]> Git Repo - linux.git/blob - drivers/dma/ti/edma.c
ALSA: hda: Skip controller resume if not needed
[linux.git] / drivers / dma / ti / edma.c
1 /*
2  * TI EDMA DMA engine driver
3  *
4  * Copyright 2012 Texas Instruments
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License as
8  * published by the Free Software Foundation version 2.
9  *
10  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11  * kind, whether express or implied; without even the implied warranty
12  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/bitmap.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
33
34 #include <linux/platform_data/edma.h>
35
36 #include "../dmaengine.h"
37 #include "../virt-dma.h"
38
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT                0x00
41 #define PARM_SRC                0x04
42 #define PARM_A_B_CNT            0x08
43 #define PARM_DST                0x0c
44 #define PARM_SRC_DST_BIDX       0x10
45 #define PARM_LINK_BCNTRLD       0x14
46 #define PARM_SRC_DST_CIDX       0x18
47 #define PARM_CCNT               0x1c
48
49 #define PARM_SIZE               0x20
50
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER                   0x00    /* 64 bits */
53 #define SH_ECR                  0x08    /* 64 bits */
54 #define SH_ESR                  0x10    /* 64 bits */
55 #define SH_CER                  0x18    /* 64 bits */
56 #define SH_EER                  0x20    /* 64 bits */
57 #define SH_EECR                 0x28    /* 64 bits */
58 #define SH_EESR                 0x30    /* 64 bits */
59 #define SH_SER                  0x38    /* 64 bits */
60 #define SH_SECR                 0x40    /* 64 bits */
61 #define SH_IER                  0x50    /* 64 bits */
62 #define SH_IECR                 0x58    /* 64 bits */
63 #define SH_IESR                 0x60    /* 64 bits */
64 #define SH_IPR                  0x68    /* 64 bits */
65 #define SH_ICR                  0x70    /* 64 bits */
66 #define SH_IEVAL                0x78
67 #define SH_QER                  0x80
68 #define SH_QEER                 0x84
69 #define SH_QEECR                0x88
70 #define SH_QEESR                0x8c
71 #define SH_QSER                 0x90
72 #define SH_QSECR                0x94
73 #define SH_SIZE                 0x200
74
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV                0x0000
77 #define EDMA_CCCFG              0x0004
78 #define EDMA_QCHMAP             0x0200  /* 8 registers */
79 #define EDMA_DMAQNUM            0x0240  /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM           0x0260
81 #define EDMA_QUETCMAP           0x0280
82 #define EDMA_QUEPRI             0x0284
83 #define EDMA_EMR                0x0300  /* 64 bits */
84 #define EDMA_EMCR               0x0308  /* 64 bits */
85 #define EDMA_QEMR               0x0310
86 #define EDMA_QEMCR              0x0314
87 #define EDMA_CCERR              0x0318
88 #define EDMA_CCERRCLR           0x031c
89 #define EDMA_EEVAL              0x0320
90 #define EDMA_DRAE               0x0340  /* 4 x 64 bits*/
91 #define EDMA_QRAE               0x0380  /* 4 registers */
92 #define EDMA_QUEEVTENTRY        0x0400  /* 2 x 16 registers */
93 #define EDMA_QSTAT              0x0600  /* 2 registers */
94 #define EDMA_QWMTHRA            0x0620
95 #define EDMA_QWMTHRB            0x0624
96 #define EDMA_CCSTAT             0x0640
97
98 #define EDMA_M                  0x1000  /* global channel registers */
99 #define EDMA_ECR                0x1008
100 #define EDMA_ECRH               0x100C
101 #define EDMA_SHADOW0            0x2000  /* 4 shadow regions */
102 #define EDMA_PARM               0x4000  /* PaRAM entries */
103
104 #define PARM_OFFSET(param_no)   (EDMA_PARM + ((param_no) << 5))
105
106 #define EDMA_DCHMAP             0x0100  /* 64 registers */
107
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x)        (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x)       ((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x)      ((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x)        ((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x)         ((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST             BIT(24)
115
116 /* CCSTAT register */
117 #define EDMA_CCSTAT_ACTV        BIT(4)
118
119 /*
120  * Max of 20 segments per channel to conserve PaRAM slots
121  * Also note that MAX_NR_SG should be atleast the no.of periods
122  * that are required for ASoC, otherwise DMA prep calls will
123  * fail. Today davinci-pcm is the only user of this driver and
124  * requires atleast 17 slots, so we setup the default to 20.
125  */
126 #define MAX_NR_SG               20
127 #define EDMA_MAX_SLOTS          MAX_NR_SG
128 #define EDMA_DESCRIPTORS        16
129
130 #define EDMA_CHANNEL_ANY                -1      /* for edma_alloc_channel() */
131 #define EDMA_SLOT_ANY                   -1      /* for edma_alloc_slot() */
132 #define EDMA_CONT_PARAMS_ANY             1001
133 #define EDMA_CONT_PARAMS_FIXED_EXACT     1002
134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
135
136 /*
137  * 64bit array registers are split into two 32bit registers:
138  * reg0: channel/event 0-31
139  * reg1: channel/event 32-63
140  *
141  * bit 5 in the channel number tells the array index (0/1)
142  * bit 0-4 (0x1f) is the bit offset within the register
143  */
144 #define EDMA_REG_ARRAY_INDEX(channel)   ((channel) >> 5)
145 #define EDMA_CHANNEL_BIT(channel)       (BIT((channel) & 0x1f))
146
147 /* PaRAM slots are laid out like this */
148 struct edmacc_param {
149         u32 opt;
150         u32 src;
151         u32 a_b_cnt;
152         u32 dst;
153         u32 src_dst_bidx;
154         u32 link_bcntrld;
155         u32 src_dst_cidx;
156         u32 ccnt;
157 } __packed;
158
159 /* fields in edmacc_param.opt */
160 #define SAM             BIT(0)
161 #define DAM             BIT(1)
162 #define SYNCDIM         BIT(2)
163 #define STATIC          BIT(3)
164 #define EDMA_FWID       (0x07 << 8)
165 #define TCCMODE         BIT(11)
166 #define EDMA_TCC(t)     ((t) << 12)
167 #define TCINTEN         BIT(20)
168 #define ITCINTEN        BIT(21)
169 #define TCCHEN          BIT(22)
170 #define ITCCHEN         BIT(23)
171
172 struct edma_pset {
173         u32                             len;
174         dma_addr_t                      addr;
175         struct edmacc_param             param;
176 };
177
178 struct edma_desc {
179         struct virt_dma_desc            vdesc;
180         struct list_head                node;
181         enum dma_transfer_direction     direction;
182         int                             cyclic;
183         bool                            polled;
184         int                             absync;
185         int                             pset_nr;
186         struct edma_chan                *echan;
187         int                             processed;
188
189         /*
190          * The following 4 elements are used for residue accounting.
191          *
192          * - processed_stat: the number of SG elements we have traversed
193          * so far to cover accounting. This is updated directly to processed
194          * during edma_callback and is always <= processed, because processed
195          * refers to the number of pending transfer (programmed to EDMA
196          * controller), where as processed_stat tracks number of transfers
197          * accounted for so far.
198          *
199          * - residue: The amount of bytes we have left to transfer for this desc
200          *
201          * - residue_stat: The residue in bytes of data we have covered
202          * so far for accounting. This is updated directly to residue
203          * during callbacks to keep it current.
204          *
205          * - sg_len: Tracks the length of the current intermediate transfer,
206          * this is required to update the residue during intermediate transfer
207          * completion callback.
208          */
209         int                             processed_stat;
210         u32                             sg_len;
211         u32                             residue;
212         u32                             residue_stat;
213
214         struct edma_pset                pset[0];
215 };
216
217 struct edma_cc;
218
219 struct edma_tc {
220         struct device_node              *node;
221         u16                             id;
222 };
223
224 struct edma_chan {
225         struct virt_dma_chan            vchan;
226         struct list_head                node;
227         struct edma_desc                *edesc;
228         struct edma_cc                  *ecc;
229         struct edma_tc                  *tc;
230         int                             ch_num;
231         bool                            alloced;
232         bool                            hw_triggered;
233         int                             slot[EDMA_MAX_SLOTS];
234         int                             missed;
235         struct dma_slave_config         cfg;
236 };
237
238 struct edma_cc {
239         struct device                   *dev;
240         struct edma_soc_info            *info;
241         void __iomem                    *base;
242         int                             id;
243         bool                            legacy_mode;
244
245         /* eDMA3 resource information */
246         unsigned                        num_channels;
247         unsigned                        num_qchannels;
248         unsigned                        num_region;
249         unsigned                        num_slots;
250         unsigned                        num_tc;
251         bool                            chmap_exist;
252         enum dma_event_q                default_queue;
253
254         unsigned int                    ccint;
255         unsigned int                    ccerrint;
256
257         /*
258          * The slot_inuse bit for each PaRAM slot is clear unless the slot is
259          * in use by Linux or if it is allocated to be used by DSP.
260          */
261         unsigned long *slot_inuse;
262
263         /*
264          * For tracking reserved channels used by DSP.
265          * If the bit is cleared, the channel is allocated to be used by DSP
266          * and Linux must not touch it.
