]> Git Repo - linux.git/blob - drivers/gpu/drm/vc4/vc4_crtc.c
Merge tag 'ext4_for_linus_stable' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / drivers / gpu / drm / vc4 / vc4_crtc.c
1 /*
2  * Copyright (C) 2015 Broadcom
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 /**
10  * DOC: VC4 CRTC module
11  *
12  * In VC4, the Pixel Valve is what most closely corresponds to the
13  * DRM's concept of a CRTC.  The PV generates video timings from the
14  * encoder's clock plus its configuration.  It pulls scaled pixels from
15  * the HVS at that timing, and feeds it to the encoder.
16  *
17  * However, the DRM CRTC also collects the configuration of all the
18  * DRM planes attached to it.  As a result, the CRTC is also
19  * responsible for writing the display list for the HVS channel that
20  * the CRTC will use.
21  *
22  * The 2835 has 3 different pixel valves.  pv0 in the audio power
23  * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
24  * image domain can feed either HDMI or the SDTV controller.  The
25  * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
26  * SDTV, etc.) according to which output type is chosen in the mux.
27  *
28  * For power management, the pixel valve's registers are all clocked
29  * by the AXI clock, while the timings and FIFOs make use of the
30  * output-specific clock.  Since the encoders also directly consume
31  * the CPRMAN clocks, and know what timings they need, they are the
32  * ones that set the clock.
33  */
34
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_print.h>
39 #include <drm/drm_probe_helper.h>
40 #include <linux/clk.h>
41 #include <drm/drm_fb_cma_helper.h>
42 #include <linux/component.h>
43 #include <linux/of_device.h>
44 #include "vc4_drv.h"
45 #include "vc4_regs.h"
46
47 struct vc4_crtc_state {
48         struct drm_crtc_state base;
49         /* Dlist area for this CRTC configuration. */
50         struct drm_mm_node mm;
51         bool feed_txp;
52         bool txp_armed;
53
54         struct {
55                 unsigned int left;
56                 unsigned int right;
57                 unsigned int top;
58                 unsigned int bottom;
59         } margins;
60 };
61
62 static inline struct vc4_crtc_state *
63 to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
64 {
65         return (struct vc4_crtc_state *)crtc_state;
66 }
67
68 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
69 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
70
71 static const struct debugfs_reg32 crtc_regs[] = {
72         VC4_REG32(PV_CONTROL),
73         VC4_REG32(PV_V_CONTROL),
74         VC4_REG32(PV_VSYNCD_EVEN),
75         VC4_REG32(PV_HORZA),
76         VC4_REG32(PV_HORZB),
77         VC4_REG32(PV_VERTA),
78         VC4_REG32(PV_VERTB),
79         VC4_REG32(PV_VERTA_EVEN),
80         VC4_REG32(PV_VERTB_EVEN),
81         VC4_REG32(PV_INTEN),
82         VC4_REG32(PV_INTSTAT),
83         VC4_REG32(PV_STAT),
84         VC4_REG32(PV_HACT_ACT),
85 };
86
87 bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
88                              bool in_vblank_irq, int *vpos, int *hpos,
89                              ktime_t *stime, ktime_t *etime,
90                              const struct drm_display_mode *mode)
91 {
92         struct vc4_dev *vc4 = to_vc4_dev(dev);
93         struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
94         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
95         u32 val;
96         int fifo_lines;
97         int vblank_lines;
98         bool ret = false;
99
100         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
101
102         /* Get optional system timestamp before query. */
103         if (stime)
104                 *stime = ktime_get();
105
106         /*
107          * Read vertical scanline which is currently composed for our
108          * pixelvalve by the HVS, and also the scaler status.
109          */
110         val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));
111
112         /* Get optional system timestamp after query. */
113         if (etime)
114                 *etime = ktime_get();
115
116         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
117
118         /* Vertical position of hvs composed scanline. */
119         *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
120         *hpos = 0;
121
122         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
123                 *vpos /= 2;
124
125                 /* Use hpos to correct for field offset in interlaced mode. */
126                 if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
127                         *hpos += mode->crtc_htotal / 2;
128         }
129
130         /* This is the offset we need for translating hvs -> pv scanout pos. */
131         fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;
132
133         if (fifo_lines > 0)
134                 ret = true;
135
136         /* HVS more than fifo_lines into frame for compositing? */
137         if (*vpos > fifo_lines) {
138                 /*
139                  * We are in active scanout and can get some meaningful results
140                  * from HVS. The actual PV scanout can not trail behind more
141                  * than fifo_lines as that is the fifo's capacity. Assume that
142                  * in active scanout the HVS and PV work in lockstep wrt. HVS
143                  * refilling the fifo and PV consuming from the fifo, ie.
144                  * whenever the PV consumes and frees up a scanline in the
145                  * fifo, the HVS will immediately refill it, therefore
146                  * incrementing vpos. Therefore we choose HVS read position -
147                  * fifo size in scanlines as a estimate of the real scanout
148                  * position of the PV.
149                  */
150                 *vpos -= fifo_lines + 1;
151
152                 return ret;
153         }
154
155         /*
156          * Less: This happens when we are in vblank and the HVS, after getting
157          * the VSTART restart signal from the PV, just started refilling its
158          * fifo with new lines from the top-most lines of the new framebuffers.
