2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/delay.h>
24 #include <trace/events/block.h>
26 #define DM_MSG_PREFIX "core"
29 * Cookies are numeric values sent with CHANGE and REMOVE
30 * uevents while resuming, removing or renaming the device.
32 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
33 #define DM_COOKIE_LENGTH 24
35 static const char *_name = DM_NAME;
37 static unsigned int major = 0;
38 static unsigned int _major = 0;
40 static DEFINE_SPINLOCK(_minor_lock);
43 * One of these is allocated per bio.
46 struct mapped_device *md;
50 unsigned long start_time;
51 spinlock_t endio_lock;
56 * One of these is allocated per target within a bio. Hopefully
57 * this will be simplified out one day.
66 * For request-based dm.
67 * One of these is allocated per request.
69 struct dm_rq_target_io {
70 struct mapped_device *md;
72 struct request *orig, clone;
78 * For request-based dm.
79 * One of these is allocated per bio.
81 struct dm_rq_clone_bio_info {
83 struct dm_rq_target_io *tio;
86 union map_info *dm_get_mapinfo(struct bio *bio)
88 if (bio && bio->bi_private)
89 return &((struct dm_target_io *)bio->bi_private)->info;
93 union map_info *dm_get_rq_mapinfo(struct request *rq)
95 if (rq && rq->end_io_data)
96 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
99 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
101 #define MINOR_ALLOCED ((void *)-1)
104 * Bits for the md->flags field.
106 #define DMF_BLOCK_IO_FOR_SUSPEND 0
107 #define DMF_SUSPENDED 1
109 #define DMF_FREEING 3
110 #define DMF_DELETING 4
111 #define DMF_NOFLUSH_SUSPENDING 5
114 * Work processed by per-device workqueue.
116 struct mapped_device {
117 struct rw_semaphore io_lock;
118 struct mutex suspend_lock;
125 struct request_queue *queue;
127 /* Protect queue and type against concurrent access. */
128 struct mutex type_lock;
130 struct gendisk *disk;
136 * A list of ios that arrived while we were suspended.
139 wait_queue_head_t wait;
140 struct work_struct work;
141 struct bio_list deferred;
142 spinlock_t deferred_lock;
145 * Processing queue (flush)
147 struct workqueue_struct *wq;
150 * The current mapping.
152 struct dm_table *map;
155 * io objects are allocated from here.
166 wait_queue_head_t eventq;
168 struct list_head uevent_list;
169 spinlock_t uevent_lock; /* Protect access to uevent_list */
172 * freeze/thaw support require holding onto a super block
174 struct super_block *frozen_sb;
175 struct block_device *bdev;
177 /* forced geometry settings */
178 struct hd_geometry geometry;
180 /* For saving the address of __make_request for request based dm */
181 make_request_fn *saved_make_request_fn;
186 /* zero-length flush that will be cloned and submitted to targets */
187 struct bio flush_bio;
191 * For mempools pre-allocation at the table loading time.
193 struct dm_md_mempools {
200 static struct kmem_cache *_io_cache;
201 static struct kmem_cache *_tio_cache;
202 static struct kmem_cache *_rq_tio_cache;
203 static struct kmem_cache *_rq_bio_info_cache;
205 static int __init local_init(void)
209 /* allocate a slab for the dm_ios */
210 _io_cache = KMEM_CACHE(dm_io, 0);
214 /* allocate a slab for the target ios */
215 _tio_cache = KMEM_CACHE(dm_target_io, 0);
217 goto out_free_io_cache;
219 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
221 goto out_free_tio_cache;
223 _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
224 if (!_rq_bio_info_cache)
225 goto out_free_rq_tio_cache;
227 r = dm_uevent_init();
229 goto out_free_rq_bio_info_cache;
232 r = register_blkdev(_major, _name);
234 goto out_uevent_exit;
243 out_free_rq_bio_info_cache:
244 kmem_cache_destroy(_rq_bio_info_cache);
245 out_free_rq_tio_cache:
246 kmem_cache_destroy(_rq_tio_cache);
248 kmem_cache_destroy(_tio_cache);
250 kmem_cache_destroy(_io_cache);
255 static void local_exit(void)
257 kmem_cache_destroy(_rq_bio_info_cache);
258 kmem_cache_destroy(_rq_tio_cache);
259 kmem_cache_destroy(_tio_cache);
260 kmem_cache_destroy(_io_cache);
261 unregister_blkdev(_major, _name);
266 DMINFO("cleaned up");
269 static int (*_inits[])(void) __initdata = {
279 static void (*_exits[])(void) = {
289 static int __init dm_init(void)
291 const int count = ARRAY_SIZE(_inits);
295 for (i = 0; i < count; i++) {
310 static void __exit dm_exit(void)
312 int i = ARRAY_SIZE(_exits);
319 * Block device functions
321 int dm_deleting_md(struct mapped_device *md)
323 return test_bit(DMF_DELETING, &md->flags);
326 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
328 struct mapped_device *md;
330 spin_lock(&_minor_lock);
332 md = bdev->bd_disk->private_data;
336 if (test_bit(DMF_FREEING, &md->flags) ||
337 dm_deleting_md(md)) {
343 atomic_inc(&md->open_count);
346 spin_unlock(&_minor_lock);
348 return md ? 0 : -ENXIO;
351 static int dm_blk_close(struct gendisk *disk, fmode_t mode)
353 struct mapped_device *md = disk->private_data;
355 spin_lock(&_minor_lock);
357 atomic_dec(&md->open_count);
360 spin_unlock(&_minor_lock);
365 int dm_open_count(struct mapped_device *md)
367 return atomic_read(&md->open_count);
371 * Guarantees nothing is using the device before it's deleted.
