2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <linux/splice.h>
41 #include <crypto/aead.h>
43 #include <net/strparser.h>
46 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
47 unsigned int recursion_level)
49 int start = skb_headlen(skb);
50 int i, chunk = start - offset;
51 struct sk_buff *frag_iter;
54 if (unlikely(recursion_level >= 24))
67 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
70 WARN_ON(start > offset + len);
72 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
86 if (unlikely(skb_has_frag_list(skb))) {
87 skb_walk_frags(skb, frag_iter) {
90 WARN_ON(start > offset + len);
92 end = start + frag_iter->len;
97 ret = __skb_nsg(frag_iter, offset - start, chunk,
99 if (unlikely(ret < 0))
114 /* Return the number of scatterlist elements required to completely map the
115 * skb, or -EMSGSIZE if the recursion depth is exceeded.
117 static int skb_nsg(struct sk_buff *skb, int offset, int len)
119 return __skb_nsg(skb, offset, len, 0);
122 static int padding_length(struct tls_sw_context_rx *ctx,
123 struct tls_prot_info *prot, struct sk_buff *skb)
125 struct strp_msg *rxm = strp_msg(skb);
128 /* Determine zero-padding length */
129 if (prot->version == TLS_1_3_VERSION) {
130 char content_type = 0;
134 while (content_type == 0) {
135 if (back > rxm->full_len - prot->prepend_size)
137 err = skb_copy_bits(skb,
138 rxm->offset + rxm->full_len - back,
147 ctx->control = content_type;
152 static void tls_decrypt_done(struct crypto_async_request *req, int err)
154 struct aead_request *aead_req = (struct aead_request *)req;
155 struct scatterlist *sgout = aead_req->dst;
156 struct scatterlist *sgin = aead_req->src;
157 struct tls_sw_context_rx *ctx;
158 struct tls_context *tls_ctx;
159 struct tls_prot_info *prot;
160 struct scatterlist *sg;
165 skb = (struct sk_buff *)req->data;
166 tls_ctx = tls_get_ctx(skb->sk);
167 ctx = tls_sw_ctx_rx(tls_ctx);
168 prot = &tls_ctx->prot_info;
170 /* Propagate if there was an err */
173 TLS_INC_STATS(sock_net(skb->sk),
174 LINUX_MIB_TLSDECRYPTERROR);
175 ctx->async_wait.err = err;
176 tls_err_abort(skb->sk, err);
178 struct strp_msg *rxm = strp_msg(skb);
181 pad = padding_length(ctx, prot, skb);
183 ctx->async_wait.err = pad;
184 tls_err_abort(skb->sk, pad);
186 rxm->full_len -= pad;
187 rxm->offset += prot->prepend_size;
188 rxm->full_len -= prot->overhead_size;
192 /* After using skb->sk to propagate sk through crypto async callback
193 * we need to NULL it again.
198 /* Free the destination pages if skb was not decrypted inplace */
200 /* Skip the first S/G entry as it points to AAD */
201 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
204 put_page(sg_page(sg));
210 spin_lock_bh(&ctx->decrypt_compl_lock);
211 pending = atomic_dec_return(&ctx->decrypt_pending);
213 if (!pending && ctx->async_notify)
214 complete(&ctx->async_wait.completion);
215 spin_unlock_bh(&ctx->decrypt_compl_lock);
218 static int tls_do_decryption(struct sock *sk,
220 struct scatterlist *sgin,
221 struct scatterlist *sgout,
224 struct aead_request *aead_req,
227 struct tls_context *tls_ctx = tls_get_ctx(sk);
228 struct tls_prot_info *prot = &tls_ctx->prot_info;
229 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
232 aead_request_set_tfm(aead_req, ctx->aead_recv);
233 aead_request_set_ad(aead_req, prot->aad_size);
234 aead_request_set_crypt(aead_req, sgin, sgout,
235 data_len + prot->tag_size,
239 /* Using skb->sk to push sk through to crypto async callback
240 * handler. This allows propagating errors up to the socket
241 * if needed. It _must_ be cleared in the async handler
242 * before consume_skb is called. We _know_ skb->sk is NULL
243 * because it is a clone from strparser.
246 aead_request_set_callback(aead_req,
247 CRYPTO_TFM_REQ_MAY_BACKLOG,
248 tls_decrypt_done, skb);
249 atomic_inc(&ctx->decrypt_pending);
251 aead_request_set_callback(aead_req,
252 CRYPTO_TFM_REQ_MAY_BACKLOG,
253 crypto_req_done, &ctx->async_wait);
256 ret = crypto_aead_decrypt(aead_req);
257 if (ret == -EINPROGRESS) {
261 ret = crypto_wait_req(ret, &ctx->async_wait);
265 atomic_dec(&ctx->decrypt_pending);
270 static void tls_trim_both_msgs(struct sock *sk, int target_size)
272 struct tls_context *tls_ctx = tls_get_ctx(sk);
273 struct tls_prot_info *prot = &tls_ctx->prot_info;
274 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
275 struct tls_rec *rec = ctx->open_rec;
277 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
279 target_size += prot->overhead_size;
280 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
283 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
285 struct tls_context *tls_ctx = tls_get_ctx(sk);
286 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
287 struct tls_rec *rec = ctx->open_rec;
288 struct sk_msg *msg_en = &rec->msg_encrypted;
290 return sk_msg_alloc(sk, msg_en, len, 0);
293 static int tls_clone_plaintext_msg(struct sock *sk, int required)
295 struct tls_context *tls_ctx = tls_get_ctx(sk);
296 struct tls_prot_info *prot = &tls_ctx->prot_info;
297 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
298 struct tls_rec *rec = ctx->open_rec;
299 struct sk_msg *msg_pl = &rec->msg_plaintext;
300 struct sk_msg *msg_en = &rec->msg_encrypted;
303 /* We add page references worth len bytes from encrypted sg
304 * at the end of plaintext sg. It is guaranteed that msg_en
305 * has enough required room (ensured by caller).