267          */
268         unsigned long *channels_mask;
269
270         struct dma_device               dma_slave;
271         struct dma_device               *dma_memcpy;
272         struct edma_chan                *slave_chans;
273         struct edma_tc                  *tc_list;
274         int                             dummy_slot;
275 };
276
277 /* dummy param set used to (re)initialize parameter RAM slots */
278 static const struct edmacc_param dummy_paramset = {
279         .link_bcntrld = 0xffff,
280         .ccnt = 1,
281 };
282
283 #define EDMA_BINDING_LEGACY     0
284 #define EDMA_BINDING_TPCC       1
285 static const u32 edma_binding_type[] = {
286         [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
287         [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
288 };
289
290 static const struct of_device_id edma_of_ids[] = {
291         {
292                 .compatible = "ti,edma3",
293                 .data = &edma_binding_type[EDMA_BINDING_LEGACY],
294         },
295         {
296                 .compatible = "ti,edma3-tpcc",
297                 .data = &edma_binding_type[EDMA_BINDING_TPCC],
298         },
299         {}
300 };
301 MODULE_DEVICE_TABLE(of, edma_of_ids);
302
303 static const struct of_device_id edma_tptc_of_ids[] = {
304         { .compatible = "ti,edma3-tptc", },
305         {}
306 };
307 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
308
309 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
310 {
311         return (unsigned int)__raw_readl(ecc->base + offset);
312 }
313
314 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
315 {
316         __raw_writel(val, ecc->base + offset);
317 }
318
319 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
320                                unsigned or)
321 {
322         unsigned val = edma_read(ecc, offset);
323
324         val &= and;
325         val |= or;
326         edma_write(ecc, offset, val);
327 }
328
329 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
330 {
331         unsigned val = edma_read(ecc, offset);
332
333         val &= and;
334         edma_write(ecc, offset, val);
335 }
336
337 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
338 {
339         unsigned val = edma_read(ecc, offset);
340
341         val |= or;
342         edma_write(ecc, offset, val);
343 }
344
345 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
346                                            int i)
347 {
348         return edma_read(ecc, offset + (i << 2));
349 }
350
351 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
352                                     unsigned val)
353 {
354         edma_write(ecc, offset + (i << 2), val);
355 }
356
357 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
358                                      unsigned and, unsigned or)
359 {
360         edma_modify(ecc, offset + (i << 2), and, or);
361 }
362
363 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
364                                  unsigned or)
365 {
366         edma_or(ecc, offset + (i << 2), or);
367 }
368
369 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
370                                   unsigned or)
371 {
372         edma_or(ecc, offset + ((i * 2 + j) << 2), or);
373 }
374
375 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
376                                      int j, unsigned val)
377 {
378         edma_write(ecc, offset + ((i * 2 + j) << 2), val);
379 }
380
381 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
382 {
383         return edma_read(ecc, EDMA_SHADOW0 + offset);
384 }
385
386 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
387                                                    int offset, int i)
388 {
389         return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
390 }
391
392 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
393                                       unsigned val)
394 {
395         edma_write(ecc, EDMA_SHADOW0 + offset, val);
396 }
397
398 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
399                                             int i, unsigned val)
400 {
401         edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
402 }
403
404 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
405                                            int param_no)
406 {
407         return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
408 }
409
410 static inline void edma_param_write(struct edma_cc *ecc, int offset,
411                                     int param_no, unsigned val)
412 {
413         edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
414 }
415
416 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
417                                      int param_no, unsigned and, unsigned or)
418 {
419         edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
420 }
421
422 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
423                                   unsigned and)
424 {
425         edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
426 }
427
428 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
429                                  unsigned or)
430 {
431         edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
432 }
433
434 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
435                                           int priority)
436 {
437         int bit = queue_no * 4;
438
439         edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
440 }
441
442 static void edma_set_chmap(struct edma_chan *echan, int slot)
443 {
444         struct edma_cc *ecc = echan->ecc;
445         int channel = EDMA_CHAN_SLOT(echan->ch_num);
446
447         if (ecc->chmap_exist) {
448                 slot = EDMA_CHAN_SLOT(slot);
449                 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
450         }
451 }
452
453 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
454 {
455         struct edma_cc *ecc = echan->ecc;
456         int channel = EDMA_CHAN_SLOT(echan->ch_num);
457         int idx = EDMA_REG_ARRAY_INDEX(channel);
458         int ch_bit = EDMA_CHANNEL_BIT(channel);
459
460         if (enable) {
461                 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
462                 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
463         } else {
464                 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
465         }
466 }
467
468 /*
469  * paRAM slot management functions
470  */
471 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
472                             const struct edmacc_param *param)
473 {
474         slot = EDMA_CHAN_SLOT(slot);
475         if (slot >= ecc->num_slots)
476                 return;
477         memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
478 }
479
480 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
481                            struct edmacc_param *param)
482 {
483         slot = EDMA_CHAN_SLOT(slot);
484         if (slot >= ecc->num_slots)
485                 return -EINVAL;
486         memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
487
488         return 0;
489 }
490
491 /**
492  * edma_alloc_slot - allocate DMA parameter RAM
493  * @ecc: pointer to edma_cc struct
494  * @slot: specific slot to allocate; negative for "any unused slot"
495  *
496  * This allocates a parameter RAM slot, initializing it to hold a
497  * dummy transfer.  Slots allocated using this routine have not been
498  * mapped to a hardware DMA channel, and will normally be used by
499  * linking to them from a slot associated with a DMA channel.
500  *
501  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
502  * slots may be allocated on behalf of DSP firmware.
503  *
504  * Returns the number of the slot, else negative errno.
505  */
506 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
507 {
508         if (slot >= 0) {
509                 slot = EDMA_CHAN_SLOT(slot);
510                 /* Requesting entry paRAM slot for a HW triggered channel. */
511                 if (ecc->chmap_exist && slot < ecc->num_channels)
512                         slot = EDMA_SLOT_ANY;
513         }
514
515         if (slot < 0) {
516                 if (ecc->chmap_exist)
517                         slot = 0;
518                 else
519                         slot = ecc->num_channels;
520                 for (;;) {
521                         slot = find_next_zero_bit(ecc->slot_inuse,
522                                                   ecc->num_slots,
523                                                   slot);
524                         if (slot == ecc->num_slots)
525                                 return -ENOMEM;
526                         if (!test_and_set_bit(slot, ecc->slot_inuse))
527                                 break;
528                 }
529         } else if (slot >= ecc->num_slots) {
530                 return -EINVAL;
531         } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
532                 return -EBUSY;
533         }
534
535         edma_write_slot(ecc, slot, &dummy_paramset);
536
537         return EDMA_CTLR_CHAN(ecc->id, slot);
538 }
539
540 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
541 {
542         slot = EDMA_CHAN_SLOT(slot);
543         if (slot >= ecc->num_slots)
544                 return;
545
546         edma_write_slot(ecc, slot, &dummy_paramset);
547         clear_bit(slot, ecc->slot_inuse);
548 }
549
550 /**
551  * edma_link - link one parameter RAM slot to another
552  * @ecc: pointer to edma_cc struct
553  * @from: parameter RAM slot originating the link
554  * @to: parameter RAM slot which is the link target
555  *
556  * The originating slot should not be part of any active DMA transfer.
557  */
558 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
559 {
560         if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
561                 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
562
563         from = EDMA_CHAN_SLOT(from);
564         to = EDMA_CHAN_SLOT(to);
565         if (from >= ecc->num_slots || to >= ecc->num_slots)
566                 return;
567
568         edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
569                           PARM_OFFSET(to));
570 }
571
572 /**
573  * edma_get_position - returns the current transfer point
574  * @ecc: pointer to edma_cc struct
575  * @slot: parameter RAM slot being examined
576  * @dst:  true selects the dest position, false the source
577  *
578  * Returns the position of the current active slot
579  */
580 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
581                                     bool dst)
582 {
583         u32 offs;
584
585         slot = EDMA_CHAN_SLOT(slot);
586         offs = PARM_OFFSET(slot);
587         offs += dst ? PARM_DST : PARM_SRC;
588
589         return edma_read(ecc, offs);
590 }
591
592 /*
593  * Channels with event associations will be triggered by their hardware
594  * events, and channels without such associations will be triggered by
595  * software.  (At this writing there is no interface for using software
596  * triggers except with channels that don't support hardware triggers.)
597  */
598 static void edma_start(struct edma_chan *echan)
599 {
600         struct edma_cc *ecc = echan->ecc;
601         int channel = EDMA_CHAN_SLOT(echan->ch_num);
602         int idx = EDMA_REG_ARRAY_INDEX(channel);
603         int ch_bit = EDMA_CHANNEL_BIT(channel);
604
605         if (!echan->hw_triggered) {
606                 /* EDMA channels without event association */
607                 dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
608                         edma_shadow0_read_array(ecc, SH_ESR, idx));
609                 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
610         } else {
611                 /* EDMA channel with event association */
612                 dev_dbg(ecc->dev, "ER%d %08x\n", idx,
613                         edma_shadow0_read_array(ecc, SH_ER, idx));
614                 /* Clear any pending event or error */
615                 edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
616                 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
617                 /* Clear any SER */
618                 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
619                 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
620                 dev_dbg(ecc->dev, "EER%d %08x\n", idx,
621                         edma_shadow0_read_array(ecc, SH_EER, idx));
622         }
623 }
624
625 static void edma_stop(struct edma_chan *echan)
626 {
627         struct edma_cc *ecc = echan->ecc;
628         int channel = EDMA_CHAN_SLOT(echan->ch_num);
629         int idx = EDMA_REG_ARRAY_INDEX(channel);
630         int ch_bit = EDMA_CHANNEL_BIT(channel);
631
632         edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
633         edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
634         edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
635         edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
636
637         /* clear possibly pending completion interrupt */
638         edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
639
640         dev_dbg(ecc->dev, "EER%d %08x\n", idx,
641                 edma_shadow0_read_array(ecc, SH_EER, idx));
642
643         /* REVISIT:  consider guarding against inappropriate event
644          * chaining by overwriting with dummy_paramset.