373 int dm_lock_for_deletion(struct mapped_device *md)
377 spin_lock(&_minor_lock);
379 if (dm_open_count(md))
382 set_bit(DMF_DELETING, &md->flags);
384 spin_unlock(&_minor_lock);
389 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
391 struct mapped_device *md = bdev->bd_disk->private_data;
393 return dm_get_geometry(md, geo);
396 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
397 unsigned int cmd, unsigned long arg)
399 struct mapped_device *md = bdev->bd_disk->private_data;
400 struct dm_table *map = dm_get_live_table(md);
401 struct dm_target *tgt;
404 if (!map || !dm_table_get_size(map))
407 /* We only support devices that have a single target */
408 if (dm_table_get_num_targets(map) != 1)
411 tgt = dm_table_get_target(map, 0);
413 if (dm_suspended_md(md)) {
418 if (tgt->type->ioctl)
419 r = tgt->type->ioctl(tgt, cmd, arg);
427 static struct dm_io *alloc_io(struct mapped_device *md)
429 return mempool_alloc(md->io_pool, GFP_NOIO);
432 static void free_io(struct mapped_device *md, struct dm_io *io)
434 mempool_free(io, md->io_pool);
437 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
439 mempool_free(tio, md->tio_pool);
442 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
445 return mempool_alloc(md->tio_pool, gfp_mask);
448 static void free_rq_tio(struct dm_rq_target_io *tio)
450 mempool_free(tio, tio->md->tio_pool);
453 static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
455 return mempool_alloc(md->io_pool, GFP_ATOMIC);
458 static void free_bio_info(struct dm_rq_clone_bio_info *info)
460 mempool_free(info, info->tio->md->io_pool);
463 static int md_in_flight(struct mapped_device *md)
465 return atomic_read(&md->pending[READ]) +
466 atomic_read(&md->pending[WRITE]);
469 static void start_io_acct(struct dm_io *io)
471 struct mapped_device *md = io->md;
473 int rw = bio_data_dir(io->bio);
475 io->start_time = jiffies;
477 cpu = part_stat_lock();
478 part_round_stats(cpu, &dm_disk(md)->part0);
480 dm_disk(md)->part0.in_flight[rw] = atomic_inc_return(&md->pending[rw]);
483 static void end_io_acct(struct dm_io *io)
485 struct mapped_device *md = io->md;
486 struct bio *bio = io->bio;
487 unsigned long duration = jiffies - io->start_time;
489 int rw = bio_data_dir(bio);
491 cpu = part_stat_lock();
492 part_round_stats(cpu, &dm_disk(md)->part0);
493 part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
497 * After this is decremented the bio must not be touched if it is
500 dm_disk(md)->part0.in_flight[rw] = pending =
501 atomic_dec_return(&md->pending[rw]);
502 pending += atomic_read(&md->pending[rw^0x1]);
504 /* nudge anyone waiting on suspend queue */
510 * Add the bio to the list of deferred io.
512 static void queue_io(struct mapped_device *md, struct bio *bio)
516 spin_lock_irqsave(&md->deferred_lock, flags);
517 bio_list_add(&md->deferred, bio);
518 spin_unlock_irqrestore(&md->deferred_lock, flags);
519 queue_work(md->wq, &md->work);
523 * Everyone (including functions in this file), should use this
524 * function to access the md->map field, and make sure they call
525 * dm_table_put() when finished.
527 struct dm_table *dm_get_live_table(struct mapped_device *md)
532 read_lock_irqsave(&md->map_lock, flags);
536 read_unlock_irqrestore(&md->map_lock, flags);
542 * Get the geometry associated with a dm device
544 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
552 * Set the geometry of a device.
554 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
556 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
558 if (geo->start > sz) {
559 DMWARN("Start sector is beyond the geometry limits.");
568 /*-----------------------------------------------------------------
570 * A more elegant soln is in the works that uses the queue
571 * merge fn, unfortunately there are a couple of changes to
572 * the block layer that I want to make for this. So in the
573 * interests of getting something for people to use I give
574 * you this clearly demarcated crap.
575 *---------------------------------------------------------------*/
577 static int __noflush_suspending(struct mapped_device *md)
579 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
583 * Decrements the number of outstanding ios that a bio has been
584 * cloned into, completing the original io if necc.
586 static void dec_pending(struct dm_io *io, int error)
591 struct mapped_device *md = io->md;
593 /* Push-back supersedes any I/O errors */
594 if (unlikely(error)) {
595 spin_lock_irqsave(&io->endio_lock, flags);
596 if (!(io->error > 0 && __noflush_suspending(md)))
598 spin_unlock_irqrestore(&io->endio_lock, flags);
601 if (atomic_dec_and_test(&io->io_count)) {
602 if (io->error == DM_ENDIO_REQUEUE) {
604 * Target requested pushing back the I/O.
606 spin_lock_irqsave(&md->deferred_lock, flags);
607 if (__noflush_suspending(md))
608 bio_list_add_head(&md->deferred, io->bio);
610 /* noflush suspend was interrupted. */
612 spin_unlock_irqrestore(&md->deferred_lock, flags);
615 io_error = io->error;
620 if (io_error == DM_ENDIO_REQUEUE)
623 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
625 * Preflush done for flush with data, reissue
628 bio->bi_rw &= ~REQ_FLUSH;
631 /* done with normal IO or empty flush */
632 trace_block_bio_complete(md->queue, bio, io_error);
633 bio_endio(bio, io_error);
638 static void clone_endio(struct bio *bio, int error)
641 struct dm_target_io *tio = bio->bi_private;
642 struct dm_io *io = tio->io;
643 struct mapped_device *md = tio->io->md;
644 dm_endio_fn endio = tio->ti->type->end_io;
646 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
650 r = endio(tio->ti, bio, error, &tio->info);
651 if (r < 0 || r == DM_ENDIO_REQUEUE)
653 * error and requeue request are handled
657 else if (r == DM_ENDIO_INCOMPLETE)
658 /* The target will handle the io */
661 DMWARN("unimplemented target endio return value: %d", r);
667 * Store md for cleanup instead of tio which is about to get freed.
669 bio->bi_private = md->bs;
673 dec_pending(io, error);
677 * Partial completion handling for request-based dm
679 static void end_clone_bio(struct bio *clone, int error)
681 struct dm_rq_clone_bio_info *info = clone->bi_private;
682 struct dm_rq_target_io *tio = info->tio;
683 struct bio *bio = info->orig;
684 unsigned int nr_bytes = info->orig->bi_size;
690 * An error has already been detected on the request.
691 * Once error occurred, just let clone->end_io() handle
697 * Don't notice the error to the upper layer yet.
698 * The error handling decision is made by the target driver,
699 * when the request is completed.
706 * I/O for the bio successfully completed.
707 * Notice the data completion to the upper layer.
711 * bios are processed from the head of the list.
712 * So the completing bio should always be rq->bio.
713 * If it's not, something wrong is happening.
715 if (tio->orig->bio != bio)
716 DMERR("bio completion is going in the middle of the request");
719 * Update the original request.
720 * Do not use blk_end_request() here, because it may complete
721 * the original request before the clone, and break the ordering.
723 blk_update_request(tio->orig, 0, nr_bytes);
727 * Don't touch any member of the md after calling this function because
728 * the md may be freed in dm_put() at the end of this function.
729 * Or do dm_get() before calling this function and dm_put() later.
731 static void rq_completed(struct mapped_device *md, int rw, int run_queue)
733 atomic_dec(&md->pending[rw]);
735 /* nudge anyone waiting on suspend queue */
736 if (!md_in_flight(md))
740 blk_run_queue(md->queue);
743 * dm_put() must be at the end of this function. See the comment above
748 static void free_rq_clone(struct request *clone)
750 struct dm_rq_target_io *tio = clone->end_io_data;
752 blk_rq_unprep_clone(clone);
757 * Complete the clone and the original request.
758 * Must be called without queue lock.
760 static void dm_end_request(struct request *clone, int error)
762 int rw = rq_data_dir(clone);
763 struct dm_rq_target_io *tio = clone->end_io_data;
764 struct mapped_device *md = tio->md;
765 struct request *rq = tio->orig;
767 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
768 rq->errors = clone->errors;
769 rq->resid_len = clone->resid_len;
773 * We are using the sense buffer of the original
775 * So setting the length of the sense data is enough.
