1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
16 #include <soc/tegra/pmc.h>
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/drm_fourcc.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
32 struct drm_crtc_state *state);
34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
42 /* Reads the active copy of a register. */
43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
47 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
48 value = tegra_dc_readl(dc, offset);
49 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
57 if (offset >= 0x500 && offset <= 0x638) {
58 offset = 0x000 + (offset - 0x500);
59 return plane->offset + offset;
62 if (offset >= 0x700 && offset <= 0x719) {
63 offset = 0x180 + (offset - 0x700);
64 return plane->offset + offset;
67 if (offset >= 0x800 && offset <= 0x839) {
68 offset = 0x1c0 + (offset - 0x800);
69 return plane->offset + offset;
72 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
74 return plane->offset + offset;
77 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
80 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
86 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
91 struct device_node *np = dc->dev->of_node;
92 struct of_phandle_iterator it;
95 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
96 if (it.node == dev->of_node)
103 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105 * Latching happens mmediately if the display controller is in STOP mode or
106 * on the next frame boundary otherwise.
108 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111 * into the ACTIVE copy, either immediately if the display controller is in
112 * STOP mode, or at the next frame boundary otherwise.
114 void tegra_dc_commit(struct tegra_dc *dc)
116 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
117 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
123 fixed20_12 outf = dfixed_init(out);
124 fixed20_12 inf = dfixed_init(in);
145 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
146 inf.full -= dfixed_const(1);
148 dda_inc = dfixed_div(inf, outf);
149 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
154 static inline u32 compute_initial_dda(unsigned int in)
156 fixed20_12 inf = dfixed_init(in);
157 return dfixed_frac(inf);
160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
162 u32 background[3] = {
163 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
164 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
167 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168 BLEND_COLOR_KEY_NONE;
169 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170 struct tegra_plane_state *state;
174 /* disable blending for non-overlapping case */
175 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
176 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
178 state = to_tegra_plane_state(plane->base.state);
182 * Since custom fix-weight blending isn't utilized and weight
183 * of top window is set to max, we can enforce dependent
184 * blending which in this case results in transparent bottom
185 * window if top window is opaque and if top window enables
186 * alpha blending, then bottom window is getting alpha value
187 * of 1 minus the sum of alpha components of the overlapping
190 background[0] |= BLEND_CONTROL_DEPENDENT;
191 background[1] |= BLEND_CONTROL_DEPENDENT;
194 * The region where three windows overlap is the intersection
195 * of the two regions where two windows overlap. It contributes
196 * to the area if all of the windows on top of it have an alpha
199 switch (state->base.normalized_zpos) {
201 if (state->blending[0].alpha &&
202 state->blending[1].alpha)
203 background[2] |= BLEND_CONTROL_DEPENDENT;
207 background[2] |= BLEND_CONTROL_DEPENDENT;
212 * Enable alpha blending if pixel format has an alpha
215 foreground |= BLEND_CONTROL_ALPHA;
218 * If any of the windows on top of this window is opaque, it
219 * will completely conceal this window within that area. If
220 * top window has an alpha component, it is blended over the
223 for (i = 0; i < 2; i++) {
224 if (state->blending[i].alpha &&
225 state->blending[i].top)
226 background[i] |= BLEND_CONTROL_DEPENDENT;
229 switch (state->base.normalized_zpos) {
231 if (state->blending[0].alpha &&
232 state->blending[1].alpha)
233 background[2] |= BLEND_CONTROL_DEPENDENT;
238 * When both middle and topmost windows have an alpha,
239 * these windows a mixed together and then the result
240 * is blended over the bottom window.
242 if (state->blending[0].alpha &&
243 state->blending[0].top)
244 background[2] |= BLEND_CONTROL_ALPHA;
246 if (state->blending[1].alpha &&
247 state->blending[1].top)
248 background[2] |= BLEND_CONTROL_ALPHA;
253 switch (state->base.normalized_zpos) {
255 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
256 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
257 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
262 * If window B / C is topmost, then X / Y registers are
263 * matching the order of blending[...] state indices,
264 * otherwise a swap is required.
266 if (!state->blending[0].top && state->blending[1].top) {
267 blending[0] = foreground;
268 blending[1] = background[1];
270 blending[0] = background[0];
271 blending[1] = foreground;
274 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
275 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
276 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
280 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
281 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
282 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
287 static void tegra_plane_setup_blending(struct tegra_plane *plane,
288 const struct tegra_dc_window *window)
292 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
297 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
298 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
299 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
300 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
302 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
303 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
308 const struct tegra_dc_window *window)
310 struct tegra_dc *dc = plane->dc;
312 if (window->src.w == window->dst.w)
315 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
323 const struct tegra_dc_window *window)
325 struct tegra_dc *dc = plane->dc;
327 if (window->src.h == window->dst.h)
330 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
333 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
339 static void tegra_dc_setup_window(struct tegra_plane *plane,
340 const struct tegra_dc_window *window)
342 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
343 struct tegra_dc *dc = plane->dc;
348 * For YUV planar modes, the number of bytes per pixel takes into
349 * account only the luma component and therefore is 1.
351 yuv = tegra_plane_format_is_yuv(window->format, &planar);
353 bpp = window->bits_per_pixel / 8;
355 bpp = planar ? 1 : 2;
357 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
358 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
360 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
361 tegra_plane_writel(plane, value, DC_WIN_POSITION);
363 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
364 tegra_plane_writel(plane, value, DC_WIN_SIZE);
366 h_offset = window->src.x * bpp;
367 v_offset = window->src.y;
368 h_size = window->src.w * bpp;
369 v_size = window->src.h;
371 if (window->reflect_x)
372 h_offset += (window->src.w - 1) * bpp;
374 if (window->reflect_y)
375 v_offset += window->src.h - 1;
377 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
378 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
381 * For DDA computations the number of bytes per pixel for YUV planar
382 * modes needs to take into account all Y, U and V components.
387 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
388 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
390 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
391 tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
393 h_dda = compute_initial_dda(window->src.x);
394 v_dda = compute_initial_dda(window->src.y);
396 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
397 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
399 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
400 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
402 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
405 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
406 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
407 value = window->stride[1] << 16 | window->stride[0];
408 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
410 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
413 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
414 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
416 if (dc->soc->supports_block_linear) {
417 unsigned long height = window->tiling.value;
419 switch (window->tiling.mode) {
420 case TEGRA_BO_TILING_MODE_PITCH:
421 value = DC_WINBUF_SURFACE_KIND_PITCH;
424 case TEGRA_BO_TILING_MODE_TILED:
425 value = DC_WINBUF_SURFACE_KIND_TILED;
428 case TEGRA_BO_TILING_MODE_BLOCK:
429 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
430 DC_WINBUF_SURFACE_KIND_BLOCK;
434 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
436 switch (window->tiling.mode) {
437 case TEGRA_BO_TILING_MODE_PITCH:
438 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
439 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
442 case TEGRA_BO_TILING_MODE_TILED:
443 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
444 DC_WIN_BUFFER_ADDR_MODE_TILE;
447 case TEGRA_BO_TILING_MODE_BLOCK:
449 * No need to handle this here because ->atomic_check
450 * will already have filtered it out.