307 len = required - msg_pl->sg.size;
309 /* Skip initial bytes in msg_en's data to be able to use
310 * same offset of both plain and encrypted data.
312 skip = prot->prepend_size + msg_pl->sg.size;
314 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
317 static struct tls_rec *tls_get_rec(struct sock *sk)
319 struct tls_context *tls_ctx = tls_get_ctx(sk);
320 struct tls_prot_info *prot = &tls_ctx->prot_info;
321 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
322 struct sk_msg *msg_pl, *msg_en;
326 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
328 rec = kzalloc(mem_size, sk->sk_allocation);
332 msg_pl = &rec->msg_plaintext;
333 msg_en = &rec->msg_encrypted;
338 sg_init_table(rec->sg_aead_in, 2);
339 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
340 sg_unmark_end(&rec->sg_aead_in[1]);
342 sg_init_table(rec->sg_aead_out, 2);
343 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
344 sg_unmark_end(&rec->sg_aead_out[1]);
349 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
351 sk_msg_free(sk, &rec->msg_encrypted);
352 sk_msg_free(sk, &rec->msg_plaintext);
356 static void tls_free_open_rec(struct sock *sk)
358 struct tls_context *tls_ctx = tls_get_ctx(sk);
359 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
360 struct tls_rec *rec = ctx->open_rec;
363 tls_free_rec(sk, rec);
364 ctx->open_rec = NULL;
368 int tls_tx_records(struct sock *sk, int flags)
370 struct tls_context *tls_ctx = tls_get_ctx(sk);
371 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
372 struct tls_rec *rec, *tmp;
373 struct sk_msg *msg_en;
374 int tx_flags, rc = 0;
376 if (tls_is_partially_sent_record(tls_ctx)) {
377 rec = list_first_entry(&ctx->tx_list,
378 struct tls_rec, list);
381 tx_flags = rec->tx_flags;
385 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
389 /* Full record has been transmitted.
390 * Remove the head of tx_list
392 list_del(&rec->list);
393 sk_msg_free(sk, &rec->msg_plaintext);
397 /* Tx all ready records */
398 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
399 if (READ_ONCE(rec->tx_ready)) {
401 tx_flags = rec->tx_flags;
405 msg_en = &rec->msg_encrypted;
406 rc = tls_push_sg(sk, tls_ctx,
407 &msg_en->sg.data[msg_en->sg.curr],
412 list_del(&rec->list);
413 sk_msg_free(sk, &rec->msg_plaintext);
421 if (rc < 0 && rc != -EAGAIN)
422 tls_err_abort(sk, EBADMSG);
427 static void tls_encrypt_done(struct crypto_async_request *req, int err)
429 struct aead_request *aead_req = (struct aead_request *)req;
430 struct sock *sk = req->data;
431 struct tls_context *tls_ctx = tls_get_ctx(sk);
432 struct tls_prot_info *prot = &tls_ctx->prot_info;
433 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
434 struct scatterlist *sge;
435 struct sk_msg *msg_en;
440 rec = container_of(aead_req, struct tls_rec, aead_req);
441 msg_en = &rec->msg_encrypted;
443 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
444 sge->offset -= prot->prepend_size;
445 sge->length += prot->prepend_size;
447 /* Check if error is previously set on socket */
448 if (err || sk->sk_err) {
451 /* If err is already set on socket, return the same code */
453 ctx->async_wait.err = sk->sk_err;
455 ctx->async_wait.err = err;
456 tls_err_abort(sk, err);
461 struct tls_rec *first_rec;
463 /* Mark the record as ready for transmission */
464 smp_store_mb(rec->tx_ready, true);
466 /* If received record is at head of tx_list, schedule tx */
467 first_rec = list_first_entry(&ctx->tx_list,
468 struct tls_rec, list);
469 if (rec == first_rec)
473 spin_lock_bh(&ctx->encrypt_compl_lock);
474 pending = atomic_dec_return(&ctx->encrypt_pending);
476 if (!pending && ctx->async_notify)
477 complete(&ctx->async_wait.completion);
478 spin_unlock_bh(&ctx->encrypt_compl_lock);
483 /* Schedule the transmission */
484 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
485 schedule_delayed_work(&ctx->tx_work.work, 1);
488 static int tls_do_encryption(struct sock *sk,
489 struct tls_context *tls_ctx,
490 struct tls_sw_context_tx *ctx,
491 struct aead_request *aead_req,
492 size_t data_len, u32 start)
494 struct tls_prot_info *prot = &tls_ctx->prot_info;
495 struct tls_rec *rec = ctx->open_rec;
496 struct sk_msg *msg_en = &rec->msg_encrypted;
497 struct scatterlist *sge = sk_msg_elem(msg_en, start);
498 int rc, iv_offset = 0;
500 /* For CCM based ciphers, first byte of IV is a constant */
501 switch (prot->cipher_type) {
502 case TLS_CIPHER_AES_CCM_128:
503 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
506 case TLS_CIPHER_SM4_CCM:
507 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
512 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
513 prot->iv_size + prot->salt_size);
515 xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq);
517 sge->offset += prot->prepend_size;
518 sge->length -= prot->prepend_size;
520 msg_en->sg.curr = start;
522 aead_request_set_tfm(aead_req, ctx->aead_send);
523 aead_request_set_ad(aead_req, prot->aad_size);
524 aead_request_set_crypt(aead_req, rec->sg_aead_in,
526 data_len, rec->iv_data);
528 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
529 tls_encrypt_done, sk);
531 /* Add the record in tx_list */
532 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
533 atomic_inc(&ctx->encrypt_pending);
535 rc = crypto_aead_encrypt(aead_req);
536 if (!rc || rc != -EINPROGRESS) {
537 atomic_dec(&ctx->encrypt_pending);
538 sge->offset -= prot->prepend_size;
539 sge->length += prot->prepend_size;