159          * The PV does not scan out in vblank, so does not remove lines from
160          * the fifo, so the fifo will be full quickly and the HVS has to pause.
161          * We can't get meaningful readings wrt. scanline position of the PV
162          * and need to make things up in a approximative but consistent way.
163          */
164         vblank_lines = mode->vtotal - mode->vdisplay;
165
166         if (in_vblank_irq) {
167                 /*
168                  * Assume the irq handler got called close to first
169                  * line of vblank, so PV has about a full vblank
170                  * scanlines to go, and as a base timestamp use the
171                  * one taken at entry into vblank irq handler, so it
172                  * is not affected by random delays due to lock
173                  * contention on event_lock or vblank_time lock in
174                  * the core.
175                  */
176                 *vpos = -vblank_lines;
177
178                 if (stime)
179                         *stime = vc4_crtc->t_vblank;
180                 if (etime)
181                         *etime = vc4_crtc->t_vblank;
182
183                 /*
184                  * If the HVS fifo is not yet full then we know for certain
185                  * we are at the very beginning of vblank, as the hvs just
186                  * started refilling, and the stime and etime timestamps
187                  * truly correspond to start of vblank.
188                  *
189                  * Unfortunately there's no way to report this to upper levels
190                  * and make it more useful.
191                  */
192         } else {
193                 /*
194                  * No clue where we are inside vblank. Return a vpos of zero,
195                  * which will cause calling code to just return the etime
196                  * timestamp uncorrected. At least this is no worse than the
197                  * standard fallback.
198                  */
199                 *vpos = 0;
200         }
201
202         return ret;
203 }
204
205 static void vc4_crtc_destroy(struct drm_crtc *crtc)
206 {
207         drm_crtc_cleanup(crtc);
208 }
209
210 static void
211 vc4_crtc_lut_load(struct drm_crtc *crtc)
212 {
213         struct drm_device *dev = crtc->dev;
214         struct vc4_dev *vc4 = to_vc4_dev(dev);
215         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
216         u32 i;
217
218         /* The LUT memory is laid out with each HVS channel in order,
219          * each of which takes 256 writes for R, 256 for G, then 256
220          * for B.
221          */
222         HVS_WRITE(SCALER_GAMADDR,
223                   SCALER_GAMADDR_AUTOINC |
224                   (vc4_crtc->channel * 3 * crtc->gamma_size));
225
226         for (i = 0; i < crtc->gamma_size; i++)
227                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
228         for (i = 0; i < crtc->gamma_size; i++)
229                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
230         for (i = 0; i < crtc->gamma_size; i++)
231                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
232 }
233
234 static void
235 vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
236 {
237         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
238         struct drm_color_lut *lut = crtc->state->gamma_lut->data;
239         u32 length = drm_color_lut_size(crtc->state->gamma_lut);
240         u32 i;
241
242         for (i = 0; i < length; i++) {
243                 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
244                 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
245                 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
246         }
247
248         vc4_crtc_lut_load(crtc);
249 }
250
251 static u32 vc4_get_fifo_full_level(u32 format)
252 {
253         static const u32 fifo_len_bytes = 64;
254         static const u32 hvs_latency_pix = 6;
255
256         switch (format) {
257         case PV_CONTROL_FORMAT_DSIV_16:
258         case PV_CONTROL_FORMAT_DSIC_16:
259                 return fifo_len_bytes - 2 * hvs_latency_pix;
260         case PV_CONTROL_FORMAT_DSIV_18:
261                 return fifo_len_bytes - 14;
262         case PV_CONTROL_FORMAT_24:
263         case PV_CONTROL_FORMAT_DSIV_24:
264         default:
265                 return fifo_len_bytes - 3 * hvs_latency_pix;
266         }
267 }
268
269 /*
270  * Returns the encoder attached to the CRTC.
271  *
272  * VC4 can only scan out to one encoder at a time, while the DRM core
273  * allows drivers to push pixels to more than one encoder from the
274  * same CRTC.