455 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
461 /* setup default colorspace conversion coefficients */
462 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
463 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
464 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
465 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
466 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
467 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
468 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
469 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
472 } else if (window->bits_per_pixel < 24) {
473 value |= COLOR_EXPAND;
476 if (window->reflect_x)
477 value |= H_DIRECTION;
479 if (window->reflect_y)
480 value |= V_DIRECTION;
482 if (tegra_plane_use_horizontal_filtering(plane, window)) {
484 * Enable horizontal 6-tap filter and set filtering
485 * coefficients to the default values defined in TRM.
487 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
488 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
489 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
490 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
491 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
492 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
493 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
494 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
495 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
496 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
497 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
498 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
499 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
500 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
501 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
502 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
507 if (tegra_plane_use_vertical_filtering(plane, window)) {
511 * Enable vertical 2-tap filter and set filtering
512 * coefficients to the default values defined in TRM.
514 for (i = 0, k = 128; i < 16; i++, k -= 8)
515 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
520 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
522 if (dc->soc->has_legacy_blending)
523 tegra_plane_setup_blending_legacy(plane);
525 tegra_plane_setup_blending(plane, window);
528 static const u32 tegra20_primary_formats[] = {
535 /* non-native formats */
542 static const u64 tegra20_modifiers[] = {
543 DRM_FORMAT_MOD_LINEAR,
544 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
545 DRM_FORMAT_MOD_INVALID
548 static const u32 tegra114_primary_formats[] = {
555 /* new on Tegra114 */
570 static const u32 tegra124_primary_formats[] = {
577 /* new on Tegra114 */
590 /* new on Tegra124 */
595 static const u64 tegra124_modifiers[] = {
596 DRM_FORMAT_MOD_LINEAR,
597 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
598 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
599 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
600 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
601 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
602 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
603 DRM_FORMAT_MOD_INVALID
606 static int tegra_plane_atomic_check(struct drm_plane *plane,
607 struct drm_atomic_state *state)
609 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
611 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
612 unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
615 unsigned int rotation = new_plane_state->rotation;
616 struct tegra_bo_tiling *tiling = &plane_state->tiling;
617 struct tegra_plane *tegra = to_tegra_plane(plane);
618 struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
621 /* no need for further checks if the plane is being disabled */
622 if (!new_plane_state->crtc)
625 err = tegra_plane_format(new_plane_state->fb->format->format,
626 &plane_state->format,
632 * Tegra20 and Tegra30 are special cases here because they support
633 * only variants of specific formats with an alpha component, but not
634 * the corresponding opaque formats. However, the opaque formats can
635 * be emulated by disabling alpha blending for the plane.
637 if (dc->soc->has_legacy_blending) {
638 err = tegra_plane_setup_legacy_state(tegra, plane_state);
643 err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
647 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
648 !dc->soc->supports_block_linear) {
649 DRM_ERROR("hardware doesn't support block linear mode\n");
654 * Older userspace used custom BO flag in order to specify the Y
655 * reflection, while modern userspace uses the generic DRM rotation
656 * property in order to achieve the same result. The legacy BO flag
657 * duplicates the DRM rotation property when both are set.
659 if (tegra_fb_is_bottom_up(new_plane_state->fb))
660 rotation |= DRM_MODE_REFLECT_Y;
662 rotation = drm_rotation_simplify(rotation, supported_rotation);
664 if (rotation & DRM_MODE_REFLECT_X)
665 plane_state->reflect_x = true;
667 plane_state->reflect_x = false;
669 if (rotation & DRM_MODE_REFLECT_Y)
670 plane_state->reflect_y = true;
672 plane_state->reflect_y = false;
675 * Tegra doesn't support different strides for U and V planes so we
676 * error out if the user tries to display a framebuffer with such a
679 if (new_plane_state->fb->format->num_planes > 2) {
680 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
681 DRM_ERROR("unsupported UV-plane configuration\n");
686 err = tegra_plane_state_add(tegra, new_plane_state);
693 static void tegra_plane_atomic_disable(struct drm_plane *plane,
694 struct drm_atomic_state *state)
696 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
698 struct tegra_plane *p = to_tegra_plane(plane);
701 /* rien ne va plus */
702 if (!old_state || !old_state->crtc)
705 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
706 value &= ~WIN_ENABLE;
707 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
710 static void tegra_plane_atomic_update(struct drm_plane *plane,
711 struct drm_atomic_state *state)
713 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
715 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
716 struct drm_framebuffer *fb = new_state->fb;
717 struct tegra_plane *p = to_tegra_plane(plane);
718 struct tegra_dc_window window;
721 /* rien ne va plus */
722 if (!new_state->crtc || !new_state->fb)
725 if (!new_state->visible)
726 return tegra_plane_atomic_disable(plane, state);
728 memset(&window, 0, sizeof(window));
729 window.src.x = new_state->src.x1 >> 16;
730 window.src.y = new_state->src.y1 >> 16;
731 window.src.w = drm_rect_width(&new_state->src) >> 16;
732 window.src.h = drm_rect_height(&new_state->src) >> 16;
733 window.dst.x = new_state->dst.x1;
734 window.dst.y = new_state->dst.y1;
735 window.dst.w = drm_rect_width(&new_state->dst);
736 window.dst.h = drm_rect_height(&new_state->dst);
737 window.bits_per_pixel = fb->format->cpp[0] * 8;
738 window.reflect_x = tegra_plane_state->reflect_x;
739 window.reflect_y = tegra_plane_state->reflect_y;
741 /* copy from state */
742 window.zpos = new_state->normalized_zpos;
743 window.tiling = tegra_plane_state->tiling;
744 window.format = tegra_plane_state->format;
745 window.swap = tegra_plane_state->swap;
747 for (i = 0; i < fb->format->num_planes; i++) {
748 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
751 * Tegra uses a shared stride for UV planes. Framebuffers are
752 * already checked for this in the tegra_plane_atomic_check()
753 * function, so it's safe to ignore the V-plane pitch here.
