]> Git Repo - linux.git/blob - drivers/gpu/drm/tegra/dc.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[linux.git] / drivers / gpu / drm / tegra / dc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15
16 #include <soc/tegra/pmc.h>
17
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/drm_fourcc.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24
25 #include "dc.h"
26 #include "drm.h"
27 #include "gem.h"
28 #include "hub.h"
29 #include "plane.h"
30
31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
32                                             struct drm_crtc_state *state);
33
34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
35 {
36         stats->frames = 0;
37         stats->vblank = 0;
38         stats->underflow = 0;
39         stats->overflow = 0;
40 }
41
42 /* Reads the active copy of a register. */
43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
44 {
45         u32 value;
46
47         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
48         value = tegra_dc_readl(dc, offset);
49         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
50
51         return value;
52 }
53
54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
55                                               unsigned int offset)
56 {
57         if (offset >= 0x500 && offset <= 0x638) {
58                 offset = 0x000 + (offset - 0x500);
59                 return plane->offset + offset;
60         }
61
62         if (offset >= 0x700 && offset <= 0x719) {
63                 offset = 0x180 + (offset - 0x700);
64                 return plane->offset + offset;
65         }
66
67         if (offset >= 0x800 && offset <= 0x839) {
68                 offset = 0x1c0 + (offset - 0x800);
69                 return plane->offset + offset;
70         }
71
72         dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
73
74         return plane->offset + offset;
75 }
76
77 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
78                                     unsigned int offset)
79 {
80         return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
81 }
82
83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
84                                       unsigned int offset)
85 {
86         tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
87 }
88
89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
90 {
91         struct device_node *np = dc->dev->of_node;
92         struct of_phandle_iterator it;
93         int err;
94
95         of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
96                 if (it.node == dev->of_node)
97                         return true;
98
99         return false;
100 }
101
102 /*
103  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105  * Latching happens mmediately if the display controller is in STOP mode or
106  * on the next frame boundary otherwise.
107  *
108  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111  * into the ACTIVE copy, either immediately if the display controller is in
112  * STOP mode, or at the next frame boundary otherwise.
113  */
114 void tegra_dc_commit(struct tegra_dc *dc)
115 {
116         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
117         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
118 }
119
120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
121                                   unsigned int bpp)
122 {
123         fixed20_12 outf = dfixed_init(out);
124         fixed20_12 inf = dfixed_init(in);
125         u32 dda_inc;
126         int max;
127
128         if (v)
129                 max = 15;
130         else {
131                 switch (bpp) {
132                 case 2:
133                         max = 8;
134                         break;
135
136                 default:
137                         WARN_ON_ONCE(1);
138                         fallthrough;
139                 case 4:
140                         max = 4;
141                         break;
142                 }
143         }
144
145         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
146         inf.full -= dfixed_const(1);
147
148         dda_inc = dfixed_div(inf, outf);
149         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
150
151         return dda_inc;
152 }
153
154 static inline u32 compute_initial_dda(unsigned int in)
155 {
156         fixed20_12 inf = dfixed_init(in);
157         return dfixed_frac(inf);
158 }
159
160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
161 {
162         u32 background[3] = {
163                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
164                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166         };
167         u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168                          BLEND_COLOR_KEY_NONE;
169         u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170         struct tegra_plane_state *state;
171         u32 blending[2];
172         unsigned int i;
173
174         /* disable blending for non-overlapping case */
175         tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
176         tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
177
178         state = to_tegra_plane_state(plane->base.state);
179
180         if (state->opaque) {
181                 /*
182                  * Since custom fix-weight blending isn't utilized and weight
183                  * of top window is set to max, we can enforce dependent
184                  * blending which in this case results in transparent bottom
185                  * window if top window is opaque and if top window enables
186                  * alpha blending, then bottom window is getting alpha value
187                  * of 1 minus the sum of alpha components of the overlapping
188                  * plane.
189                  */
190                 background[0] |= BLEND_CONTROL_DEPENDENT;
191                 background[1] |= BLEND_CONTROL_DEPENDENT;
192
193                 /*
194                  * The region where three windows overlap is the intersection
195                  * of the two regions where two windows overlap. It contributes
196                  * to the area if all of the windows on top of it have an alpha
197                  * component.
198                  */
199                 switch (state->base.normalized_zpos) {
200                 case 0:
201                         if (state->blending[0].alpha &&
202                             state->blending[1].alpha)
203                                 background[2] |= BLEND_CONTROL_DEPENDENT;
204                         break;
205
206                 case 1:
207                         background[2] |= BLEND_CONTROL_DEPENDENT;
208                         break;
209                 }
210         } else {
211                 /*
212                  * Enable alpha blending if pixel format has an alpha
213                  * component.
214                  */
215                 foreground |= BLEND_CONTROL_ALPHA;
216
217                 /*
218                  * If any of the windows on top of this window is opaque, it
219                  * will completely conceal this window within that area. If
220                  * top window has an alpha component, it is blended over the
221                  * bottom window.
222                  */
223                 for (i = 0; i < 2; i++) {
224                         if (state->blending[i].alpha &&
225                             state->blending[i].top)
226                                 background[i] |= BLEND_CONTROL_DEPENDENT;
227                 }
228
229                 switch (state->base.normalized_zpos) {
230                 case 0:
231                         if (state->blending[0].alpha &&
232                             state->blending[1].alpha)
233                                 background[2] |= BLEND_CONTROL_DEPENDENT;
234                         break;
235
236                 case 1:
237                         /*
238                          * When both middle and topmost windows have an alpha,
239                          * these windows a mixed together and then the result
240                          * is blended over the bottom window.
241                          */
242                         if (state->blending[0].alpha &&
243                             state->blending[0].top)
244                                 background[2] |= BLEND_CONTROL_ALPHA;
245
246                         if (state->blending[1].alpha &&
247                             state->blending[1].top)
248                                 background[2] |= BLEND_CONTROL_ALPHA;
249                         break;
250                 }
251         }
252
253         switch (state->base.normalized_zpos) {
254         case 0:
255                 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
256                 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
257                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
258                 break;
259
260         case 1:
261                 /*
262                  * If window B / C is topmost, then X / Y registers are
263                  * matching the order of blending[...] state indices,
264                  * otherwise a swap is required.
265                  */
266                 if (!state->blending[0].top && state->blending[1].top) {
267                         blending[0] = foreground;
268                         blending[1] = background[1];
269                 } else {
270                         blending[0] = background[0];
271                         blending[1] = foreground;
272                 }
273
274                 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
275                 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
276                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
277                 break;
278
279         case 2:
280                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
281                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
282                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
283                 break;
284         }
285 }
286
287 static void tegra_plane_setup_blending(struct tegra_plane *plane,
288                                        const struct tegra_dc_window *window)
289 {
290         u32 value;
291
292         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295         tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
296
297         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
298                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
299                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
300         tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
301
302         value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
303         tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
304 }
305
306 static bool
307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
308                                      const struct tegra_dc_window *window)
309 {
310         struct tegra_dc *dc = plane->dc;
311
312         if (window->src.w == window->dst.w)
313                 return false;
314
315         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
316                 return false;
317
318         return true;
319 }
320
321 static bool
322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
323                                    const struct tegra_dc_window *window)
324 {
325         struct tegra_dc *dc = plane->dc;
326
327         if (window->src.h == window->dst.h)
328                 return false;
329
330         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
331                 return false;
332
333         if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
334                 return false;
335
336         return true;
337 }
338
339 static void tegra_dc_setup_window(struct tegra_plane *plane,
340                                   const struct tegra_dc_window *window)
341 {
342         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
343         struct tegra_dc *dc = plane->dc;
344         bool yuv, planar;
345         u32 value;
346
347         /*
348          * For YUV planar modes, the number of bytes per pixel takes into
349          * account only the luma component and therefore is 1.
350          */
351         yuv = tegra_plane_format_is_yuv(window->format, &planar);
352         if (!yuv)
353                 bpp = window->bits_per_pixel / 8;
354         else
355                 bpp = planar ? 1 : 2;
356
357         tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
358         tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
359
360         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
361         tegra_plane_writel(plane, value, DC_WIN_POSITION);
362
363         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
364         tegra_plane_writel(plane, value, DC_WIN_SIZE);
365
366         h_offset = window->src.x * bpp;
367         v_offset = window->src.y;
368         h_size = window->src.w * bpp;
369         v_size = window->src.h;
370
371         if (window->reflect_x)
372                 h_offset += (window->src.w - 1) * bpp;
373
374         if (window->reflect_y)
375                 v_offset += window->src.h - 1;
376
377         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
378         tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
379
380         /*
381          * For DDA computations the number of bytes per pixel for YUV planar
382          * modes needs to take into account all Y, U and V components.