275  */
276 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
277 {
278         struct drm_connector *connector;
279         struct drm_connector_list_iter conn_iter;
280
281         drm_connector_list_iter_begin(crtc->dev, &conn_iter);
282         drm_for_each_connector_iter(connector, &conn_iter) {
283                 if (connector->state->crtc == crtc) {
284                         drm_connector_list_iter_end(&conn_iter);
285                         return connector->encoder;
286                 }
287         }
288         drm_connector_list_iter_end(&conn_iter);
289
290         return NULL;
291 }
292
293 static void vc4_crtc_config_pv(struct drm_crtc *crtc)
294 {
295         struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
296         struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
297         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
298         struct drm_crtc_state *state = crtc->state;
299         struct drm_display_mode *mode = &state->adjusted_mode;
300         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
301         u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
302         bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
303                        vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
304         u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
305
306         /* Reset the PV fifo. */
307         CRTC_WRITE(PV_CONTROL, 0);
308         CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
309         CRTC_WRITE(PV_CONTROL, 0);
310
311         CRTC_WRITE(PV_HORZA,
312                    VC4_SET_FIELD((mode->htotal -
313                                   mode->hsync_end) * pixel_rep,
314                                  PV_HORZA_HBP) |
315                    VC4_SET_FIELD((mode->hsync_end -
316                                   mode->hsync_start) * pixel_rep,
317                                  PV_HORZA_HSYNC));
318         CRTC_WRITE(PV_HORZB,
319                    VC4_SET_FIELD((mode->hsync_start -
320                                   mode->hdisplay) * pixel_rep,
321                                  PV_HORZB_HFP) |
322                    VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));
323
324         CRTC_WRITE(PV_VERTA,
325                    VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
326                                  PV_VERTA_VBP) |
327                    VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
328                                  PV_VERTA_VSYNC));
329         CRTC_WRITE(PV_VERTB,
330                    VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
331                                  PV_VERTB_VFP) |
332                    VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
333
334         if (interlace) {
335                 CRTC_WRITE(PV_VERTA_EVEN,
336                            VC4_SET_FIELD(mode->crtc_vtotal -
337                                          mode->crtc_vsync_end - 1,
338                                          PV_VERTA_VBP) |
339                            VC4_SET_FIELD(mode->crtc_vsync_end -
340                                          mode->crtc_vsync_start,
341                                          PV_VERTA_VSYNC));
342                 CRTC_WRITE(PV_VERTB_EVEN,
343                            VC4_SET_FIELD(mode->crtc_vsync_start -
344                                          mode->crtc_vdisplay,
345                                          PV_VERTB_VFP) |
346                            VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
347
348                 /* We set up first field even mode for HDMI.  VEC's
349                  * NTSC mode would want first field odd instead, once
350                  * we support it (to do so, set ODD_FIRST and put the
351                  * delay in VSYNCD_EVEN instead).
352                  */
353                 CRTC_WRITE(PV_V_CONTROL,
354                            PV_VCONTROL_CONTINUOUS |
355                            (is_dsi ? PV_VCONTROL_DSI : 0) |
356                            PV_VCONTROL_INTERLACE |
357                            VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
358                                          PV_VCONTROL_ODD_DELAY));
359                 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
360         } else {
361                 CRTC_WRITE(PV_V_CONTROL,
362                            PV_VCONTROL_CONTINUOUS |
363                            (is_dsi ? PV_VCONTROL_DSI : 0));
364         }
365
366         CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
367
368         CRTC_WRITE(PV_CONTROL,
369                    VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
370                    VC4_SET_FIELD(vc4_get_fifo_full_level(format),
371                                  PV_CONTROL_FIFO_LEVEL) |
372                    VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
373                    PV_CONTROL_CLR_AT_START |
374                    PV_CONTROL_TRIGGER_UNDERFLOW |
375                    PV_CONTROL_WAIT_HSTART |
376                    VC4_SET_FIELD(vc4_encoder->clock_select,
377                                  PV_CONTROL_CLK_SELECT) |
378                    PV_CONTROL_FIFO_CLR |
379                    PV_CONTROL_EN);
380 }
381
382 static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
383 {
384         struct drm_device *dev = crtc->dev;
385         struct vc4_dev *vc4 = to_vc4_dev(dev);
386         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
387         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
388         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
389         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
390         bool debug_dump_regs = false;
391
392         if (debug_dump_regs) {
393                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
394                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
395                          drm_crtc_index(crtc));
396                 drm_print_regset32(&p, &vc4_crtc->regset);
397         }
398
399         if (vc4_crtc->channel == 2) {
400                 u32 dispctrl;
401                 u32 dsp3_mux;
402
403                 /*
404                  * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
405                  * FIFO X'.
406                  * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
407                  *
408                  * DSP3 is connected to FIFO2 unless the transposer is
409                  * enabled. In this case, FIFO 2 is directly accessed by the
410                  * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
411                  * route.
412                  */
413                 if (vc4_state->feed_txp)
414                         dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
415                 else
416                         dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
417
418                 dispctrl = HVS_READ(SCALER_DISPCTRL) &
419                            ~SCALER_DISPCTRL_DSP3_MUX_MASK;
420                 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
421         }
422
423         if (!vc4_state->feed_txp)
424                 vc4_crtc_config_pv(crtc);
425
426         HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
427                   SCALER_DISPBKGND_AUTOHS |
428                   SCALER_DISPBKGND_GAMMA |
429                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
430
431         /* Reload the LUT, since the SRAMs would have been disabled if
432          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
433          */
434         vc4_crtc_lut_load(crtc);
435
436         if (debug_dump_regs) {
437                 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
438                 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
439                          drm_crtc_index(crtc));
440                 drm_print_regset32(&p, &vc4_crtc->regset);
441         }
442 }
443
444 static void require_hvs_enabled(struct drm_device *dev)
445 {
446         struct vc4_dev *vc4 = to_vc4_dev(dev);
447
448         WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
449                      SCALER_DISPCTRL_ENABLE);
450 }
451
452 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
453                                     struct drm_crtc_state *old_state)
454 {
455         struct drm_device *dev = crtc->dev;
456         struct vc4_dev *vc4 = to_vc4_dev(dev);
457         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
458         u32 chan = vc4_crtc->channel;
459         int ret;
460         require_hvs_enabled(dev);
461
462         /* Disable vblank irq handling before crtc is disabled. */
463         drm_crtc_vblank_off(crtc);
464
465         CRTC_WRITE(PV_V_CONTROL,
466                    CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
467         ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
468         WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
469
470         if (HVS_READ(SCALER_DISPCTRLX(chan)) &
471             SCALER_DISPCTRLX_ENABLE) {
472                 HVS_WRITE(SCALER_DISPCTRLX(chan),
473                           SCALER_DISPCTRLX_RESET);
474
475                 /* While the docs say that reset is self-clearing, it
476                  * seems it doesn't actually.