777 rq->sense_len = clone->sense_len;
780 free_rq_clone(clone);
781 blk_end_request_all(rq, error);
782 rq_completed(md, rw, true);
785 static void dm_unprep_request(struct request *rq)
787 struct request *clone = rq->special;
790 rq->cmd_flags &= ~REQ_DONTPREP;
792 free_rq_clone(clone);
796 * Requeue the original request of a clone.
798 void dm_requeue_unmapped_request(struct request *clone)
800 int rw = rq_data_dir(clone);
801 struct dm_rq_target_io *tio = clone->end_io_data;
802 struct mapped_device *md = tio->md;
803 struct request *rq = tio->orig;
804 struct request_queue *q = rq->q;
807 dm_unprep_request(rq);
809 spin_lock_irqsave(q->queue_lock, flags);
810 if (elv_queue_empty(q))
812 blk_requeue_request(q, rq);
813 spin_unlock_irqrestore(q->queue_lock, flags);
815 rq_completed(md, rw, 0);
817 EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
819 static void __stop_queue(struct request_queue *q)
824 static void stop_queue(struct request_queue *q)
828 spin_lock_irqsave(q->queue_lock, flags);
830 spin_unlock_irqrestore(q->queue_lock, flags);
833 static void __start_queue(struct request_queue *q)
835 if (blk_queue_stopped(q))
839 static void start_queue(struct request_queue *q)
843 spin_lock_irqsave(q->queue_lock, flags);
845 spin_unlock_irqrestore(q->queue_lock, flags);
848 static void dm_done(struct request *clone, int error, bool mapped)
851 struct dm_rq_target_io *tio = clone->end_io_data;
852 dm_request_endio_fn rq_end_io = tio->ti->type->rq_end_io;
854 if (mapped && rq_end_io)
855 r = rq_end_io(tio->ti, clone, error, &tio->info);
858 /* The target wants to complete the I/O */
859 dm_end_request(clone, r);
860 else if (r == DM_ENDIO_INCOMPLETE)
861 /* The target will handle the I/O */
863 else if (r == DM_ENDIO_REQUEUE)
864 /* The target wants to requeue the I/O */
865 dm_requeue_unmapped_request(clone);
867 DMWARN("unimplemented target endio return value: %d", r);
873 * Request completion handler for request-based dm
875 static void dm_softirq_done(struct request *rq)
878 struct request *clone = rq->completion_data;
879 struct dm_rq_target_io *tio = clone->end_io_data;
881 if (rq->cmd_flags & REQ_FAILED)
884 dm_done(clone, tio->error, mapped);
888 * Complete the clone and the original request with the error status
889 * through softirq context.
891 static void dm_complete_request(struct request *clone, int error)
893 struct dm_rq_target_io *tio = clone->end_io_data;
894 struct request *rq = tio->orig;
897 rq->completion_data = clone;
898 blk_complete_request(rq);
902 * Complete the not-mapped clone and the original request with the error status
903 * through softirq context.
904 * Target's rq_end_io() function isn't called.
905 * This may be used when the target's map_rq() function fails.
907 void dm_kill_unmapped_request(struct request *clone, int error)
909 struct dm_rq_target_io *tio = clone->end_io_data;
910 struct request *rq = tio->orig;
912 rq->cmd_flags |= REQ_FAILED;
913 dm_complete_request(clone, error);
915 EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
918 * Called with the queue lock held
920 static void end_clone_request(struct request *clone, int error)
923 * For just cleaning up the information of the queue in which
924 * the clone was dispatched.
925 * The clone is *NOT* freed actually here because it is alloced from
926 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
928 __blk_put_request(clone->q, clone);
931 * Actual request completion is done in a softirq context which doesn't
932 * hold the queue lock. Otherwise, deadlock could occur because:
933 * - another request may be submitted by the upper level driver
934 * of the stacking during the completion
935 * - the submission which requires queue lock may be done
938 dm_complete_request(clone, error);
942 * Return maximum size of I/O possible at the supplied sector up to the current
945 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
947 sector_t target_offset = dm_target_offset(ti, sector);
949 return ti->len - target_offset;
952 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
954 sector_t len = max_io_len_target_boundary(sector, ti);
957 * Does the target need to split even further ?
961 sector_t offset = dm_target_offset(ti, sector);
962 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
971 static void __map_bio(struct dm_target *ti, struct bio *clone,
972 struct dm_target_io *tio)
976 struct mapped_device *md;
978 clone->bi_end_io = clone_endio;
979 clone->bi_private = tio;
982 * Map the clone. If r == 0 we don't need to do
983 * anything, the target has assumed ownership of
986 atomic_inc(&tio->io->io_count);
987 sector = clone->bi_sector;
988 r = ti->type->map(ti, clone, &tio->info);
989 if (r == DM_MAPIO_REMAPPED) {
990 /* the bio has been remapped so dispatch it */
992 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
993 tio->io->bio->bi_bdev->bd_dev, sector);
995 generic_make_request(clone);
996 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
997 /* error the io and bail out, or requeue it if needed */
999 dec_pending(tio->io, r);
1001 * Store bio_set for cleanup.
1003 clone->bi_private = md->bs;
1007 DMWARN("unimplemented target map return value: %d", r);
1013 struct mapped_device *md;
1014 struct dm_table *map;
1018 sector_t sector_count;
1022 static void dm_bio_destructor(struct bio *bio)
1024 struct bio_set *bs = bio->bi_private;
1030 * Creates a little bio that just does part of a bvec.
1032 static struct bio *split_bvec(struct bio *bio, sector_t sector,
1033 unsigned short idx, unsigned int offset,
1034 unsigned int len, struct bio_set *bs)
1037 struct bio_vec *bv = bio->bi_io_vec + idx;
1039 clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
1040 clone->bi_destructor = dm_bio_destructor;
1041 *clone->bi_io_vec = *bv;
1043 clone->bi_sector = sector;
1044 clone->bi_bdev = bio->bi_bdev;
1045 clone->bi_rw = bio->bi_rw;
1047 clone->bi_size = to_bytes(len);
1048 clone->bi_io_vec->bv_offset = offset;
1049 clone->bi_io_vec->bv_len = clone->bi_size;
1050 clone->bi_flags |= 1 << BIO_CLONED;
1052 if (bio_integrity(bio)) {
1053 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1054 bio_integrity_trim(clone,
1055 bio_sector_offset(bio, idx, offset), len);
1062 * Creates a bio that consists of range of complete bvecs.