645          */
646 }
647
648 /*
649  * Temporarily disable EDMA hardware events on the specified channel,
650  * preventing them from triggering new transfers
651  */
652 static void edma_pause(struct edma_chan *echan)
653 {
654         int channel = EDMA_CHAN_SLOT(echan->ch_num);
655
656         edma_shadow0_write_array(echan->ecc, SH_EECR,
657                                  EDMA_REG_ARRAY_INDEX(channel),
658                                  EDMA_CHANNEL_BIT(channel));
659 }
660
661 /* Re-enable EDMA hardware events on the specified channel.  */
662 static void edma_resume(struct edma_chan *echan)
663 {
664         int channel = EDMA_CHAN_SLOT(echan->ch_num);
665
666         edma_shadow0_write_array(echan->ecc, SH_EESR,
667                                  EDMA_REG_ARRAY_INDEX(channel),
668                                  EDMA_CHANNEL_BIT(channel));
669 }
670
671 static void edma_trigger_channel(struct edma_chan *echan)
672 {
673         struct edma_cc *ecc = echan->ecc;
674         int channel = EDMA_CHAN_SLOT(echan->ch_num);
675         int idx = EDMA_REG_ARRAY_INDEX(channel);
676         int ch_bit = EDMA_CHANNEL_BIT(channel);
677
678         edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
679
680         dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
681                 edma_shadow0_read_array(ecc, SH_ESR, idx));
682 }
683
684 static void edma_clean_channel(struct edma_chan *echan)
685 {
686         struct edma_cc *ecc = echan->ecc;
687         int channel = EDMA_CHAN_SLOT(echan->ch_num);
688         int idx = EDMA_REG_ARRAY_INDEX(channel);
689         int ch_bit = EDMA_CHANNEL_BIT(channel);
690
691         dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
692                 edma_read_array(ecc, EDMA_EMR, idx));
693         edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
694         /* Clear the corresponding EMR bits */
695         edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
696         /* Clear any SER */
697         edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
698         edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
699 }
700
701 /* Move channel to a specific event queue */
702 static void edma_assign_channel_eventq(struct edma_chan *echan,
703                                        enum dma_event_q eventq_no)
704 {
705         struct edma_cc *ecc = echan->ecc;
706         int channel = EDMA_CHAN_SLOT(echan->ch_num);
707         int bit = (channel & 0x7) * 4;
708
709         /* default to low priority queue */
710         if (eventq_no == EVENTQ_DEFAULT)
711                 eventq_no = ecc->default_queue;
712         if (eventq_no >= ecc->num_tc)
713                 return;
714
715         eventq_no &= 7;
716         edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
717                           eventq_no << bit);
718 }
719
720 static int edma_alloc_channel(struct edma_chan *echan,
721                               enum dma_event_q eventq_no)
722 {
723         struct edma_cc *ecc = echan->ecc;
724         int channel = EDMA_CHAN_SLOT(echan->ch_num);
725
726         if (!test_bit(echan->ch_num, ecc->channels_mask)) {
727                 dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
728                         echan->ch_num);
729                 return -EINVAL;
730         }
731
732         /* ensure access through shadow region 0 */
733         edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
734                        EDMA_CHANNEL_BIT(channel));
735
736         /* ensure no events are pending */
737         edma_stop(echan);
738
739         edma_setup_interrupt(echan, true);
740
741         edma_assign_channel_eventq(echan, eventq_no);
742
743         return 0;
744 }
745
746 static void edma_free_channel(struct edma_chan *echan)
747 {
748         /* ensure no events are pending */
749         edma_stop(echan);
750         /* REVISIT should probably take out of shadow region 0 */
751         edma_setup_interrupt(echan, false);
752 }
753
754 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
755 {
756         return container_of(d, struct edma_cc, dma_slave);
757 }
758
759 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
760 {
761         return container_of(c, struct edma_chan, vchan.chan);
762 }
763
764 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
765 {
766         return container_of(tx, struct edma_desc, vdesc.tx);
767 }
768
769 static void edma_desc_free(struct virt_dma_desc *vdesc)
770 {
771         kfree(container_of(vdesc, struct edma_desc, vdesc));
772 }
773
774 /* Dispatch a queued descriptor to the controller (caller holds lock) */
775 static void edma_execute(struct edma_chan *echan)
776 {
777         struct edma_cc *ecc = echan->ecc;
778         struct virt_dma_desc *vdesc;
779         struct edma_desc *edesc;
780         struct device *dev = echan->vchan.chan.device->dev;
781         int i, j, left, nslots;
782
783         if (!echan->edesc) {
784                 /* Setup is needed for the first transfer */
785                 vdesc = vchan_next_desc(&echan->vchan);
786                 if (!vdesc)
787                         return;
788                 list_del(&vdesc->node);
789                 echan->edesc = to_edma_desc(&vdesc->tx);
790         }
791
792         edesc = echan->edesc;
793
794         /* Find out how many left */
795         left = edesc->pset_nr - edesc->processed;
796         nslots = min(MAX_NR_SG, left);
797         edesc->sg_len = 0;
798
799         /* Write descriptor PaRAM set(s) */
800         for (i = 0; i < nslots; i++) {
801                 j = i + edesc->processed;
802                 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
803                 edesc->sg_len += edesc->pset[j].len;
804                 dev_vdbg(dev,
805                          "\n pset[%d]:\n"
806                          "  chnum\t%d\n"
807                          "  slot\t%d\n"
808                          "  opt\t%08x\n"
809                          "  src\t%08x\n"
810                          "  dst\t%08x\n"
811                          "  abcnt\t%08x\n"
812                          "  ccnt\t%08x\n"
813                          "  bidx\t%08x\n"
814                          "  cidx\t%08x\n"
815                          "  lkrld\t%08x\n",
816                          j, echan->ch_num, echan->slot[i],
817                          edesc->pset[j].param.opt,
818                          edesc->pset[j].param.src,
819                          edesc->pset[j].param.dst,
820                          edesc->pset[j].param.a_b_cnt,
821                          edesc->pset[j].param.ccnt,
822                          edesc->pset[j].param.src_dst_bidx,
823                          edesc->pset[j].param.src_dst_cidx,
824                          edesc->pset[j].param.link_bcntrld);
825                 /* Link to the previous slot if not the last set */
826                 if (i != (nslots - 1))
827                         edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
828         }
829
830         edesc->processed += nslots;
831
832         /*
833          * If this is either the last set in a set of SG-list transactions
834          * then setup a link to the dummy slot, this results in all future
835          * events being absorbed and that's OK because we're done
836          */
837         if (edesc->processed == edesc->pset_nr) {
838                 if (edesc->cyclic)
839                         edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
840                 else
841                         edma_link(ecc, echan->slot[nslots - 1],
842                                   echan->ecc->dummy_slot);
843         }
844
845         if (echan->missed) {
846                 /*
847                  * This happens due to setup times between intermediate
848                  * transfers in long SG lists which have to be broken up into
849                  * transfers of MAX_NR_SG
850                  */
851                 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
852                 edma_clean_channel(echan);
853                 edma_stop(echan);
854                 edma_start(echan);
855                 edma_trigger_channel(echan);
856                 echan->missed = 0;
857         } else if (edesc->processed <= MAX_NR_SG) {
858                 dev_dbg(dev, "first transfer starting on channel %d\n",
859                         echan->ch_num);
860                 edma_start(echan);
861         } else {
862                 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
863                         echan->ch_num, edesc->processed);
864                 edma_resume(echan);
865         }
866 }
867
868 static int edma_terminate_all(struct dma_chan *chan)
869 {
870         struct edma_chan *echan = to_edma_chan(chan);
871         unsigned long flags;
872         LIST_HEAD(head);
873
874         spin_lock_irqsave(&echan->vchan.lock, flags);
875
876         /*
877          * Stop DMA activity: we assume the callback will not be called
878          * after edma_dma() returns (even if it does, it will see
879          * echan->edesc is NULL and exit.)
880          */
881         if (echan->edesc) {
882                 edma_stop(echan);
883                 /* Move the cyclic channel back to default queue */
884                 if (!echan->tc && echan->edesc->cyclic)
885                         edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
886
887                 vchan_terminate_vdesc(&echan->edesc->vdesc);
888                 echan->edesc = NULL;
889         }
890
891         vchan_get_all_descriptors(&echan->vchan, &head);
892         spin_unlock_irqrestore(&echan->vchan.lock, flags);
893         vchan_dma_desc_free_list(&echan->vchan, &head);
894
895         return 0;
896 }
897
898 static void edma_synchronize(struct dma_chan *chan)
899 {
900         struct edma_chan *echan = to_edma_chan(chan);
901
902         vchan_synchronize(&echan->vchan);
903 }
904
905 static int edma_slave_config(struct dma_chan *chan,
906         struct dma_slave_config *cfg)
907 {
908         struct edma_chan *echan = to_edma_chan(chan);
909
910         if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
911             cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
912                 return -EINVAL;
913
914         if (cfg->src_maxburst > chan->device->max_burst ||
915             cfg->dst_maxburst > chan->device->max_burst)
916                 return -EINVAL;
917
918         memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
919
920         return 0;
921 }
922
923 static int edma_dma_pause(struct dma_chan *chan)
924 {
925         struct edma_chan *echan = to_edma_chan(chan);
926
927         if (!echan->edesc)
928                 return -EINVAL;
929
930         edma_pause(echan);
931         return 0;
932 }
933
934 static int edma_dma_resume(struct dma_chan *chan)
935 {
936         struct edma_chan *echan = to_edma_chan(chan);
937
938         edma_resume(echan);
939         return 0;
940 }
941
942 /*
943  * A PaRAM set configuration abstraction used by other modes
944  * @chan: Channel who's PaRAM set we're configuring
945  * @pset: PaRAM set to initialize and setup.
946  * @src_addr: Source address of the DMA
947  * @dst_addr: Destination address of the DMA
948  * @burst: In units of dev_width, how much to send
949  * @dev_width: How much is the dev_width
950  * @dma_length: Total length of the DMA transfer
951  * @direction: Direction of the transfer
952  */
953 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
954                             dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
955                             unsigned int acnt, unsigned int dma_length,
956                             enum dma_transfer_direction direction)
957 {
958         struct edma_chan *echan = to_edma_chan(chan);
959         struct device *dev = chan->device->dev;
960         struct edmacc_param *param = &epset->param;
961         int bcnt, ccnt, cidx;
962         int src_bidx, dst_bidx, src_cidx, dst_cidx;
963         int absync;
964
965         /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
966         if (!burst)
967                 burst = 1;
968         /*
969          * If the maxburst is equal to the fifo width, use
970          * A-synced transfers. This allows for large contiguous
971          * buffer transfers using only one PaRAM set.
972          */
973         if (burst == 1) {
974                 /*
975                  * For the A-sync case, bcnt and ccnt are the remainder
976                  * and quotient respectively of the division of:
977                  * (dma_length / acnt) by (SZ_64K -1). This is so
978                  * that in case bcnt over flows, we have ccnt to use.
979                  * Note: In A-sync tranfer only, bcntrld is used, but it
980                  * only applies for sg_dma_len(sg) >= SZ_64K.
981                  * In this case, the best way adopted is- bccnt for the
982                  * first frame will be the remainder below. Then for
983                  * every successive frame, bcnt will be SZ_64K-1. This
984                  * is assured as bcntrld = 0xffff in end of function.
985                  */
986                 absync = false;
987                 ccnt = dma_length / acnt / (SZ_64K - 1);
988                 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
989                 /*
990                  * If bcnt is non-zero, we have a remainder and hence an
991                  * extra frame to transfer, so increment ccnt.
992                  */
993                 if (bcnt)
994                         ccnt++;
995                 else
996                         bcnt = SZ_64K - 1;
997                 cidx = acnt;
998         } else {
999                 /*
1000                  * If maxburst is greater than the fifo address_width,
1001                  * use AB-synced transfers where A count is the fifo
1002                  * address_width and B count is the maxburst. In this
1003                  * case, we are limited to transfers of C count frames
1004                  * of (address_width * maxburst) where C count is limited
1005                  * to SZ_64K-1. This places an upper bound on the length
1006                  * of an SG segment that can be handled.