383          */
384         if (yuv && planar)
385                 bpp = 2;
386
387         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
388         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
389
390         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
391         tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
392
393         h_dda = compute_initial_dda(window->src.x);
394         v_dda = compute_initial_dda(window->src.y);
395
396         tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
397         tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
398
399         tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
400         tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
401
402         tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
403
404         if (yuv && planar) {
405                 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
406                 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
407                 value = window->stride[1] << 16 | window->stride[0];
408                 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
409         } else {
410                 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
411         }
412
413         tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
414         tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
415
416         if (dc->soc->supports_block_linear) {
417                 unsigned long height = window->tiling.value;
418
419                 switch (window->tiling.mode) {
420                 case TEGRA_BO_TILING_MODE_PITCH:
421                         value = DC_WINBUF_SURFACE_KIND_PITCH;
422                         break;
423
424                 case TEGRA_BO_TILING_MODE_TILED:
425                         value = DC_WINBUF_SURFACE_KIND_TILED;
426                         break;
427
428                 case TEGRA_BO_TILING_MODE_BLOCK:
429                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
430                                 DC_WINBUF_SURFACE_KIND_BLOCK;
431                         break;
432                 }
433
434                 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
435         } else {
436                 switch (window->tiling.mode) {
437                 case TEGRA_BO_TILING_MODE_PITCH:
438                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
439                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
440                         break;
441
442                 case TEGRA_BO_TILING_MODE_TILED:
443                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
444                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
445                         break;
446
447                 case TEGRA_BO_TILING_MODE_BLOCK:
448                         /*
449                          * No need to handle this here because ->atomic_check
450                          * will already have filtered it out.
451                          */
452                         break;
453                 }
454
455                 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
456         }
457
458         value = WIN_ENABLE;
459
460         if (yuv) {
461                 /* setup default colorspace conversion coefficients */
462                 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
463                 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
464                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
465                 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
466                 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
467                 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
468                 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
469                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
470
471                 value |= CSC_ENABLE;
472         } else if (window->bits_per_pixel < 24) {
473                 value |= COLOR_EXPAND;
474         }
475
476         if (window->reflect_x)
477                 value |= H_DIRECTION;
478
479         if (window->reflect_y)
480                 value |= V_DIRECTION;
481
482         if (tegra_plane_use_horizontal_filtering(plane, window)) {
483                 /*
484                  * Enable horizontal 6-tap filter and set filtering
485                  * coefficients to the default values defined in TRM.
486                  */
487                 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
488                 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
489                 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
490                 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
491                 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
492                 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
493                 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
494                 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
495                 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
496                 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
497                 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
498                 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
499                 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
500                 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
501                 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
502                 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
503
504                 value |= H_FILTER;
505         }
506
507         if (tegra_plane_use_vertical_filtering(plane, window)) {
508                 unsigned int i, k;
509
510                 /*
511                  * Enable vertical 2-tap filter and set filtering
512                  * coefficients to the default values defined in TRM.
513                  */
514                 for (i = 0, k = 128; i < 16; i++, k -= 8)
515                         tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
516
517                 value |= V_FILTER;
518         }
519
520         tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
521
522         if (dc->soc->has_legacy_blending)
523                 tegra_plane_setup_blending_legacy(plane);
524         else
525                 tegra_plane_setup_blending(plane, window);
526 }
527
528 static const u32 tegra20_primary_formats[] = {
529         DRM_FORMAT_ARGB4444,
530         DRM_FORMAT_ARGB1555,
531         DRM_FORMAT_RGB565,
532         DRM_FORMAT_RGBA5551,
533         DRM_FORMAT_ABGR8888,
534         DRM_FORMAT_ARGB8888,
535         /* non-native formats */
536         DRM_FORMAT_XRGB1555,
537         DRM_FORMAT_RGBX5551,
538         DRM_FORMAT_XBGR8888,
539         DRM_FORMAT_XRGB8888,
540 };
541
542 static const u64 tegra20_modifiers[] = {
543         DRM_FORMAT_MOD_LINEAR,
544         DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
545         DRM_FORMAT_MOD_INVALID
546 };
547
548 static const u32 tegra114_primary_formats[] = {
549         DRM_FORMAT_ARGB4444,
550         DRM_FORMAT_ARGB1555,
551         DRM_FORMAT_RGB565,
552         DRM_FORMAT_RGBA5551,
553         DRM_FORMAT_ABGR8888,
554         DRM_FORMAT_ARGB8888,
555         /* new on Tegra114 */
556         DRM_FORMAT_ABGR4444,
557         DRM_FORMAT_ABGR1555,
558         DRM_FORMAT_BGRA5551,
559         DRM_FORMAT_XRGB1555,
560         DRM_FORMAT_RGBX5551,
561         DRM_FORMAT_XBGR1555,
562         DRM_FORMAT_BGRX5551,
563         DRM_FORMAT_BGR565,
564         DRM_FORMAT_BGRA8888,
565         DRM_FORMAT_RGBA8888,
566         DRM_FORMAT_XRGB8888,
567         DRM_FORMAT_XBGR8888,
568 };
569
570 static const u32 tegra124_primary_formats[] = {
571         DRM_FORMAT_ARGB4444,
572         DRM_FORMAT_ARGB1555,
573         DRM_FORMAT_RGB565,
574         DRM_FORMAT_RGBA5551,
575         DRM_FORMAT_ABGR8888,
576         DRM_FORMAT_ARGB8888,
577         /* new on Tegra114 */
578         DRM_FORMAT_ABGR4444,
579         DRM_FORMAT_ABGR1555,
580         DRM_FORMAT_BGRA5551,
581         DRM_FORMAT_XRGB1555,
582         DRM_FORMAT_RGBX5551,
583         DRM_FORMAT_XBGR1555,
584         DRM_FORMAT_BGRX5551,
585         DRM_FORMAT_BGR565,
586         DRM_FORMAT_BGRA8888,
587         DRM_FORMAT_RGBA8888,
588         DRM_FORMAT_XRGB8888,
589         DRM_FORMAT_XBGR8888,
590         /* new on Tegra124 */
591         DRM_FORMAT_RGBX8888,
592         DRM_FORMAT_BGRX8888,
593 };
594
595 static const u64 tegra124_modifiers[] = {
596         DRM_FORMAT_MOD_LINEAR,
597         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
598         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
599         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
600         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
601         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
602         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
603         DRM_FORMAT_MOD_INVALID
604 };
605
606 static int tegra_plane_atomic_check(struct drm_plane *plane,
607                                     struct drm_atomic_state *state)
608 {
609         struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
610                                                                                  plane);
611         struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
612         unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
613                                           DRM_MODE_REFLECT_X |
614                                           DRM_MODE_REFLECT_Y;
615         unsigned int rotation = new_plane_state->rotation;
616         struct tegra_bo_tiling *tiling = &plane_state->tiling;
617         struct tegra_plane *tegra = to_tegra_plane(plane);
618         struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
619         int err;
620
621         /* no need for further checks if the plane is being disabled */
622         if (!new_plane_state->crtc)
623                 return 0;
624
625         err = tegra_plane_format(new_plane_state->fb->format->format,
626                                  &plane_state->format,
627                                  &plane_state->swap);
628         if (err < 0)
629                 return err;
630
631         /*
632          * Tegra20 and Tegra30 are special cases here because they support
633          * only variants of specific formats with an alpha component, but not
634          * the corresponding opaque formats. However, the opaque formats can
635          * be emulated by disabling alpha blending for the plane.
636          */
637         if (dc->soc->has_legacy_blending) {
638                 err = tegra_plane_setup_legacy_state(tegra, plane_state);
639                 if (err < 0)
640                         return err;
641         }
642
643         err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
644         if (err < 0)
645                 return err;
646
647         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
648             !dc->soc->supports_block_linear) {
649                 DRM_ERROR("hardware doesn't support block linear mode\n");
650                 return -EINVAL;
651         }
652
653         /*
654          * Older userspace used custom BO flag in order to specify the Y
655          * reflection, while modern userspace uses the generic DRM rotation
656          * property in order to achieve the same result.  The legacy BO flag
657          * duplicates the DRM rotation property when both are set.
658          */
659         if (tegra_fb_is_bottom_up(new_plane_state->fb))
660                 rotation |= DRM_MODE_REFLECT_Y;
661
662         rotation = drm_rotation_simplify(rotation, supported_rotation);
663
664         if (rotation & DRM_MODE_REFLECT_X)
665                 plane_state->reflect_x = true;
666         else
667                 plane_state->reflect_x = false;
668
669         if (rotation & DRM_MODE_REFLECT_Y)
670                 plane_state->reflect_y = true;
671         else
672                 plane_state->reflect_y = false;
673
674         /*
675          * Tegra doesn't support different strides for U and V planes so we
676          * error out if the user tries to display a framebuffer with such a
677          * configuration.
678          */
679         if (new_plane_state->fb->format->num_planes > 2) {
680                 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
681                         DRM_ERROR("unsupported UV-plane configuration\n");
682                         return -EINVAL;
683                 }
684         }
685
686         err = tegra_plane_state_add(tegra, new_plane_state);
687         if (err < 0)
688                 return err;
689
690         return 0;
691 }
692
693 static void tegra_plane_atomic_disable(struct drm_plane *plane,
694                                        struct drm_atomic_state *state)
695 {
696         struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
697                                                                            plane);
698         struct tegra_plane *p = to_tegra_plane(plane);
699         u32 value;
700
701         /* rien ne va plus */
702         if (!old_state || !old_state->crtc)
703                 return;
704
705         value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
706         value &= ~WIN_ENABLE;
707         tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
708 }
709
710 static void tegra_plane_atomic_update(struct drm_plane *plane,
711                                       struct drm_atomic_state *state)
712 {
713         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
714                                                                            plane);
715         struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
716         struct drm_framebuffer *fb = new_state->fb;
717         struct tegra_plane *p = to_tegra_plane(plane);
718         struct tegra_dc_window window;
719         unsigned int i;
720
721         /* rien ne va plus */
722         if (!new_state->crtc || !new_state->fb)
723                 return;
724
725         if (!new_state->visible)
726                 return tegra_plane_atomic_disable(plane, state);
727
728         memset(&window, 0, sizeof(window));
729         window.src.x = new_state->src.x1 >> 16;
730         window.src.y = new_state->src.y1 >> 16;
731         window.src.w = drm_rect_width(&new_state->src) >> 16;
732         window.src.h = drm_rect_height(&new_state->src) >> 16;
733         window.dst.x = new_state->dst.x1;
734         window.dst.y = new_state->dst.y1;
735         window.dst.w = drm_rect_width(&new_state->dst);
736         window.dst.h = drm_rect_height(&new_state->dst);
737         window.bits_per_pixel = fb->format->cpp[0] * 8;
738         window.reflect_x = tegra_plane_state->reflect_x;
739         window.reflect_y = tegra_plane_state->reflect_y;
740
741         /* copy from state */
742         window.zpos = new_state->normalized_zpos;
743         window.tiling = tegra_plane_state->tiling;
744         window.format = tegra_plane_state->format;
745         window.swap = tegra_plane_state->swap;
746
747         for (i = 0; i < fb->format->num_planes; i++) {
748                 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
749
750                 /*
751                  * Tegra uses a shared stride for UV planes. Framebuffers are
752                  * already checked for this in the tegra_plane_atomic_check()
753                  * function, so it's safe to ignore the V-plane pitch here.