1064 static struct bio *clone_bio(struct bio *bio, sector_t sector,
1065 unsigned short idx, unsigned short bv_count,
1066 unsigned int len, struct bio_set *bs)
1070 clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
1071 __bio_clone(clone, bio);
1072 clone->bi_destructor = dm_bio_destructor;
1073 clone->bi_sector = sector;
1074 clone->bi_idx = idx;
1075 clone->bi_vcnt = idx + bv_count;
1076 clone->bi_size = to_bytes(len);
1077 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
1079 if (bio_integrity(bio)) {
1080 bio_integrity_clone(clone, bio, GFP_NOIO, bs);
1082 if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
1083 bio_integrity_trim(clone,
1084 bio_sector_offset(bio, idx, 0), len);
1090 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1091 struct dm_target *ti)
1093 struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
1097 memset(&tio->info, 0, sizeof(tio->info));
1102 static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
1103 unsigned request_nr, sector_t len)
1105 struct dm_target_io *tio = alloc_tio(ci, ti);
1108 tio->info.target_request_nr = request_nr;
1111 * Discard requests require the bio's inline iovecs be initialized.
1112 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
1113 * and discard, so no need for concern about wasted bvec allocations.
1115 clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
1116 __bio_clone(clone, ci->bio);
1117 clone->bi_destructor = dm_bio_destructor;
1119 clone->bi_sector = ci->sector;
1120 clone->bi_size = to_bytes(len);
1123 __map_bio(ti, clone, tio);
1126 static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
1127 unsigned num_requests, sector_t len)
1129 unsigned request_nr;
1131 for (request_nr = 0; request_nr < num_requests; request_nr++)
1132 __issue_target_request(ci, ti, request_nr, len);
1135 static int __clone_and_map_empty_flush(struct clone_info *ci)
1137 unsigned target_nr = 0;
1138 struct dm_target *ti;
1140 BUG_ON(bio_has_data(ci->bio));
1141 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1142 __issue_target_requests(ci, ti, ti->num_flush_requests, 0);
1148 * Perform all io with a single clone.
1150 static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
1152 struct bio *clone, *bio = ci->bio;
1153 struct dm_target_io *tio;
1155 tio = alloc_tio(ci, ti);
1156 clone = clone_bio(bio, ci->sector, ci->idx,
1157 bio->bi_vcnt - ci->idx, ci->sector_count,
1159 __map_bio(ti, clone, tio);
1160 ci->sector_count = 0;
1163 static int __clone_and_map_discard(struct clone_info *ci)
1165 struct dm_target *ti;
1169 ti = dm_table_find_target(ci->map, ci->sector);
1170 if (!dm_target_is_valid(ti))
1174 * Even though the device advertised discard support,
1175 * reconfiguration might have changed that since the
1176 * check was performed.
1178 if (!ti->num_discard_requests)
1181 len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1183 __issue_target_requests(ci, ti, ti->num_discard_requests, len);
1186 } while (ci->sector_count -= len);
1191 static int __clone_and_map(struct clone_info *ci)
1193 struct bio *clone, *bio = ci->bio;
1194 struct dm_target *ti;
1195 sector_t len = 0, max;
1196 struct dm_target_io *tio;
1198 if (unlikely(bio->bi_rw & REQ_DISCARD))
1199 return __clone_and_map_discard(ci);
1201 ti = dm_table_find_target(ci->map, ci->sector);
1202 if (!dm_target_is_valid(ti))
1205 max = max_io_len(ci->sector, ti);
1207 if (ci->sector_count <= max) {
1209 * Optimise for the simple case where we can do all of
1210 * the remaining io with a single clone.
1212 __clone_and_map_simple(ci, ti);
1214 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
1216 * There are some bvecs that don't span targets.
1217 * Do as many of these as possible.
1220 sector_t remaining = max;
1223 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
1224 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
1226 if (bv_len > remaining)
1229 remaining -= bv_len;
1233 tio = alloc_tio(ci, ti);
1234 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
1236 __map_bio(ti, clone, tio);
1239 ci->sector_count -= len;
1244 * Handle a bvec that must be split between two or more targets.
1246 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
1247 sector_t remaining = to_sector(bv->bv_len);
1248 unsigned int offset = 0;
1252 ti = dm_table_find_target(ci->map, ci->sector);
1253 if (!dm_target_is_valid(ti))
1256 max = max_io_len(ci->sector, ti);
1259 len = min(remaining, max);
1261 tio = alloc_tio(ci, ti);
1262 clone = split_bvec(bio, ci->sector, ci->idx,
1263 bv->bv_offset + offset, len,
1266 __map_bio(ti, clone, tio);
1269 ci->sector_count -= len;
1270 offset += to_bytes(len);
1271 } while (remaining -= len);
1280 * Split the bio into several clones and submit it to targets.
1282 static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
1284 struct clone_info ci;
1287 ci.map = dm_get_live_table(md);
1288 if (unlikely(!ci.map)) {
1294 ci.io = alloc_io(md);
1296 atomic_set(&ci.io->io_count, 1);
1299 spin_lock_init(&ci.io->endio_lock);
1300 ci.sector = bio->bi_sector;
1301 ci.idx = bio->bi_idx;
1303 start_io_acct(ci.io);
1304 if (bio->bi_rw & REQ_FLUSH) {
1305 ci.bio = &ci.md->flush_bio;
1306 ci.sector_count = 0;
1307 error = __clone_and_map_empty_flush(&ci);
1308 /* dec_pending submits any data associated with flush */
1311 ci.sector_count = bio_sectors(bio);
1312 while (ci.sector_count && !error)
1313 error = __clone_and_map(&ci);
1316 /* drop the extra reference count */
1317 dec_pending(ci.io, error);
1318 dm_table_put(ci.map);
1320 /*-----------------------------------------------------------------
1322 *---------------------------------------------------------------*/
1324 static int dm_merge_bvec(struct request_queue *q,
1325 struct bvec_merge_data *bvm,
1326 struct bio_vec *biovec)
1328 struct mapped_device *md = q->queuedata;
1329 struct dm_table *map = dm_get_live_table(md);
1330 struct dm_target *ti;
1331 sector_t max_sectors;
1337 ti = dm_table_find_target(map, bvm->bi_sector);
1338 if (!dm_target_is_valid(ti))
1342 * Find maximum amount of I/O that won't need splitting
1344 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1345 (sector_t) BIO_MAX_SECTORS);
1346 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1351 * merge_bvec_fn() returns number of bytes
1352 * it can accept at this offset
1353 * max is precomputed maximal io size
1355 if (max_size && ti->type->merge)
1356 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1358 * If the target doesn't support merge method and some of the devices
1359 * provided their merge_bvec method (we know this by looking at
1360 * queue_max_hw_sectors), then we can't allow bios with multiple vector
1361 * entries. So always set max_size to 0, and the code below allows
1364 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1373 * Always allow an entire first page
