1365 spi->cur_usedma = false;
1366 return spi->cfg->transfer_one_irq(spi);
1370 * stm32f4_spi_set_bpw - Configure bits per word
1371 * @spi: pointer to the spi controller data structure
1373 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1375 if (spi->cur_bpw == 16)
1376 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1378 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1382 * stm32h7_spi_set_bpw - configure bits per word
1383 * @spi: pointer to the spi controller data structure
1385 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1388 u32 cfg1_clrb = 0, cfg1_setb = 0;
1390 bpw = spi->cur_bpw - 1;
1392 cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1393 cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1394 STM32H7_SPI_CFG1_DSIZE;
1396 spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi);
1397 fthlv = spi->cur_fthlv - 1;
1399 cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1400 cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1401 STM32H7_SPI_CFG1_FTHLV;
1404 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1405 ~cfg1_clrb) | cfg1_setb,
1406 spi->base + STM32H7_SPI_CFG1);
1410 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1411 * @spi: pointer to the spi controller data structure
1412 * @mbrdiv: baud rate divisor value
1414 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1416 u32 clrb = 0, setb = 0;
1418 clrb |= spi->cfg->regs->br.mask;
1419 setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1420 spi->cfg->regs->br.mask;
1422 writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1424 spi->base + spi->cfg->regs->br.reg);
1428 * stm32_spi_communication_type - return transfer communication type
1429 * @spi_dev: pointer to the spi device
1430 * @transfer: pointer to spi transfer
1432 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1433 struct spi_transfer *transfer)
1435 unsigned int type = SPI_FULL_DUPLEX;
1437 if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1439 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1440 * is forbidden and unvalidated by SPI subsystem so depending
1441 * on the valid buffer, we can determine the direction of the
1444 if (!transfer->tx_buf)
1445 type = SPI_3WIRE_RX;
1447 type = SPI_3WIRE_TX;
1449 if (!transfer->tx_buf)
1450 type = SPI_SIMPLEX_RX;
1451 else if (!transfer->rx_buf)
1452 type = SPI_SIMPLEX_TX;
1459 * stm32f4_spi_set_mode - configure communication mode
1460 * @spi: pointer to the spi controller data structure
1461 * @comm_type: type of communication to configure
1463 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1465 if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1466 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1467 STM32F4_SPI_CR1_BIDIMODE |
1468 STM32F4_SPI_CR1_BIDIOE);
1469 } else if (comm_type == SPI_FULL_DUPLEX ||
1470 comm_type == SPI_SIMPLEX_RX) {
1471 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1472 STM32F4_SPI_CR1_BIDIMODE |
1473 STM32F4_SPI_CR1_BIDIOE);
1474 } else if (comm_type == SPI_3WIRE_RX) {
1475 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1476 STM32F4_SPI_CR1_BIDIMODE);
1477 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1478 STM32F4_SPI_CR1_BIDIOE);
1487 * stm32h7_spi_set_mode - configure communication mode
1488 * @spi: pointer to the spi controller data structure
1489 * @comm_type: type of communication to configure
1491 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1494 u32 cfg2_clrb = 0, cfg2_setb = 0;
1496 if (comm_type == SPI_3WIRE_RX) {
1497 mode = STM32H7_SPI_HALF_DUPLEX;
1498 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1499 } else if (comm_type == SPI_3WIRE_TX) {
1500 mode = STM32H7_SPI_HALF_DUPLEX;
1501 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1502 } else if (comm_type == SPI_SIMPLEX_RX) {
1503 mode = STM32H7_SPI_SIMPLEX_RX;
1504 } else if (comm_type == SPI_SIMPLEX_TX) {
1505 mode = STM32H7_SPI_SIMPLEX_TX;
1507 mode = STM32H7_SPI_FULL_DUPLEX;
1510 cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1511 cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1512 STM32H7_SPI_CFG2_COMM;
1515 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1516 ~cfg2_clrb) | cfg2_setb,
1517 spi->base + STM32H7_SPI_CFG2);
1523 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1524 * consecutive data frames in master mode
1525 * @spi: pointer to the spi controller data structure
1526 * @len: transfer len
1528 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1530 u32 cfg2_clrb = 0, cfg2_setb = 0;
1532 cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1533 if ((len > 1) && (spi->cur_midi > 0)) {