1007                  */
1008                 absync = true;
1009                 bcnt = burst;
1010                 ccnt = dma_length / (acnt * bcnt);
1011                 if (ccnt > (SZ_64K - 1)) {
1012                         dev_err(dev, "Exceeded max SG segment size\n");
1013                         return -EINVAL;
1014                 }
1015                 cidx = acnt * bcnt;
1016         }
1017
1018         epset->len = dma_length;
1019
1020         if (direction == DMA_MEM_TO_DEV) {
1021                 src_bidx = acnt;
1022                 src_cidx = cidx;
1023                 dst_bidx = 0;
1024                 dst_cidx = 0;
1025                 epset->addr = src_addr;
1026         } else if (direction == DMA_DEV_TO_MEM)  {
1027                 src_bidx = 0;
1028                 src_cidx = 0;
1029                 dst_bidx = acnt;
1030                 dst_cidx = cidx;
1031                 epset->addr = dst_addr;
1032         } else if (direction == DMA_MEM_TO_MEM)  {
1033                 src_bidx = acnt;
1034                 src_cidx = cidx;
1035                 dst_bidx = acnt;
1036                 dst_cidx = cidx;
1037                 epset->addr = src_addr;
1038         } else {
1039                 dev_err(dev, "%s: direction not implemented yet\n", __func__);
1040                 return -EINVAL;
1041         }
1042
1043         param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1044         /* Configure A or AB synchronized transfers */
1045         if (absync)
1046                 param->opt |= SYNCDIM;
1047
1048         param->src = src_addr;
1049         param->dst = dst_addr;
1050
1051         param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1052         param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1053
1054         param->a_b_cnt = bcnt << 16 | acnt;
1055         param->ccnt = ccnt;
1056         /*
1057          * Only time when (bcntrld) auto reload is required is for
1058          * A-sync case, and in this case, a requirement of reload value
1059          * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1060          * and then later will be populated by edma_execute.
1061          */
1062         param->link_bcntrld = 0xffffffff;
1063         return absync;
1064 }
1065
1066 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1067         struct dma_chan *chan, struct scatterlist *sgl,
1068         unsigned int sg_len, enum dma_transfer_direction direction,
1069         unsigned long tx_flags, void *context)
1070 {
1071         struct edma_chan *echan = to_edma_chan(chan);
1072         struct device *dev = chan->device->dev;
1073         struct edma_desc *edesc;
1074         dma_addr_t src_addr = 0, dst_addr = 0;
1075         enum dma_slave_buswidth dev_width;
1076         u32 burst;
1077         struct scatterlist *sg;
1078         int i, nslots, ret;
1079
1080         if (unlikely(!echan || !sgl || !sg_len))
1081                 return NULL;
1082
1083         if (direction == DMA_DEV_TO_MEM) {
1084                 src_addr = echan->cfg.src_addr;
1085                 dev_width = echan->cfg.src_addr_width;
1086                 burst = echan->cfg.src_maxburst;
1087         } else if (direction == DMA_MEM_TO_DEV) {
1088                 dst_addr = echan->cfg.dst_addr;
1089                 dev_width = echan->cfg.dst_addr_width;
1090                 burst = echan->cfg.dst_maxburst;
1091         } else {
1092                 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1093                 return NULL;
1094         }
1095
1096         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1097                 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1098                 return NULL;
1099         }
1100
1101         edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1102         if (!edesc)
1103                 return NULL;
1104
1105         edesc->pset_nr = sg_len;
1106         edesc->residue = 0;
1107         edesc->direction = direction;
1108         edesc->echan = echan;
1109
1110         /* Allocate a PaRAM slot, if needed */
1111         nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1112
1113         for (i = 0; i < nslots; i++) {
1114                 if (echan->slot[i] < 0) {
1115                         echan->slot[i] =
1116                                 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1117                         if (echan->slot[i] < 0) {
1118                                 kfree(edesc);
1119                                 dev_err(dev, "%s: Failed to allocate slot\n",
1120                                         __func__);
1121                                 return NULL;
1122                         }
1123                 }
1124         }
1125
1126         /* Configure PaRAM sets for each SG */
1127         for_each_sg(sgl, sg, sg_len, i) {
1128                 /* Get address for each SG */
1129                 if (direction == DMA_DEV_TO_MEM)
1130                         dst_addr = sg_dma_address(sg);
1131                 else
1132                         src_addr = sg_dma_address(sg);
1133
1134                 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1135                                        dst_addr, burst, dev_width,
1136                                        sg_dma_len(sg), direction);
1137                 if (ret < 0) {
1138                         kfree(edesc);
1139                         return NULL;
1140                 }
1141
1142                 edesc->absync = ret;
1143                 edesc->residue += sg_dma_len(sg);
1144
1145                 if (i == sg_len - 1)
1146                         /* Enable completion interrupt */
1147                         edesc->pset[i].param.opt |= TCINTEN;
1148                 else if (!((i+1) % MAX_NR_SG))
1149                         /*
1150                          * Enable early completion interrupt for the
1151                          * intermediateset. In this case the driver will be
1152                          * notified when the paRAM set is submitted to TC. This
1153                          * will allow more time to set up the next set of slots.
1154                          */
1155                         edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1156         }
1157         edesc->residue_stat = edesc->residue;
1158
1159         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1160 }
1161
1162 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1163         struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1164         size_t len, unsigned long tx_flags)
1165 {
1166         int ret, nslots;
1167         struct edma_desc *edesc;
1168         struct device *dev = chan->device->dev;
1169         struct edma_chan *echan = to_edma_chan(chan);
1170         unsigned int width, pset_len, array_size;
1171
1172         if (unlikely(!echan || !len))
1173                 return NULL;
1174
1175         /* Align the array size (acnt block) with the transfer properties */
1176         switch (__ffs((src | dest | len))) {
1177         case 0:
1178                 array_size = SZ_32K - 1;
1179                 break;
1180         case 1:
1181                 array_size = SZ_32K - 2;
1182                 break;
1183         default:
1184                 array_size = SZ_32K - 4;
1185                 break;
1186         }
1187
1188         if (len < SZ_64K) {
1189                 /*
1190                  * Transfer size less than 64K can be handled with one paRAM
1191                  * slot and with one burst.
1192                  * ACNT = length
1193                  */
1194                 width = len;
1195                 pset_len = len;
1196                 nslots = 1;
1197         } else {
1198                 /*
1199                  * Transfer size bigger than 64K will be handled with maximum of
1200                  * two paRAM slots.
1201                  * slot1: (full_length / 32767) times 32767 bytes bursts.
1202                  *        ACNT = 32767, length1: (full_length / 32767) * 32767
1203                  * slot2: the remaining amount of data after slot1.
1204                  *        ACNT = full_length - length1, length2 = ACNT
1205                  *
1206                  * When the full_length is multibple of 32767 one slot can be
1207                  * used to complete the transfer.
1208                  */
1209                 width = array_size;
1210                 pset_len = rounddown(len, width);
1211                 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1212                 if (unlikely(pset_len == len))
1213                         nslots = 1;
1214                 else
1215                         nslots = 2;
1216         }
1217
1218         edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1219         if (!edesc)
1220                 return NULL;
1221
1222         edesc->pset_nr = nslots;
1223         edesc->residue = edesc->residue_stat = len;
1224         edesc->direction = DMA_MEM_TO_MEM;
1225         edesc->echan = echan;
1226
1227         ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1228                                width, pset_len, DMA_MEM_TO_MEM);
1229         if (ret < 0) {
1230                 kfree(edesc);
1231                 return NULL;
1232         }
1233
1234         edesc->absync = ret;
1235
1236         edesc->pset[0].param.opt |= ITCCHEN;
1237         if (nslots == 1) {
1238                 /* Enable transfer complete interrupt if requested */
1239                 if (tx_flags & DMA_PREP_INTERRUPT)
1240                         edesc->pset[0].param.opt |= TCINTEN;
1241         } else {
1242                 /* Enable transfer complete chaining for the first slot */
1243                 edesc->pset[0].param.opt |= TCCHEN;
1244
1245                 if (echan->slot[1] < 0) {
1246                         echan->slot[1] = edma_alloc_slot(echan->ecc,
1247                                                          EDMA_SLOT_ANY);
1248                         if (echan->slot[1] < 0) {
1249                                 kfree(edesc);
1250                                 dev_err(dev, "%s: Failed to allocate slot\n",
1251                                         __func__);
1252                                 return NULL;
1253                         }
1254                 }
1255                 dest += pset_len;
1256                 src += pset_len;
1257                 pset_len = width = len % array_size;
1258
1259                 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1260                                        width, pset_len, DMA_MEM_TO_MEM);
1261                 if (ret < 0) {
1262                         kfree(edesc);
1263                         return NULL;
1264                 }
1265
1266                 edesc->pset[1].param.opt |= ITCCHEN;
1267                 /* Enable transfer complete interrupt if requested */
1268                 if (tx_flags & DMA_PREP_INTERRUPT)
1269                         edesc->pset[1].param.opt |= TCINTEN;
1270         }
1271
1272         if (!(tx_flags & DMA_PREP_INTERRUPT))
1273                 edesc->polled = true;
1274
1275         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1276 }
1277
1278 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1279         struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1280         size_t period_len, enum dma_transfer_direction direction,
1281         unsigned long tx_flags)
1282 {
1283         struct edma_chan *echan = to_edma_chan(chan);
1284         struct device *dev = chan->device->dev;
1285         struct edma_desc *edesc;
1286         dma_addr_t src_addr, dst_addr;
1287         enum dma_slave_buswidth dev_width;
1288         bool use_intermediate = false;
1289         u32 burst;
1290         int i, ret, nslots;
1291
1292         if (unlikely(!echan || !buf_len || !period_len))
1293                 return NULL;
1294
1295         if (direction == DMA_DEV_TO_MEM) {
1296                 src_addr = echan->cfg.src_addr;
1297                 dst_addr = buf_addr;
1298                 dev_width = echan->cfg.src_addr_width;
1299                 burst = echan->cfg.src_maxburst;
1300         } else if (direction == DMA_MEM_TO_DEV) {
1301                 src_addr = buf_addr;
1302                 dst_addr = echan->cfg.dst_addr;
1303                 dev_width = echan->cfg.dst_addr_width;
1304                 burst = echan->cfg.dst_maxburst;
1305         } else {
1306                 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1307                 return NULL;
1308         }
1309
1310         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1311                 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1312                 return NULL;
1313         }
1314
1315         if (unlikely(buf_len % period_len)) {
1316                 dev_err(dev, "Period should be multiple of Buffer length\n");
1317                 return NULL;
1318         }
1319
1320         nslots = (buf_len / period_len) + 1;
1321
1322         /*
1323          * Cyclic DMA users such as audio cannot tolerate delays introduced
1324          * by cases where the number of periods is more than the maximum
1325          * number of SGs the EDMA driver can handle at a time. For DMA types
1326          * such as Slave SGs, such delays are tolerable and synchronized,
1327          * but the synchronization is difficult to achieve with Cyclic and
1328          * cannot be guaranteed, so we error out early.
1329          */
1330         if (nslots > MAX_NR_SG) {
1331                 /*
1332                  * If the burst and period sizes are the same, we can put
1333                  * the full buffer into a single period and activate
1334                  * intermediate interrupts. This will produce interrupts
1335                  * after each burst, which is also after each desired period.