543 WRITE_ONCE(rec->tx_ready, true);
544 } else if (rc != -EINPROGRESS) {
545 list_del(&rec->list);
549 /* Unhook the record from context if encryption is not failure */
550 ctx->open_rec = NULL;
551 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
555 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
556 struct tls_rec **to, struct sk_msg *msg_opl,
557 struct sk_msg *msg_oen, u32 split_point,
558 u32 tx_overhead_size, u32 *orig_end)
560 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
561 struct scatterlist *sge, *osge, *nsge;
562 u32 orig_size = msg_opl->sg.size;
563 struct scatterlist tmp = { };
564 struct sk_msg *msg_npl;
568 new = tls_get_rec(sk);
571 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
572 tx_overhead_size, 0);
574 tls_free_rec(sk, new);
578 *orig_end = msg_opl->sg.end;
579 i = msg_opl->sg.start;
580 sge = sk_msg_elem(msg_opl, i);
581 while (apply && sge->length) {
582 if (sge->length > apply) {
583 u32 len = sge->length - apply;
585 get_page(sg_page(sge));
586 sg_set_page(&tmp, sg_page(sge), len,
587 sge->offset + apply);
592 apply -= sge->length;
593 bytes += sge->length;
596 sk_msg_iter_var_next(i);
597 if (i == msg_opl->sg.end)
599 sge = sk_msg_elem(msg_opl, i);
603 msg_opl->sg.curr = i;
604 msg_opl->sg.copybreak = 0;
605 msg_opl->apply_bytes = 0;
606 msg_opl->sg.size = bytes;
608 msg_npl = &new->msg_plaintext;
609 msg_npl->apply_bytes = apply;
610 msg_npl->sg.size = orig_size - bytes;
612 j = msg_npl->sg.start;
613 nsge = sk_msg_elem(msg_npl, j);
615 memcpy(nsge, &tmp, sizeof(*nsge));
616 sk_msg_iter_var_next(j);
617 nsge = sk_msg_elem(msg_npl, j);
620 osge = sk_msg_elem(msg_opl, i);
621 while (osge->length) {
622 memcpy(nsge, osge, sizeof(*nsge));
624 sk_msg_iter_var_next(i);
625 sk_msg_iter_var_next(j);
628 osge = sk_msg_elem(msg_opl, i);
629 nsge = sk_msg_elem(msg_npl, j);
633 msg_npl->sg.curr = j;
634 msg_npl->sg.copybreak = 0;
640 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
641 struct tls_rec *from, u32 orig_end)
643 struct sk_msg *msg_npl = &from->msg_plaintext;
644 struct sk_msg *msg_opl = &to->msg_plaintext;
645 struct scatterlist *osge, *nsge;
649 sk_msg_iter_var_prev(i);
650 j = msg_npl->sg.start;
652 osge = sk_msg_elem(msg_opl, i);
653 nsge = sk_msg_elem(msg_npl, j);
655 if (sg_page(osge) == sg_page(nsge) &&
656 osge->offset + osge->length == nsge->offset) {
657 osge->length += nsge->length;
658 put_page(sg_page(nsge));
661 msg_opl->sg.end = orig_end;
662 msg_opl->sg.curr = orig_end;
663 msg_opl->sg.copybreak = 0;
664 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
665 msg_opl->sg.size += msg_npl->sg.size;
667 sk_msg_free(sk, &to->msg_encrypted);
668 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
673 static int tls_push_record(struct sock *sk, int flags,
674 unsigned char record_type)
676 struct tls_context *tls_ctx = tls_get_ctx(sk);
677 struct tls_prot_info *prot = &tls_ctx->prot_info;
678 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
679 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
680 u32 i, split_point, orig_end;
681 struct sk_msg *msg_pl, *msg_en;
682 struct aead_request *req;
689 msg_pl = &rec->msg_plaintext;
690 msg_en = &rec->msg_encrypted;
692 split_point = msg_pl->apply_bytes;
693 split = split_point && split_point < msg_pl->sg.size;
694 if (unlikely((!split &&
696 prot->overhead_size > msg_en->sg.size) ||
699 prot->overhead_size > msg_en->sg.size))) {
701 split_point = msg_en->sg.size;
704 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
705 split_point, prot->overhead_size,
709 /* This can happen if above tls_split_open_record allocates
710 * a single large encryption buffer instead of two smaller
711 * ones. In this case adjust pointers and continue without
714 if (!msg_pl->sg.size) {
715 tls_merge_open_record(sk, rec, tmp, orig_end);
716 msg_pl = &rec->msg_plaintext;
717 msg_en = &rec->msg_encrypted;
720 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
721 prot->overhead_size);
724 rec->tx_flags = flags;
725 req = &rec->aead_req;
728 sk_msg_iter_var_prev(i);
730 rec->content_type = record_type;
731 if (prot->version == TLS_1_3_VERSION) {
732 /* Add content type to end of message. No padding added */
733 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
734 sg_mark_end(&rec->sg_content_type);
735 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
736 &rec->sg_content_type);
738 sg_mark_end(sk_msg_elem(msg_pl, i));
741 if (msg_pl->sg.end < msg_pl->sg.start) {
742 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
743 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
747 i = msg_pl->sg.start;
748 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
751 sk_msg_iter_var_prev(i);
752 sg_mark_end(sk_msg_elem(msg_en, i));
754 i = msg_en->sg.start;
755 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
757 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
758 tls_ctx->tx.rec_seq, record_type, prot);
760 tls_fill_prepend(tls_ctx,
761 page_address(sg_page(&msg_en->sg.data[i])) +
762 msg_en->sg.data[i].offset,
763 msg_pl->sg.size + prot->tail_size,
766 tls_ctx->pending_open_record_frags = false;
768 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
769 msg_pl->sg.size + prot->tail_size, i);
771 if (rc != -EINPROGRESS) {
772 tls_err_abort(sk, EBADMSG);
774 tls_ctx->pending_open_record_frags = true;
775 tls_merge_open_record(sk, rec, tmp, orig_end);
778 ctx->async_capable = 1;