756 window.stride[i] = fb->pitches[i];
759 tegra_dc_setup_window(p, &window);
762 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
763 .prepare_fb = tegra_plane_prepare_fb,
764 .cleanup_fb = tegra_plane_cleanup_fb,
765 .atomic_check = tegra_plane_atomic_check,
766 .atomic_disable = tegra_plane_atomic_disable,
767 .atomic_update = tegra_plane_atomic_update,
770 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
773 * Ideally this would use drm_crtc_mask(), but that would require the
774 * CRTC to already be in the mode_config's list of CRTCs. However, it
775 * will only be added to that list in the drm_crtc_init_with_planes()
776 * (in tegra_dc_init()), which in turn requires registration of these
777 * planes. So we have ourselves a nice little chicken and egg problem
780 * We work around this by manually creating the mask from the number
781 * of CRTCs that have been registered, and should therefore always be
782 * the same as drm_crtc_index() after registration.
784 return 1 << drm->mode_config.num_crtc;
787 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
790 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
791 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
792 struct tegra_plane *plane;
793 unsigned int num_formats;
794 const u64 *modifiers;
798 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
800 return ERR_PTR(-ENOMEM);
802 /* Always use window A as primary window */
803 plane->offset = 0xa00;
807 num_formats = dc->soc->num_primary_formats;
808 formats = dc->soc->primary_formats;
809 modifiers = dc->soc->modifiers;
811 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
812 &tegra_plane_funcs, formats,
813 num_formats, modifiers, type, NULL);
819 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
820 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
822 err = drm_plane_create_rotation_property(&plane->base,
825 DRM_MODE_ROTATE_180 |
829 dev_err(dc->dev, "failed to create rotation property: %d\n",
835 static const u32 tegra_legacy_cursor_plane_formats[] = {
839 static const u32 tegra_cursor_plane_formats[] = {
843 static int tegra_cursor_atomic_check(struct drm_plane *plane,
844 struct drm_atomic_state *state)
846 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
848 struct tegra_plane *tegra = to_tegra_plane(plane);
851 /* no need for further checks if the plane is being disabled */
852 if (!new_plane_state->crtc)
855 /* scaling not supported for cursor */
856 if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
857 (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
860 /* only square cursors supported */
861 if (new_plane_state->src_w != new_plane_state->src_h)
864 if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
865 new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
868 err = tegra_plane_state_add(tegra, new_plane_state);
875 static void tegra_cursor_atomic_update(struct drm_plane *plane,
876 struct drm_atomic_state *state)
878 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
880 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
881 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
882 struct tegra_drm *tegra = plane->dev->dev_private;
883 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
884 u64 dma_mask = *dc->dev->dma_mask;
889 /* rien ne va plus */
890 if (!new_state->crtc || !new_state->fb)
894 * Legacy display supports hardware clipping of the cursor, but
895 * nvdisplay relies on software to clip the cursor to the screen.
897 if (!dc->soc->has_nvdisplay)
898 value |= CURSOR_CLIP_DISPLAY;
900 switch (new_state->crtc_w) {
902 value |= CURSOR_SIZE_32x32;
906 value |= CURSOR_SIZE_64x64;
910 value |= CURSOR_SIZE_128x128;
914 value |= CURSOR_SIZE_256x256;
918 WARN(1, "cursor size %ux%u not supported\n",
919 new_state->crtc_w, new_state->crtc_h);
923 value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
924 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
926 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
927 value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
928 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
931 /* enable cursor and set blend mode */
932 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
933 value |= CURSOR_ENABLE;
934 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
936 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
937 value &= ~CURSOR_DST_BLEND_MASK;
938 value &= ~CURSOR_SRC_BLEND_MASK;
940 if (dc->soc->has_nvdisplay)
941 value &= ~CURSOR_COMPOSITION_MODE_XOR;
943 value |= CURSOR_MODE_NORMAL;
945 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
946 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
947 value |= CURSOR_ALPHA;
948 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
950 /* nvdisplay relies on software for clipping */
951 if (dc->soc->has_nvdisplay) {
954 x = new_state->dst.x1;
955 y = new_state->dst.y1;
957 drm_rect_fp_to_int(&src, &new_state->src);
959 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
960 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
962 value = (drm_rect_height(&src) & tegra->vmask) << 16 |
963 (drm_rect_width(&src) & tegra->hmask);
964 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
966 x = new_state->crtc_x;
967 y = new_state->crtc_y;
970 /* position the cursor */
971 value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
972 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
975 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
976 struct drm_atomic_state *state)
978 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
983 /* rien ne va plus */
984 if (!old_state || !old_state->crtc)
987 dc = to_tegra_dc(old_state->crtc);
989 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
990 value &= ~CURSOR_ENABLE;
991 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
994 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
995 .prepare_fb = tegra_plane_prepare_fb,
996 .cleanup_fb = tegra_plane_cleanup_fb,
997 .atomic_check = tegra_cursor_atomic_check,
998 .atomic_update = tegra_cursor_atomic_update,
999 .atomic_disable = tegra_cursor_atomic_disable,
1002 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1003 struct tegra_dc *dc)
1005 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1006 struct tegra_plane *plane;
1007 unsigned int num_formats;
1011 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1013 return ERR_PTR(-ENOMEM);
1016 * This index is kind of fake. The cursor isn't a regular plane, but
1017 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1018 * use the same programming. Setting this fake index here allows the
1019 * code in tegra_add_plane_state() to do the right thing without the
1020 * need to special-casing the cursor plane.