1336                  */
1337                 if (burst == period_len) {
1338                         period_len = buf_len;
1339                         nslots = 2;
1340                         use_intermediate = true;
1341                 } else {
1342                         return NULL;
1343                 }
1344         }
1345
1346         edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1347         if (!edesc)
1348                 return NULL;
1349
1350         edesc->cyclic = 1;
1351         edesc->pset_nr = nslots;
1352         edesc->residue = edesc->residue_stat = buf_len;
1353         edesc->direction = direction;
1354         edesc->echan = echan;
1355
1356         dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1357                 __func__, echan->ch_num, nslots, period_len, buf_len);
1358
1359         for (i = 0; i < nslots; i++) {
1360                 /* Allocate a PaRAM slot, if needed */
1361                 if (echan->slot[i] < 0) {
1362                         echan->slot[i] =
1363                                 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1364                         if (echan->slot[i] < 0) {
1365                                 kfree(edesc);
1366                                 dev_err(dev, "%s: Failed to allocate slot\n",
1367                                         __func__);
1368                                 return NULL;
1369                         }
1370                 }
1371
1372                 if (i == nslots - 1) {
1373                         memcpy(&edesc->pset[i], &edesc->pset[0],
1374                                sizeof(edesc->pset[0]));
1375                         break;
1376                 }
1377
1378                 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1379                                        dst_addr, burst, dev_width, period_len,
1380                                        direction);
1381                 if (ret < 0) {
1382                         kfree(edesc);
1383                         return NULL;
1384                 }
1385
1386                 if (direction == DMA_DEV_TO_MEM)
1387                         dst_addr += period_len;
1388                 else
1389                         src_addr += period_len;
1390
1391                 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1392                 dev_vdbg(dev,
1393                         "\n pset[%d]:\n"
1394                         "  chnum\t%d\n"
1395                         "  slot\t%d\n"
1396                         "  opt\t%08x\n"
1397                         "  src\t%08x\n"
1398                         "  dst\t%08x\n"
1399                         "  abcnt\t%08x\n"
1400                         "  ccnt\t%08x\n"
1401                         "  bidx\t%08x\n"
1402                         "  cidx\t%08x\n"
1403                         "  lkrld\t%08x\n",
1404                         i, echan->ch_num, echan->slot[i],
1405                         edesc->pset[i].param.opt,
1406                         edesc->pset[i].param.src,
1407                         edesc->pset[i].param.dst,
1408                         edesc->pset[i].param.a_b_cnt,
1409                         edesc->pset[i].param.ccnt,
1410                         edesc->pset[i].param.src_dst_bidx,
1411                         edesc->pset[i].param.src_dst_cidx,
1412                         edesc->pset[i].param.link_bcntrld);
1413
1414                 edesc->absync = ret;
1415
1416                 /*
1417                  * Enable period interrupt only if it is requested
1418                  */
1419                 if (tx_flags & DMA_PREP_INTERRUPT) {
1420                         edesc->pset[i].param.opt |= TCINTEN;
1421
1422                         /* Also enable intermediate interrupts if necessary */
1423                         if (use_intermediate)
1424                                 edesc->pset[i].param.opt |= ITCINTEN;
1425                 }
1426         }
1427
1428         /* Place the cyclic channel to highest priority queue */
1429         if (!echan->tc)
1430                 edma_assign_channel_eventq(echan, EVENTQ_0);
1431
1432         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1433 }
1434
1435 static void edma_completion_handler(struct edma_chan *echan)
1436 {
1437         struct device *dev = echan->vchan.chan.device->dev;
1438         struct edma_desc *edesc;
1439
1440         spin_lock(&echan->vchan.lock);
1441         edesc = echan->edesc;
1442         if (edesc) {
1443                 if (edesc->cyclic) {
1444                         vchan_cyclic_callback(&edesc->vdesc);
1445                         spin_unlock(&echan->vchan.lock);
1446                         return;
1447                 } else if (edesc->processed == edesc->pset_nr) {
1448                         edesc->residue = 0;
1449                         edma_stop(echan);
1450                         vchan_cookie_complete(&edesc->vdesc);
1451                         echan->edesc = NULL;
1452
1453                         dev_dbg(dev, "Transfer completed on channel %d\n",
1454                                 echan->ch_num);
1455                 } else {
1456                         dev_dbg(dev, "Sub transfer completed on channel %d\n",
1457                                 echan->ch_num);
1458
1459                         edma_pause(echan);
1460
1461                         /* Update statistics for tx_status */
1462                         edesc->residue -= edesc->sg_len;
1463                         edesc->residue_stat = edesc->residue;
1464                         edesc->processed_stat = edesc->processed;
1465                 }
1466                 edma_execute(echan);
1467         }
1468
1469         spin_unlock(&echan->vchan.lock);
1470 }
1471
1472 /* eDMA interrupt handler */
1473 static irqreturn_t dma_irq_handler(int irq, void *data)
1474 {
1475         struct edma_cc *ecc = data;
1476         int ctlr;
1477         u32 sh_ier;
1478         u32 sh_ipr;
1479         u32 bank;
1480
1481         ctlr = ecc->id;
1482         if (ctlr < 0)
1483                 return IRQ_NONE;
1484
1485         dev_vdbg(ecc->dev, "dma_irq_handler\n");
1486
1487         sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1488         if (!sh_ipr) {
1489                 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1490                 if (!sh_ipr)
1491                         return IRQ_NONE;
1492                 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1493                 bank = 1;
1494         } else {
1495                 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1496                 bank = 0;
1497         }
1498
1499         do {
1500                 u32 slot;
1501                 u32 channel;
1502
1503                 slot = __ffs(sh_ipr);
1504                 sh_ipr &= ~(BIT(slot));
1505
1506                 if (sh_ier & BIT(slot)) {
1507                         channel = (bank << 5) | slot;
1508                         /* Clear the corresponding IPR bits */
1509                         edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1510                         edma_completion_handler(&ecc->slave_chans[channel]);
1511                 }
1512         } while (sh_ipr);
1513
1514         edma_shadow0_write(ecc, SH_IEVAL, 1);
1515         return IRQ_HANDLED;
1516 }
1517
1518 static void edma_error_handler(struct edma_chan *echan)
1519 {
1520         struct edma_cc *ecc = echan->ecc;
1521         struct device *dev = echan->vchan.chan.device->dev;
1522         struct edmacc_param p;
1523         int err;
1524
1525         if (!echan->edesc)
1526                 return;
1527
1528         spin_lock(&echan->vchan.lock);
1529
1530         err = edma_read_slot(ecc, echan->slot[0], &p);
1531
1532         /*
1533          * Issue later based on missed flag which will be sure
1534          * to happen as:
1535          * (1) we finished transmitting an intermediate slot and
1536          *     edma_execute is coming up.
1537          * (2) or we finished current transfer and issue will
1538          *     call edma_execute.
1539          *
1540          * Important note: issuing can be dangerous here and
1541          * lead to some nasty recursion when we are in a NULL
1542          * slot. So we avoid doing so and set the missed flag.
1543          */
1544         if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1545                 dev_dbg(dev, "Error on null slot, setting miss\n");
1546                 echan->missed = 1;
1547         } else {
1548                 /*
1549                  * The slot is already programmed but the event got
1550                  * missed, so its safe to issue it here.
1551                  */
1552                 dev_dbg(dev, "Missed event, TRIGGERING\n");
1553                 edma_clean_channel(echan);
1554                 edma_stop(echan);
1555                 edma_start(echan);
1556                 edma_trigger_channel(echan);
1557         }
1558         spin_unlock(&echan->vchan.lock);
1559 }
1560
1561 static inline bool edma_error_pending(struct edma_cc *ecc)
1562 {
1563         if (edma_read_array(ecc, EDMA_EMR, 0) ||
1564             edma_read_array(ecc, EDMA_EMR, 1) ||
1565             edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1566                 return true;
1567
1568         return false;
1569 }
1570
1571 /* eDMA error interrupt handler */
1572 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1573 {
1574         struct edma_cc *ecc = data;
1575         int i, j;
1576         int ctlr;
1577         unsigned int cnt = 0;
1578         unsigned int val;
1579
1580         ctlr = ecc->id;
1581         if (ctlr < 0)
1582                 return IRQ_NONE;
1583
1584         dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1585
1586         if (!edma_error_pending(ecc)) {
1587                 /*
1588                  * The registers indicate no pending error event but the irq
1589                  * handler has been called.
1590                  * Ask eDMA to re-evaluate the error registers.