754                  */
755                 if (i < 2)
756                         window.stride[i] = fb->pitches[i];
757         }
758
759         tegra_dc_setup_window(p, &window);
760 }
761
762 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
763         .prepare_fb = tegra_plane_prepare_fb,
764         .cleanup_fb = tegra_plane_cleanup_fb,
765         .atomic_check = tegra_plane_atomic_check,
766         .atomic_disable = tegra_plane_atomic_disable,
767         .atomic_update = tegra_plane_atomic_update,
768 };
769
770 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
771 {
772         /*
773          * Ideally this would use drm_crtc_mask(), but that would require the
774          * CRTC to already be in the mode_config's list of CRTCs. However, it
775          * will only be added to that list in the drm_crtc_init_with_planes()
776          * (in tegra_dc_init()), which in turn requires registration of these
777          * planes. So we have ourselves a nice little chicken and egg problem
778          * here.
779          *
780          * We work around this by manually creating the mask from the number
781          * of CRTCs that have been registered, and should therefore always be
782          * the same as drm_crtc_index() after registration.
783          */
784         return 1 << drm->mode_config.num_crtc;
785 }
786
787 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
788                                                     struct tegra_dc *dc)
789 {
790         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
791         enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
792         struct tegra_plane *plane;
793         unsigned int num_formats;
794         const u64 *modifiers;
795         const u32 *formats;
796         int err;
797
798         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
799         if (!plane)
800                 return ERR_PTR(-ENOMEM);
801
802         /* Always use window A as primary window */
803         plane->offset = 0xa00;
804         plane->index = 0;
805         plane->dc = dc;
806
807         num_formats = dc->soc->num_primary_formats;
808         formats = dc->soc->primary_formats;
809         modifiers = dc->soc->modifiers;
810
811         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
812                                        &tegra_plane_funcs, formats,
813                                        num_formats, modifiers, type, NULL);
814         if (err < 0) {
815                 kfree(plane);
816                 return ERR_PTR(err);
817         }
818
819         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
820         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
821
822         err = drm_plane_create_rotation_property(&plane->base,
823                                                  DRM_MODE_ROTATE_0,
824                                                  DRM_MODE_ROTATE_0 |
825                                                  DRM_MODE_ROTATE_180 |
826                                                  DRM_MODE_REFLECT_X |
827                                                  DRM_MODE_REFLECT_Y);
828         if (err < 0)
829                 dev_err(dc->dev, "failed to create rotation property: %d\n",
830                         err);
831
832         return &plane->base;
833 }
834
835 static const u32 tegra_legacy_cursor_plane_formats[] = {
836         DRM_FORMAT_RGBA8888,
837 };
838
839 static const u32 tegra_cursor_plane_formats[] = {
840         DRM_FORMAT_ARGB8888,
841 };
842
843 static int tegra_cursor_atomic_check(struct drm_plane *plane,
844                                      struct drm_atomic_state *state)
845 {
846         struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
847                                                                                  plane);
848         struct tegra_plane *tegra = to_tegra_plane(plane);
849         int err;
850
851         /* no need for further checks if the plane is being disabled */
852         if (!new_plane_state->crtc)
853                 return 0;
854
855         /* scaling not supported for cursor */
856         if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
857             (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
858                 return -EINVAL;
859
860         /* only square cursors supported */
861         if (new_plane_state->src_w != new_plane_state->src_h)
862                 return -EINVAL;
863
864         if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
865             new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
866                 return -EINVAL;
867
868         err = tegra_plane_state_add(tegra, new_plane_state);
869         if (err < 0)
870                 return err;
871
872         return 0;
873 }
874
875 static void tegra_cursor_atomic_update(struct drm_plane *plane,
876                                        struct drm_atomic_state *state)
877 {
878         struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
879                                                                            plane);
880         struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
881         struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
882         struct tegra_drm *tegra = plane->dev->dev_private;
883 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
884         u64 dma_mask = *dc->dev->dma_mask;
885 #endif
886         unsigned int x, y;
887         u32 value = 0;
888
889         /* rien ne va plus */
890         if (!new_state->crtc || !new_state->fb)
891                 return;
892
893         /*
894          * Legacy display supports hardware clipping of the cursor, but
895          * nvdisplay relies on software to clip the cursor to the screen.
896          */
897         if (!dc->soc->has_nvdisplay)
898                 value |= CURSOR_CLIP_DISPLAY;
899
900         switch (new_state->crtc_w) {
901         case 32:
902                 value |= CURSOR_SIZE_32x32;
903                 break;
904
905         case 64:
906                 value |= CURSOR_SIZE_64x64;
907                 break;
908
909         case 128:
910                 value |= CURSOR_SIZE_128x128;
911                 break;
912
913         case 256:
914                 value |= CURSOR_SIZE_256x256;
915                 break;
916
917         default:
918                 WARN(1, "cursor size %ux%u not supported\n",
919                      new_state->crtc_w, new_state->crtc_h);
920                 return;
921         }
922
923         value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
924         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
925
926 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
927         value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
928         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
929 #endif
930
931         /* enable cursor and set blend mode */
932         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
933         value |= CURSOR_ENABLE;
934         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
935
936         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
937         value &= ~CURSOR_DST_BLEND_MASK;
938         value &= ~CURSOR_SRC_BLEND_MASK;
939
940         if (dc->soc->has_nvdisplay)
941                 value &= ~CURSOR_COMPOSITION_MODE_XOR;
942         else
943                 value |= CURSOR_MODE_NORMAL;
944
945         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
946         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
947         value |= CURSOR_ALPHA;
948         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
949
950         /* nvdisplay relies on software for clipping */
951         if (dc->soc->has_nvdisplay) {
952                 struct drm_rect src;
953
954                 x = new_state->dst.x1;
955                 y = new_state->dst.y1;
956
957                 drm_rect_fp_to_int(&src, &new_state->src);
958
959                 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
960                 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
961
962                 value = (drm_rect_height(&src) & tegra->vmask) << 16 |
963                         (drm_rect_width(&src) & tegra->hmask);
964                 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
965         } else {
966                 x = new_state->crtc_x;
967                 y = new_state->crtc_y;
968         }
969
970         /* position the cursor */
971         value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
972         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
973 }
974
975 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
976                                         struct drm_atomic_state *state)
977 {
978         struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
979                                                                            plane);
980         struct tegra_dc *dc;
981         u32 value;
982
983         /* rien ne va plus */
984         if (!old_state || !old_state->crtc)
985                 return;
986
987         dc = to_tegra_dc(old_state->crtc);
988
989         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
990         value &= ~CURSOR_ENABLE;
991         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
992 }
993
994 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
995         .prepare_fb = tegra_plane_prepare_fb,
996         .cleanup_fb = tegra_plane_cleanup_fb,
997         .atomic_check = tegra_cursor_atomic_check,
998         .atomic_update = tegra_cursor_atomic_update,
999         .atomic_disable = tegra_cursor_atomic_disable,
1000 };
1001
1002 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1003                                                       struct tegra_dc *dc)
1004 {
1005         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1006         struct tegra_plane *plane;
1007         unsigned int num_formats;
1008         const u32 *formats;
1009         int err;
1010
1011         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1012         if (!plane)
1013                 return ERR_PTR(-ENOMEM);
1014
1015         /*
1016          * This index is kind of fake. The cursor isn't a regular plane, but
1017          * its update and activation request bits in DC_CMD_STATE_CONTROL do
1018          * use the same programming. Setting this fake index here allows the
1019          * code in tegra_add_plane_state() to do the right thing without the
1020          * need to special-casing the cursor plane.