1025 if (!dc->soc->has_nvdisplay) {
1026 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1027 formats = tegra_legacy_cursor_plane_formats;
1029 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1030 formats = tegra_cursor_plane_formats;
1033 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1034 &tegra_plane_funcs, formats,
1036 DRM_PLANE_TYPE_CURSOR, NULL);
1039 return ERR_PTR(err);
1042 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1043 drm_plane_create_zpos_immutable_property(&plane->base, 255);
1045 return &plane->base;
1048 static const u32 tegra20_overlay_formats[] = {
1049 DRM_FORMAT_ARGB4444,
1050 DRM_FORMAT_ARGB1555,
1052 DRM_FORMAT_RGBA5551,
1053 DRM_FORMAT_ABGR8888,
1054 DRM_FORMAT_ARGB8888,
1055 /* non-native formats */
1056 DRM_FORMAT_XRGB1555,
1057 DRM_FORMAT_RGBX5551,
1058 DRM_FORMAT_XBGR8888,
1059 DRM_FORMAT_XRGB8888,
1060 /* planar formats */
1067 static const u32 tegra114_overlay_formats[] = {
1068 DRM_FORMAT_ARGB4444,
1069 DRM_FORMAT_ARGB1555,
1071 DRM_FORMAT_RGBA5551,
1072 DRM_FORMAT_ABGR8888,
1073 DRM_FORMAT_ARGB8888,
1074 /* new on Tegra114 */
1075 DRM_FORMAT_ABGR4444,
1076 DRM_FORMAT_ABGR1555,
1077 DRM_FORMAT_BGRA5551,
1078 DRM_FORMAT_XRGB1555,
1079 DRM_FORMAT_RGBX5551,
1080 DRM_FORMAT_XBGR1555,
1081 DRM_FORMAT_BGRX5551,
1083 DRM_FORMAT_BGRA8888,
1084 DRM_FORMAT_RGBA8888,
1085 DRM_FORMAT_XRGB8888,
1086 DRM_FORMAT_XBGR8888,
1087 /* planar formats */
1094 static const u32 tegra124_overlay_formats[] = {
1095 DRM_FORMAT_ARGB4444,
1096 DRM_FORMAT_ARGB1555,
1098 DRM_FORMAT_RGBA5551,
1099 DRM_FORMAT_ABGR8888,
1100 DRM_FORMAT_ARGB8888,
1101 /* new on Tegra114 */
1102 DRM_FORMAT_ABGR4444,
1103 DRM_FORMAT_ABGR1555,
1104 DRM_FORMAT_BGRA5551,
1105 DRM_FORMAT_XRGB1555,
1106 DRM_FORMAT_RGBX5551,
1107 DRM_FORMAT_XBGR1555,
1108 DRM_FORMAT_BGRX5551,
1110 DRM_FORMAT_BGRA8888,
1111 DRM_FORMAT_RGBA8888,
1112 DRM_FORMAT_XRGB8888,
1113 DRM_FORMAT_XBGR8888,
1114 /* new on Tegra124 */
1115 DRM_FORMAT_RGBX8888,
1116 DRM_FORMAT_BGRX8888,
1117 /* planar formats */
1124 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1125 struct tegra_dc *dc,
1129 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1130 struct tegra_plane *plane;
1131 unsigned int num_formats;
1132 enum drm_plane_type type;
1136 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1138 return ERR_PTR(-ENOMEM);
1140 plane->offset = 0xa00 + 0x200 * index;
1141 plane->index = index;
1144 num_formats = dc->soc->num_overlay_formats;
1145 formats = dc->soc->overlay_formats;
1148 type = DRM_PLANE_TYPE_OVERLAY;
1150 type = DRM_PLANE_TYPE_CURSOR;
1152 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1153 &tegra_plane_funcs, formats,
1154 num_formats, NULL, type, NULL);
1157 return ERR_PTR(err);
1160 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1161 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1163 err = drm_plane_create_rotation_property(&plane->base,
1166 DRM_MODE_ROTATE_180 |
1167 DRM_MODE_REFLECT_X |
1168 DRM_MODE_REFLECT_Y);
1170 dev_err(dc->dev, "failed to create rotation property: %d\n",
1173 return &plane->base;
1176 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1177 struct tegra_dc *dc)
1179 struct drm_plane *plane, *primary = NULL;
1182 for (i = 0; i < dc->soc->num_wgrps; i++) {
1183 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1185 if (wgrp->dc == dc->pipe) {
1186 for (j = 0; j < wgrp->num_windows; j++) {
1187 unsigned int index = wgrp->windows[j];
1189 plane = tegra_shared_plane_create(drm, dc,
1196 * Choose the first shared plane owned by this
1197 * head as the primary plane.
1200 plane->type = DRM_PLANE_TYPE_PRIMARY;
1210 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1211 struct tegra_dc *dc)
1213 struct drm_plane *planes[2], *primary;
1214 unsigned int planes_num;
1218 primary = tegra_primary_plane_create(drm, dc);
1219 if (IS_ERR(primary))
1222 if (dc->soc->supports_cursor)
1227 for (i = 0; i < planes_num; i++) {
1228 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1230 if (IS_ERR(planes[i])) {
1231 err = PTR_ERR(planes[i]);
1234 tegra_plane_funcs.destroy(planes[i]);
1236 tegra_plane_funcs.destroy(primary);
1237 return ERR_PTR(err);
1244 static void tegra_dc_destroy(struct drm_crtc *crtc)
1246 drm_crtc_cleanup(crtc);
1249 static void tegra_crtc_reset(struct drm_crtc *crtc)
1251 struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1254 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1256 __drm_atomic_helper_crtc_reset(crtc, &state->base);
1259 static struct drm_crtc_state *
1260 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1262 struct tegra_dc_state *state = to_dc_state(crtc->state);
1263 struct tegra_dc_state *copy;
1265 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1269 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base);
1270 copy->clk = state->clk;
1271 copy->pclk = state->pclk;
1272 copy->div = state->div;
1273 copy->planes = state->planes;
1278 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1279 struct drm_crtc_state *state)
1281 __drm_atomic_helper_crtc_destroy_state(state);
1285 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1287 static const struct debugfs_reg32 tegra_dc_regs[] = {
1288 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1289 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1290 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1291 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1292 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1293 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1294 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1295 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1296 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1297 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1298 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1299 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1300 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1301 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1302 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1303 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1304 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1305 DEBUGFS_REG32(DC_CMD_INT_STATUS),
1306 DEBUGFS_REG32(DC_CMD_INT_MASK),
1307 DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1308 DEBUGFS_REG32(DC_CMD_INT_TYPE),
1309 DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1310 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1311 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1312 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1313 DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1314 DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1315 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1316 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1317 DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1318 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1319 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1320 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1321 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1322 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1323 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1324 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1325 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1326 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1327 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1328 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1329 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1330 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1331 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1332 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1333 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1334 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1335 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1336 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1337 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1338 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1339 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1340 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1341 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1342 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1343 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1344 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1345 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1346 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1347 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1348 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1349 DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1350 DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1351 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1352 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1353 DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1354 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1355 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1356 DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1357 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1358 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1359 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1360 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1361 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1362 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1363 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1364 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1365 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1366 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1367 DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1368 DEBUGFS_REG32(DC_DISP_ACTIVE),
1369 DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1370 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1371 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1372 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1373 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1374 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1375 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1376 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1377 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1378 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1379 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1380 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1381 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1382 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1383 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1384 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1385 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1386 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1387 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1388 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1389 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1390 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1391 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1392 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1393 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1394 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1395 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1396 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1397 DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1398 DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1399 DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1400 DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1401 DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1402 DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1403 DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1404 DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1405 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1406 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1407 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1408 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1409 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1410 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1411 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1412 DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1413 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1414 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1415 