1591                  */
1592                 dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1593                         __func__);
1594                 edma_write(ecc, EDMA_EEVAL, 1);
1595                 return IRQ_NONE;
1596         }
1597
1598         while (1) {
1599                 /* Event missed register(s) */
1600                 for (j = 0; j < 2; j++) {
1601                         unsigned long emr;
1602
1603                         val = edma_read_array(ecc, EDMA_EMR, j);
1604                         if (!val)
1605                                 continue;
1606
1607                         dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1608                         emr = val;
1609                         for (i = find_next_bit(&emr, 32, 0); i < 32;
1610                              i = find_next_bit(&emr, 32, i + 1)) {
1611                                 int k = (j << 5) + i;
1612
1613                                 /* Clear the corresponding EMR bits */
1614                                 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1615                                 /* Clear any SER */
1616                                 edma_shadow0_write_array(ecc, SH_SECR, j,
1617                                                          BIT(i));
1618                                 edma_error_handler(&ecc->slave_chans[k]);
1619                         }
1620                 }
1621
1622                 val = edma_read(ecc, EDMA_QEMR);
1623                 if (val) {
1624                         dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1625                         /* Not reported, just clear the interrupt reason. */
1626                         edma_write(ecc, EDMA_QEMCR, val);
1627                         edma_shadow0_write(ecc, SH_QSECR, val);
1628                 }
1629
1630                 val = edma_read(ecc, EDMA_CCERR);
1631                 if (val) {
1632                         dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1633                         /* Not reported, just clear the interrupt reason. */
1634                         edma_write(ecc, EDMA_CCERRCLR, val);
1635                 }
1636
1637                 if (!edma_error_pending(ecc))
1638                         break;
1639                 cnt++;
1640                 if (cnt > 10)
1641                         break;
1642         }
1643         edma_write(ecc, EDMA_EEVAL, 1);
1644         return IRQ_HANDLED;
1645 }
1646
1647 /* Alloc channel resources */
1648 static int edma_alloc_chan_resources(struct dma_chan *chan)
1649 {
1650         struct edma_chan *echan = to_edma_chan(chan);
1651         struct edma_cc *ecc = echan->ecc;
1652         struct device *dev = ecc->dev;
1653         enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1654         int ret;
1655
1656         if (echan->tc) {
1657                 eventq_no = echan->tc->id;
1658         } else if (ecc->tc_list) {
1659                 /* memcpy channel */
1660                 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1661                 eventq_no = echan->tc->id;
1662         }
1663
1664         ret = edma_alloc_channel(echan, eventq_no);
1665         if (ret)
1666                 return ret;
1667
1668         echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1669         if (echan->slot[0] < 0) {
1670                 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1671                         EDMA_CHAN_SLOT(echan->ch_num));
1672                 ret = echan->slot[0];
1673                 goto err_slot;
1674         }
1675
1676         /* Set up channel -> slot mapping for the entry slot */
1677         edma_set_chmap(echan, echan->slot[0]);
1678         echan->alloced = true;
1679
1680         dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1681                 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1682                 echan->hw_triggered ? "HW" : "SW");
1683
1684         return 0;
1685
1686 err_slot:
1687         edma_free_channel(echan);
1688         return ret;
1689 }
1690
1691 /* Free channel resources */
1692 static void edma_free_chan_resources(struct dma_chan *chan)
1693 {
1694         struct edma_chan *echan = to_edma_chan(chan);
1695         struct device *dev = echan->ecc->dev;
1696         int i;
1697
1698         /* Terminate transfers */
1699         edma_stop(echan);
1700
1701         vchan_free_chan_resources(&echan->vchan);
1702
1703         /* Free EDMA PaRAM slots */
1704         for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1705                 if (echan->slot[i] >= 0) {
1706                         edma_free_slot(echan->ecc, echan->slot[i]);
1707                         echan->slot[i] = -1;
1708                 }
1709         }
1710
1711         /* Set entry slot to the dummy slot */
1712         edma_set_chmap(echan, echan->ecc->dummy_slot);
1713
1714         /* Free EDMA channel */
1715         if (echan->alloced) {
1716                 edma_free_channel(echan);
1717                 echan->alloced = false;
1718         }
1719
1720         echan->tc = NULL;
1721         echan->hw_triggered = false;
1722
1723         dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1724                 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1725 }
1726
1727 /* Send pending descriptor to hardware */
1728 static void edma_issue_pending(struct dma_chan *chan)
1729 {
1730         struct edma_chan *echan = to_edma_chan(chan);
1731         unsigned long flags;
1732
1733         spin_lock_irqsave(&echan->vchan.lock, flags);
1734         if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1735                 edma_execute(echan);
1736         spin_unlock_irqrestore(&echan->vchan.lock, flags);
1737 }
1738
1739 /*
1740  * This limit exists to avoid a possible infinite loop when waiting for proof
1741  * that a particular transfer is completed. This limit can be hit if there
1742  * are large bursts to/from slow devices or the CPU is never able to catch
1743  * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1744  * RX-FIFO, as many as 55 loops have been seen.
1745  */
1746 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1747
1748 static u32 edma_residue(struct edma_desc *edesc)
1749 {
1750         bool dst = edesc->direction == DMA_DEV_TO_MEM;
1751         int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1752         struct edma_chan *echan = edesc->echan;
1753         struct edma_pset *pset = edesc->pset;
1754         dma_addr_t done, pos, pos_old;
1755         int channel = EDMA_CHAN_SLOT(echan->ch_num);
1756         int idx = EDMA_REG_ARRAY_INDEX(channel);
1757         int ch_bit = EDMA_CHANNEL_BIT(channel);
1758         int event_reg;
1759         int i;
1760
1761         /*
1762          * We always read the dst/src position from the first RamPar
1763          * pset. That's the one which is active now.
1764          */
1765         pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1766
1767         /*
1768          * "pos" may represent a transfer request that is still being
1769          * processed by the EDMACC or EDMATC. We will busy wait until
1770          * any one of the situations occurs:
1771          *   1. while and event is pending for the channel
1772          *   2. a position updated
1773          *   3. we hit the loop limit
1774          */
1775         if (is_slave_direction(edesc->direction))
1776                 event_reg = SH_ER;
1777         else
1778                 event_reg = SH_ESR;
1779
1780         pos_old = pos;
1781         while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1782                 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1783                 if (pos != pos_old)
1784                         break;
1785
1786                 if (!--loop_count) {
1787                         dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1788                                 "%s: timeout waiting for PaRAM update\n",
1789                                 __func__);
1790                         break;
1791                 }
1792
1793                 cpu_relax();
1794         }
1795
1796         /*
1797          * Cyclic is simple. Just subtract pset[0].addr from pos.
1798          *
1799          * We never update edesc->residue in the cyclic case, so we
1800          * can tell the remaining room to the end of the circular
1801          * buffer.
1802          */
1803         if (edesc->cyclic) {
1804                 done = pos - pset->addr;
1805                 edesc->residue_stat = edesc->residue - done;
1806                 return edesc->residue_stat;
1807         }
1808
1809         /*
1810          * If the position is 0, then EDMA loaded the closing dummy slot, the
1811          * transfer is completed
1812          */
1813         if (!pos)
1814                 return 0;
1815         /*
1816          * For SG operation we catch up with the last processed
1817          * status.
1818          */
1819         pset += edesc->processed_stat;
1820
1821         for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1822                 /*
1823                  * If we are inside this pset address range, we know
1824                  * this is the active one. Get the current delta and
1825                  * stop walking the psets.
1826                  */
1827                 if (pos >= pset->addr && pos < pset->addr + pset->len)
1828                         return edesc->residue_stat - (pos - pset->addr);
1829
1830                 /* Otherwise mark it done and update residue_stat. */
1831                 edesc->processed_stat++;
1832                 edesc->residue_stat -= pset->len;
1833         }
1834         return edesc->residue_stat;
1835 }
1836
1837 /* Check request completion status */
1838 static enum dma_status edma_tx_status(struct dma_chan *chan,
1839                                       dma_cookie_t cookie,
1840                                       struct dma_tx_state *txstate)
1841 {
1842         struct edma_chan *echan = to_edma_chan(chan);
1843         struct dma_tx_state txstate_tmp;
1844         enum dma_status ret;
1845         unsigned long flags;
1846
1847         ret = dma_cookie_status(chan, cookie, txstate);
1848
1849         if (ret == DMA_COMPLETE)
1850                 return ret;
1851
1852         /* Provide a dummy dma_tx_state for completion checking */
1853         if (!txstate)
1854                 txstate = &txstate_tmp;
1855
1856         spin_lock_irqsave(&echan->vchan.lock, flags);
1857         if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1858                 txstate->residue = edma_residue(echan->edesc);
1859         } else {
1860                 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1861                                                               cookie);
1862
1863                 if (vdesc)
1864                         txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1865                 else
1866                         txstate->residue = 0;
1867         }
1868
1869         /*
1870          * Mark the cookie completed if the residue is 0 for non cyclic
1871          * transfers
1872          */
1873         if (ret != DMA_COMPLETE && !txstate->residue &&
1874             echan->edesc && echan->edesc->polled &&
1875             echan->edesc->vdesc.tx.cookie == cookie) {
1876                 edma_stop(echan);
1877                 vchan_cookie_complete(&echan->edesc->vdesc);
1878                 echan->edesc = NULL;
1879                 edma_execute(echan);
1880                 ret = DMA_COMPLETE;
1881         }
1882
1883         spin_unlock_irqrestore(&echan->vchan.lock, flags);
1884
1885         return ret;
1886 }
1887
1888 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1889 {
1890         if (!memcpy_channels)
1891                 return false;
1892         while (*memcpy_channels != -1) {
1893                 if (*memcpy_channels == ch_num)
1894                         return true;
1895                 memcpy_channels++;
1896         }
1897         return false;
1898 }
1899
1900 #define EDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1901                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1902                                  BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1903                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1904
1905 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1906 {
1907         struct dma_device *s_ddev = &ecc->dma_slave;
1908         struct dma_device *m_ddev = NULL;
1909         s32 *memcpy_channels = ecc->info->memcpy_channels;
1910         int i, j;
1911
1912         dma_cap_zero(s_ddev->cap_mask);
1913         dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1914         dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1915         if (ecc->legacy_mode && !memcpy_channels) {
1916                 dev_warn(ecc->dev,
1917                          "Legacy memcpy is enabled, things might not work\n");
1918
1919                 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1920                 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1921                 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1922         }
1923
1924         s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1925         s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1926         s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1927         s_ddev->device_free_chan_resources = edma_free_chan_resources;
1928         s_ddev->device_issue_pending = edma_issue_pending;
1929         s_ddev->device_tx_status = edma_tx_status;
1930         s_ddev->device_config = edma_slave_config;
1931         s_ddev->device_pause = edma_dma_pause;
1932         s_ddev->device_resume = edma_dma_resume;
1933         s_ddev->device_terminate_all = edma_terminate_all;
1934         s_ddev->device_synchronize = edma_synchronize;
1935
1936         s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1937         s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1938         s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1939         s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1940         s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1941
1942         s_ddev->dev = ecc->dev;
1943         INIT_LIST_HEAD(&s_ddev->channels);
1944
1945         if (memcpy_channels) {
1946                 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1947                 if (!m_ddev) {
1948                         dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1949                         memcpy_channels = NULL;
1950                         goto ch_setup;
1951                 }
1952                 ecc->dma_memcpy = m_ddev;
1953
1954                 dma_cap_zero(m_ddev->cap_mask);
1955                 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1956
1957                 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1958                 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1959                 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1960                 m_ddev->device_issue_pending = edma_issue_pending;
1961                 m_ddev->device_tx_status = edma_tx_status;
1962                 m_ddev->device_config = edma_slave_config;
1963                 m_ddev->device_pause = edma_dma_pause;
1964                 m_ddev->device_resume = edma_dma_resume;
1965                 m_ddev->device_terminate_all = edma_terminate_all;
1966                 m_ddev->device_synchronize = edma_synchronize;
1967
1968                 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1969                 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1970                 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1971                 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1972
1973                 m_ddev->dev = ecc->dev;
1974                 INIT_LIST_HEAD(&m_ddev->channels);
1975         } else if (!ecc->legacy_mode) {
1976                 dev_info(ecc->dev, "memcpy is disabled\n");
1977         }
1978
1979 ch_setup:
1980         for (i = 0; i < ecc->num_channels; i++) {
1981                 struct edma_chan *echan = &ecc->slave_chans[i];
1982                 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1983                 echan->ecc = ecc;
1984                 echan->vchan.desc_free = edma_desc_free;
1985
1986                 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1987                         vchan_init(&echan->vchan, m_ddev);
1988                 else
1989                         vchan_init(&echan->vchan, s_ddev);
1990
1991                 INIT_LIST_HEAD(&echan->node);
1992                 for (j = 0; j < EDMA_MAX_SLOTS; j++)
1993                         echan->slot[j] = -1;
1994         }
1995 }
1996
1997 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1998                               struct edma_cc *ecc)
1999 {
2000         int i;
2001         u32 value, cccfg;
2002         s8 (*queue_priority_map)[2];
2003
2004         /* Decode the eDMA3 configuration from CCCFG register */
2005         cccfg = edma_read(ecc, EDMA_CCCFG);
2006
2007         value = GET_NUM_REGN(cccfg);
2008         ecc->num_region = BIT(value);
2009
2010         value = GET_NUM_DMACH(cccfg);
2011         ecc->num_channels = BIT(value + 1);
2012
2013         value = GET_NUM_QDMACH(cccfg);
2014         ecc->num_qchannels = value * 2;
2015
2016         value = GET_NUM_PAENTRY(cccfg);
2017         ecc->num_slots = BIT(value + 4);
2018
2019         value = GET_NUM_EVQUE(cccfg);
2020         ecc->num_tc = value + 1;
2021
2022         ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2023
2024         dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2025         dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2026         dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2027         dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2028         dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2029         dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2030         dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2031
2032         /* Nothing need to be done if queue priority is provided */
2033         if (pdata->queue_priority_mapping)
2034                 return 0;
2035
2036         /*
2037          * Configure TC/queue priority as follows:
2038          * Q0 - priority 0
2039          * Q1 - priority 1
2040          * Q2 - priority 2
2041          * ...