1534 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1535 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1536 (u32)STM32H7_SPI_CFG2_MIDI >>
1537 STM32H7_SPI_CFG2_MIDI_SHIFT);
1539 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1540 sck_period_ns, midi, midi * sck_period_ns);
1541 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1542 STM32H7_SPI_CFG2_MIDI;
1545 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1546 ~cfg2_clrb) | cfg2_setb,
1547 spi->base + STM32H7_SPI_CFG2);
1551 * stm32h7_spi_number_of_data - configure number of data at current transfer
1552 * @spi: pointer to the spi controller data structure
1553 * @nb_words: transfer length (in words)
1555 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1557 u32 cr2_clrb = 0, cr2_setb = 0;
1559 if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1560 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1561 cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1562 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1563 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1564 ~cr2_clrb) | cr2_setb,
1565 spi->base + STM32H7_SPI_CR2);
1574 * stm32_spi_transfer_one_setup - common setup to transfer a single
1575 * spi_transfer either using DMA or
1577 * @spi: pointer to the spi controller data structure
1578 * @spi_dev: pointer to the spi device
1579 * @transfer: pointer to spi transfer
1581 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1582 struct spi_device *spi_dev,
1583 struct spi_transfer *transfer)
1585 unsigned long flags;
1586 unsigned int comm_type;
1587 int nb_words, ret = 0;
1589 spin_lock_irqsave(&spi->lock, flags);
1591 if (spi->cur_bpw != transfer->bits_per_word) {
1592 spi->cur_bpw = transfer->bits_per_word;
1593 spi->cfg->set_bpw(spi);
1596 if (spi->cur_speed != transfer->speed_hz) {
1599 /* Update spi->cur_speed with real clock speed */
1600 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1601 spi->cfg->baud_rate_div_min,
1602 spi->cfg->baud_rate_div_max);
1608 transfer->speed_hz = spi->cur_speed;
1609 stm32_spi_set_mbr(spi, mbr);
1612 comm_type = stm32_spi_communication_type(spi_dev, transfer);
1613 if (spi->cur_comm != comm_type) {
1614 ret = spi->cfg->set_mode(spi, comm_type);
1619 spi->cur_comm = comm_type;
1622 if (spi->cfg->set_data_idleness)
1623 spi->cfg->set_data_idleness(spi, transfer->len);
1625 if (spi->cur_bpw <= 8)
1626 nb_words = transfer->len;
1627 else if (spi->cur_bpw <= 16)
1628 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1630 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1632 if (spi->cfg->set_number_of_data) {
1633 ret = spi->cfg->set_number_of_data(spi, nb_words);
1638 spi->cur_xferlen = transfer->len;
1640 dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1643 "data frame of %d-bit, data packet of %d data frames\n",
1644 spi->cur_bpw, spi->cur_fthlv);
1645 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1646 dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1647 spi->cur_xferlen, nb_words);
1648 dev_dbg(spi->dev, "dma %s\n",
1649 (spi->cur_usedma) ? "enabled" : "disabled");
1652 spin_unlock_irqrestore(&spi->lock, flags);
1658 * stm32_spi_transfer_one - transfer a single spi_transfer
1659 * @master: controller master interface
1660 * @spi_dev: pointer to the spi device
1661 * @transfer: pointer to spi transfer
1663 * It must return 0 if the transfer is finished or 1 if the transfer is still
1666 static int stm32_spi_transfer_one(struct spi_master *master,
1667 struct spi_device *spi_dev,
1668 struct spi_transfer *transfer)
1670 struct stm32_spi *spi = spi_master_get_devdata(master);
1673 spi->tx_buf = transfer->tx_buf;
1674 spi->rx_buf = transfer->rx_buf;
1675 spi->tx_len = spi->tx_buf ? transfer->len : 0;
1676 spi->rx_len = spi->rx_buf ? transfer->len : 0;
1678 spi->cur_usedma = (master->can_dma &&
1679 master->can_dma(master, spi_dev, transfer));
1681 ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1683 dev_err(spi->dev, "SPI transfer setup failed\n");
1687 if (spi->cur_usedma)
1688 return stm32_spi_transfer_one_dma(spi, transfer);
1690 return spi->cfg->transfer_one_irq(spi);
1694 * stm32_spi_unprepare_msg - relax the hardware
1695 * @master: controller master interface
1696 * @msg: pointer to the spi message
1698 static int stm32_spi_unprepare_msg(struct spi_master *master,
1699 struct spi_message *msg)
1701 struct stm32_spi *spi = spi_master_get_devdata(master);
1703 spi->cfg->disable(spi);
1709 * stm32f4_spi_config - Configure SPI controller as SPI master
1710 * @spi: pointer to the spi controller data structure
1712 static int stm32f4_spi_config(struct stm32_spi *spi)