1375 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1376 max_size = biovec->bv_len;
1382 * The request function that just remaps the bio built up by
1385 static int _dm_request(struct request_queue *q, struct bio *bio)
1387 int rw = bio_data_dir(bio);
1388 struct mapped_device *md = q->queuedata;
1391 down_read(&md->io_lock);
1393 cpu = part_stat_lock();
1394 part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
1395 part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
1398 /* if we're suspended, we have to queue this io for later */
1399 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1400 up_read(&md->io_lock);
1402 if (bio_rw(bio) != READA)
1409 __split_and_process_bio(md, bio);
1410 up_read(&md->io_lock);
1414 static int dm_make_request(struct request_queue *q, struct bio *bio)
1416 struct mapped_device *md = q->queuedata;
1418 return md->saved_make_request_fn(q, bio); /* call __make_request() */
1421 static int dm_request_based(struct mapped_device *md)
1423 return blk_queue_stackable(md->queue);
1426 static int dm_request(struct request_queue *q, struct bio *bio)
1428 struct mapped_device *md = q->queuedata;
1430 if (dm_request_based(md))
1431 return dm_make_request(q, bio);
1433 return _dm_request(q, bio);
1436 void dm_dispatch_request(struct request *rq)
1440 if (blk_queue_io_stat(rq->q))
1441 rq->cmd_flags |= REQ_IO_STAT;
1443 rq->start_time = jiffies;
1444 r = blk_insert_cloned_request(rq->q, rq);
1446 dm_complete_request(rq, r);
1448 EXPORT_SYMBOL_GPL(dm_dispatch_request);
1450 static void dm_rq_bio_destructor(struct bio *bio)
1452 struct dm_rq_clone_bio_info *info = bio->bi_private;
1453 struct mapped_device *md = info->tio->md;
1455 free_bio_info(info);
1456 bio_free(bio, md->bs);
1459 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1462 struct dm_rq_target_io *tio = data;
1463 struct mapped_device *md = tio->md;
1464 struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
1469 info->orig = bio_orig;
1471 bio->bi_end_io = end_clone_bio;
1472 bio->bi_private = info;
1473 bio->bi_destructor = dm_rq_bio_destructor;
1478 static int setup_clone(struct request *clone, struct request *rq,
1479 struct dm_rq_target_io *tio)
1483 r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
1484 dm_rq_bio_constructor, tio);
1488 clone->cmd = rq->cmd;
1489 clone->cmd_len = rq->cmd_len;
1490 clone->sense = rq->sense;
1491 clone->buffer = rq->buffer;
1492 clone->end_io = end_clone_request;
1493 clone->end_io_data = tio;
1498 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1501 struct request *clone;
1502 struct dm_rq_target_io *tio;
1504 tio = alloc_rq_tio(md, gfp_mask);
1512 memset(&tio->info, 0, sizeof(tio->info));
1514 clone = &tio->clone;
1515 if (setup_clone(clone, rq, tio)) {
1525 * Called with the queue lock held.
1527 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1529 struct mapped_device *md = q->queuedata;
1530 struct request *clone;
1532 if (unlikely(rq->special)) {
1533 DMWARN("Already has something in rq->special.");
1534 return BLKPREP_KILL;
1537 clone = clone_rq(rq, md, GFP_ATOMIC);
1539 return BLKPREP_DEFER;
1541 rq->special = clone;
1542 rq->cmd_flags |= REQ_DONTPREP;
1549 * 0 : the request has been processed (not requeued)
1550 * !0 : the request has been requeued
1552 static int map_request(struct dm_target *ti, struct request *clone,
1553 struct mapped_device *md)
1555 int r, requeued = 0;
1556 struct dm_rq_target_io *tio = clone->end_io_data;
1559 * Hold the md reference here for the in-flight I/O.
1560 * We can't rely on the reference count by device opener,
1561 * because the device may be closed during the request completion
1562 * when all bios are completed.
1563 * See the comment in rq_completed() too.
1568 r = ti->type->map_rq(ti, clone, &tio->info);
1570 case DM_MAPIO_SUBMITTED:
1571 /* The target has taken the I/O to submit by itself later */
1573 case DM_MAPIO_REMAPPED:
1574 /* The target has remapped the I/O so dispatch it */
1575 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1576 blk_rq_pos(tio->orig));
1577 dm_dispatch_request(clone);
1579 case DM_MAPIO_REQUEUE:
1580 /* The target wants to requeue the I/O */
1581 dm_requeue_unmapped_request(clone);
1586 DMWARN("unimplemented target map return value: %d", r);
1590 /* The target wants to complete the I/O */
1591 dm_kill_unmapped_request(clone, r);
1599 * q->request_fn for request-based dm.
1600 * Called with the queue lock held.
1602 static void dm_request_fn(struct request_queue *q)
1604 struct mapped_device *md = q->queuedata;
1605 struct dm_table *map = dm_get_live_table(md);
1606 struct dm_target *ti;
1607 struct request *rq, *clone;
1611 * For suspend, check blk_queue_stopped() and increment
1612 * ->pending within a single queue_lock not to increment the
1613 * number of in-flight I/Os after the queue is stopped in
1616 while (!blk_queue_plugged(q) && !blk_queue_stopped(q)) {
1617 rq = blk_peek_request(q);
1621 /* always use block 0 to find the target for flushes for now */
1623 if (!(rq->cmd_flags & REQ_FLUSH))
1624 pos = blk_rq_pos(rq);
1626 ti = dm_table_find_target(map, pos);
1627 BUG_ON(!dm_target_is_valid(ti));
1629 if (ti->type->busy && ti->type->busy(ti))
1632 blk_start_request(rq);
1633 clone = rq->special;
1634 atomic_inc(&md->pending[rq_data_dir(clone)]);
1636 spin_unlock(q->queue_lock);
1637 if (map_request(ti, clone, md))
1640 BUG_ON(!irqs_disabled());
1641 spin_lock(q->queue_lock);
1647 BUG_ON(!irqs_disabled());
1648 spin_lock(q->queue_lock);
1651 if (!elv_queue_empty(q))
1652 /* Some requests still remain, retry later */
1661 int dm_underlying_device_busy(struct request_queue *q)
1663 return blk_lld_busy(q);
1665 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
1667 static int dm_lld_busy(struct request_queue *q)
1670 struct mapped_device *md = q->queuedata;
1671 struct dm_table *map = dm_get_live_table(md);
1673 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
1676 r = dm_table_any_busy_target(map);
1683 static void dm_unplug_all(struct request_queue *q)
1685 struct mapped_device *md = q->queuedata;
1686 struct dm_table *map = dm_get_live_table(md);
1689 if (dm_request_based(md))
1690 generic_unplug_device(q);
1692 dm_table_unplug_all(map);
1697 static int dm_any_congested(void *congested_data, int bdi_bits)
1700 struct mapped_device *md = congested_data;
1701 struct dm_table *map;
1703 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1704 map = dm_get_live_table(md);
1707 * Request-based dm cares about only own queue for
1708 * the query about congestion status of request_queue
1710 if (dm_request_based(md))
1711 r = md->queue->backing_dev_info.state &
1714 r = dm_table_any_congested(map, bdi_bits);
1723 /*-----------------------------------------------------------------
1724 * An IDR is used to keep track of allocated minor numbers.