2042          * The meaning of priority numbers: 0 highest priority, 7 lowest
2043          * priority. So Q0 is the highest priority queue and the last queue has
2044          * the lowest priority.
2045          */
2046         queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2047                                           GFP_KERNEL);
2048         if (!queue_priority_map)
2049                 return -ENOMEM;
2050
2051         for (i = 0; i < ecc->num_tc; i++) {
2052                 queue_priority_map[i][0] = i;
2053                 queue_priority_map[i][1] = i;
2054         }
2055         queue_priority_map[i][0] = -1;
2056         queue_priority_map[i][1] = -1;
2057
2058         pdata->queue_priority_mapping = queue_priority_map;
2059         /* Default queue has the lowest priority */
2060         pdata->default_queue = i - 1;
2061
2062         return 0;
2063 }
2064
2065 #if IS_ENABLED(CONFIG_OF)
2066 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2067                                size_t sz)
2068 {
2069         const char pname[] = "ti,edma-xbar-event-map";
2070         struct resource res;
2071         void __iomem *xbar;
2072         s16 (*xbar_chans)[2];
2073         size_t nelm = sz / sizeof(s16);
2074         u32 shift, offset, mux;
2075         int ret, i;
2076
2077         xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2078         if (!xbar_chans)
2079                 return -ENOMEM;
2080
2081         ret = of_address_to_resource(dev->of_node, 1, &res);
2082         if (ret)
2083                 return -ENOMEM;
2084
2085         xbar = devm_ioremap(dev, res.start, resource_size(&res));
2086         if (!xbar)
2087                 return -ENOMEM;
2088
2089         ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2090                                          nelm);
2091         if (ret)
2092                 return -EIO;
2093
2094         /* Invalidate last entry for the other user of this mess */
2095         nelm >>= 1;
2096         xbar_chans[nelm][0] = -1;
2097         xbar_chans[nelm][1] = -1;
2098
2099         for (i = 0; i < nelm; i++) {
2100                 shift = (xbar_chans[i][1] & 0x03) << 3;
2101                 offset = xbar_chans[i][1] & 0xfffffffc;
2102                 mux = readl(xbar + offset);
2103                 mux &= ~(0xff << shift);
2104                 mux |= xbar_chans[i][0] << shift;
2105                 writel(mux, (xbar + offset));
2106         }
2107
2108         pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2109         return 0;
2110 }
2111
2112 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2113                                                      bool legacy_mode)
2114 {
2115         struct edma_soc_info *info;
2116         struct property *prop;
2117         int sz, ret;
2118
2119         info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2120         if (!info)
2121                 return ERR_PTR(-ENOMEM);
2122
2123         if (legacy_mode) {
2124                 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2125                                         &sz);
2126                 if (prop) {
2127                         ret = edma_xbar_event_map(dev, info, sz);
2128                         if (ret)
2129                                 return ERR_PTR(ret);
2130                 }
2131                 return info;
2132         }
2133
2134         /* Get the list of channels allocated to be used for memcpy */
2135         prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2136         if (prop) {
2137                 const char pname[] = "ti,edma-memcpy-channels";
2138                 size_t nelm = sz / sizeof(s32);
2139                 s32 *memcpy_ch;
2140
2141                 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2142                                          GFP_KERNEL);
2143                 if (!memcpy_ch)
2144                         return ERR_PTR(-ENOMEM);
2145
2146                 ret = of_property_read_u32_array(dev->of_node, pname,
2147                                                  (u32 *)memcpy_ch, nelm);
2148                 if (ret)
2149                         return ERR_PTR(ret);
2150
2151                 memcpy_ch[nelm] = -1;
2152                 info->memcpy_channels = memcpy_ch;
2153         }
2154
2155         prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2156                                 &sz);
2157         if (prop) {
2158                 const char pname[] = "ti,edma-reserved-slot-ranges";
2159                 u32 (*tmp)[2];
2160                 s16 (*rsv_slots)[2];
2161                 size_t nelm = sz / sizeof(*tmp);
2162                 struct edma_rsv_info *rsv_info;
2163                 int i;
2164
2165                 if (!nelm)
2166                         return info;
2167
2168                 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2169                 if (!tmp)
2170                         return ERR_PTR(-ENOMEM);
2171
2172                 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2173                 if (!rsv_info) {
2174                         kfree(tmp);
2175                         return ERR_PTR(-ENOMEM);
2176                 }
2177
2178                 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2179                                          GFP_KERNEL);
2180                 if (!rsv_slots) {
2181                         kfree(tmp);
2182                         return ERR_PTR(-ENOMEM);
2183                 }
2184
2185                 ret = of_property_read_u32_array(dev->of_node, pname,
2186                                                  (u32 *)tmp, nelm * 2);
2187                 if (ret) {
2188                         kfree(tmp);
2189                         return ERR_PTR(ret);
2190                 }
2191
2192                 for (i = 0; i < nelm; i++) {
2193                         rsv_slots[i][0] = tmp[i][0];
2194                         rsv_slots[i][1] = tmp[i][1];
2195                 }
2196                 rsv_slots[nelm][0] = -1;
2197                 rsv_slots[nelm][1] = -1;
2198
2199                 info->rsv = rsv_info;
2200                 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2201
2202                 kfree(tmp);
2203         }
2204
2205         return info;
2206 }
2207
2208 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2209                                       struct of_dma *ofdma)
2210 {
2211         struct edma_cc *ecc = ofdma->of_dma_data;
2212         struct dma_chan *chan = NULL;
2213         struct edma_chan *echan;
2214         int i;
2215
2216         if (!ecc || dma_spec->args_count < 1)
2217                 return NULL;
2218
2219         for (i = 0; i < ecc->num_channels; i++) {
2220                 echan = &ecc->slave_chans[i];
2221                 if (echan->ch_num == dma_spec->args[0]) {
2222                         chan = &echan->vchan.chan;
2223                         break;
2224                 }
2225         }
2226
2227         if (!chan)
2228                 return NULL;
2229
2230         if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2231                 goto out;
2232
2233         if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2234             dma_spec->args[1] < echan->ecc->num_tc) {
2235                 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2236                 goto out;
2237         }
2238
2239         return NULL;
2240 out:
2241         /* The channel is going to be used as HW synchronized */
2242         echan->hw_triggered = true;
2243         return dma_get_slave_channel(chan);
2244 }
2245 #else
2246 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2247                                                      bool legacy_mode)
2248 {
2249         return ERR_PTR(-EINVAL);
2250 }
2251
2252 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2253                                       struct of_dma *ofdma)
2254 {
2255         return NULL;
2256 }
2257 #endif
2258
2259 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2260
2261 static int edma_probe(struct platform_device *pdev)
2262 {
2263         struct edma_soc_info    *info = pdev->dev.platform_data;
2264         s8                      (*queue_priority_mapping)[2];
2265         const s16               (*reserved)[2];
2266         int                     i, irq;
2267         char                    *irq_name;
2268         struct resource         *mem;
2269         struct device_node      *node = pdev->dev.of_node;
2270         struct device           *dev = &pdev->dev;
2271         struct edma_cc          *ecc;
2272         bool                    legacy_mode = true;
2273         int ret;
2274
2275         if (node) {
2276                 const struct of_device_id *match;
2277
2278                 match = of_match_node(edma_of_ids, node);
2279                 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2280                         legacy_mode = false;
2281
2282                 info = edma_setup_info_from_dt(dev, legacy_mode);
2283                 if (IS_ERR(info)) {
2284                         dev_err(dev, "failed to get DT data\n");
2285                         return PTR_ERR(info);
2286                 }
2287         }
2288
2289         if (!info)
2290                 return -ENODEV;
2291
2292         ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2293         if (ret)
2294                 return ret;
2295
2296         ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2297         if (!ecc)
2298                 return -ENOMEM;
2299
2300         ecc->dev = dev;
2301         ecc->id = pdev->id;
2302         ecc->legacy_mode = legacy_mode;
2303         /* When booting with DT the pdev->id is -1 */
2304         if (ecc->id < 0)
2305                 ecc->id = 0;
2306
2307         mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2308         if (!mem) {
2309                 dev_dbg(dev, "mem resource not found, using index 0\n");
2310                 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2311                 if (!mem) {
2312                         dev_err(dev, "no mem resource?\n");
2313                         return -ENODEV;
2314                 }
2315         }
2316         ecc->base = devm_ioremap_resource(dev, mem);
2317         if (IS_ERR(ecc->base))
2318                 return PTR_ERR(ecc->base);
2319
2320         platform_set_drvdata(pdev, ecc);
2321
2322         pm_runtime_enable(dev);
2323         ret = pm_runtime_get_sync(dev);
2324         if (ret < 0) {
2325                 dev_err(dev, "pm_runtime_get_sync() failed\n");
2326                 pm_runtime_disable(dev);
2327                 return ret;
2328         }
2329
2330         /* Get eDMA3 configuration from IP */
2331         ret = edma_setup_from_hw(dev, info, ecc);
2332         if (ret)
2333                 goto err_disable_pm;
2334
2335         /* Allocate memory based on the information we got from the IP */
2336         ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2337                                         sizeof(*ecc->slave_chans), GFP_KERNEL);
2338
2339         ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2340                                        sizeof(unsigned long), GFP_KERNEL);
2341
2342         ecc->channels_mask = devm_kcalloc(dev,
2343                                            BITS_TO_LONGS(ecc->num_channels),
2344                                            sizeof(unsigned long), GFP_KERNEL);
2345         if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2346                 ret = -ENOMEM;
2347                 goto err_disable_pm;
2348         }
2349
2350         /* Mark all channels available initially */
2351         bitmap_fill(ecc->channels_mask, ecc->num_channels);
2352
2353         ecc->default_queue = info->default_queue;
2354
2355         if (info->rsv) {
2356                 /* Set the reserved slots in inuse list */
2357                 reserved = info->rsv->rsv_slots;
2358                 if (reserved) {
2359                         for (i = 0; reserved[i][0] != -1; i++)
2360                                 bitmap_set(ecc->slot_inuse, reserved[i][0],
2361                                            reserved[i][1]);