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1416 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1417 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1418 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1419 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1420 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1421 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1422 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1423 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1424 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1425 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1426 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1427 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1428 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1429 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1430 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1431 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1432 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1433 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1434 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1435 DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1436 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1437 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1438 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1439 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1440 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1441 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1442 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1443 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1444 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1445 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1446 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1447 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1448 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1449 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1450 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1451 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1452 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1453 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1454 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1455 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1456 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1457 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1458 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1459 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1460 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1461 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1462 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1463 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1464 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1465 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1466 DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1467 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1468 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1469 DEBUGFS_REG32(DC_WIN_POSITION),
1470 DEBUGFS_REG32(DC_WIN_SIZE),
1471 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1472 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1473 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1474 DEBUGFS_REG32(DC_WIN_DDA_INC),
1475 DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1476 DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1477 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1478 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1479 DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1480 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1481 DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1482 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1483 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1484 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1485 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1486 DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1487 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1488 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1489 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1490 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1491 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1492 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1493 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1494 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1495 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1496 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1497 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1498 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1499 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1502 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1504 struct drm_info_node *node = s->private;
1505 struct tegra_dc *dc = node->info_ent->data;
1509 drm_modeset_lock(&dc->base.mutex, NULL);
1511 if (!dc->base.state->active) {
1516 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1517 unsigned int offset = tegra_dc_regs[i].offset;
1519 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1520 offset, tegra_dc_readl(dc, offset));
1524 drm_modeset_unlock(&dc->base.mutex);
1528 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1530 struct drm_info_node *node = s->private;
1531 struct tegra_dc *dc = node->info_ent->data;
1535 drm_modeset_lock(&dc->base.mutex, NULL);
1537 if (!dc->base.state->active) {
1542 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1543 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1544 tegra_dc_commit(dc);
1546 drm_crtc_wait_one_vblank(&dc->base);
1547 drm_crtc_wait_one_vblank(&dc->base);
1549 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1550 seq_printf(s, "%08x\n", value);
1552 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1555 drm_modeset_unlock(&dc->base.mutex);
1559 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1561 struct drm_info_node *node = s->private;
1562 struct tegra_dc *dc = node->info_ent->data;
1564 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1565 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1566 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1567 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1572 static struct drm_info_list debugfs_files[] = {
1573 { "regs", tegra_dc_show_regs, 0, NULL },
1574 { "crc", tegra_dc_show_crc, 0, NULL },
1575 { "stats", tegra_dc_show_stats, 0, NULL },
1578 static int tegra_dc_late_register(struct drm_crtc *crtc)
1580 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1581 struct drm_minor *minor = crtc->dev->primary;
1582 struct dentry *root;
1583 struct tegra_dc *dc = to_tegra_dc(crtc);
1585 #ifdef CONFIG_DEBUG_FS
1586 root = crtc->debugfs_entry;
1591 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1593 if (!dc->debugfs_files)
1596 for (i = 0; i < count; i++)
1597 dc->debugfs_files[i].data = dc;
1599 drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1604 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1606 unsigned int count = ARRAY_SIZE(debugfs_files);
1607 struct drm_minor *minor = crtc->dev->primary;
1608 struct tegra_dc *dc = to_tegra_dc(crtc);
1610 drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1611 kfree(dc->debugfs_files);
1612 dc->debugfs_files = NULL;
1615 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1617 struct tegra_dc *dc = to_tegra_dc(crtc);
1619 /* XXX vblank syncpoints don't work with nvdisplay yet */
1620 if (dc->syncpt && !dc->soc->has_nvdisplay)
1621 return host1x_syncpt_read(dc->syncpt);
1623 /* fallback to software emulated VBLANK counter */
1624 return (u32)drm_crtc_vblank_count(&dc->base);
1627 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1629 struct tegra_dc *dc = to_tegra_dc(crtc);
1632 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1633 value |= VBLANK_INT;
1634 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1639 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1641 struct tegra_dc *dc = to_tegra_dc(crtc);
1644 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1645 value &= ~VBLANK_INT;
1646 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1649 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1650 .page_flip = drm_atomic_helper_page_flip,
1651 .set_config = drm_atomic_helper_set_config,
1652 .destroy = tegra_dc_destroy,
1653 .reset = tegra_crtc_reset,
1654 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1655 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1656 .late_register = tegra_dc_late_register,
1657 .early_unregister = tegra_dc_early_unregister,
1658 .get_vblank_counter = tegra_dc_get_vblank_counter,
1659 .enable_vblank = tegra_dc_enable_vblank,
1660 .disable_vblank = tegra_dc_disable_vblank,
1663 static int tegra_dc_set_timings(struct tegra_dc *dc,
1664 struct drm_display_mode *mode)
1666 unsigned int h_ref_to_sync = 1;
1667 unsigned int v_ref_to_sync = 1;
1668 unsigned long value;
1670 if (!dc->soc->has_nvdisplay) {
1671 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1673 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1674 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1677 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1678 ((mode->hsync_end - mode->hsync_start) << 0);
1679 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1681 value = ((mode->vtotal - mode->vsync_end) << 16) |
1682 ((mode->htotal - mode->hsync_end) << 0);
1683 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1685 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1686 ((mode->hsync_start - mode->hdisplay) << 0);
1687 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1689 value = (mode->vdisplay << 16) | mode->hdisplay;
1690 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1696 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1698 * @dc: display controller
1699 * @crtc_state: CRTC atomic state
1700 * @clk: parent clock for display controller
1701 * @pclk: pixel clock
1702 * @div: shift clock divider
1705 * 0 on success or a negative error-code on failure.
1707 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1708 struct drm_crtc_state *crtc_state,
1709 struct clk *clk, unsigned long pclk,
1712 struct tegra_dc_state *state = to_dc_state(crtc_state);
1714 if (!clk_has_parent(dc->clk, clk))
1724 static void tegra_dc_commit_state(struct tegra_dc *dc,
1725 struct tegra_dc_state *state)
1730 err = clk_set_parent(dc->clk, state->clk);
1732 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1735 * Outputs may not want to change the parent clock rate. This is only
1736 * relevant to Tegra20 where only a single display PLL is available.
1737 * Since that PLL would typically be used for HDMI, an internal LVDS
1738 * panel would need to be driven by some other clock such as PLL_P
1739 * which is shared with other peripherals. Changing the clock rate
1740 * should therefore be avoided.
1742 if (state->pclk > 0) {
1743 err = clk_set_rate(state->clk, state->pclk);
1746 "failed to set clock rate to %lu Hz\n",
1749 err = clk_set_rate(dc->clk, state->pclk);
1751 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1752 dc->clk, state->pclk, err);
1755 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1757 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1759 if (!dc->soc->has_nvdisplay) {
1760 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1761 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1765 static void tegra_dc_stop(struct tegra_dc *dc)
1769 /* stop the display controller */
1770 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1771 value &= ~DISP_CTRL_MODE_MASK;
1772 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1774 tegra_dc_commit(dc);
1777 static bool tegra_dc_idle(struct tegra_dc *dc)
1781 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1783 return (value & DISP_CTRL_MODE_MASK) == 0;
1786 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1788 timeout = jiffies + msecs_to_jiffies(timeout);
1790 while (time_before(jiffies, timeout)) {
1791 if (tegra_dc_idle(dc))
1794 usleep_range(1000, 2000);
1797 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1801 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1802 struct drm_atomic_state *state)
1804 struct tegra_dc *dc = to_tegra_dc(crtc);
1808 if (!tegra_dc_idle(dc)) {
1812 * Ignore the return value, there isn't anything useful to do
1813 * in case this fails.