1725 *---------------------------------------------------------------*/
1726 static DEFINE_IDR(_minor_idr);
1728 static void free_minor(int minor)
1730 spin_lock(&_minor_lock);
1731 idr_remove(&_minor_idr, minor);
1732 spin_unlock(&_minor_lock);
1736 * See if the device with a specific minor # is free.
1738 static int specific_minor(int minor)
1742 if (minor >= (1 << MINORBITS))
1745 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1749 spin_lock(&_minor_lock);
1751 if (idr_find(&_minor_idr, minor)) {
1756 r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
1761 idr_remove(&_minor_idr, m);
1767 spin_unlock(&_minor_lock);
1771 static int next_free_minor(int *minor)
1775 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
1779 spin_lock(&_minor_lock);
1781 r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
1785 if (m >= (1 << MINORBITS)) {
1786 idr_remove(&_minor_idr, m);
1794 spin_unlock(&_minor_lock);
1798 static const struct block_device_operations dm_blk_dops;
1800 static void dm_wq_work(struct work_struct *work);
1802 static void dm_init_md_queue(struct mapped_device *md)
1805 * Request-based dm devices cannot be stacked on top of bio-based dm
1806 * devices. The type of this dm device has not been decided yet.
1807 * The type is decided at the first table loading time.
1808 * To prevent problematic device stacking, clear the queue flag
1809 * for request stacking support until then.
1811 * This queue is new, so no concurrency on the queue_flags.
1813 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1815 md->queue->queuedata = md;
1816 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1817 md->queue->backing_dev_info.congested_data = md;
1818 blk_queue_make_request(md->queue, dm_request);
1819 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1820 md->queue->unplug_fn = dm_unplug_all;
1821 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
1822 blk_queue_flush(md->queue, REQ_FLUSH | REQ_FUA);
1826 * Allocate and initialise a blank device with a given minor.
1828 static struct mapped_device *alloc_dev(int minor)
1831 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
1835 DMWARN("unable to allocate device, out of memory.");
1839 if (!try_module_get(THIS_MODULE))
1840 goto bad_module_get;
1842 /* get a minor number for the dev */
1843 if (minor == DM_ANY_MINOR)
1844 r = next_free_minor(&minor);
1846 r = specific_minor(minor);
1850 md->type = DM_TYPE_NONE;
1851 init_rwsem(&md->io_lock);
1852 mutex_init(&md->suspend_lock);
1853 mutex_init(&md->type_lock);
1854 spin_lock_init(&md->deferred_lock);
1855 rwlock_init(&md->map_lock);
1856 atomic_set(&md->holders, 1);
1857 atomic_set(&md->open_count, 0);
1858 atomic_set(&md->event_nr, 0);
1859 atomic_set(&md->uevent_seq, 0);
1860 INIT_LIST_HEAD(&md->uevent_list);
1861 spin_lock_init(&md->uevent_lock);
1863 md->queue = blk_alloc_queue(GFP_KERNEL);
1867 dm_init_md_queue(md);
1869 md->disk = alloc_disk(1);
1873 atomic_set(&md->pending[0], 0);
1874 atomic_set(&md->pending[1], 0);
1875 init_waitqueue_head(&md->wait);
1876 INIT_WORK(&md->work, dm_wq_work);
1877 init_waitqueue_head(&md->eventq);
1879 md->disk->major = _major;
1880 md->disk->first_minor = minor;
1881 md->disk->fops = &dm_blk_dops;
1882 md->disk->queue = md->queue;
1883 md->disk->private_data = md;
1884 sprintf(md->disk->disk_name, "dm-%d", minor);
1886 format_dev_t(md->name, MKDEV(_major, minor));
1888 md->wq = alloc_workqueue("kdmflush",
1889 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
1893 md->bdev = bdget_disk(md->disk, 0);
1897 bio_init(&md->flush_bio);
1898 md->flush_bio.bi_bdev = md->bdev;
1899 md->flush_bio.bi_rw = WRITE_FLUSH;
1901 /* Populate the mapping, nobody knows we exist yet */
1902 spin_lock(&_minor_lock);
1903 old_md = idr_replace(&_minor_idr, md, minor);
1904 spin_unlock(&_minor_lock);
1906 BUG_ON(old_md != MINOR_ALLOCED);
1911 destroy_workqueue(md->wq);
1913 del_gendisk(md->disk);
1916 blk_cleanup_queue(md->queue);
1920 module_put(THIS_MODULE);
1926 static void unlock_fs(struct mapped_device *md);
1928 static void free_dev(struct mapped_device *md)
1930 int minor = MINOR(disk_devt(md->disk));
1934 destroy_workqueue(md->wq);
1936 mempool_destroy(md->tio_pool);
1938 mempool_destroy(md->io_pool);
1940 bioset_free(md->bs);
1941 blk_integrity_unregister(md->disk);
1942 del_gendisk(md->disk);
1945 spin_lock(&_minor_lock);
1946 md->disk->private_data = NULL;
1947 spin_unlock(&_minor_lock);
1950 blk_cleanup_queue(md->queue);
1951 module_put(THIS_MODULE);
1955 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1957 struct dm_md_mempools *p;
1959 if (md->io_pool && md->tio_pool && md->bs)
1960 /* the md already has necessary mempools */
1963 p = dm_table_get_md_mempools(t);
1964 BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
1966 md->io_pool = p->io_pool;
1968 md->tio_pool = p->tio_pool;
1974 /* mempool bind completed, now no need any mempools in the table */
1975 dm_table_free_md_mempools(t);
1979 * Bind a table to the device.
1981 static void event_callback(void *context)
1983 unsigned long flags;
1985 struct mapped_device *md = (struct mapped_device *) context;
1987 spin_lock_irqsave(&md->uevent_lock, flags);
1988 list_splice_init(&md->uevent_list, &uevents);
1989 spin_unlock_irqrestore(&md->uevent_lock, flags);
1991 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1993 atomic_inc(&md->event_nr);
1994 wake_up(&md->eventq);
1998 * Protected by md->suspend_lock obtained by dm_swap_table().
2000 static void __set_size(struct mapped_device *md, sector_t size)
2002 set_capacity(md->disk, size);
2004 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2008 * Returns old map, which caller must destroy.
2010 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2011 struct queue_limits *limits)
2013 struct dm_table *old_map;
2014 struct request_queue *q = md->queue;
2016 unsigned long flags;
2018 size = dm_table_get_size(t);
2021 * Wipe any geometry if the size of the table changed.
2023 if (size != get_capacity(md->disk))
2024 memset(&md->geometry, 0, sizeof(md->geometry));
2026 __set_size(md, size);
2028 dm_table_event_callback(t, event_callback, md);
2031 * The queue hasn't been stopped yet, if the old table type wasn't
2032 * for request-based during suspension. So stop it to prevent
2033 * I/O mapping before resume.
2034 * This must be done before setting the queue restrictions,
2035 * because request-based dm may be run just after the setting.