477                  */
478                 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
479         }
480
481         /* Once we leave, the scaler should be disabled and its fifo empty. */
482
483         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
484
485         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
486                                    SCALER_DISPSTATX_MODE) !=
487                      SCALER_DISPSTATX_MODE_DISABLED);
488
489         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
490                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
491                      SCALER_DISPSTATX_EMPTY);
492
493         /*
494          * Make sure we issue a vblank event after disabling the CRTC if
495          * someone was waiting it.
496          */
497         if (crtc->state->event) {
498                 unsigned long flags;
499
500                 spin_lock_irqsave(&dev->event_lock, flags);
501                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
502                 crtc->state->event = NULL;
503                 spin_unlock_irqrestore(&dev->event_lock, flags);
504         }
505 }
506
507 void vc4_crtc_txp_armed(struct drm_crtc_state *state)
508 {
509         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
510
511         vc4_state->txp_armed = true;
512 }
513
514 static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
515 {
516         struct drm_device *dev = crtc->dev;
517         struct vc4_dev *vc4 = to_vc4_dev(dev);
518         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
519         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
520
521         if (crtc->state->event) {
522                 unsigned long flags;
523
524                 crtc->state->event->pipe = drm_crtc_index(crtc);
525
526                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
527
528                 spin_lock_irqsave(&dev->event_lock, flags);
529
530                 if (!vc4_state->feed_txp || vc4_state->txp_armed) {
531                         vc4_crtc->event = crtc->state->event;
532                         crtc->state->event = NULL;
533                 }
534
535                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
536                           vc4_state->mm.start);
537
538                 spin_unlock_irqrestore(&dev->event_lock, flags);
539         } else {
540                 HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
541                           vc4_state->mm.start);
542         }
543 }
544
545 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
546                                    struct drm_crtc_state *old_state)
547 {
548         struct drm_device *dev = crtc->dev;
549         struct vc4_dev *vc4 = to_vc4_dev(dev);
550         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
551         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
552         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
553
554         require_hvs_enabled(dev);
555
556         /* Enable vblank irq handling before crtc is started otherwise
557          * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
558          */
559         drm_crtc_vblank_on(crtc);
560         vc4_crtc_update_dlist(crtc);
561
562         /* Turn on the scaler, which will wait for vstart to start
563          * compositing.
564          * When feeding the transposer, we should operate in oneshot
565          * mode.
566          */
567         HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
568                   VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
569                   VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
570                   SCALER_DISPCTRLX_ENABLE |
571                   (vc4_state->feed_txp ? SCALER_DISPCTRLX_ONESHOT : 0));
572
573         /* When feeding the transposer block the pixelvalve is unneeded and
574          * should not be enabled.
575          */
576         if (!vc4_state->feed_txp)
577                 CRTC_WRITE(PV_V_CONTROL,
578                            CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
579 }
580
581 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
582                                                 const struct drm_display_mode *mode)
583 {
584         /* Do not allow doublescan modes from user space */
585         if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
586                 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
587                               crtc->base.id);
588                 return MODE_NO_DBLESCAN;
589         }
590
591         return MODE_OK;
592 }
593
594 void vc4_crtc_get_margins(struct drm_crtc_state *state,
595                           unsigned int *left, unsigned int *right,
596                           unsigned int *top, unsigned int *bottom)
597 {
598         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
599         struct drm_connector_state *conn_state;
600         struct drm_connector *conn;
601         int i;
602
603         *left = vc4_state->margins.left;
604         *right = vc4_state->margins.right;
605         *top = vc4_state->margins.top;
606         *bottom = vc4_state->margins.bottom;
607
608         /* We have to interate over all new connector states because
609          * vc4_crtc_get_margins() might be called before
610          * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
611          * might be outdated.
612          */
613         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
614                 if (conn_state->crtc != state->crtc)
615                         continue;
616
617                 *left = conn_state->tv.margins.left;
618                 *right = conn_state->tv.margins.right;
619                 *top = conn_state->tv.margins.top;
620                 *bottom = conn_state->tv.margins.bottom;
621                 break;
622         }
623 }
624
625 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
626                                  struct drm_crtc_state *state)
627 {
628         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
629         struct drm_device *dev = crtc->dev;
630         struct vc4_dev *vc4 = to_vc4_dev(dev);
631         struct drm_plane *plane;
632         unsigned long flags;
633         const struct drm_plane_state *plane_state;
634         struct drm_connector *conn;
635         struct drm_connector_state *conn_state;
636         u32 dlist_count = 0;
637         int ret, i;
638
639         /* The pixelvalve can only feed one encoder (and encoders are
640          * 1:1 with connectors.)