1815 tegra_dc_wait_idle(dc, 100);
1819 * This should really be part of the RGB encoder driver, but clearing
1820 * these bits has the side-effect of stopping the display controller.
1821 * When that happens no VBLANK interrupts will be raised. At the same
1822 * time the encoder is disabled before the display controller, so the
1823 * above code is always going to timeout waiting for the controller
1826 * Given the close coupling between the RGB encoder and the display
1827 * controller doing it here is still kind of okay. None of the other
1828 * encoder drivers require these bits to be cleared.
1830 * XXX: Perhaps given that the display controller is switched off at
1831 * this point anyway maybe clearing these bits isn't even useful for
1835 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1836 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1837 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1838 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1841 tegra_dc_stats_reset(&dc->stats);
1842 drm_crtc_vblank_off(crtc);
1844 spin_lock_irq(&crtc->dev->event_lock);
1846 if (crtc->state->event) {
1847 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1848 crtc->state->event = NULL;
1851 spin_unlock_irq(&crtc->dev->event_lock);
1853 err = host1x_client_suspend(&dc->client);
1855 dev_err(dc->dev, "failed to suspend: %d\n", err);
1858 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1859 struct drm_atomic_state *state)
1861 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1862 struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
1863 struct tegra_dc *dc = to_tegra_dc(crtc);
1867 err = host1x_client_resume(&dc->client);
1869 dev_err(dc->dev, "failed to resume: %d\n", err);
1873 /* initialize display controller */
1875 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1877 if (dc->soc->has_nvdisplay)
1882 value = SYNCPT_CNTRL_NO_STALL;
1883 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1885 value = enable | syncpt;
1886 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1889 if (dc->soc->has_nvdisplay) {
1890 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1892 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1894 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1895 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1896 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1897 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1898 VBLANK_INT | FRAME_END_INT;
1899 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1901 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1903 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1905 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1906 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1908 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1910 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1911 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1912 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1914 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1915 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1916 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1918 /* initialize timer */
1919 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1920 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1921 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1923 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1924 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1925 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1927 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1928 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1929 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1931 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1932 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1933 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1936 if (dc->soc->supports_background_color)
1937 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1939 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1941 /* apply PLL and pixel clock changes */
1942 tegra_dc_commit_state(dc, crtc_state);
1944 /* program display mode */
1945 tegra_dc_set_timings(dc, mode);
1947 /* interlacing isn't supported yet, so disable it */
1948 if (dc->soc->supports_interlacing) {
1949 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1950 value &= ~INTERLACE_ENABLE;
1951 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1954 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1955 value &= ~DISP_CTRL_MODE_MASK;
1956 value |= DISP_CTRL_MODE_C_DISPLAY;
1957 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1959 if (!dc->soc->has_nvdisplay) {
1960 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1961 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1962 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1963 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1966 /* enable underflow reporting and display red for missing pixels */
1967 if (dc->soc->has_nvdisplay) {
1968 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1969 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1972 tegra_dc_commit(dc);
1974 drm_crtc_vblank_on(crtc);
1977 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1978 struct drm_atomic_state *state)
1980 unsigned long flags;
1982 if (crtc->state->event) {
1983 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1985 if (drm_crtc_vblank_get(crtc) != 0)
1986 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1988 drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1990 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1992 crtc->state->event = NULL;
1996 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1997 struct drm_atomic_state *state)
1999 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2001 struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2002 struct tegra_dc *dc = to_tegra_dc(crtc);
2005 value = dc_state->planes << 8 | GENERAL_UPDATE;
2006 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2007 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2009 value = dc_state->planes | GENERAL_ACT_REQ;
2010 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2011 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2014 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2015 .atomic_begin = tegra_crtc_atomic_begin,
2016 .atomic_flush = tegra_crtc_atomic_flush,
2017 .atomic_enable = tegra_crtc_atomic_enable,
2018 .atomic_disable = tegra_crtc_atomic_disable,
2021 static irqreturn_t tegra_dc_irq(int irq, void *data)
2023 struct tegra_dc *dc = data;
2024 unsigned long status;
2026 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2027 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2029 if (status & FRAME_END_INT) {
2031 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2036 if (status & VBLANK_INT) {
2038 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2040 drm_crtc_handle_vblank(&dc->base);
2044 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2046 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2048 dc->stats.underflow++;
2051 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2053 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2055 dc->stats.overflow++;
2058 if (status & HEAD_UF_INT) {
2059 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2060 dc->stats.underflow++;
2066 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2070 if (!dc->soc->wgrps)
2073 for (i = 0; i < dc->soc->num_wgrps; i++) {
2074 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2076 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2083 static int tegra_dc_early_init(struct host1x_client *client)
2085 struct drm_device *drm = dev_get_drvdata(client->host);
2086 struct tegra_drm *tegra = drm->dev_private;
2093 static int tegra_dc_init(struct host1x_client *client)
2095 struct drm_device *drm = dev_get_drvdata(client->host);
2096 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2097 struct tegra_dc *dc = host1x_client_to_dc(client);
2098 struct tegra_drm *tegra = drm->dev_private;
2099 struct drm_plane *primary = NULL;
2100 struct drm_plane *cursor = NULL;
2104 * DC has been reset by now, so VBLANK syncpoint can be released
2107 host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2110 * XXX do not register DCs with no window groups because we cannot
2111 * assign a primary plane to them, which in turn will cause KMS to
2114 if (!tegra_dc_has_window_groups(dc))
2118 * Set the display hub as the host1x client parent for the display
2119 * controller. This is needed for the runtime reference counting that
2120 * ensures the display hub is always powered when any of the display
2123 if (dc->soc->has_nvdisplay)
2124 client->parent = &tegra->hub->client;
2126 dc->syncpt = host1x_syncpt_request(client, flags);
2128 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2130 err = host1x_client_iommu_attach(client);
2131 if (err < 0 && err != -ENODEV) {
2132 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2137 primary = tegra_dc_add_shared_planes(drm, dc);
2139 primary = tegra_dc_add_planes(drm, dc);
2141 if (IS_ERR(primary)) {
2142 err = PTR_ERR(primary);
2146 if (dc->soc->supports_cursor) {
2147 cursor = tegra_dc_cursor_plane_create(drm, dc);
2148 if (IS_ERR(cursor)) {
2149 err = PTR_ERR(cursor);
2153 /* dedicate one overlay to mouse cursor */
2154 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2155 if (IS_ERR(cursor)) {
2156 err = PTR_ERR(cursor);
2161 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2162 &tegra_crtc_funcs, NULL);
2166 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2169 * Keep track of the minimum pitch alignment across all display
2172 if (dc->soc->pitch_align > tegra->pitch_align)
2173 tegra->pitch_align = dc->soc->pitch_align;
2175 /* track maximum resolution */
2176 if (dc->soc->has_nvdisplay)
2177 drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2179 drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2181 err = tegra_dc_rgb_init(drm, dc);
2182 if (err < 0 && err != -ENODEV) {
2183 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2187 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2188 dev_name(dc->dev), dc);
2190 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2196 * Inherit the DMA parameters (such as maximum segment size) from the
2197 * parent host1x device.