2037 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2040 __bind_mempools(md, t);
2042 write_lock_irqsave(&md->map_lock, flags);
2045 dm_table_set_restrictions(t, q, limits);
2046 write_unlock_irqrestore(&md->map_lock, flags);
2052 * Returns unbound table for the caller to free.
2054 static struct dm_table *__unbind(struct mapped_device *md)
2056 struct dm_table *map = md->map;
2057 unsigned long flags;
2062 dm_table_event_callback(map, NULL, NULL);
2063 write_lock_irqsave(&md->map_lock, flags);
2065 write_unlock_irqrestore(&md->map_lock, flags);
2071 * Constructor for a new device.
2073 int dm_create(int minor, struct mapped_device **result)
2075 struct mapped_device *md;
2077 md = alloc_dev(minor);
2088 * Functions to manage md->type.
2089 * All are required to hold md->type_lock.
2091 void dm_lock_md_type(struct mapped_device *md)
2093 mutex_lock(&md->type_lock);
2096 void dm_unlock_md_type(struct mapped_device *md)
2098 mutex_unlock(&md->type_lock);
2101 void dm_set_md_type(struct mapped_device *md, unsigned type)
2106 unsigned dm_get_md_type(struct mapped_device *md)
2112 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2114 static int dm_init_request_based_queue(struct mapped_device *md)
2116 struct request_queue *q = NULL;
2118 if (md->queue->elevator)
2121 /* Fully initialize the queue */
2122 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2127 md->saved_make_request_fn = md->queue->make_request_fn;
2128 dm_init_md_queue(md);
2129 blk_queue_softirq_done(md->queue, dm_softirq_done);
2130 blk_queue_prep_rq(md->queue, dm_prep_fn);
2131 blk_queue_lld_busy(md->queue, dm_lld_busy);
2133 elv_register_queue(md->queue);
2139 * Setup the DM device's queue based on md's type
2141 int dm_setup_md_queue(struct mapped_device *md)
2143 if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
2144 !dm_init_request_based_queue(md)) {
2145 DMWARN("Cannot initialize queue for request-based mapped device");
2152 static struct mapped_device *dm_find_md(dev_t dev)
2154 struct mapped_device *md;
2155 unsigned minor = MINOR(dev);
2157 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2160 spin_lock(&_minor_lock);
2162 md = idr_find(&_minor_idr, minor);
2163 if (md && (md == MINOR_ALLOCED ||
2164 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2165 dm_deleting_md(md) ||
2166 test_bit(DMF_FREEING, &md->flags))) {
2172 spin_unlock(&_minor_lock);
2177 struct mapped_device *dm_get_md(dev_t dev)
2179 struct mapped_device *md = dm_find_md(dev);
2187 void *dm_get_mdptr(struct mapped_device *md)
2189 return md->interface_ptr;
2192 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2194 md->interface_ptr = ptr;
2197 void dm_get(struct mapped_device *md)
2199 atomic_inc(&md->holders);
2200 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2203 const char *dm_device_name(struct mapped_device *md)
2207 EXPORT_SYMBOL_GPL(dm_device_name);
2209 static void __dm_destroy(struct mapped_device *md, bool wait)
2211 struct dm_table *map;
2215 spin_lock(&_minor_lock);
2216 map = dm_get_live_table(md);
2217 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2218 set_bit(DMF_FREEING, &md->flags);
2219 spin_unlock(&_minor_lock);
2221 if (!dm_suspended_md(md)) {
2222 dm_table_presuspend_targets(map);
2223 dm_table_postsuspend_targets(map);
2227 * Rare, but there may be I/O requests still going to complete,
2228 * for example. Wait for all references to disappear.
2229 * No one should increment the reference count of the mapped_device,
2230 * after the mapped_device state becomes DMF_FREEING.
2233 while (atomic_read(&md->holders))
2235 else if (atomic_read(&md->holders))
2236 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2237 dm_device_name(md), atomic_read(&md->holders));
2241 dm_table_destroy(__unbind(md));
2245 void dm_destroy(struct mapped_device *md)
2247 __dm_destroy(md, true);
2250 void dm_destroy_immediate(struct mapped_device *md)
2252 __dm_destroy(md, false);
2255 void dm_put(struct mapped_device *md)
2257 atomic_dec(&md->holders);
2259 EXPORT_SYMBOL_GPL(dm_put);
2261 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2264 DECLARE_WAITQUEUE(wait, current);
2266 dm_unplug_all(md->queue);
2268 add_wait_queue(&md->wait, &wait);
2271 set_current_state(interruptible);
2274 if (!md_in_flight(md))
2277 if (interruptible == TASK_INTERRUPTIBLE &&
2278 signal_pending(current)) {
2285 set_current_state(TASK_RUNNING);
2287 remove_wait_queue(&md->wait, &wait);
2293 * Process the deferred bios
2295 static void dm_wq_work(struct work_struct *work)
2297 struct mapped_device *md = container_of(work, struct mapped_device,
2301 down_read(&md->io_lock);
2303 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2304 spin_lock_irq(&md->deferred_lock);
2305 c = bio_list_pop(&md->deferred);
2306 spin_unlock_irq(&md->deferred_lock);
2311 up_read(&md->io_lock);
2313 if (dm_request_based(md))
2314 generic_make_request(c);
2316 __split_and_process_bio(md, c);
2318 down_read(&md->io_lock);
2321 up_read(&md->io_lock);
2324 static void dm_queue_flush(struct mapped_device *md)
2326 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2327 smp_mb__after_clear_bit();
2328 queue_work(md->wq, &md->work);
2332 * Swap in a new table, returning the old one for the caller to destroy.
2334 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2336 struct dm_table *map = ERR_PTR(-EINVAL);
2337 struct queue_limits limits;
2340 mutex_lock(&md->suspend_lock);
2342 /* device must be suspended */
2343 if (!dm_suspended_md(md))
2346 r = dm_calculate_queue_limits(table, &limits);
2352 map = __bind(md, table, &limits);
2355 mutex_unlock(&md->suspend_lock);
2360 * Functions to lock and unlock any filesystem running on the
2363 static int lock_fs(struct mapped_device *md)
2367 WARN_ON(md->frozen_sb);
2369 md->frozen_sb = freeze_bdev(md->bdev);
2370 if (IS_ERR(md->frozen_sb)) {
2371 r = PTR_ERR(md->frozen_sb);
2372 md->frozen_sb = NULL;
2376 set_bit(DMF_FROZEN, &md->flags);
2381 static void unlock_fs(struct mapped_device *md)
2383 if (!test_bit(DMF_FROZEN, &md->flags))
2386 thaw_bdev(md->bdev, md->frozen_sb);
2387 md->frozen_sb = NULL;
2388 clear_bit(DMF_FROZEN, &md->flags);
2392 * We need to be able to change a mapping table under a mounted
2393 * filesystem. For example we might want to move some data in
2394 * the background. Before the table can be swapped with
2395 * dm_bind_table, dm_suspend must be called to flush any in
2396 * flight bios and ensure that any further io gets deferred.