641          */
642         if (hweight32(state->connector_mask) > 1)
643                 return -EINVAL;
644
645         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
646                 dlist_count += vc4_plane_dlist_size(plane_state);
647
648         dlist_count++; /* Account for SCALER_CTL0_END. */
649
650         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
651         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
652                                  dlist_count);
653         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
654         if (ret)
655                 return ret;
656
657         for_each_new_connector_in_state(state->state, conn, conn_state, i) {
658                 if (conn_state->crtc != crtc)
659                         continue;
660
661                 /* The writeback connector is implemented using the transposer
662                  * block which is directly taking its data from the HVS FIFO.
663                  */
664                 if (conn->connector_type == DRM_MODE_CONNECTOR_WRITEBACK) {
665                         state->no_vblank = true;
666                         vc4_state->feed_txp = true;
667                 } else {
668                         state->no_vblank = false;
669                         vc4_state->feed_txp = false;
670                 }
671
672                 vc4_state->margins.left = conn_state->tv.margins.left;
673                 vc4_state->margins.right = conn_state->tv.margins.right;
674                 vc4_state->margins.top = conn_state->tv.margins.top;
675                 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
676                 break;
677         }
678
679         return 0;
680 }
681
682 static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
683                                   struct drm_crtc_state *old_state)
684 {
685         struct drm_device *dev = crtc->dev;
686         struct vc4_dev *vc4 = to_vc4_dev(dev);
687         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
688         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
689         struct drm_plane *plane;
690         struct vc4_plane_state *vc4_plane_state;
691         bool debug_dump_regs = false;
692         bool enable_bg_fill = false;
693         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
694         u32 __iomem *dlist_next = dlist_start;
695
696         if (debug_dump_regs) {
697                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
698                 vc4_hvs_dump_state(dev);
699         }
700
701         /* Copy all the active planes' dlist contents to the hardware dlist. */
702         drm_atomic_crtc_for_each_plane(plane, crtc) {
703                 /* Is this the first active plane? */
704                 if (dlist_next == dlist_start) {
705                         /* We need to enable background fill when a plane
706                          * could be alpha blending from the background, i.e.
707                          * where no other plane is underneath. It suffices to
708                          * consider the first active plane here since we set
709                          * needs_bg_fill such that either the first plane
710                          * already needs it or all planes on top blend from
711                          * the first or a lower plane.
712                          */
713                         vc4_plane_state = to_vc4_plane_state(plane->state);
714                         enable_bg_fill = vc4_plane_state->needs_bg_fill;
715                 }
716
717                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
718         }
719
720         writel(SCALER_CTL0_END, dlist_next);
721         dlist_next++;
722
723         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
724
725         if (enable_bg_fill)
726                 /* This sets a black background color fill, as is the case
727                  * with other DRM drivers.
728                  */
729                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
730                           HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
731                           SCALER_DISPBKGND_FILL);
732
733         /* Only update DISPLIST if the CRTC was already running and is not
734          * being disabled.
735          * vc4_crtc_enable() takes care of updating the dlist just after
736          * re-enabling VBLANK interrupts and before enabling the engine.
737          * If the CRTC is being disabled, there's no point in updating this
738          * information.
739          */
740         if (crtc->state->active && old_state->active)
741                 vc4_crtc_update_dlist(crtc);
742
743         if (crtc->state->color_mgmt_changed) {
744                 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));
745
746                 if (crtc->state->gamma_lut) {
747                         vc4_crtc_update_gamma_lut(crtc);
748                         dispbkgndx |= SCALER_DISPBKGND_GAMMA;
749                 } else {
750                         /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
751                          * in hardware, which is the same as a linear lut that
752                          * DRM expects us to use in absence of a user lut.
753                          */
754                         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
755                 }
756                 HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
757         }
758
759         if (debug_dump_regs) {
760                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
761                 vc4_hvs_dump_state(dev);
762         }
763 }
764
765 static int vc4_enable_vblank(struct drm_crtc *crtc)
766 {
767         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
768
769         CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
770
771         return 0;
772 }
773
774 static void vc4_disable_vblank(struct drm_crtc *crtc)
775 {
776         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
777
778         CRTC_WRITE(PV_INTEN, 0);
779 }
780
781 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
782 {
783         struct drm_crtc *crtc = &vc4_crtc->base;
784         struct drm_device *dev = crtc->dev;
785         struct vc4_dev *vc4 = to_vc4_dev(dev);
786         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
787         u32 chan = vc4_crtc->channel;
788         unsigned long flags;
789
790         spin_lock_irqsave(&dev->event_lock, flags);
791         if (vc4_crtc->event &&
792             (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)) ||
793              vc4_state->feed_txp)) {
794                 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
795                 vc4_crtc->event = NULL;
796                 drm_crtc_vblank_put(crtc);
797
798                 /* Wait for the page flip to unmask the underrun to ensure that
799                  * the display list was updated by the hardware. Before that
800                  * happens, the HVS will be using the previous display list with
801                  * the CRTC and encoder already reconfigured, leading to
802                  * underruns. This can be seen when reconfiguring the CRTC.