1021          */
1022         plane->index = 6;
1023         plane->dc = dc;
1024
1025         if (!dc->soc->has_nvdisplay) {
1026                 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1027                 formats = tegra_legacy_cursor_plane_formats;
1028         } else {
1029                 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1030                 formats = tegra_cursor_plane_formats;
1031         }
1032
1033         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1034                                        &tegra_plane_funcs, formats,
1035                                        num_formats, NULL,
1036                                        DRM_PLANE_TYPE_CURSOR, NULL);
1037         if (err < 0) {
1038                 kfree(plane);
1039                 return ERR_PTR(err);
1040         }
1041
1042         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1043         drm_plane_create_zpos_immutable_property(&plane->base, 255);
1044
1045         return &plane->base;
1046 }
1047
1048 static const u32 tegra20_overlay_formats[] = {
1049         DRM_FORMAT_ARGB4444,
1050         DRM_FORMAT_ARGB1555,
1051         DRM_FORMAT_RGB565,
1052         DRM_FORMAT_RGBA5551,
1053         DRM_FORMAT_ABGR8888,
1054         DRM_FORMAT_ARGB8888,
1055         /* non-native formats */
1056         DRM_FORMAT_XRGB1555,
1057         DRM_FORMAT_RGBX5551,
1058         DRM_FORMAT_XBGR8888,
1059         DRM_FORMAT_XRGB8888,
1060         /* planar formats */
1061         DRM_FORMAT_UYVY,
1062         DRM_FORMAT_YUYV,
1063         DRM_FORMAT_YUV420,
1064         DRM_FORMAT_YUV422,
1065 };
1066
1067 static const u32 tegra114_overlay_formats[] = {
1068         DRM_FORMAT_ARGB4444,
1069         DRM_FORMAT_ARGB1555,
1070         DRM_FORMAT_RGB565,
1071         DRM_FORMAT_RGBA5551,
1072         DRM_FORMAT_ABGR8888,
1073         DRM_FORMAT_ARGB8888,
1074         /* new on Tegra114 */
1075         DRM_FORMAT_ABGR4444,
1076         DRM_FORMAT_ABGR1555,
1077         DRM_FORMAT_BGRA5551,
1078         DRM_FORMAT_XRGB1555,
1079         DRM_FORMAT_RGBX5551,
1080         DRM_FORMAT_XBGR1555,
1081         DRM_FORMAT_BGRX5551,
1082         DRM_FORMAT_BGR565,
1083         DRM_FORMAT_BGRA8888,
1084         DRM_FORMAT_RGBA8888,
1085         DRM_FORMAT_XRGB8888,
1086         DRM_FORMAT_XBGR8888,
1087         /* planar formats */
1088         DRM_FORMAT_UYVY,
1089         DRM_FORMAT_YUYV,
1090         DRM_FORMAT_YUV420,
1091         DRM_FORMAT_YUV422,
1092 };
1093
1094 static const u32 tegra124_overlay_formats[] = {
1095         DRM_FORMAT_ARGB4444,
1096         DRM_FORMAT_ARGB1555,
1097         DRM_FORMAT_RGB565,
1098         DRM_FORMAT_RGBA5551,
1099         DRM_FORMAT_ABGR8888,
1100         DRM_FORMAT_ARGB8888,
1101         /* new on Tegra114 */
1102         DRM_FORMAT_ABGR4444,
1103         DRM_FORMAT_ABGR1555,
1104         DRM_FORMAT_BGRA5551,
1105         DRM_FORMAT_XRGB1555,
1106         DRM_FORMAT_RGBX5551,
1107         DRM_FORMAT_XBGR1555,
1108         DRM_FORMAT_BGRX5551,
1109         DRM_FORMAT_BGR565,
1110         DRM_FORMAT_BGRA8888,
1111         DRM_FORMAT_RGBA8888,
1112         DRM_FORMAT_XRGB8888,
1113         DRM_FORMAT_XBGR8888,
1114         /* new on Tegra124 */
1115         DRM_FORMAT_RGBX8888,
1116         DRM_FORMAT_BGRX8888,
1117         /* planar formats */
1118         DRM_FORMAT_UYVY,
1119         DRM_FORMAT_YUYV,
1120         DRM_FORMAT_YUV420,
1121         DRM_FORMAT_YUV422,
1122 };
1123
1124 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1125                                                        struct tegra_dc *dc,
1126                                                        unsigned int index,
1127                                                        bool cursor)
1128 {
1129         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1130         struct tegra_plane *plane;
1131         unsigned int num_formats;
1132         enum drm_plane_type type;
1133         const u32 *formats;
1134         int err;
1135
1136         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1137         if (!plane)
1138                 return ERR_PTR(-ENOMEM);
1139
1140         plane->offset = 0xa00 + 0x200 * index;
1141         plane->index = index;
1142         plane->dc = dc;
1143
1144         num_formats = dc->soc->num_overlay_formats;
1145         formats = dc->soc->overlay_formats;
1146
1147         if (!cursor)
1148                 type = DRM_PLANE_TYPE_OVERLAY;
1149         else
1150                 type = DRM_PLANE_TYPE_CURSOR;
1151
1152         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1153                                        &tegra_plane_funcs, formats,
1154                                        num_formats, NULL, type, NULL);
1155         if (err < 0) {
1156                 kfree(plane);
1157                 return ERR_PTR(err);
1158         }
1159
1160         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1161         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1162
1163         err = drm_plane_create_rotation_property(&plane->base,
1164                                                  DRM_MODE_ROTATE_0,
1165                                                  DRM_MODE_ROTATE_0 |
1166                                                  DRM_MODE_ROTATE_180 |
1167                                                  DRM_MODE_REFLECT_X |
1168                                                  DRM_MODE_REFLECT_Y);
1169         if (err < 0)
1170                 dev_err(dc->dev, "failed to create rotation property: %d\n",
1171                         err);
1172
1173         return &plane->base;
1174 }
1175
1176 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1177                                                     struct tegra_dc *dc)
1178 {
1179         struct drm_plane *plane, *primary = NULL;
1180         unsigned int i, j;
1181
1182         for (i = 0; i < dc->soc->num_wgrps; i++) {
1183                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1184
1185                 if (wgrp->dc == dc->pipe) {
1186                         for (j = 0; j < wgrp->num_windows; j++) {
1187                                 unsigned int index = wgrp->windows[j];
1188
1189                                 plane = tegra_shared_plane_create(drm, dc,
1190                                                                   wgrp->index,
1191                                                                   index);
1192                                 if (IS_ERR(plane))
1193                                         return plane;
1194
1195                                 /*
1196                                  * Choose the first shared plane owned by this
1197                                  * head as the primary plane.
1198                                  */
1199                                 if (!primary) {
1200                                         plane->type = DRM_PLANE_TYPE_PRIMARY;
1201                                         primary = plane;
1202                                 }
1203                         }
1204                 }
1205         }
1206
1207         return primary;
1208 }
1209
1210 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1211                                              struct tegra_dc *dc)
1212 {
1213         struct drm_plane *planes[2], *primary;
1214         unsigned int planes_num;
1215         unsigned int i;
1216         int err;
1217
1218         primary = tegra_primary_plane_create(drm, dc);
1219         if (IS_ERR(primary))
1220                 return primary;
1221
1222         if (dc->soc->supports_cursor)
1223                 planes_num = 2;
1224         else
1225                 planes_num = 1;
1226
1227         for (i = 0; i < planes_num; i++) {
1228                 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1229                                                           false);
1230                 if (IS_ERR(planes[i])) {
1231                         err = PTR_ERR(planes[i]);
1232
1233                         while (i--)
1234                                 tegra_plane_funcs.destroy(planes[i]);
1235
1236                         tegra_plane_funcs.destroy(primary);
1237                         return ERR_PTR(err);
1238                 }
1239         }
1240
1241         return primary;
1242 }
1243
1244 static void tegra_dc_destroy(struct drm_crtc *crtc)
1245 {
1246         drm_crtc_cleanup(crtc);
1247 }
1248
1249 static void tegra_crtc_reset(struct drm_crtc *crtc)
1250 {
1251         struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1252
1253         if (crtc->state)
1254                 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1255
1256         __drm_atomic_helper_crtc_reset(crtc, &state->base);
1257 }
1258
1259 static struct drm_crtc_state *
1260 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1261 {
1262         struct tegra_dc_state *state = to_dc_state(crtc->state);
1263         struct tegra_dc_state *copy;
1264
1265         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1266         if (!copy)
1267                 return NULL;
1268
1269         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1270         copy->clk = state->clk;
1271         copy->pclk = state->pclk;
1272         copy->div = state->div;
1273         copy->planes = state->planes;
1274
1275         return &copy->base;
1276 }
1277
1278 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1279                                             struct drm_crtc_state *state)
1280 {
1281         __drm_atomic_helper_crtc_destroy_state(state);
1282         kfree(state);
1283 }
1284
1285 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1286
1287 static const struct debugfs_reg32 tegra_dc_regs[] = {
1288         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1289         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1290         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1291         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1292         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1293         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1294         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1295         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1296         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1297         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1298         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1299         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1300         DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1301         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1302         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1303         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1304         DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1305         DEBUGFS_REG32(DC_CMD_INT_STATUS),
1306         DEBUGFS_REG32(DC_CMD_INT_MASK),
1307         DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1308         DEBUGFS_REG32(DC_CMD_INT_TYPE),
1309         DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1310         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1311         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1312         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1313         DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1314         DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1315         DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1316         DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1317         DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1318         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1319         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1320         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1321         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1322         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1323         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1324         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1325         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1326         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1327         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1328         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1329         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1330         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1331         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1332         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1333         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1334         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1335         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1336         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1337         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1338         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1339         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1340         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1341         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1342         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1343         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1344         DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1345         DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1346         DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1347         DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1348         DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1349         DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1350         DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1351         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1352         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1353         DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1354         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1355         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1356         DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1357         DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1358         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1359         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1360         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1361         DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1362         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1363         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1364         DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1365         DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1366         DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1367         DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1368         DEBUGFS_REG32(DC_DISP_ACTIVE),