1714 unsigned long flags;
1716 spin_lock_irqsave(&spi->lock, flags);
1718 /* Ensure I2SMOD bit is kept cleared */
1719 stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1720 STM32F4_SPI_I2SCFGR_I2SMOD);
1723 * - SS input value high
1724 * - transmitter half duplex direction
1725 * - Set the master mode (default Motorola mode)
1726 * - Consider 1 master/n slaves configuration and
1727 * SS input value is determined by the SSI bit
1729 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1730 STM32F4_SPI_CR1_BIDIOE |
1731 STM32F4_SPI_CR1_MSTR |
1732 STM32F4_SPI_CR1_SSM);
1734 spin_unlock_irqrestore(&spi->lock, flags);
1740 * stm32h7_spi_config - Configure SPI controller as SPI master
1741 * @spi: pointer to the spi controller data structure
1743 static int stm32h7_spi_config(struct stm32_spi *spi)
1745 unsigned long flags;
1747 spin_lock_irqsave(&spi->lock, flags);
1749 /* Ensure I2SMOD bit is kept cleared */
1750 stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1751 STM32H7_SPI_I2SCFGR_I2SMOD);
1754 * - SS input value high
1755 * - transmitter half duplex direction
1756 * - automatic communication suspend when RX-Fifo is full
1758 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1759 STM32H7_SPI_CR1_HDDIR |
1760 STM32H7_SPI_CR1_MASRX);
1763 * - Set the master mode (default Motorola mode)
1764 * - Consider 1 master/n slaves configuration and
1765 * SS input value is determined by the SSI bit
1766 * - keep control of all associated GPIOs
1768 stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1769 STM32H7_SPI_CFG2_SSM |
1770 STM32H7_SPI_CFG2_AFCNTR);
1772 spin_unlock_irqrestore(&spi->lock, flags);
1777 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1778 .regs = &stm32f4_spi_regspec,
1779 .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1780 .disable = stm32f4_spi_disable,
1781 .config = stm32f4_spi_config,
1782 .set_bpw = stm32f4_spi_set_bpw,
1783 .set_mode = stm32f4_spi_set_mode,
1784 .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1785 .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1786 .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1787 .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1788 .irq_handler_event = stm32f4_spi_irq_event,
1789 .irq_handler_thread = stm32f4_spi_irq_thread,
1790 .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1791 .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1795 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1796 .regs = &stm32h7_spi_regspec,
1797 .get_fifo_size = stm32h7_spi_get_fifo_size,
1798 .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1799 .disable = stm32h7_spi_disable,
1800 .config = stm32h7_spi_config,
1801 .set_bpw = stm32h7_spi_set_bpw,
1802 .set_mode = stm32h7_spi_set_mode,
1803 .set_data_idleness = stm32h7_spi_data_idleness,
1804 .set_number_of_data = stm32h7_spi_number_of_data,
1805 .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1806 .dma_rx_cb = stm32h7_spi_dma_cb,
1807 .dma_tx_cb = stm32h7_spi_dma_cb,
1808 .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1809 .irq_handler_thread = stm32h7_spi_irq_thread,
1810 .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1811 .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1815 static const struct of_device_id stm32_spi_of_match[] = {
1816 { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1817 { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1820 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1822 static int stm32_spi_probe(struct platform_device *pdev)
1824 struct spi_master *master;
1825 struct stm32_spi *spi;
1826 struct resource *res;
1829 master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1831 dev_err(&pdev->dev, "spi master allocation failed\n");
1834 platform_set_drvdata(pdev, master);
1836 spi = spi_master_get_devdata(master);
1837 spi->dev = &pdev->dev;
1838 spi->master = master;
1839 spin_lock_init(&spi->lock);
1841 spi->cfg = (const struct stm32_spi_cfg *)
1842 of_match_device(pdev->dev.driver->of_match_table,
1845 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1846 spi->base = devm_ioremap_resource(&pdev->dev, res);
1847 if (IS_ERR(spi->base)) {
1848 ret = PTR_ERR(spi->base);
1849 goto err_master_put;
1852 spi->phys_addr = (dma_addr_t)res->start;
1854 spi->irq = platform_get_irq(pdev, 0);
1855 if (spi->irq <= 0) {
1857 if (ret != -EPROBE_DEFER)
1858 dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
1859 goto err_master_put;
1861 ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1862 spi->cfg->irq_handler_event,
1863 spi->cfg->irq_handler_thread,
1864 IRQF_ONESHOT, pdev->name, master);