803                  */
804                 vc4_hvs_unmask_underrun(dev, vc4_crtc->channel);
805         }
806         spin_unlock_irqrestore(&dev->event_lock, flags);
807 }
808
809 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
810 {
811         crtc->t_vblank = ktime_get();
812         drm_crtc_handle_vblank(&crtc->base);
813         vc4_crtc_handle_page_flip(crtc);
814 }
815
816 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
817 {
818         struct vc4_crtc *vc4_crtc = data;
819         u32 stat = CRTC_READ(PV_INTSTAT);
820         irqreturn_t ret = IRQ_NONE;
821
822         if (stat & PV_INT_VFP_START) {
823                 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
824                 vc4_crtc_handle_vblank(vc4_crtc);
825                 ret = IRQ_HANDLED;
826         }
827
828         return ret;
829 }
830
831 struct vc4_async_flip_state {
832         struct drm_crtc *crtc;
833         struct drm_framebuffer *fb;
834         struct drm_framebuffer *old_fb;
835         struct drm_pending_vblank_event *event;
836
837         struct vc4_seqno_cb cb;
838 };
839
840 /* Called when the V3D execution for the BO being flipped to is done, so that
841  * we can actually update the plane's address to point to it.
842  */
843 static void
844 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
845 {
846         struct vc4_async_flip_state *flip_state =
847                 container_of(cb, struct vc4_async_flip_state, cb);
848         struct drm_crtc *crtc = flip_state->crtc;
849         struct drm_device *dev = crtc->dev;
850         struct vc4_dev *vc4 = to_vc4_dev(dev);
851         struct drm_plane *plane = crtc->primary;
852
853         vc4_plane_async_set_fb(plane, flip_state->fb);
854         if (flip_state->event) {
855                 unsigned long flags;
856
857                 spin_lock_irqsave(&dev->event_lock, flags);
858                 drm_crtc_send_vblank_event(crtc, flip_state->event);
859                 spin_unlock_irqrestore(&dev->event_lock, flags);
860         }
861
862         drm_crtc_vblank_put(crtc);
863         drm_framebuffer_put(flip_state->fb);
864
865         /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
866          * when the planes are updated through the async update path.
867          * FIXME: we should move to generic async-page-flip when it's
868          * available, so that we can get rid of this hand-made cleanup_fb()
869          * logic.
870          */
871         if (flip_state->old_fb) {
872                 struct drm_gem_cma_object *cma_bo;
873                 struct vc4_bo *bo;
874
875                 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
876                 bo = to_vc4_bo(&cma_bo->base);
877                 vc4_bo_dec_usecnt(bo);
878                 drm_framebuffer_put(flip_state->old_fb);
879         }
880
881         kfree(flip_state);
882
883         up(&vc4->async_modeset);
884 }
885
886 /* Implements async (non-vblank-synced) page flips.
887  *
888  * The page flip ioctl needs to return immediately, so we grab the
889  * modeset semaphore on the pipe, and queue the address update for
890  * when V3D is done with the BO being flipped to.
891  */
892 static int vc4_async_page_flip(struct drm_crtc *crtc,
893                                struct drm_framebuffer *fb,
894                                struct drm_pending_vblank_event *event,
895                                uint32_t flags)
896 {
897         struct drm_device *dev = crtc->dev;
898         struct vc4_dev *vc4 = to_vc4_dev(dev);
899         struct drm_plane *plane = crtc->primary;
900         int ret = 0;
901         struct vc4_async_flip_state *flip_state;
902         struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
903         struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
904
905         /* Increment the BO usecnt here, so that we never end up with an
906          * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
907          * plane is later updated through the non-async path.
908          * FIXME: we should move to generic async-page-flip when it's
909          * available, so that we can get rid of this hand-made prepare_fb()
910          * logic.
911          */
912         ret = vc4_bo_inc_usecnt(bo);
913         if (ret)
914                 return ret;
915
916         flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
917         if (!flip_state) {
918                 vc4_bo_dec_usecnt(bo);
919                 return -ENOMEM;
920         }
921
922         drm_framebuffer_get(fb);
923         flip_state->fb = fb;
924         flip_state->crtc = crtc;
925         flip_state->event = event;
926
927         /* Make sure all other async modesetes have landed. */
928         ret = down_interruptible(&vc4->async_modeset);
929         if (ret) {
930                 drm_framebuffer_put(fb);
931                 vc4_bo_dec_usecnt(bo);
932                 kfree(flip_state);
933                 return ret;
934         }
935
936         /* Save the current FB before it's replaced by the new one in
937          * drm_atomic_set_fb_for_plane(). We'll need the old FB in
938          * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
939          * it consistent.
940          * FIXME: we should move to generic async-page-flip when it's
941          * available, so that we can get rid of this hand-made cleanup_fb()
942          * logic.
943          */
944         flip_state->old_fb = plane->state->fb;
945         if (flip_state->old_fb)
946                 drm_framebuffer_get(flip_state->old_fb);
947
948         WARN_ON(drm_crtc_vblank_get(crtc) != 0);
949
950         /* Immediately update the plane's legacy fb pointer, so that later
951          * modeset prep sees the state that will be present when the semaphore
952          * is released.