781 msg_pl = &tmp->msg_plaintext;
782 msg_en = &tmp->msg_encrypted;
783 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
784 tls_ctx->pending_open_record_frags = true;
788 return tls_tx_records(sk, flags);
791 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
792 bool full_record, u8 record_type,
793 ssize_t *copied, int flags)
795 struct tls_context *tls_ctx = tls_get_ctx(sk);
796 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
797 struct sk_msg msg_redir = { };
798 struct sk_psock *psock;
799 struct sock *sk_redir;
805 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
806 psock = sk_psock_get(sk);
807 if (!psock || !policy) {
808 err = tls_push_record(sk, flags, record_type);
809 if (err && sk->sk_err == EBADMSG) {
810 *copied -= sk_msg_free(sk, msg);
811 tls_free_open_rec(sk);
815 sk_psock_put(sk, psock);
819 enospc = sk_msg_full(msg);
820 if (psock->eval == __SK_NONE) {
821 delta = msg->sg.size;
822 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
823 delta -= msg->sg.size;
825 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
826 !enospc && !full_record) {
832 if (msg->apply_bytes && msg->apply_bytes < send)
833 send = msg->apply_bytes;
835 switch (psock->eval) {
837 err = tls_push_record(sk, flags, record_type);
838 if (err && sk->sk_err == EBADMSG) {
839 *copied -= sk_msg_free(sk, msg);
840 tls_free_open_rec(sk);
846 sk_redir = psock->sk_redir;
847 memcpy(&msg_redir, msg, sizeof(*msg));
848 if (msg->apply_bytes < send)
849 msg->apply_bytes = 0;
851 msg->apply_bytes -= send;
852 sk_msg_return_zero(sk, msg, send);
853 msg->sg.size -= send;
855 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
858 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
861 if (msg->sg.size == 0)
862 tls_free_open_rec(sk);
866 sk_msg_free_partial(sk, msg, send);
867 if (msg->apply_bytes < send)
868 msg->apply_bytes = 0;
870 msg->apply_bytes -= send;
871 if (msg->sg.size == 0)
872 tls_free_open_rec(sk);
873 *copied -= (send + delta);
878 bool reset_eval = !ctx->open_rec;
882 msg = &rec->msg_plaintext;
883 if (!msg->apply_bytes)
887 psock->eval = __SK_NONE;
888 if (psock->sk_redir) {
889 sock_put(psock->sk_redir);
890 psock->sk_redir = NULL;
897 sk_psock_put(sk, psock);
901 static int tls_sw_push_pending_record(struct sock *sk, int flags)
903 struct tls_context *tls_ctx = tls_get_ctx(sk);
904 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
905 struct tls_rec *rec = ctx->open_rec;
906 struct sk_msg *msg_pl;
912 msg_pl = &rec->msg_plaintext;
913 copied = msg_pl->sg.size;
917 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
921 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
923 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
924 struct tls_context *tls_ctx = tls_get_ctx(sk);
925 struct tls_prot_info *prot = &tls_ctx->prot_info;
926 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
927 bool async_capable = ctx->async_capable;
928 unsigned char record_type = TLS_RECORD_TYPE_DATA;
929 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
930 bool eor = !(msg->msg_flags & MSG_MORE);
933 struct sk_msg *msg_pl, *msg_en;
944 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
948 mutex_lock(&tls_ctx->tx_lock);
951 if (unlikely(msg->msg_controllen)) {
952 ret = tls_proccess_cmsg(sk, msg, &record_type);
954 if (ret == -EINPROGRESS)
956 else if (ret != -EAGAIN)
961 while (msg_data_left(msg)) {
970 rec = ctx->open_rec = tls_get_rec(sk);
976 msg_pl = &rec->msg_plaintext;
977 msg_en = &rec->msg_encrypted;
979 orig_size = msg_pl->sg.size;
981 try_to_copy = msg_data_left(msg);
982 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
983 if (try_to_copy >= record_room) {
984 try_to_copy = record_room;
988 required_size = msg_pl->sg.size + try_to_copy +
991 if (!sk_stream_memory_free(sk))
992 goto wait_for_sndbuf;
995 ret = tls_alloc_encrypted_msg(sk, required_size);
998 goto wait_for_memory;
1000 /* Adjust try_to_copy according to the amount that was
1001 * actually allocated. The difference is due
1002 * to max sg elements limit
1004 try_to_copy -= required_size - msg_en->sg.size;
1008 if (!is_kvec && (full_record || eor) && !async_capable) {
1009 u32 first = msg_pl->sg.end;
1011 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1012 msg_pl, try_to_copy);
1014 goto fallback_to_reg_send;
1017 copied += try_to_copy;
1019 sk_msg_sg_copy_set(msg_pl, first);
1020 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1021 record_type, &copied,
1024 if (ret == -EINPROGRESS)
1026 else if (ret == -ENOMEM)
1027 goto wait_for_memory;
1028 else if (ctx->open_rec && ret == -ENOSPC)
1030 else if (ret != -EAGAIN)
1035 copied -= try_to_copy;
1036 sk_msg_sg_copy_clear(msg_pl, first);
1037 iov_iter_revert(&msg->msg_iter,
1038 msg_pl->sg.size - orig_size);
1039 fallback_to_reg_send:
1040 sk_msg_trim(sk, msg_pl, orig_size);
1043 required_size = msg_pl->sg.size + try_to_copy;
1045 ret = tls_clone_plaintext_msg(sk, required_size);
1050 /* Adjust try_to_copy according to the amount that was
1051 * actually allocated. The difference is due
1052 * to max sg elements limit
1054 try_to_copy -= required_size - msg_pl->sg.size;
1056 sk_msg_trim(sk, msg_en,
1057 msg_pl->sg.size + prot->overhead_size);
1061 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1062 msg_pl, try_to_copy);
1067 /* Open records defined only if successfully copied, otherwise
1068 * we would trim the sg but not reset the open record frags.