2199 client->dev->dma_parms = client->host->dma_parms;
2204 if (!IS_ERR_OR_NULL(cursor))
2205 drm_plane_cleanup(cursor);
2207 if (!IS_ERR(primary))
2208 drm_plane_cleanup(primary);
2210 host1x_client_iommu_detach(client);
2211 host1x_syncpt_put(dc->syncpt);
2216 static int tegra_dc_exit(struct host1x_client *client)
2218 struct tegra_dc *dc = host1x_client_to_dc(client);
2221 if (!tegra_dc_has_window_groups(dc))
2224 /* avoid a dangling pointer just in case this disappears */
2225 client->dev->dma_parms = NULL;
2227 devm_free_irq(dc->dev, dc->irq, dc);
2229 err = tegra_dc_rgb_exit(dc);
2231 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2235 host1x_client_iommu_detach(client);
2236 host1x_syncpt_put(dc->syncpt);
2241 static int tegra_dc_late_exit(struct host1x_client *client)
2243 struct drm_device *drm = dev_get_drvdata(client->host);
2244 struct tegra_drm *tegra = drm->dev_private;
2251 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2253 struct tegra_dc *dc = host1x_client_to_dc(client);
2254 struct device *dev = client->dev;
2257 err = reset_control_assert(dc->rst);
2259 dev_err(dev, "failed to assert reset: %d\n", err);
2263 if (dc->soc->has_powergate)
2264 tegra_powergate_power_off(dc->powergate);
2266 clk_disable_unprepare(dc->clk);
2267 pm_runtime_put_sync(dev);
2272 static int tegra_dc_runtime_resume(struct host1x_client *client)
2274 struct tegra_dc *dc = host1x_client_to_dc(client);
2275 struct device *dev = client->dev;
2278 err = pm_runtime_resume_and_get(dev);
2280 dev_err(dev, "failed to get runtime PM: %d\n", err);
2284 if (dc->soc->has_powergate) {
2285 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2288 dev_err(dev, "failed to power partition: %d\n", err);
2292 err = clk_prepare_enable(dc->clk);
2294 dev_err(dev, "failed to enable clock: %d\n", err);
2298 err = reset_control_deassert(dc->rst);
2300 dev_err(dev, "failed to deassert reset: %d\n", err);
2308 clk_disable_unprepare(dc->clk);
2310 pm_runtime_put_sync(dev);
2314 static const struct host1x_client_ops dc_client_ops = {
2315 .early_init = tegra_dc_early_init,
2316 .init = tegra_dc_init,
2317 .exit = tegra_dc_exit,
2318 .late_exit = tegra_dc_late_exit,
2319 .suspend = tegra_dc_runtime_suspend,
2320 .resume = tegra_dc_runtime_resume,
2323 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2324 .supports_background_color = false,
2325 .supports_interlacing = false,
2326 .supports_cursor = false,
2327 .supports_block_linear = false,
2328 .supports_sector_layout = false,
2329 .has_legacy_blending = true,
2331 .has_powergate = false,
2333 .has_nvdisplay = false,
2334 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2335 .primary_formats = tegra20_primary_formats,
2336 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2337 .overlay_formats = tegra20_overlay_formats,
2338 .modifiers = tegra20_modifiers,
2339 .has_win_a_without_filters = true,
2340 .has_win_c_without_vert_filter = true,
2343 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2344 .supports_background_color = false,
2345 .supports_interlacing = false,
2346 .supports_cursor = false,
2347 .supports_block_linear = false,
2348 .supports_sector_layout = false,
2349 .has_legacy_blending = true,
2351 .has_powergate = false,
2352 .coupled_pm = false,
2353 .has_nvdisplay = false,
2354 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2355 .primary_formats = tegra20_primary_formats,
2356 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2357 .overlay_formats = tegra20_overlay_formats,
2358 .modifiers = tegra20_modifiers,
2359 .has_win_a_without_filters = false,
2360 .has_win_c_without_vert_filter = false,
2363 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2364 .supports_background_color = false,
2365 .supports_interlacing = false,
2366 .supports_cursor = false,
2367 .supports_block_linear = false,
2368 .supports_sector_layout = false,
2369 .has_legacy_blending = true,
2371 .has_powergate = true,
2372 .coupled_pm = false,
2373 .has_nvdisplay = false,
2374 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2375 .primary_formats = tegra114_primary_formats,
2376 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2377 .overlay_formats = tegra114_overlay_formats,
2378 .modifiers = tegra20_modifiers,
2379 .has_win_a_without_filters = false,
2380 .has_win_c_without_vert_filter = false,
2383 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2384 .supports_background_color = true,
2385 .supports_interlacing = true,
2386 .supports_cursor = true,
2387 .supports_block_linear = true,
2388 .supports_sector_layout = false,
2389 .has_legacy_blending = false,
2391 .has_powergate = true,
2392 .coupled_pm = false,
2393 .has_nvdisplay = false,
2394 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2395 .primary_formats = tegra124_primary_formats,
2396 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2397 .overlay_formats = tegra124_overlay_formats,
2398 .modifiers = tegra124_modifiers,
2399 .has_win_a_without_filters = false,
2400 .has_win_c_without_vert_filter = false,
2403 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2404 .supports_background_color = true,
2405 .supports_interlacing = true,
2406 .supports_cursor = true,
2407 .supports_block_linear = true,
2408 .supports_sector_layout = false,
2409 .has_legacy_blending = false,
2411 .has_powergate = true,
2412 .coupled_pm = false,
2413 .has_nvdisplay = false,
2414 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2415 .primary_formats = tegra114_primary_formats,
2416 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2417 .overlay_formats = tegra114_overlay_formats,
2418 .modifiers = tegra124_modifiers,
2419 .has_win_a_without_filters = false,
2420 .has_win_c_without_vert_filter = false,
2423 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2427 .windows = (const unsigned int[]) { 0 },
2432 .windows = (const unsigned int[]) { 1 },
2437 .windows = (const unsigned int[]) { 2 },
2442 .windows = (const unsigned int[]) { 3 },