1866 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1868 goto err_master_put;
1871 spi->clk = devm_clk_get(&pdev->dev, NULL);
1872 if (IS_ERR(spi->clk)) {
1873 ret = PTR_ERR(spi->clk);
1874 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1875 goto err_master_put;
1878 ret = clk_prepare_enable(spi->clk);
1880 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1881 goto err_master_put;
1883 spi->clk_rate = clk_get_rate(spi->clk);
1884 if (!spi->clk_rate) {
1885 dev_err(&pdev->dev, "clk rate = 0\n");
1887 goto err_clk_disable;
1890 spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1891 if (!IS_ERR(spi->rst)) {
1892 reset_control_assert(spi->rst);
1894 reset_control_deassert(spi->rst);
1897 if (spi->cfg->has_fifo)
1898 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1900 ret = spi->cfg->config(spi);
1902 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1904 goto err_clk_disable;
1907 master->dev.of_node = pdev->dev.of_node;
1908 master->auto_runtime_pm = true;
1909 master->bus_num = pdev->id;
1910 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1912 master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1913 master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1914 master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1915 master->use_gpio_descriptors = true;
1916 master->prepare_message = stm32_spi_prepare_msg;
1917 master->transfer_one = stm32_spi_transfer_one;
1918 master->unprepare_message = stm32_spi_unprepare_msg;
1919 master->flags = SPI_MASTER_MUST_TX;
1921 spi->dma_tx = dma_request_chan(spi->dev, "tx");
1922 if (IS_ERR(spi->dma_tx)) {
1923 ret = PTR_ERR(spi->dma_tx);
1925 if (ret == -EPROBE_DEFER)
1926 goto err_clk_disable;
1928 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1930 master->dma_tx = spi->dma_tx;
1933 spi->dma_rx = dma_request_chan(spi->dev, "rx");
1934 if (IS_ERR(spi->dma_rx)) {
1935 ret = PTR_ERR(spi->dma_rx);
1937 if (ret == -EPROBE_DEFER)
1938 goto err_dma_release;
1940 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1942 master->dma_rx = spi->dma_rx;
1945 if (spi->dma_tx || spi->dma_rx)
1946 master->can_dma = stm32_spi_can_dma;
1948 pm_runtime_set_active(&pdev->dev);
1949 pm_runtime_enable(&pdev->dev);
1951 ret = devm_spi_register_master(&pdev->dev, master);
1953 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1955 goto err_pm_disable;
1958 if (!master->cs_gpiods) {
1959 dev_err(&pdev->dev, "no CS gpios available\n");
1961 goto err_pm_disable;
1964 dev_info(&pdev->dev, "driver initialized\n");
1969 pm_runtime_disable(&pdev->dev);
1972 dma_release_channel(spi->dma_tx);
1974 dma_release_channel(spi->dma_rx);
1976 clk_disable_unprepare(spi->clk);
1978 spi_master_put(master);
1983 static int stm32_spi_remove(struct platform_device *pdev)
1985 struct spi_master *master = platform_get_drvdata(pdev);
1986 struct stm32_spi *spi = spi_master_get_devdata(master);
1988 spi->cfg->disable(spi);
1991 dma_release_channel(master->dma_tx);
1993 dma_release_channel(master->dma_rx);
1995 clk_disable_unprepare(spi->clk);
1997 pm_runtime_disable(&pdev->dev);
2003 static int stm32_spi_runtime_suspend(struct device *dev)
2005 struct spi_master *master = dev_get_drvdata(dev);
2006 struct stm32_spi *spi = spi_master_get_devdata(master);
2008 clk_disable_unprepare(spi->clk);
2013 static int stm32_spi_runtime_resume(struct device *dev)
2015 struct spi_master *master = dev_get_drvdata(dev);
2016 struct stm32_spi *spi = spi_master_get_devdata(master);
2018 return clk_prepare_enable(spi->clk);
2022 #ifdef CONFIG_PM_SLEEP
2023 static int stm32_spi_suspend(struct device *dev)
2025 struct spi_master *master = dev_get_drvdata(dev);
2028 ret = spi_master_suspend(master);
2032 return pm_runtime_force_suspend(dev);
2035 static int stm32_spi_resume(struct device *dev)
2037 struct spi_master *master = dev_get_drvdata(dev);
2038 struct stm32_spi *spi = spi_master_get_devdata(master);
2041 ret = pm_runtime_force_resume(dev);
2045 ret = spi_master_resume(master);
2047 clk_disable_unprepare(spi->clk);
2053 static const struct dev_pm_ops stm32_spi_pm_ops = {
2054 SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2055 SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2056 stm32_spi_runtime_resume, NULL)
2059 static struct platform_driver stm32_spi_driver = {
2060 .probe = stm32_spi_probe,
2061 .remove = stm32_spi_remove,
2063 .name = DRIVER_NAME,
2064 .pm = &stm32_spi_pm_ops,
2065 .of_match_table = stm32_spi_of_match,
2069 module_platform_driver(stm32_spi_driver);
2071 MODULE_ALIAS("platform:" DRIVER_NAME);
2072 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2074 MODULE_LICENSE("GPL v2");