1070 tls_ctx->pending_open_record_frags = true;
1071 copied += try_to_copy;
1072 if (full_record || eor) {
1073 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1074 record_type, &copied,
1077 if (ret == -EINPROGRESS)
1079 else if (ret == -ENOMEM)
1080 goto wait_for_memory;
1081 else if (ret != -EAGAIN) {
1092 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1094 ret = sk_stream_wait_memory(sk, &timeo);
1098 tls_trim_both_msgs(sk, orig_size);
1102 if (ctx->open_rec && msg_en->sg.size < required_size)
1103 goto alloc_encrypted;
1108 } else if (num_zc) {
1109 /* Wait for pending encryptions to get completed */
1110 spin_lock_bh(&ctx->encrypt_compl_lock);
1111 ctx->async_notify = true;
1113 pending = atomic_read(&ctx->encrypt_pending);
1114 spin_unlock_bh(&ctx->encrypt_compl_lock);
1116 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1118 reinit_completion(&ctx->async_wait.completion);
1120 /* There can be no concurrent accesses, since we have no
1121 * pending encrypt operations
1123 WRITE_ONCE(ctx->async_notify, false);
1125 if (ctx->async_wait.err) {
1126 ret = ctx->async_wait.err;
1131 /* Transmit if any encryptions have completed */
1132 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1133 cancel_delayed_work(&ctx->tx_work.work);
1134 tls_tx_records(sk, msg->msg_flags);
1138 ret = sk_stream_error(sk, msg->msg_flags, ret);
1141 mutex_unlock(&tls_ctx->tx_lock);
1142 return copied > 0 ? copied : ret;
1145 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1146 int offset, size_t size, int flags)
1148 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1149 struct tls_context *tls_ctx = tls_get_ctx(sk);
1150 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1151 struct tls_prot_info *prot = &tls_ctx->prot_info;
1152 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1153 struct sk_msg *msg_pl;
1154 struct tls_rec *rec;
1162 eor = !(flags & MSG_SENDPAGE_NOTLAST);
1163 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1165 /* Call the sk_stream functions to manage the sndbuf mem. */
1167 size_t copy, required_size;
1175 rec = ctx->open_rec;
1177 rec = ctx->open_rec = tls_get_rec(sk);
1183 msg_pl = &rec->msg_plaintext;
1185 full_record = false;
1186 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1188 if (copy >= record_room) {
1193 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1195 if (!sk_stream_memory_free(sk))
1196 goto wait_for_sndbuf;
1198 ret = tls_alloc_encrypted_msg(sk, required_size);
1201 goto wait_for_memory;
1203 /* Adjust copy according to the amount that was
1204 * actually allocated. The difference is due
1205 * to max sg elements limit
1207 copy -= required_size - msg_pl->sg.size;
1211 sk_msg_page_add(msg_pl, page, copy, offset);
1212 sk_mem_charge(sk, copy);
1218 tls_ctx->pending_open_record_frags = true;
1219 if (full_record || eor || sk_msg_full(msg_pl)) {
1220 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1221 record_type, &copied, flags);
1223 if (ret == -EINPROGRESS)
1225 else if (ret == -ENOMEM)
1226 goto wait_for_memory;
1227 else if (ret != -EAGAIN) {
1236 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1238 ret = sk_stream_wait_memory(sk, &timeo);
1241 tls_trim_both_msgs(sk, msg_pl->sg.size);
1250 /* Transmit if any encryptions have completed */
1251 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1252 cancel_delayed_work(&ctx->tx_work.work);
1253 tls_tx_records(sk, flags);
1257 ret = sk_stream_error(sk, flags, ret);
1258 return copied > 0 ? copied : ret;
1261 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1262 int offset, size_t size, int flags)
1264 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1265 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1266 MSG_NO_SHARED_FRAGS))
1269 return tls_sw_do_sendpage(sk, page, offset, size, flags);
1272 int tls_sw_sendpage(struct sock *sk, struct page *page,
1273 int offset, size_t size, int flags)
1275 struct tls_context *tls_ctx = tls_get_ctx(sk);
1278 if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1279 MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1282 mutex_lock(&tls_ctx->tx_lock);
1284 ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1286 mutex_unlock(&tls_ctx->tx_lock);
1290 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1291 bool nonblock, long timeo, int *err)
1293 struct tls_context *tls_ctx = tls_get_ctx(sk);
1294 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1295 struct sk_buff *skb;
1296 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1298 while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1300 *err = sock_error(sk);
1304 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1305 __strp_unpause(&ctx->strp);
1307 return ctx->recv_pkt;
1310 if (sk->sk_shutdown & RCV_SHUTDOWN)
1313 if (sock_flag(sk, SOCK_DONE))
1316 if (nonblock || !timeo) {
1321 add_wait_queue(sk_sleep(sk), &wait);
1322 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1323 sk_wait_event(sk, &timeo,
1324 ctx->recv_pkt != skb ||
1325 !sk_psock_queue_empty(psock),
1327 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1328 remove_wait_queue(sk_sleep(sk), &wait);
1330 /* Handle signals */
1331 if (signal_pending(current)) {
1332 *err = sock_intr_errno(timeo);
1340 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1341 int length, int *pages_used,
1342 unsigned int *size_used,
1343 struct scatterlist *to,
1346 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1347 struct page *pages[MAX_SKB_FRAGS];
1348 unsigned int size = *size_used;
1349 ssize_t copied, use;
1352 while (length > 0) {
1354 maxpages = to_max_pages - num_elem;
1355 if (maxpages == 0) {
1359 copied = iov_iter_get_pages(from, pages,
1367 iov_iter_advance(from, copied);
1372 use = min_t(int, copied, PAGE_SIZE - offset);
1374 sg_set_page(&to[num_elem],
1375 pages[i], use, offset);
1376 sg_unmark_end(&to[num_elem]);
1377 /* We do not uncharge memory from this API */
1386 /* Mark the end in the last sg entry if newly added */
1387 if (num_elem > *pages_used)
1388 sg_mark_end(&to[num_elem - 1]);
1391 iov_iter_revert(from, size - *size_used);
1393 *pages_used = num_elem;
1398 /* This function decrypts the input skb into either out_iov or in out_sg
1399 * or in skb buffers itself. The input parameter 'zc' indicates if
1400 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1401 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1402 * NULL, then the decryption happens inside skb buffers itself, i.e.