2399 * Suspend mechanism in request-based dm.
2401 * 1. Flush all I/Os by lock_fs() if needed.
2402 * 2. Stop dispatching any I/O by stopping the request_queue.
2403 * 3. Wait for all in-flight I/Os to be completed or requeued.
2405 * To abort suspend, start the request_queue.
2407 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2409 struct dm_table *map = NULL;
2411 int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
2412 int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
2414 mutex_lock(&md->suspend_lock);
2416 if (dm_suspended_md(md)) {
2421 map = dm_get_live_table(md);
2424 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2425 * This flag is cleared before dm_suspend returns.
2428 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2430 /* This does not get reverted if there's an error later. */
2431 dm_table_presuspend_targets(map);
2434 * Flush I/O to the device.
2435 * Any I/O submitted after lock_fs() may not be flushed.
2436 * noflush takes precedence over do_lockfs.
2437 * (lock_fs() flushes I/Os and waits for them to complete.)
2439 if (!noflush && do_lockfs) {
2446 * Here we must make sure that no processes are submitting requests
2447 * to target drivers i.e. no one may be executing
2448 * __split_and_process_bio. This is called from dm_request and
2451 * To get all processes out of __split_and_process_bio in dm_request,
2452 * we take the write lock. To prevent any process from reentering
2453 * __split_and_process_bio from dm_request and quiesce the thread
2454 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2455 * flush_workqueue(md->wq).
2457 down_write(&md->io_lock);
2458 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2459 up_write(&md->io_lock);
2462 * Stop md->queue before flushing md->wq in case request-based
2463 * dm defers requests to md->wq from md->queue.
2465 if (dm_request_based(md))
2466 stop_queue(md->queue);
2468 flush_workqueue(md->wq);
2471 * At this point no more requests are entering target request routines.
2472 * We call dm_wait_for_completion to wait for all existing requests
2475 r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
2477 down_write(&md->io_lock);
2479 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2480 up_write(&md->io_lock);
2482 /* were we interrupted ? */
2486 if (dm_request_based(md))
2487 start_queue(md->queue);
2490 goto out; /* pushback list is already flushed, so skip flush */
2494 * If dm_wait_for_completion returned 0, the device is completely
2495 * quiescent now. There is no request-processing activity. All new
2496 * requests are being added to md->deferred list.
2499 set_bit(DMF_SUSPENDED, &md->flags);
2501 dm_table_postsuspend_targets(map);
2507 mutex_unlock(&md->suspend_lock);
2511 int dm_resume(struct mapped_device *md)
2514 struct dm_table *map = NULL;
2516 mutex_lock(&md->suspend_lock);
2517 if (!dm_suspended_md(md))
2520 map = dm_get_live_table(md);
2521 if (!map || !dm_table_get_size(map))
2524 r = dm_table_resume_targets(map);
2531 * Flushing deferred I/Os must be done after targets are resumed
2532 * so that mapping of targets can work correctly.
2533 * Request-based dm is queueing the deferred I/Os in its request_queue.
2535 if (dm_request_based(md))
2536 start_queue(md->queue);
2540 clear_bit(DMF_SUSPENDED, &md->flags);
2542 dm_table_unplug_all(map);
2546 mutex_unlock(&md->suspend_lock);
2551 /*-----------------------------------------------------------------
2552 * Event notification.
2553 *---------------------------------------------------------------*/
2554 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2557 char udev_cookie[DM_COOKIE_LENGTH];
2558 char *envp[] = { udev_cookie, NULL };
2561 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2563 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2564 DM_COOKIE_ENV_VAR_NAME, cookie);
2565 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2570 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2572 return atomic_add_return(1, &md->uevent_seq);
2575 uint32_t dm_get_event_nr(struct mapped_device *md)
2577 return atomic_read(&md->event_nr);
2580 int dm_wait_event(struct mapped_device *md, int event_nr)
2582 return wait_event_interruptible(md->eventq,
2583 (event_nr != atomic_read(&md->event_nr)));
2586 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2588 unsigned long flags;
2590 spin_lock_irqsave(&md->uevent_lock, flags);
2591 list_add(elist, &md->uevent_list);
2592 spin_unlock_irqrestore(&md->uevent_lock, flags);
2596 * The gendisk is only valid as long as you have a reference
2599 struct gendisk *dm_disk(struct mapped_device *md)
2604 struct kobject *dm_kobject(struct mapped_device *md)
2610 * struct mapped_device should not be exported outside of dm.c
2611 * so use this check to verify that kobj is part of md structure
2613 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2615 struct mapped_device *md;
2617 md = container_of(kobj, struct mapped_device, kobj);
2618 if (&md->kobj != kobj)
2621 if (test_bit(DMF_FREEING, &md->flags) ||
2629 int dm_suspended_md(struct mapped_device *md)
2631 return test_bit(DMF_SUSPENDED, &md->flags);
2634 int dm_suspended(struct dm_target *ti)
2636 return dm_suspended_md(dm_table_get_md(ti->table));
2638 EXPORT_SYMBOL_GPL(dm_suspended);
2640 int dm_noflush_suspending(struct dm_target *ti)
2642 return __noflush_suspending(dm_table_get_md(ti->table));
2644 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2646 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type)
2648 struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
2653 pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
2654 mempool_create_slab_pool(MIN_IOS, _io_cache) :
2655 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
2656 if (!pools->io_pool)
2657 goto free_pools_and_out;
2659 pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
2660 mempool_create_slab_pool(MIN_IOS, _tio_cache) :
2661 mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
2662 if (!pools->tio_pool)
2663 goto free_io_pool_and_out;
2665 pools->bs = (type == DM_TYPE_BIO_BASED) ?
2666 bioset_create(16, 0) : bioset_create(MIN_IOS, 0);
2668 goto free_tio_pool_and_out;
2672 free_tio_pool_and_out:
2673 mempool_destroy(pools->tio_pool);
2675 free_io_pool_and_out:
2676 mempool_destroy(pools->io_pool);
2684 void dm_free_md_mempools(struct dm_md_mempools *pools)
2690 mempool_destroy(pools->io_pool);
2692 if (pools->tio_pool)
2693 mempool_destroy(pools->tio_pool);
2696 bioset_free(pools->bs);
2701 static const struct block_device_operations dm_blk_dops = {
2702 .open = dm_blk_open,
2703 .release = dm_blk_close,
2704 .ioctl = dm_blk_ioctl,
2705 .getgeo = dm_blk_getgeo,
2706 .owner = THIS_MODULE
2709 EXPORT_SYMBOL(dm_get_mapinfo);
2714 module_init(dm_init);
2715 module_exit(dm_exit);
2717 module_param(major, uint, 0);
2718 MODULE_PARM_DESC(major, "The major number of the device mapper");
2719 MODULE_DESCRIPTION(DM_NAME " driver");
2721 MODULE_LICENSE("GPL");