1369         DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1370         DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1371         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1372         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1373         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1374         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1375         DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1376         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1377         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1378         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1379         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1380         DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1381         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1382         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1383         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1384         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1385         DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1386         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1387         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1388         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1389         DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1390         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1391         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1392         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1393         DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1394         DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1395         DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1396         DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1397         DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1398         DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1399         DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1400         DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1401         DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1402         DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1403         DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1404         DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1405         DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1406         DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1407         DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1408         DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1409         DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1410         DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1411         DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1412         DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1413         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1414         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1415         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1416         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1417         DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1418         DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1419         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1420         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1421         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1422         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1423         DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1424         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1425         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1426         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1427         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1428         DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1429         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1430         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1431         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1432         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1433         DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1434         DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1435         DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1436         DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1437         DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1438         DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1439         DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1440         DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1441         DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1442         DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1443         DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1444         DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1445         DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1446         DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1447         DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1448         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1449         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1450         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1451         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1452         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1453         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1454         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1455         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1456         DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1457         DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1458         DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1459         DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1460         DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1461         DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1462         DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1463         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1464         DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1465         DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1466         DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1467         DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1468         DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1469         DEBUGFS_REG32(DC_WIN_POSITION),
1470         DEBUGFS_REG32(DC_WIN_SIZE),
1471         DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1472         DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1473         DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1474         DEBUGFS_REG32(DC_WIN_DDA_INC),
1475         DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1476         DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1477         DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1478         DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1479         DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1480         DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1481         DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1482         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1483         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1484         DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1485         DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1486         DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1487         DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1488         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1489         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1490         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1491         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1492         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1493         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1494         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1495         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1496         DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1497         DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1498         DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1499         DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1500 };
1501
1502 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1503 {
1504         struct drm_info_node *node = s->private;
1505         struct tegra_dc *dc = node->info_ent->data;
1506         unsigned int i;
1507         int err = 0;
1508
1509         drm_modeset_lock(&dc->base.mutex, NULL);
1510
1511         if (!dc->base.state->active) {
1512                 err = -EBUSY;
1513                 goto unlock;
1514         }
1515
1516         for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1517                 unsigned int offset = tegra_dc_regs[i].offset;
1518
1519                 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1520                            offset, tegra_dc_readl(dc, offset));
1521         }
1522
1523 unlock:
1524         drm_modeset_unlock(&dc->base.mutex);
1525         return err;
1526 }
1527
1528 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1529 {
1530         struct drm_info_node *node = s->private;
1531         struct tegra_dc *dc = node->info_ent->data;
1532         int err = 0;
1533         u32 value;
1534
1535         drm_modeset_lock(&dc->base.mutex, NULL);
1536
1537         if (!dc->base.state->active) {
1538                 err = -EBUSY;
1539                 goto unlock;
1540         }
1541
1542         value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1543         tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1544         tegra_dc_commit(dc);
1545
1546         drm_crtc_wait_one_vblank(&dc->base);
1547         drm_crtc_wait_one_vblank(&dc->base);
1548
1549         value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1550         seq_printf(s, "%08x\n", value);
1551
1552         tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1553
1554 unlock:
1555         drm_modeset_unlock(&dc->base.mutex);
1556         return err;
1557 }
1558
1559 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1560 {
1561         struct drm_info_node *node = s->private;
1562         struct tegra_dc *dc = node->info_ent->data;
1563
1564         seq_printf(s, "frames: %lu\n", dc->stats.frames);
1565         seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1566         seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1567         seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1568
1569         return 0;
1570 }
1571
1572 static struct drm_info_list debugfs_files[] = {
1573         { "regs", tegra_dc_show_regs, 0, NULL },
1574         { "crc", tegra_dc_show_crc, 0, NULL },
1575         { "stats", tegra_dc_show_stats, 0, NULL },
1576 };
1577
1578 static int tegra_dc_late_register(struct drm_crtc *crtc)
1579 {
1580         unsigned int i, count = ARRAY_SIZE(debugfs_files);
1581         struct drm_minor *minor = crtc->dev->primary;
1582         struct dentry *root;
1583         struct tegra_dc *dc = to_tegra_dc(crtc);
1584
1585 #ifdef CONFIG_DEBUG_FS
1586         root = crtc->debugfs_entry;
1587 #else
1588         root = NULL;
1589 #endif
1590
1591         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1592                                     GFP_KERNEL);
1593         if (!dc->debugfs_files)
1594                 return -ENOMEM;
1595
1596         for (i = 0; i < count; i++)
1597                 dc->debugfs_files[i].data = dc;
1598
1599         drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1600
1601         return 0;
1602 }
1603
1604 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1605 {
1606         unsigned int count = ARRAY_SIZE(debugfs_files);
1607         struct drm_minor *minor = crtc->dev->primary;
1608         struct tegra_dc *dc = to_tegra_dc(crtc);
1609
1610         drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1611         kfree(dc->debugfs_files);
1612         dc->debugfs_files = NULL;
1613 }
1614
1615 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1616 {
1617         struct tegra_dc *dc = to_tegra_dc(crtc);
1618
1619         /* XXX vblank syncpoints don't work with nvdisplay yet */
1620         if (dc->syncpt && !dc->soc->has_nvdisplay)
1621                 return host1x_syncpt_read(dc->syncpt);
1622
1623         /* fallback to software emulated VBLANK counter */
1624         return (u32)drm_crtc_vblank_count(&dc->base);
1625 }
1626
1627 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1628 {
1629         struct tegra_dc *dc = to_tegra_dc(crtc);
1630         u32 value;
1631
1632         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1633         value |= VBLANK_INT;
1634         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1635
1636         return 0;
1637 }
1638
1639 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1640 {
1641         struct tegra_dc *dc = to_tegra_dc(crtc);
1642         u32 value;
1643
1644         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1645         value &= ~VBLANK_INT;
1646         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1647 }
1648
1649 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1650         .page_flip = drm_atomic_helper_page_flip,
1651         .set_config = drm_atomic_helper_set_config,
1652         .destroy = tegra_dc_destroy,
1653         .reset = tegra_crtc_reset,
1654         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1655         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1656         .late_register = tegra_dc_late_register,
1657         .early_unregister = tegra_dc_early_unregister,
1658         .get_vblank_counter = tegra_dc_get_vblank_counter,
1659         .enable_vblank = tegra_dc_enable_vblank,
1660         .disable_vblank = tegra_dc_disable_vblank,
1661 };
1662
1663 static int tegra_dc_set_timings(struct tegra_dc *dc,
1664                                 struct drm_display_mode *mode)
1665 {
1666         unsigned int h_ref_to_sync = 1;
1667         unsigned int v_ref_to_sync = 1;
1668         unsigned long value;
1669
1670         if (!dc->soc->has_nvdisplay) {
1671                 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1672
1673                 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1674                 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1675         }
1676
1677         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1678                 ((mode->hsync_end - mode->hsync_start) <<  0);
1679         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1680
1681         value = ((mode->vtotal - mode->vsync_end) << 16) |
1682                 ((mode->htotal - mode->hsync_end) <<  0);
1683         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1684
1685         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1686                 ((mode->hsync_start - mode->hdisplay) <<  0);
1687         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1688
1689         value = (mode->vdisplay << 16) | mode->hdisplay;
1690         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1691
1692         return 0;
1693 }
1694
1695 /**
1696  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1697  *     state
1698  * @dc: display controller
1699  * @crtc_state: CRTC atomic state
1700  * @clk: parent clock for display controller
1701  * @pclk: pixel clock
1702  * @div: shift clock divider
1703  *
1704  * Returns:
1705  * 0 on success or a negative error-code on failure.
1706  */
1707 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1708                                struct drm_crtc_state *crtc_state,
1709                                struct clk *clk, unsigned long pclk,
1710                                unsigned int div)
1711 {
1712         struct tegra_dc_state *state = to_dc_state(crtc_state);
1713
1714         if (!clk_has_parent(dc->clk, clk))
1715                 return -EINVAL;
1716
1717         state->clk = clk;
1718         state->pclk = pclk;
1719         state->div = div;
1720
1721         return 0;
1722 }
1723
1724 static void tegra_dc_commit_state(struct tegra_dc *dc,
1725                                   struct tegra_dc_state *state)
1726 {
1727         u32 value;
1728         int err;
1729
1730         err = clk_set_parent(dc->clk, state->clk);
1731         if (err < 0)
1732                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1733
1734         /*
1735          * Outputs may not want to change the parent clock rate. This is only
1736          * relevant to Tegra20 where only a single display PLL is available.
1737          * Since that PLL would typically be used for HDMI, an internal LVDS
1738          * panel would need to be driven by some other clock such as PLL_P
1739          * which is shared with other peripherals. Changing the clock rate
1740          * should therefore be avoided.