1403 * zero-copy gets disabled and 'zc' is updated.
1406 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1407 struct iov_iter *out_iov,
1408 struct scatterlist *out_sg,
1409 int *chunk, bool *zc, bool async)
1411 struct tls_context *tls_ctx = tls_get_ctx(sk);
1412 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1413 struct tls_prot_info *prot = &tls_ctx->prot_info;
1414 struct strp_msg *rxm = strp_msg(skb);
1415 int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1416 struct aead_request *aead_req;
1417 struct sk_buff *unused;
1418 u8 *aad, *iv, *mem = NULL;
1419 struct scatterlist *sgin = NULL;
1420 struct scatterlist *sgout = NULL;
1421 const int data_len = rxm->full_len - prot->overhead_size +
1425 if (*zc && (out_iov || out_sg)) {
1427 n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1429 n_sgout = sg_nents(out_sg);
1430 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1431 rxm->full_len - prot->prepend_size);
1435 n_sgin = skb_cow_data(skb, 0, &unused);
1441 /* Increment to accommodate AAD */
1442 n_sgin = n_sgin + 1;
1444 nsg = n_sgin + n_sgout;
1446 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1447 mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1448 mem_size = mem_size + prot->aad_size;
1449 mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1451 /* Allocate a single block of memory which contains
1452 * aead_req || sgin[] || sgout[] || aad || iv.
1453 * This order achieves correct alignment for aead_req, sgin, sgout.
1455 mem = kmalloc(mem_size, sk->sk_allocation);
1459 /* Segment the allocated memory */
1460 aead_req = (struct aead_request *)mem;
1461 sgin = (struct scatterlist *)(mem + aead_size);
1462 sgout = sgin + n_sgin;
1463 aad = (u8 *)(sgout + n_sgout);
1464 iv = aad + prot->aad_size;
1466 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1467 switch (prot->cipher_type) {
1468 case TLS_CIPHER_AES_CCM_128:
1469 iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1472 case TLS_CIPHER_SM4_CCM:
1473 iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1479 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1480 iv + iv_offset + prot->salt_size,
1486 if (prot->version == TLS_1_3_VERSION ||
1487 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1488 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1489 crypto_aead_ivsize(ctx->aead_recv));
1491 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1493 xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq);
1496 tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1498 tls_ctx->rx.rec_seq, ctx->control, prot);
1501 sg_init_table(sgin, n_sgin);
1502 sg_set_buf(&sgin[0], aad, prot->aad_size);
1503 err = skb_to_sgvec(skb, &sgin[1],
1504 rxm->offset + prot->prepend_size,
1505 rxm->full_len - prot->prepend_size);
1513 sg_init_table(sgout, n_sgout);
1514 sg_set_buf(&sgout[0], aad, prot->aad_size);
1517 err = tls_setup_from_iter(sk, out_iov, data_len,
1518 &pages, chunk, &sgout[1],
1521 goto fallback_to_reg_recv;
1522 } else if (out_sg) {
1523 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1525 goto fallback_to_reg_recv;
1528 fallback_to_reg_recv:
1535 /* Prepare and submit AEAD request */
1536 err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1537 data_len, aead_req, async);
1538 if (err == -EINPROGRESS)
1541 /* Release the pages in case iov was mapped to pages */
1542 for (; pages > 0; pages--)
1543 put_page(sg_page(&sgout[pages]));
1549 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1550 struct iov_iter *dest, int *chunk, bool *zc,
1553 struct tls_context *tls_ctx = tls_get_ctx(sk);
1554 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1555 struct tls_prot_info *prot = &tls_ctx->prot_info;
1556 struct strp_msg *rxm = strp_msg(skb);
1559 if (!ctx->decrypted) {
1560 if (tls_ctx->rx_conf == TLS_HW) {
1561 err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1566 /* Still not decrypted after tls_device */
1567 if (!ctx->decrypted) {
1568 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1571 if (err == -EINPROGRESS)
1572 tls_advance_record_sn(sk, prot,
1574 else if (err == -EBADMSG)
1575 TLS_INC_STATS(sock_net(sk),
1576 LINUX_MIB_TLSDECRYPTERROR);
1583 pad = padding_length(ctx, prot, skb);
1587 rxm->full_len -= pad;
1588 rxm->offset += prot->prepend_size;
1589 rxm->full_len -= prot->overhead_size;
1590 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1592 ctx->saved_data_ready(sk);
1600 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1601 struct scatterlist *sgout)
1606 return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1609 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1612 struct tls_context *tls_ctx = tls_get_ctx(sk);
1613 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1616 struct strp_msg *rxm = strp_msg(skb);
1618 if (len < rxm->full_len) {
1620 rxm->full_len -= len;
1626 /* Finished with message */
1627 ctx->recv_pkt = NULL;
1628 __strp_unpause(&ctx->strp);
1633 /* This function traverses the rx_list in tls receive context to copies the
1634 * decrypted records into the buffer provided by caller zero copy is not
1635 * true. Further, the records are removed from the rx_list if it is not a peek
1636 * case and the record has been consumed completely.
1638 static int process_rx_list(struct tls_sw_context_rx *ctx,
1647 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1650 struct tls_msg *tlm;
1653 /* Set the record type in 'control' if caller didn't pass it */
1656 ctrl = tlm->control;
1659 while (skip && skb) {
1660 struct strp_msg *rxm = strp_msg(skb);
1663 /* Cannot process a record of different type */
1664 if (ctrl != tlm->control)
1667 if (skip < rxm->full_len)
1670 skip = skip - rxm->full_len;
1671 skb = skb_peek_next(skb, &ctx->rx_list);
1674 while (len && skb) {
1675 struct sk_buff *next_skb;
1676 struct strp_msg *rxm = strp_msg(skb);
1677 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1681 /* Cannot process a record of different type */
1682 if (ctrl != tlm->control)
1685 /* Set record type if not already done. For a non-data record,
1686 * do not proceed if record type could not be copied.