953          */
954         drm_atomic_set_fb_for_plane(plane->state, fb);
955
956         vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
957                            vc4_async_page_flip_complete);
958
959         /* Driver takes ownership of state on successful async commit. */
960         return 0;
961 }
962
963 static int vc4_page_flip(struct drm_crtc *crtc,
964                          struct drm_framebuffer *fb,
965                          struct drm_pending_vblank_event *event,
966                          uint32_t flags,
967                          struct drm_modeset_acquire_ctx *ctx)
968 {
969         if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
970                 return vc4_async_page_flip(crtc, fb, event, flags);
971         else
972                 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
973 }
974
975 static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
976 {
977         struct vc4_crtc_state *vc4_state, *old_vc4_state;
978
979         vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
980         if (!vc4_state)
981                 return NULL;
982
983         old_vc4_state = to_vc4_crtc_state(crtc->state);
984         vc4_state->feed_txp = old_vc4_state->feed_txp;
985         vc4_state->margins = old_vc4_state->margins;
986
987         __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
988         return &vc4_state->base;
989 }
990
991 static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
992                                    struct drm_crtc_state *state)
993 {
994         struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
995         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
996
997         if (vc4_state->mm.allocated) {
998                 unsigned long flags;
999
1000                 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
1001                 drm_mm_remove_node(&vc4_state->mm);
1002                 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
1003
1004         }
1005
1006         drm_atomic_helper_crtc_destroy_state(crtc, state);
1007 }
1008
1009 static void
1010 vc4_crtc_reset(struct drm_crtc *crtc)
1011 {
1012         if (crtc->state)
1013                 vc4_crtc_destroy_state(crtc, crtc->state);
1014
1015         crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
1016         if (crtc->state)
1017                 crtc->state->crtc = crtc;
1018 }
1019
1020 static const struct drm_crtc_funcs vc4_crtc_funcs = {
1021         .set_config = drm_atomic_helper_set_config,
1022         .destroy = vc4_crtc_destroy,
1023         .page_flip = vc4_page_flip,
1024         .set_property = NULL,
1025         .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
1026         .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
1027         .reset = vc4_crtc_reset,
1028         .atomic_duplicate_state = vc4_crtc_duplicate_state,
1029         .atomic_destroy_state = vc4_crtc_destroy_state,
1030         .gamma_set = drm_atomic_helper_legacy_gamma_set,
1031         .enable_vblank = vc4_enable_vblank,
1032         .disable_vblank = vc4_disable_vblank,
1033 };
1034
1035 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
1036         .mode_set_nofb = vc4_crtc_mode_set_nofb,
1037         .mode_valid = vc4_crtc_mode_valid,
1038         .atomic_check = vc4_crtc_atomic_check,
1039         .atomic_flush = vc4_crtc_atomic_flush,
1040         .atomic_enable = vc4_crtc_atomic_enable,
1041         .atomic_disable = vc4_crtc_atomic_disable,
1042 };
1043
1044 static const struct vc4_crtc_data pv0_data = {
1045         .hvs_channel = 0,
1046         .debugfs_name = "crtc0_regs",
1047         .encoder_types = {
1048                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
1049                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
1050         },
1051 };
1052
1053 static const struct vc4_crtc_data pv1_data = {
1054         .hvs_channel = 2,
1055         .debugfs_name = "crtc1_regs",
1056         .encoder_types = {
1057                 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
1058                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
1059         },
1060 };
1061
1062 static const struct vc4_crtc_data pv2_data = {
1063         .hvs_channel = 1,
1064         .debugfs_name = "crtc2_regs",
1065         .encoder_types = {
1066                 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
1067                 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1068         },
1069 };
1070
1071 static const struct of_device_id vc4_crtc_dt_match[] = {
1072         { .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
1073         { .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
1074         { .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
1075         {}
1076 };
1077
1078 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1079                                         struct drm_crtc *crtc)
1080 {
1081         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1082         const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
1083         const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
1084         struct drm_encoder *encoder;
1085
1086         drm_for_each_encoder(encoder, drm) {
1087                 struct vc4_encoder *vc4_encoder;
1088                 int i;
1089
1090                 /* HVS FIFO2 can feed the TXP IP. */
1091                 if (crtc_data->hvs_channel == 2 &&
1092                     encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1093                         encoder->possible_crtcs |= drm_crtc_mask(crtc);
1094                         continue;
1095                 }
1096
1097                 vc4_encoder = to_vc4_encoder(encoder);
1098                 for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
1099                         if (vc4_encoder->type == encoder_types[i]) {
1100                                 vc4_encoder->clock_select = i;
1101                                 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1102                                 break;
1103                         }
1104                 }
1105         }
1106 }
1107
1108 static void
1109 vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
1110 {
1111         struct drm_device *drm = vc4_crtc->base.dev;
1112         struct vc4_dev *vc4 = to_vc4_dev(drm);
1113         u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
1114         /* Top/base are supposed to be 4-pixel aligned, but the
1115          * Raspberry Pi firmware fills the low bits (which are
1116          * presumably ignored).