1741          */
1742         if (state->pclk > 0) {
1743                 err = clk_set_rate(state->clk, state->pclk);
1744                 if (err < 0)
1745                         dev_err(dc->dev,
1746                                 "failed to set clock rate to %lu Hz\n",
1747                                 state->pclk);
1748
1749                 err = clk_set_rate(dc->clk, state->pclk);
1750                 if (err < 0)
1751                         dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1752                                 dc->clk, state->pclk, err);
1753         }
1754
1755         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1756                       state->div);
1757         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1758
1759         if (!dc->soc->has_nvdisplay) {
1760                 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1761                 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1762         }
1763 }
1764
1765 static void tegra_dc_stop(struct tegra_dc *dc)
1766 {
1767         u32 value;
1768
1769         /* stop the display controller */
1770         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1771         value &= ~DISP_CTRL_MODE_MASK;
1772         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1773
1774         tegra_dc_commit(dc);
1775 }
1776
1777 static bool tegra_dc_idle(struct tegra_dc *dc)
1778 {
1779         u32 value;
1780
1781         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1782
1783         return (value & DISP_CTRL_MODE_MASK) == 0;
1784 }
1785
1786 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1787 {
1788         timeout = jiffies + msecs_to_jiffies(timeout);
1789
1790         while (time_before(jiffies, timeout)) {
1791                 if (tegra_dc_idle(dc))
1792                         return 0;
1793
1794                 usleep_range(1000, 2000);
1795         }
1796
1797         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1798         return -ETIMEDOUT;
1799 }
1800
1801 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1802                                       struct drm_atomic_state *state)
1803 {
1804         struct tegra_dc *dc = to_tegra_dc(crtc);
1805         u32 value;
1806         int err;
1807
1808         if (!tegra_dc_idle(dc)) {
1809                 tegra_dc_stop(dc);
1810
1811                 /*
1812                  * Ignore the return value, there isn't anything useful to do
1813                  * in case this fails.
1814                  */
1815                 tegra_dc_wait_idle(dc, 100);
1816         }
1817
1818         /*
1819          * This should really be part of the RGB encoder driver, but clearing
1820          * these bits has the side-effect of stopping the display controller.
1821          * When that happens no VBLANK interrupts will be raised. At the same
1822          * time the encoder is disabled before the display controller, so the
1823          * above code is always going to timeout waiting for the controller
1824          * to go idle.
1825          *
1826          * Given the close coupling between the RGB encoder and the display
1827          * controller doing it here is still kind of okay. None of the other
1828          * encoder drivers require these bits to be cleared.
1829          *
1830          * XXX: Perhaps given that the display controller is switched off at
1831          * this point anyway maybe clearing these bits isn't even useful for
1832          * the RGB encoder?
1833          */
1834         if (dc->rgb) {
1835                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1836                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1837                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1838                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1839         }
1840
1841         tegra_dc_stats_reset(&dc->stats);
1842         drm_crtc_vblank_off(crtc);
1843
1844         spin_lock_irq(&crtc->dev->event_lock);
1845
1846         if (crtc->state->event) {
1847                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1848                 crtc->state->event = NULL;
1849         }
1850
1851         spin_unlock_irq(&crtc->dev->event_lock);
1852
1853         err = host1x_client_suspend(&dc->client);
1854         if (err < 0)
1855                 dev_err(dc->dev, "failed to suspend: %d\n", err);
1856 }
1857
1858 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1859                                      struct drm_atomic_state *state)
1860 {
1861         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1862         struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
1863         struct tegra_dc *dc = to_tegra_dc(crtc);
1864         u32 value;
1865         int err;
1866
1867         err = host1x_client_resume(&dc->client);
1868         if (err < 0) {
1869                 dev_err(dc->dev, "failed to resume: %d\n", err);
1870                 return;
1871         }
1872
1873         /* initialize display controller */
1874         if (dc->syncpt) {
1875                 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1876
1877                 if (dc->soc->has_nvdisplay)
1878                         enable = 1 << 31;
1879                 else
1880                         enable = 1 << 8;
1881
1882                 value = SYNCPT_CNTRL_NO_STALL;
1883                 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1884
1885                 value = enable | syncpt;
1886                 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1887         }
1888
1889         if (dc->soc->has_nvdisplay) {
1890                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1891                         DSC_OBUF_UF_INT;
1892                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1893
1894                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1895                         DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1896                         HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1897                         REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1898                         VBLANK_INT | FRAME_END_INT;
1899                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1900
1901                 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1902                         FRAME_END_INT;
1903                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1904
1905                 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1906                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1907
1908                 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1909         } else {
1910                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1911                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1912                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1913
1914                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1915                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1916                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1917
1918                 /* initialize timer */
1919                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1920                         WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1921                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1922
1923                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1924                         WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1925                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1926
1927                 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1928                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1929                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1930
1931                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1932                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1933                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1934         }
1935
1936         if (dc->soc->supports_background_color)
1937                 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1938         else
1939                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1940
1941         /* apply PLL and pixel clock changes */
1942         tegra_dc_commit_state(dc, crtc_state);
1943
1944         /* program display mode */
1945         tegra_dc_set_timings(dc, mode);
1946
1947         /* interlacing isn't supported yet, so disable it */
1948         if (dc->soc->supports_interlacing) {
1949                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1950                 value &= ~INTERLACE_ENABLE;
1951                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1952         }
1953
1954         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1955         value &= ~DISP_CTRL_MODE_MASK;
1956         value |= DISP_CTRL_MODE_C_DISPLAY;
1957         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1958
1959         if (!dc->soc->has_nvdisplay) {
1960                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1961                 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1962                          PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1963                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1964         }
1965
1966         /* enable underflow reporting and display red for missing pixels */
1967         if (dc->soc->has_nvdisplay) {
1968                 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1969                 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1970         }
1971
1972         tegra_dc_commit(dc);
1973
1974         drm_crtc_vblank_on(crtc);
1975 }
1976
1977 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1978                                     struct drm_atomic_state *state)
1979 {
1980         unsigned long flags;
1981
1982         if (crtc->state->event) {
1983                 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1984
1985                 if (drm_crtc_vblank_get(crtc) != 0)
1986                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
1987                 else
1988                         drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1989
1990                 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1991
1992                 crtc->state->event = NULL;
1993         }
1994 }
1995
1996 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1997                                     struct drm_atomic_state *state)
1998 {
1999         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2000                                                                           crtc);
2001         struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2002         struct tegra_dc *dc = to_tegra_dc(crtc);
2003         u32 value;
2004
2005         value = dc_state->planes << 8 | GENERAL_UPDATE;
2006         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2007         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2008
2009         value = dc_state->planes | GENERAL_ACT_REQ;
2010         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2011         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2012 }
2013
2014 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2015         .atomic_begin = tegra_crtc_atomic_begin,
2016         .atomic_flush = tegra_crtc_atomic_flush,
2017         .atomic_enable = tegra_crtc_atomic_enable,
2018         .atomic_disable = tegra_crtc_atomic_disable,
2019 };
2020
2021 static irqreturn_t tegra_dc_irq(int irq, void *data)
2022 {
2023         struct tegra_dc *dc = data;
2024         unsigned long status;
2025
2026         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2027         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2028
2029         if (status & FRAME_END_INT) {
2030                 /*
2031                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2032                 */
2033                 dc->stats.frames++;
2034         }
2035
2036         if (status & VBLANK_INT) {
2037                 /*
2038                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2039                 */
2040                 drm_crtc_handle_vblank(&dc->base);
2041                 dc->stats.vblank++;
2042         }
2043
2044         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2045                 /*
2046                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2047                 */
2048                 dc->stats.underflow++;
2049         }
2050
2051         if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2052                 /*
2053                 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2054                 */
2055                 dc->stats.overflow++;
2056         }
2057
2058         if (status & HEAD_UF_INT) {
2059                 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2060                 dc->stats.underflow++;
2061         }
2062
2063         return IRQ_HANDLED;
2064 }
2065
2066 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2067 {
2068         unsigned int i;
2069
2070         if (!dc->soc->wgrps)
2071                 return true;
2072
2073         for (i = 0; i < dc->soc->num_wgrps; i++) {
2074                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2075
2076                 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2077                         return true;
2078         }
2079
2080         return false;
2081 }
2082
2083 static int tegra_dc_early_init(struct host1x_client *client)
2084 {
2085         struct drm_device *drm = dev_get_drvdata(client->host);
2086         struct tegra_drm *tegra = drm->dev_private;
2087
2088         tegra->num_crtcs++;
2089
2090         return 0;
2091 }
2092
2093 static int tegra_dc_init(struct host1x_client *client)
2094 {
2095         struct drm_device *drm = dev_get_drvdata(client->host);
2096         unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2097         struct tegra_dc *dc = host1x_client_to_dc(client);
2098         struct tegra_drm *tegra = drm->dev_private;
2099         struct drm_plane *primary = NULL;
2100         struct drm_plane *cursor = NULL;
2101         int err;
2102
2103         /*
2104          * DC has been reset by now, so VBLANK syncpoint can be released
2105          * for general use.
2106          */
2107         host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2108
2109         /*
2110          * XXX do not register DCs with no window groups because we cannot
2111          * assign a primary plane to them, which in turn will cause KMS to
2112          * crash.
2113          */
2114         if (!tegra_dc_has_window_groups(dc))
2115                 return 0;
2116
2117         /*
2118          * Set the display hub as the host1x client parent for the display
2119          * controller. This is needed for the runtime reference counting that
2120          * ensures the display hub is always powered when any of the display
2121          * controllers are.