2447 .windows = (const unsigned int[]) { 4 },
2452 .windows = (const unsigned int[]) { 5 },
2457 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2458 .supports_background_color = true,
2459 .supports_interlacing = true,
2460 .supports_cursor = true,
2461 .supports_block_linear = true,
2462 .supports_sector_layout = false,
2463 .has_legacy_blending = false,
2465 .has_powergate = false,
2466 .coupled_pm = false,
2467 .has_nvdisplay = true,
2468 .wgrps = tegra186_dc_wgrps,
2469 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2472 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2476 .windows = (const unsigned int[]) { 0 },
2481 .windows = (const unsigned int[]) { 1 },
2486 .windows = (const unsigned int[]) { 2 },
2491 .windows = (const unsigned int[]) { 3 },
2496 .windows = (const unsigned int[]) { 4 },
2501 .windows = (const unsigned int[]) { 5 },
2506 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2507 .supports_background_color = true,
2508 .supports_interlacing = true,
2509 .supports_cursor = true,
2510 .supports_block_linear = true,
2511 .supports_sector_layout = true,
2512 .has_legacy_blending = false,
2514 .has_powergate = false,
2515 .coupled_pm = false,
2516 .has_nvdisplay = true,
2517 .wgrps = tegra194_dc_wgrps,
2518 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2521 static const struct of_device_id tegra_dc_of_match[] = {
2523 .compatible = "nvidia,tegra194-dc",
2524 .data = &tegra194_dc_soc_info,
2526 .compatible = "nvidia,tegra186-dc",
2527 .data = &tegra186_dc_soc_info,
2529 .compatible = "nvidia,tegra210-dc",
2530 .data = &tegra210_dc_soc_info,
2532 .compatible = "nvidia,tegra124-dc",
2533 .data = &tegra124_dc_soc_info,
2535 .compatible = "nvidia,tegra114-dc",
2536 .data = &tegra114_dc_soc_info,
2538 .compatible = "nvidia,tegra30-dc",
2539 .data = &tegra30_dc_soc_info,
2541 .compatible = "nvidia,tegra20-dc",
2542 .data = &tegra20_dc_soc_info,
2547 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2549 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2551 struct device_node *np;
2555 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2557 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2560 * If the nvidia,head property isn't present, try to find the
2561 * correct head number by looking up the position of this
2562 * display controller's node within the device tree. Assuming
2563 * that the nodes are ordered properly in the DTS file and
2564 * that the translation into a flattened device tree blob
2565 * preserves that ordering this will actually yield the right
2568 * If those assumptions don't hold, this will still work for
2569 * cases where only a single display controller is used.
2571 for_each_matching_node(np, tegra_dc_of_match) {
2572 if (np == dc->dev->of_node) {
2586 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2588 struct tegra_dc *dc = dev_get_drvdata(dev);
2589 unsigned int pipe = (unsigned long)(void *)data;
2591 return dc->pipe == pipe;
2594 static int tegra_dc_couple(struct tegra_dc *dc)
2597 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2598 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2599 * POWER_CONTROL registers during CRTC enabling.
2601 if (dc->soc->coupled_pm && dc->pipe == 1) {
2602 struct device *companion;
2603 struct tegra_dc *parent;
2605 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
2606 tegra_dc_match_by_pipe);
2608 return -EPROBE_DEFER;
2610 parent = dev_get_drvdata(companion);
2611 dc->client.parent = &parent->client;
2613 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
2619 static int tegra_dc_probe(struct platform_device *pdev)
2621 u64 dma_mask = dma_get_mask(pdev->dev.parent);
2622 struct tegra_dc *dc;
2625 err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
2627 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
2631 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2635 dc->soc = of_device_get_match_data(&pdev->dev);
2637 INIT_LIST_HEAD(&dc->list);
2638 dc->dev = &pdev->dev;
2640 err = tegra_dc_parse_dt(dc);
2644 err = tegra_dc_couple(dc);
2648 dc->clk = devm_clk_get(&pdev->dev, NULL);
2649 if (IS_ERR(dc->clk)) {
2650 dev_err(&pdev->dev, "failed to get clock\n");
2651 return PTR_ERR(dc->clk);
2654 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2655 if (IS_ERR(dc->rst)) {
2656 dev_err(&pdev->dev, "failed to get reset\n");
2657 return PTR_ERR(dc->rst);
2660 /* assert reset and disable clock */
2661 err = clk_prepare_enable(dc->clk);
2665 usleep_range(2000, 4000);
2667 err = reset_control_assert(dc->rst);
2671 usleep_range(2000, 4000);
2673 clk_disable_unprepare(dc->clk);
2675 if (dc->soc->has_powergate) {
2677 dc->powergate = TEGRA_POWERGATE_DIS;
2679 dc->powergate = TEGRA_POWERGATE_DISB;
2681 tegra_powergate_power_off(dc->powergate);
2684 dc->regs = devm_platform_ioremap_resource(pdev, 0);
2685 if (IS_ERR(dc->regs))
2686 return PTR_ERR(dc->regs);
2688 dc->irq = platform_get_irq(pdev, 0);
2692 err = tegra_dc_rgb_probe(dc);
2693 if (err < 0 && err != -ENODEV) {
2694 const char *level = KERN_ERR;
2696 if (err == -EPROBE_DEFER)
2699 dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
2704 platform_set_drvdata(pdev, dc);
2705 pm_runtime_enable(&pdev->dev);
2707 INIT_LIST_HEAD(&dc->client.list);
2708 dc->client.ops = &dc_client_ops;
2709 dc->client.dev = &pdev->dev;
2711 err = host1x_client_register(&dc->client);
2713 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2721 pm_runtime_disable(&pdev->dev);
2722 tegra_dc_rgb_remove(dc);
2727 static int tegra_dc_remove(struct platform_device *pdev)
2729 struct tegra_dc *dc = platform_get_drvdata(pdev);
2732 err = host1x_client_unregister(&dc->client);
2734 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2739 err = tegra_dc_rgb_remove(dc);
2741 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2745 pm_runtime_disable(&pdev->dev);
2750 struct platform_driver tegra_dc_driver = {
2753 .of_match_table = tegra_dc_of_match,
2755 .probe = tegra_dc_probe,
2756 .remove = tegra_dc_remove,