2362                 }
2363
2364                 /* Clear channels not usable for Linux */
2365                 reserved = info->rsv->rsv_chans;
2366                 if (reserved) {
2367                         for (i = 0; reserved[i][0] != -1; i++)
2368                                 bitmap_clear(ecc->channels_mask, reserved[i][0],
2369                                              reserved[i][1]);
2370                 }
2371         }
2372
2373         for (i = 0; i < ecc->num_slots; i++) {
2374                 /* Reset only unused - not reserved - paRAM slots */
2375                 if (!test_bit(i, ecc->slot_inuse))
2376                         edma_write_slot(ecc, i, &dummy_paramset);
2377         }
2378
2379         irq = platform_get_irq_byname(pdev, "edma3_ccint");
2380         if (irq < 0 && node)
2381                 irq = irq_of_parse_and_map(node, 0);
2382
2383         if (irq >= 0) {
2384                 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2385                                           dev_name(dev));
2386                 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2387                                        ecc);
2388                 if (ret) {
2389                         dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2390                         goto err_disable_pm;
2391                 }
2392                 ecc->ccint = irq;
2393         }
2394
2395         irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2396         if (irq < 0 && node)
2397                 irq = irq_of_parse_and_map(node, 2);
2398
2399         if (irq >= 0) {
2400                 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2401                                           dev_name(dev));
2402                 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2403                                        ecc);
2404                 if (ret) {
2405                         dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2406                         goto err_disable_pm;
2407                 }
2408                 ecc->ccerrint = irq;
2409         }
2410
2411         ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2412         if (ecc->dummy_slot < 0) {
2413                 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2414                 ret = ecc->dummy_slot;
2415                 goto err_disable_pm;
2416         }
2417
2418         queue_priority_mapping = info->queue_priority_mapping;
2419
2420         if (!ecc->legacy_mode) {
2421                 int lowest_priority = 0;
2422                 unsigned int array_max;
2423                 struct of_phandle_args tc_args;
2424
2425                 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2426                                             sizeof(*ecc->tc_list), GFP_KERNEL);
2427                 if (!ecc->tc_list) {
2428                         ret = -ENOMEM;
2429                         goto err_reg1;
2430                 }
2431
2432                 for (i = 0;; i++) {
2433                         ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2434                                                                1, i, &tc_args);
2435                         if (ret || i == ecc->num_tc)
2436                                 break;
2437
2438                         ecc->tc_list[i].node = tc_args.np;
2439                         ecc->tc_list[i].id = i;
2440                         queue_priority_mapping[i][1] = tc_args.args[0];
2441                         if (queue_priority_mapping[i][1] > lowest_priority) {
2442                                 lowest_priority = queue_priority_mapping[i][1];
2443                                 info->default_queue = i;
2444                         }
2445                 }
2446
2447                 /* See if we have optional dma-channel-mask array */
2448                 array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2449                 ret = of_property_read_variable_u32_array(node,
2450                                                 "dma-channel-mask",
2451                                                 (u32 *)ecc->channels_mask,
2452                                                 1, array_max);
2453                 if (ret > 0 && ret != array_max)
2454                         dev_warn(dev, "dma-channel-mask is not complete.\n");
2455                 else if (ret == -EOVERFLOW || ret == -ENODATA)
2456                         dev_warn(dev,
2457                                  "dma-channel-mask is out of range or empty\n");
2458         }
2459
2460         /* Event queue priority mapping */
2461         for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2462                 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2463                                               queue_priority_mapping[i][1]);
2464
2465         edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2466         edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2467         edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2468
2469         ecc->info = info;
2470
2471         /* Init the dma device and channels */
2472         edma_dma_init(ecc, legacy_mode);
2473
2474         for (i = 0; i < ecc->num_channels; i++) {
2475                 /* Do not touch reserved channels */
2476                 if (!test_bit(i, ecc->channels_mask))
2477                         continue;
2478
2479                 /* Assign all channels to the default queue */
2480                 edma_assign_channel_eventq(&ecc->slave_chans[i],
2481                                            info->default_queue);
2482                 /* Set entry slot to the dummy slot */
2483                 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2484         }
2485
2486         ecc->dma_slave.filter.map = info->slave_map;
2487         ecc->dma_slave.filter.mapcnt = info->slavecnt;
2488         ecc->dma_slave.filter.fn = edma_filter_fn;
2489
2490         ret = dma_async_device_register(&ecc->dma_slave);
2491         if (ret) {
2492                 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2493                 goto err_reg1;
2494         }
2495
2496         if (ecc->dma_memcpy) {
2497                 ret = dma_async_device_register(ecc->dma_memcpy);
2498                 if (ret) {
2499                         dev_err(dev, "memcpy ddev registration failed (%d)\n",
2500                                 ret);
2501                         dma_async_device_unregister(&ecc->dma_slave);
2502                         goto err_reg1;
2503                 }
2504         }
2505
2506         if (node)
2507                 of_dma_controller_register(node, of_edma_xlate, ecc);
2508
2509         dev_info(dev, "TI EDMA DMA engine driver\n");
2510
2511         return 0;
2512
2513 err_reg1:
2514         edma_free_slot(ecc, ecc->dummy_slot);
2515 err_disable_pm:
2516         pm_runtime_put_sync(dev);
2517         pm_runtime_disable(dev);
2518         return ret;
2519 }
2520
2521 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2522 {
2523         struct edma_chan *echan, *_echan;
2524
2525         list_for_each_entry_safe(echan, _echan,
2526                         &dmadev->channels, vchan.chan.device_node) {
2527                 list_del(&echan->vchan.chan.device_node);
2528                 tasklet_kill(&echan->vchan.task);
2529         }
2530 }
2531
2532 static int edma_remove(struct platform_device *pdev)
2533 {
2534         struct device *dev = &pdev->dev;
2535         struct edma_cc *ecc = dev_get_drvdata(dev);
2536
2537         devm_free_irq(dev, ecc->ccint, ecc);
2538         devm_free_irq(dev, ecc->ccerrint, ecc);
2539
2540         edma_cleanupp_vchan(&ecc->dma_slave);
2541
2542         if (dev->of_node)
2543                 of_dma_controller_free(dev->of_node);
2544         dma_async_device_unregister(&ecc->dma_slave);
2545         if (ecc->dma_memcpy)
2546                 dma_async_device_unregister(ecc->dma_memcpy);
2547         edma_free_slot(ecc, ecc->dummy_slot);
2548         pm_runtime_put_sync(dev);
2549         pm_runtime_disable(dev);
2550
2551         return 0;
2552 }
2553
2554 #ifdef CONFIG_PM_SLEEP
2555 static int edma_pm_suspend(struct device *dev)
2556 {
2557         struct edma_cc *ecc = dev_get_drvdata(dev);
2558         struct edma_chan *echan = ecc->slave_chans;
2559         int i;
2560
2561         for (i = 0; i < ecc->num_channels; i++) {
2562                 if (echan[i].alloced)
2563                         edma_setup_interrupt(&echan[i], false);
2564         }
2565
2566         return 0;
2567 }
2568
2569 static int edma_pm_resume(struct device *dev)
2570 {
2571         struct edma_cc *ecc = dev_get_drvdata(dev);
2572         struct edma_chan *echan = ecc->slave_chans;
2573         int i;
2574         s8 (*queue_priority_mapping)[2];
2575
2576         /* re initialize dummy slot to dummy param set */
2577         edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2578
2579         queue_priority_mapping = ecc->info->queue_priority_mapping;
2580
2581         /* Event queue priority mapping */
2582         for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2583                 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2584                                               queue_priority_mapping[i][1]);
2585
2586         for (i = 0; i < ecc->num_channels; i++) {
2587                 if (echan[i].alloced) {
2588                         /* ensure access through shadow region 0 */
2589                         edma_or_array2(ecc, EDMA_DRAE, 0,
2590                                        EDMA_REG_ARRAY_INDEX(i),
2591                                        EDMA_CHANNEL_BIT(i));
2592
2593                         edma_setup_interrupt(&echan[i], true);
2594
2595                         /* Set up channel -> slot mapping for the entry slot */
2596                         edma_set_chmap(&echan[i], echan[i].slot[0]);
2597                 }
2598         }
2599
2600         return 0;
2601 }
2602 #endif
2603
2604 static const struct dev_pm_ops edma_pm_ops = {
2605         SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2606 };
2607
2608 static struct platform_driver edma_driver = {
2609         .probe          = edma_probe,
2610         .remove         = edma_remove,
2611         .driver = {
2612                 .name   = "edma",
2613                 .pm     = &edma_pm_ops,
2614                 .of_match_table = edma_of_ids,
2615         },
2616 };
2617
2618 static int edma_tptc_probe(struct platform_device *pdev)
2619 {
2620         pm_runtime_enable(&pdev->dev);
2621         return pm_runtime_get_sync(&pdev->dev);
2622 }
2623
2624 static struct platform_driver edma_tptc_driver = {
2625         .probe          = edma_tptc_probe,
2626         .driver = {
2627                 .name   = "edma3-tptc",
2628                 .of_match_table = edma_tptc_of_ids,
2629         },
2630 };
2631
2632 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2633 {
2634         bool match = false;
2635
2636         if (chan->device->dev->driver == &edma_driver.driver) {
2637                 struct edma_chan *echan = to_edma_chan(chan);
2638                 unsigned ch_req = *(unsigned *)param;
2639                 if (ch_req == echan->ch_num) {
2640                         /* The channel is going to be used as HW synchronized */
2641                         echan->hw_triggered = true;
2642                         match = true;
2643                 }
2644         }
2645         return match;
2646 }
2647
2648 static int edma_init(void)
2649 {
2650         int ret;
2651
2652         ret = platform_driver_register(&edma_tptc_driver);
2653         if (ret)
2654                 return ret;
2655
2656         return platform_driver_register(&edma_driver);
2657 }
2658 subsys_initcall(edma_init);
2659
2660 static void __exit edma_exit(void)
2661 {
2662         platform_driver_unregister(&edma_driver);
2663         platform_driver_unregister(&edma_tptc_driver);
2664 }
2665 module_exit(edma_exit);
2666
2667 MODULE_AUTHOR("Matt Porter <[email protected]>");
2668 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2669 MODULE_LICENSE("GPL v2");
This page took 0.188577 seconds and 4 git commands to generate.