2122          */
2123         if (dc->soc->has_nvdisplay)
2124                 client->parent = &tegra->hub->client;
2125
2126         dc->syncpt = host1x_syncpt_request(client, flags);
2127         if (!dc->syncpt)
2128                 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2129
2130         err = host1x_client_iommu_attach(client);
2131         if (err < 0 && err != -ENODEV) {
2132                 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2133                 return err;
2134         }
2135
2136         if (dc->soc->wgrps)
2137                 primary = tegra_dc_add_shared_planes(drm, dc);
2138         else
2139                 primary = tegra_dc_add_planes(drm, dc);
2140
2141         if (IS_ERR(primary)) {
2142                 err = PTR_ERR(primary);
2143                 goto cleanup;
2144         }
2145
2146         if (dc->soc->supports_cursor) {
2147                 cursor = tegra_dc_cursor_plane_create(drm, dc);
2148                 if (IS_ERR(cursor)) {
2149                         err = PTR_ERR(cursor);
2150                         goto cleanup;
2151                 }
2152         } else {
2153                 /* dedicate one overlay to mouse cursor */
2154                 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2155                 if (IS_ERR(cursor)) {
2156                         err = PTR_ERR(cursor);
2157                         goto cleanup;
2158                 }
2159         }
2160
2161         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2162                                         &tegra_crtc_funcs, NULL);
2163         if (err < 0)
2164                 goto cleanup;
2165
2166         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2167
2168         /*
2169          * Keep track of the minimum pitch alignment across all display
2170          * controllers.
2171          */
2172         if (dc->soc->pitch_align > tegra->pitch_align)
2173                 tegra->pitch_align = dc->soc->pitch_align;
2174
2175         /* track maximum resolution */
2176         if (dc->soc->has_nvdisplay)
2177                 drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2178         else
2179                 drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2180
2181         err = tegra_dc_rgb_init(drm, dc);
2182         if (err < 0 && err != -ENODEV) {
2183                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2184                 goto cleanup;
2185         }
2186
2187         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2188                                dev_name(dc->dev), dc);
2189         if (err < 0) {
2190                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2191                         err);
2192                 goto cleanup;
2193         }
2194
2195         /*
2196          * Inherit the DMA parameters (such as maximum segment size) from the
2197          * parent host1x device.
2198          */
2199         client->dev->dma_parms = client->host->dma_parms;
2200
2201         return 0;
2202
2203 cleanup:
2204         if (!IS_ERR_OR_NULL(cursor))
2205                 drm_plane_cleanup(cursor);
2206
2207         if (!IS_ERR(primary))
2208                 drm_plane_cleanup(primary);
2209
2210         host1x_client_iommu_detach(client);
2211         host1x_syncpt_put(dc->syncpt);
2212
2213         return err;
2214 }
2215
2216 static int tegra_dc_exit(struct host1x_client *client)
2217 {
2218         struct tegra_dc *dc = host1x_client_to_dc(client);
2219         int err;
2220
2221         if (!tegra_dc_has_window_groups(dc))
2222                 return 0;
2223
2224         /* avoid a dangling pointer just in case this disappears */
2225         client->dev->dma_parms = NULL;
2226
2227         devm_free_irq(dc->dev, dc->irq, dc);
2228
2229         err = tegra_dc_rgb_exit(dc);
2230         if (err) {
2231                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2232                 return err;
2233         }
2234
2235         host1x_client_iommu_detach(client);
2236         host1x_syncpt_put(dc->syncpt);
2237
2238         return 0;
2239 }
2240
2241 static int tegra_dc_late_exit(struct host1x_client *client)
2242 {
2243         struct drm_device *drm = dev_get_drvdata(client->host);
2244         struct tegra_drm *tegra = drm->dev_private;
2245
2246         tegra->num_crtcs--;
2247
2248         return 0;
2249 }
2250
2251 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2252 {
2253         struct tegra_dc *dc = host1x_client_to_dc(client);
2254         struct device *dev = client->dev;
2255         int err;
2256
2257         err = reset_control_assert(dc->rst);
2258         if (err < 0) {
2259                 dev_err(dev, "failed to assert reset: %d\n", err);
2260                 return err;
2261         }
2262
2263         if (dc->soc->has_powergate)
2264                 tegra_powergate_power_off(dc->powergate);
2265
2266         clk_disable_unprepare(dc->clk);
2267         pm_runtime_put_sync(dev);
2268
2269         return 0;
2270 }
2271
2272 static int tegra_dc_runtime_resume(struct host1x_client *client)
2273 {
2274         struct tegra_dc *dc = host1x_client_to_dc(client);
2275         struct device *dev = client->dev;
2276         int err;
2277
2278         err = pm_runtime_resume_and_get(dev);
2279         if (err < 0) {
2280                 dev_err(dev, "failed to get runtime PM: %d\n", err);
2281                 return err;
2282         }
2283
2284         if (dc->soc->has_powergate) {
2285                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2286                                                         dc->rst);
2287                 if (err < 0) {
2288                         dev_err(dev, "failed to power partition: %d\n", err);
2289                         goto put_rpm;
2290                 }
2291         } else {
2292                 err = clk_prepare_enable(dc->clk);
2293                 if (err < 0) {
2294                         dev_err(dev, "failed to enable clock: %d\n", err);
2295                         goto put_rpm;
2296                 }
2297
2298                 err = reset_control_deassert(dc->rst);
2299                 if (err < 0) {
2300                         dev_err(dev, "failed to deassert reset: %d\n", err);
2301                         goto disable_clk;
2302                 }
2303         }
2304
2305         return 0;
2306
2307 disable_clk:
2308         clk_disable_unprepare(dc->clk);
2309 put_rpm:
2310         pm_runtime_put_sync(dev);
2311         return err;
2312 }
2313
2314 static const struct host1x_client_ops dc_client_ops = {
2315         .early_init = tegra_dc_early_init,
2316         .init = tegra_dc_init,
2317         .exit = tegra_dc_exit,
2318         .late_exit = tegra_dc_late_exit,
2319         .suspend = tegra_dc_runtime_suspend,
2320         .resume = tegra_dc_runtime_resume,
2321 };
2322
2323 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2324         .supports_background_color = false,
2325         .supports_interlacing = false,
2326         .supports_cursor = false,
2327         .supports_block_linear = false,
2328         .supports_sector_layout = false,
2329         .has_legacy_blending = true,
2330         .pitch_align = 8,
2331         .has_powergate = false,
2332         .coupled_pm = true,
2333         .has_nvdisplay = false,
2334         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2335         .primary_formats = tegra20_primary_formats,
2336         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2337         .overlay_formats = tegra20_overlay_formats,
2338         .modifiers = tegra20_modifiers,
2339         .has_win_a_without_filters = true,
2340         .has_win_c_without_vert_filter = true,
2341 };
2342
2343 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2344         .supports_background_color = false,
2345         .supports_interlacing = false,
2346         .supports_cursor = false,
2347         .supports_block_linear = false,
2348         .supports_sector_layout = false,
2349         .has_legacy_blending = true,
2350         .pitch_align = 8,
2351         .has_powergate = false,
2352         .coupled_pm = false,
2353         .has_nvdisplay = false,
2354         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2355         .primary_formats = tegra20_primary_formats,
2356         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2357         .overlay_formats = tegra20_overlay_formats,
2358         .modifiers = tegra20_modifiers,
2359         .has_win_a_without_filters = false,
2360         .has_win_c_without_vert_filter = false,
2361 };
2362
2363 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2364         .supports_background_color = false,
2365         .supports_interlacing = false,
2366         .supports_cursor = false,
2367         .supports_block_linear = false,
2368         .supports_sector_layout = false,
2369         .has_legacy_blending = true,
2370         .pitch_align = 64,
2371         .has_powergate = true,
2372         .coupled_pm = false,
2373         .has_nvdisplay = false,
2374         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2375         .primary_formats = tegra114_primary_formats,
2376         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2377         .overlay_formats = tegra114_overlay_formats,
2378         .modifiers = tegra20_modifiers,
2379         .has_win_a_without_filters = false,
2380         .has_win_c_without_vert_filter = false,
2381 };
2382
2383 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2384         .supports_background_color = true,
2385         .supports_interlacing = true,
2386         .supports_cursor = true,
2387         .supports_block_linear = true,
2388         .supports_sector_layout = false,
2389         .has_legacy_blending = false,
2390         .pitch_align = 64,
2391         .has_powergate = true,
2392         .coupled_pm = false,
2393         .has_nvdisplay = false,
2394         .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2395         .primary_formats = tegra124_primary_formats,
2396         .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2397         .overlay_formats = tegra124_overlay_formats,
2398         .modifiers = tegra124_modifiers,
2399         .has_win_a_without_filters = false,
2400         .has_win_c_without_vert_filter = false,
2401 };
2402
2403 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2404         .supports_background_color = true,
2405         .supports_interlacing = true,
2406         .supports_cursor = true,
2407         .supports_block_linear = true,
2408         .supports_sector_layout = false,
2409         .has_legacy_blending = false,
2410         .pitch_align = 64,
2411         .has_powergate = true,
2412         .coupled_pm = false,
2413         .has_nvdisplay = false,
2414         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2415         .primary_formats = tegra114_primary_formats,
2416         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2417         .overlay_formats = tegra114_overlay_formats,
2418         .modifiers = tegra124_modifiers,
2419         .has_win_a_without_filters = false,
2420         .has_win_c_without_vert_filter = false,
2421 };
2422
2423 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2424         {
2425                 .index = 0,
2426                 .dc = 0,
2427                 .windows = (const unsigned int[]) { 0 },
2428                 .num_windows = 1,
2429         }, {