1689 int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1690 sizeof(ctrl), &ctrl);
1692 if (ctrl != TLS_RECORD_TYPE_DATA) {
1693 if (cerr || msg->msg_flags & MSG_CTRUNC)
1700 if (!zc || (rxm->full_len - skip) > len) {
1701 int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1708 copied = copied + chunk;
1710 /* Consume the data from record if it is non-peek case*/
1712 rxm->offset = rxm->offset + chunk;
1713 rxm->full_len = rxm->full_len - chunk;
1715 /* Return if there is unconsumed data in the record */
1716 if (rxm->full_len - skip)
1720 /* The remaining skip-bytes must lie in 1st record in rx_list.
1721 * So from the 2nd record, 'skip' should be 0.
1726 msg->msg_flags |= MSG_EOR;
1728 next_skb = skb_peek_next(skb, &ctx->rx_list);
1731 skb_unlink(skb, &ctx->rx_list);
1742 int tls_sw_recvmsg(struct sock *sk,
1749 struct tls_context *tls_ctx = tls_get_ctx(sk);
1750 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1751 struct tls_prot_info *prot = &tls_ctx->prot_info;
1752 struct sk_psock *psock;
1753 unsigned char control = 0;
1754 ssize_t decrypted = 0;
1755 struct strp_msg *rxm;
1756 struct tls_msg *tlm;
1757 struct sk_buff *skb;
1760 int target, err = 0;
1762 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1763 bool is_peek = flags & MSG_PEEK;
1764 bool bpf_strp_enabled;
1770 if (unlikely(flags & MSG_ERRQUEUE))
1771 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1773 psock = sk_psock_get(sk);
1775 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1777 /* Process pending decrypted records. It must be non-zero-copy */
1778 err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1781 tls_err_abort(sk, err);
1790 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1792 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1794 while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1795 bool retain_skb = false;
1802 skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1805 int ret = sk_msg_recvmsg(sk, psock, msg, len,
1817 if (prot->version == TLS_1_3_VERSION)
1820 tlm->control = ctx->control;
1823 rxm = strp_msg(skb);
1825 to_decrypt = rxm->full_len - prot->overhead_size;
1827 if (to_decrypt <= len && !is_kvec && !is_peek &&
1828 ctx->control == TLS_RECORD_TYPE_DATA &&
1829 prot->version != TLS_1_3_VERSION &&
1833 /* Do not use async mode if record is non-data */
1834 if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1835 async_capable = ctx->async_capable;
1837 async_capable = false;
1839 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1840 &chunk, &zc, async_capable);
1841 if (err < 0 && err != -EINPROGRESS) {
1842 tls_err_abort(sk, EBADMSG);
1846 if (err == -EINPROGRESS) {
1849 } else if (prot->version == TLS_1_3_VERSION) {
1850 tlm->control = ctx->control;
1853 /* If the type of records being processed is not known yet,
1854 * set it to record type just dequeued. If it is already known,
1855 * but does not match the record type just dequeued, go to end.
1856 * We always get record type here since for tls1.2, record type
1857 * is known just after record is dequeued from stream parser.
1858 * For tls1.3, we disable async.
1862 control = tlm->control;
1863 else if (control != tlm->control)
1869 cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1870 sizeof(control), &control);
1872 if (control != TLS_RECORD_TYPE_DATA) {
1873 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1881 goto pick_next_record;
1884 if (bpf_strp_enabled) {
1885 err = sk_psock_tls_strp_read(psock, skb);
1886 if (err != __SK_PASS) {
1887 rxm->offset = rxm->offset + rxm->full_len;
1889 if (err == __SK_DROP)
1891 ctx->recv_pkt = NULL;
1892 __strp_unpause(&ctx->strp);
1897 if (rxm->full_len > len) {
1901 chunk = rxm->full_len;
1904 err = skb_copy_datagram_msg(skb, rxm->offset,
1910 rxm->offset = rxm->offset + chunk;
1911 rxm->full_len = rxm->full_len - chunk;
1922 /* For async or peek case, queue the current skb */
1923 if (async || is_peek || retain_skb) {
1924 skb_queue_tail(&ctx->rx_list, skb);
1928 if (tls_sw_advance_skb(sk, skb, chunk)) {
1929 /* Return full control message to
1930 * userspace before trying to parse
1931 * another message type
1933 msg->msg_flags |= MSG_EOR;
1934 if (control != TLS_RECORD_TYPE_DATA)
1943 /* Wait for all previously submitted records to be decrypted */
1944 spin_lock_bh(&ctx->decrypt_compl_lock);
1945 ctx->async_notify = true;
1946 pending = atomic_read(&ctx->decrypt_pending);
1947 spin_unlock_bh(&ctx->decrypt_compl_lock);
1949 err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1951 /* one of async decrypt failed */
1952 tls_err_abort(sk, err);
1958 reinit_completion(&ctx->async_wait.completion);
1961 /* There can be no concurrent accesses, since we have no
1962 * pending decrypt operations
1964 WRITE_ONCE(ctx->async_notify, false);
1966 /* Drain records from the rx_list & copy if required */
1967 if (is_peek || is_kvec)
1968 err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1969 decrypted, false, is_peek);
1971 err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1972 decrypted, true, is_peek);
1974 tls_err_abort(sk, err);
1980 copied += decrypted;
1985 sk_psock_put(sk, psock);
1986 return copied ? : err;
1989 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
1990 struct pipe_inode_info *pipe,
1991 size_t len, unsigned int flags)
1993 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1994 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1995 struct strp_msg *rxm = NULL;
1996 struct sock *sk = sock->sk;
1997 struct sk_buff *skb;
2006 timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
2008 skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
2010 goto splice_read_end;
2012 if (!ctx->decrypted) {
2013 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2015 /* splice does not support reading control messages */
2016 if (ctx->control != TLS_RECORD_TYPE_DATA) {
2018 goto splice_read_end;
2022 tls_err_abort(sk, EBADMSG);
2023 goto splice_read_end;
2027 rxm = strp_msg(skb);
2029 chunk = min_t(unsigned int, rxm->full_len, len);
2030 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2032 goto splice_read_end;
2034 tls_sw_advance_skb(sk, skb, copied);
2038 return copied ? : err;
2041 bool tls_sw_stream_read(const struct sock *sk)