1117          */
1118         u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
1119         u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
1120
1121         vc4_crtc->cob_size = top - base + 4;
1122 }
1123
1124 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1125 {
1126         struct platform_device *pdev = to_platform_device(dev);
1127         struct drm_device *drm = dev_get_drvdata(master);
1128         struct vc4_crtc *vc4_crtc;
1129         struct drm_crtc *crtc;
1130         struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
1131         const struct of_device_id *match;
1132         int ret, i;
1133
1134         vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1135         if (!vc4_crtc)
1136                 return -ENOMEM;
1137         crtc = &vc4_crtc->base;
1138
1139         match = of_match_device(vc4_crtc_dt_match, dev);
1140         if (!match)
1141                 return -ENODEV;
1142         vc4_crtc->data = match->data;
1143         vc4_crtc->pdev = pdev;
1144
1145         vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1146         if (IS_ERR(vc4_crtc->regs))
1147                 return PTR_ERR(vc4_crtc->regs);
1148
1149         vc4_crtc->regset.base = vc4_crtc->regs;
1150         vc4_crtc->regset.regs = crtc_regs;
1151         vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1152
1153         /* For now, we create just the primary and the legacy cursor
1154          * planes.  We should be able to stack more planes on easily,
1155          * but to do that we would need to compute the bandwidth
1156          * requirement of the plane configuration, and reject ones
1157          * that will take too much.
1158          */
1159         primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1160         if (IS_ERR(primary_plane)) {
1161                 dev_err(dev, "failed to construct primary plane\n");
1162                 ret = PTR_ERR(primary_plane);
1163                 goto err;
1164         }
1165
1166         drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1167                                   &vc4_crtc_funcs, NULL);
1168         drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
1169         vc4_crtc->channel = vc4_crtc->data->hvs_channel;
1170         drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1171         drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1172
1173         /* We support CTM, but only for one CRTC at a time. It's therefore
1174          * implemented as private driver state in vc4_kms, not here.
1175          */
1176         drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1177
1178         /* Set up some arbitrary number of planes.  We're not limited
1179          * by a set number of physical registers, just the space in
1180          * the HVS (16k) and how small an plane can be (28 bytes).
1181          * However, each plane we set up takes up some memory, and
1182          * increases the cost of looping over planes, which atomic
1183          * modesetting does quite a bit.  As a result, we pick a
1184          * modest number of planes to expose, that should hopefully
1185          * still cover any sane usecase.
1186          */
1187         for (i = 0; i < 8; i++) {
1188                 struct drm_plane *plane =
1189                         vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);
1190
1191                 if (IS_ERR(plane))
1192                         continue;
1193
1194                 plane->possible_crtcs = drm_crtc_mask(crtc);
1195         }
1196
1197         /* Set up the legacy cursor after overlay initialization,
1198          * since we overlay planes on the CRTC in the order they were
1199          * initialized.
1200          */
1201         cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
1202         if (!IS_ERR(cursor_plane)) {
1203                 cursor_plane->possible_crtcs = drm_crtc_mask(crtc);
1204                 crtc->cursor = cursor_plane;
1205         }
1206
1207         vc4_crtc_get_cob_allocation(vc4_crtc);
1208
1209         CRTC_WRITE(PV_INTEN, 0);
1210         CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1211         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1212                                vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
1213         if (ret)
1214                 goto err_destroy_planes;
1215
1216         vc4_set_crtc_possible_masks(drm, crtc);
1217
1218         for (i = 0; i < crtc->gamma_size; i++) {
1219                 vc4_crtc->lut_r[i] = i;
1220                 vc4_crtc->lut_g[i] = i;
1221                 vc4_crtc->lut_b[i] = i;
1222         }
1223
1224         platform_set_drvdata(pdev, vc4_crtc);
1225
1226         vc4_debugfs_add_regset32(drm, vc4_crtc->data->debugfs_name,
1227                                  &vc4_crtc->regset);
1228
1229         return 0;
1230
1231 err_destroy_planes:
1232         list_for_each_entry_safe(destroy_plane, temp,
1233                                  &drm->mode_config.plane_list, head) {
1234                 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1235                     destroy_plane->funcs->destroy(destroy_plane);
1236         }
1237 err:
1238         return ret;
1239 }
1240
1241 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1242                             void *data)
1243 {
1244         struct platform_device *pdev = to_platform_device(dev);
1245         struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1246
1247         vc4_crtc_destroy(&vc4_crtc->base);
1248
1249         CRTC_WRITE(PV_INTEN, 0);
1250
1251         platform_set_drvdata(pdev, NULL);
1252 }
1253
1254 static const struct component_ops vc4_crtc_ops = {
1255         .bind   = vc4_crtc_bind,
1256         .unbind = vc4_crtc_unbind,
1257 };
1258
1259 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1260 {
1261         return component_add(&pdev->dev, &vc4_crtc_ops);
1262 }
1263
1264 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1265 {
1266         component_del(&pdev->dev, &vc4_crtc_ops);
1267         return 0;
1268 }
1269
1270 struct platform_driver vc4_crtc_driver = {
1271         .probe = vc4_crtc_dev_probe,
1272         .remove = vc4_crtc_dev_remove,
1273         .driver = {
1274                 .name = "vc4_crtc",
1275                 .of_match_table = vc4_crtc_dt_match,
1276         },
1277 };
This page took 0.111578 seconds and 4 git commands to generate.