2430                 .index = 1,
2431                 .dc = 1,
2432                 .windows = (const unsigned int[]) { 1 },
2433                 .num_windows = 1,
2434         }, {
2435                 .index = 2,
2436                 .dc = 1,
2437                 .windows = (const unsigned int[]) { 2 },
2438                 .num_windows = 1,
2439         }, {
2440                 .index = 3,
2441                 .dc = 2,
2442                 .windows = (const unsigned int[]) { 3 },
2443                 .num_windows = 1,
2444         }, {
2445                 .index = 4,
2446                 .dc = 2,
2447                 .windows = (const unsigned int[]) { 4 },
2448                 .num_windows = 1,
2449         }, {
2450                 .index = 5,
2451                 .dc = 2,
2452                 .windows = (const unsigned int[]) { 5 },
2453                 .num_windows = 1,
2454         },
2455 };
2456
2457 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2458         .supports_background_color = true,
2459         .supports_interlacing = true,
2460         .supports_cursor = true,
2461         .supports_block_linear = true,
2462         .supports_sector_layout = false,
2463         .has_legacy_blending = false,
2464         .pitch_align = 64,
2465         .has_powergate = false,
2466         .coupled_pm = false,
2467         .has_nvdisplay = true,
2468         .wgrps = tegra186_dc_wgrps,
2469         .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2470 };
2471
2472 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2473         {
2474                 .index = 0,
2475                 .dc = 0,
2476                 .windows = (const unsigned int[]) { 0 },
2477                 .num_windows = 1,
2478         }, {
2479                 .index = 1,
2480                 .dc = 1,
2481                 .windows = (const unsigned int[]) { 1 },
2482                 .num_windows = 1,
2483         }, {
2484                 .index = 2,
2485                 .dc = 1,
2486                 .windows = (const unsigned int[]) { 2 },
2487                 .num_windows = 1,
2488         }, {
2489                 .index = 3,
2490                 .dc = 2,
2491                 .windows = (const unsigned int[]) { 3 },
2492                 .num_windows = 1,
2493         }, {
2494                 .index = 4,
2495                 .dc = 2,
2496                 .windows = (const unsigned int[]) { 4 },
2497                 .num_windows = 1,
2498         }, {
2499                 .index = 5,
2500                 .dc = 2,
2501                 .windows = (const unsigned int[]) { 5 },
2502                 .num_windows = 1,
2503         },
2504 };
2505
2506 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2507         .supports_background_color = true,
2508         .supports_interlacing = true,
2509         .supports_cursor = true,
2510         .supports_block_linear = true,
2511         .supports_sector_layout = true,
2512         .has_legacy_blending = false,
2513         .pitch_align = 64,
2514         .has_powergate = false,
2515         .coupled_pm = false,
2516         .has_nvdisplay = true,
2517         .wgrps = tegra194_dc_wgrps,
2518         .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2519 };
2520
2521 static const struct of_device_id tegra_dc_of_match[] = {
2522         {
2523                 .compatible = "nvidia,tegra194-dc",
2524                 .data = &tegra194_dc_soc_info,
2525         }, {
2526                 .compatible = "nvidia,tegra186-dc",
2527                 .data = &tegra186_dc_soc_info,
2528         }, {
2529                 .compatible = "nvidia,tegra210-dc",
2530                 .data = &tegra210_dc_soc_info,
2531         }, {
2532                 .compatible = "nvidia,tegra124-dc",
2533                 .data = &tegra124_dc_soc_info,
2534         }, {
2535                 .compatible = "nvidia,tegra114-dc",
2536                 .data = &tegra114_dc_soc_info,
2537         }, {
2538                 .compatible = "nvidia,tegra30-dc",
2539                 .data = &tegra30_dc_soc_info,
2540         }, {
2541                 .compatible = "nvidia,tegra20-dc",
2542                 .data = &tegra20_dc_soc_info,
2543         }, {
2544                 /* sentinel */
2545         }
2546 };
2547 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2548
2549 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2550 {
2551         struct device_node *np;
2552         u32 value = 0;
2553         int err;
2554
2555         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2556         if (err < 0) {
2557                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2558
2559                 /*
2560                  * If the nvidia,head property isn't present, try to find the
2561                  * correct head number by looking up the position of this
2562                  * display controller's node within the device tree. Assuming
2563                  * that the nodes are ordered properly in the DTS file and
2564                  * that the translation into a flattened device tree blob
2565                  * preserves that ordering this will actually yield the right
2566                  * head number.
2567                  *
2568                  * If those assumptions don't hold, this will still work for
2569                  * cases where only a single display controller is used.
2570                  */
2571                 for_each_matching_node(np, tegra_dc_of_match) {
2572                         if (np == dc->dev->of_node) {
2573                                 of_node_put(np);
2574                                 break;
2575                         }
2576
2577                         value++;
2578                 }
2579         }
2580
2581         dc->pipe = value;
2582
2583         return 0;
2584 }
2585
2586 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2587 {
2588         struct tegra_dc *dc = dev_get_drvdata(dev);
2589         unsigned int pipe = (unsigned long)(void *)data;
2590
2591         return dc->pipe == pipe;
2592 }
2593
2594 static int tegra_dc_couple(struct tegra_dc *dc)
2595 {
2596         /*
2597          * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2598          * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2599          * POWER_CONTROL registers during CRTC enabling.
2600          */
2601         if (dc->soc->coupled_pm && dc->pipe == 1) {
2602                 struct device *companion;
2603                 struct tegra_dc *parent;
2604
2605                 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
2606                                                tegra_dc_match_by_pipe);
2607                 if (!companion)
2608                         return -EPROBE_DEFER;
2609
2610                 parent = dev_get_drvdata(companion);
2611                 dc->client.parent = &parent->client;
2612
2613                 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
2614         }
2615
2616         return 0;
2617 }
2618
2619 static int tegra_dc_probe(struct platform_device *pdev)
2620 {
2621         u64 dma_mask = dma_get_mask(pdev->dev.parent);
2622         struct tegra_dc *dc;
2623         int err;
2624
2625         err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
2626         if (err < 0) {
2627                 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
2628                 return err;
2629         }
2630
2631         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2632         if (!dc)
2633                 return -ENOMEM;
2634
2635         dc->soc = of_device_get_match_data(&pdev->dev);
2636
2637         INIT_LIST_HEAD(&dc->list);
2638         dc->dev = &pdev->dev;
2639
2640         err = tegra_dc_parse_dt(dc);
2641         if (err < 0)
2642                 return err;
2643
2644         err = tegra_dc_couple(dc);
2645         if (err < 0)
2646                 return err;
2647
2648         dc->clk = devm_clk_get(&pdev->dev, NULL);
2649         if (IS_ERR(dc->clk)) {
2650                 dev_err(&pdev->dev, "failed to get clock\n");
2651                 return PTR_ERR(dc->clk);
2652         }
2653
2654         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2655         if (IS_ERR(dc->rst)) {
2656                 dev_err(&pdev->dev, "failed to get reset\n");
2657                 return PTR_ERR(dc->rst);
2658         }
2659
2660         /* assert reset and disable clock */
2661         err = clk_prepare_enable(dc->clk);
2662         if (err < 0)
2663                 return err;
2664
2665         usleep_range(2000, 4000);
2666
2667         err = reset_control_assert(dc->rst);
2668         if (err < 0)
2669                 return err;
2670
2671         usleep_range(2000, 4000);
2672
2673         clk_disable_unprepare(dc->clk);
2674
2675         if (dc->soc->has_powergate) {
2676                 if (dc->pipe == 0)
2677                         dc->powergate = TEGRA_POWERGATE_DIS;
2678                 else
2679                         dc->powergate = TEGRA_POWERGATE_DISB;
2680
2681                 tegra_powergate_power_off(dc->powergate);
2682         }
2683
2684         dc->regs = devm_platform_ioremap_resource(pdev, 0);
2685         if (IS_ERR(dc->regs))
2686                 return PTR_ERR(dc->regs);
2687
2688         dc->irq = platform_get_irq(pdev, 0);
2689         if (dc->irq < 0)
2690                 return -ENXIO;
2691
2692         err = tegra_dc_rgb_probe(dc);
2693         if (err < 0 && err != -ENODEV) {
2694                 const char *level = KERN_ERR;
2695
2696                 if (err == -EPROBE_DEFER)
2697                         level = KERN_DEBUG;
2698
2699                 dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
2700                            err);
2701                 return err;
2702         }
2703
2704         platform_set_drvdata(pdev, dc);
2705         pm_runtime_enable(&pdev->dev);
2706
2707         INIT_LIST_HEAD(&dc->client.list);
2708         dc->client.ops = &dc_client_ops;
2709         dc->client.dev = &pdev->dev;
2710
2711         err = host1x_client_register(&dc->client);
2712         if (err < 0) {
2713                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2714                         err);
2715                 goto disable_pm;
2716         }
2717
2718         return 0;
2719
2720 disable_pm:
2721         pm_runtime_disable(&pdev->dev);
2722         tegra_dc_rgb_remove(dc);
2723
2724         return err;
2725 }
2726
2727 static int tegra_dc_remove(struct platform_device *pdev)
2728 {
2729         struct tegra_dc *dc = platform_get_drvdata(pdev);
2730         int err;
2731
2732         err = host1x_client_unregister(&dc->client);
2733         if (err < 0) {
2734                 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2735                         err);
2736                 return err;
2737         }
2738
2739         err = tegra_dc_rgb_remove(dc);
2740         if (err < 0) {
2741                 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2742                 return err;
2743         }
2744
2745         pm_runtime_disable(&pdev->dev);
2746
2747         return 0;
2748 }
2749
2750 struct platform_driver tegra_dc_driver = {
2751         .driver = {
2752                 .name = "tegra-dc",
2753                 .of_match_table = tegra_dc_of_match,
2754         },
2755         .probe = tegra_dc_probe,
2756         .remove = tegra_dc_remove,
2757 };
This page took 0.193291 seconds and 4 git commands to generate.