2043 struct tls_context *tls_ctx = tls_get_ctx(sk);
2044 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2045 bool ingress_empty = true;
2046 struct sk_psock *psock;
2049 psock = sk_psock(sk);
2051 ingress_empty = list_empty(&psock->ingress_msg);
2054 return !ingress_empty || ctx->recv_pkt ||
2055 !skb_queue_empty(&ctx->rx_list);
2058 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2060 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2061 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2062 struct tls_prot_info *prot = &tls_ctx->prot_info;
2063 char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2064 struct strp_msg *rxm = strp_msg(skb);
2065 size_t cipher_overhead;
2066 size_t data_len = 0;
2069 /* Verify that we have a full TLS header, or wait for more data */
2070 if (rxm->offset + prot->prepend_size > skb->len)
2073 /* Sanity-check size of on-stack buffer. */
2074 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2079 /* Linearize header to local buffer */
2080 ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2085 ctx->control = header[0];
2087 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2089 cipher_overhead = prot->tag_size;
2090 if (prot->version != TLS_1_3_VERSION &&
2091 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2092 cipher_overhead += prot->iv_size;
2094 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2099 if (data_len < cipher_overhead) {
2104 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2105 if (header[1] != TLS_1_2_VERSION_MINOR ||
2106 header[2] != TLS_1_2_VERSION_MAJOR) {
2111 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2112 TCP_SKB_CB(skb)->seq + rxm->offset);
2113 return data_len + TLS_HEADER_SIZE;
2116 tls_err_abort(strp->sk, ret);
2121 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2123 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2124 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2128 ctx->recv_pkt = skb;
2131 ctx->saved_data_ready(strp->sk);
2134 static void tls_data_ready(struct sock *sk)
2136 struct tls_context *tls_ctx = tls_get_ctx(sk);
2137 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2138 struct sk_psock *psock;
2140 strp_data_ready(&ctx->strp);
2142 psock = sk_psock_get(sk);
2144 if (!list_empty(&psock->ingress_msg))
2145 ctx->saved_data_ready(sk);
2146 sk_psock_put(sk, psock);
2150 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2152 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2154 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2155 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2156 cancel_delayed_work_sync(&ctx->tx_work.work);
2159 void tls_sw_release_resources_tx(struct sock *sk)
2161 struct tls_context *tls_ctx = tls_get_ctx(sk);
2162 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2163 struct tls_rec *rec, *tmp;
2166 /* Wait for any pending async encryptions to complete */
2167 spin_lock_bh(&ctx->encrypt_compl_lock);
2168 ctx->async_notify = true;
2169 pending = atomic_read(&ctx->encrypt_pending);
2170 spin_unlock_bh(&ctx->encrypt_compl_lock);
2173 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2175 tls_tx_records(sk, -1);
2177 /* Free up un-sent records in tx_list. First, free
2178 * the partially sent record if any at head of tx_list.
2180 if (tls_ctx->partially_sent_record) {
2181 tls_free_partial_record(sk, tls_ctx);
2182 rec = list_first_entry(&ctx->tx_list,
2183 struct tls_rec, list);
2184 list_del(&rec->list);
2185 sk_msg_free(sk, &rec->msg_plaintext);
2189 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2190 list_del(&rec->list);
2191 sk_msg_free(sk, &rec->msg_encrypted);
2192 sk_msg_free(sk, &rec->msg_plaintext);
2196 crypto_free_aead(ctx->aead_send);
2197 tls_free_open_rec(sk);
2200 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2202 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2207 void tls_sw_release_resources_rx(struct sock *sk)
2209 struct tls_context *tls_ctx = tls_get_ctx(sk);
2210 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2212 kfree(tls_ctx->rx.rec_seq);
2213 kfree(tls_ctx->rx.iv);
2215 if (ctx->aead_recv) {
2216 kfree_skb(ctx->recv_pkt);
2217 ctx->recv_pkt = NULL;
2218 skb_queue_purge(&ctx->rx_list);
2219 crypto_free_aead(ctx->aead_recv);
2220 strp_stop(&ctx->strp);
2221 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2222 * we still want to strp_stop(), but sk->sk_data_ready was
2225 if (ctx->saved_data_ready) {
2226 write_lock_bh(&sk->sk_callback_lock);
2227 sk->sk_data_ready = ctx->saved_data_ready;
2228 write_unlock_bh(&sk->sk_callback_lock);
2233 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2235 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2237 strp_done(&ctx->strp);
2240 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2242 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2247 void tls_sw_free_resources_rx(struct sock *sk)
2249 struct tls_context *tls_ctx = tls_get_ctx(sk);
2251 tls_sw_release_resources_rx(sk);
2252 tls_sw_free_ctx_rx(tls_ctx);
2255 /* The work handler to transmitt the encrypted records in tx_list */
2256 static void tx_work_handler(struct work_struct *work)
2258 struct delayed_work *delayed_work = to_delayed_work(work);
2259 struct tx_work *tx_work = container_of(delayed_work,
2260 struct tx_work, work);
2261 struct sock *sk = tx_work->sk;
2262 struct tls_context *tls_ctx = tls_get_ctx(sk);
2263 struct tls_sw_context_tx *ctx;
2265 if (unlikely(!tls_ctx))
2268 ctx = tls_sw_ctx_tx(tls_ctx);
2269 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2272 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2274 mutex_lock(&tls_ctx->tx_lock);
2276 tls_tx_records(sk, -1);
2278 mutex_unlock(&tls_ctx->tx_lock);
2281 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2283 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2285 /* Schedule the transmission if tx list is ready */
2286 if (is_tx_ready(tx_ctx) &&
2287 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2288 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2291 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2293 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2295 write_lock_bh(&sk->sk_callback_lock);
2296 rx_ctx->saved_data_ready = sk->sk_data_ready;
2297 sk->sk_data_ready = tls_data_ready;
2298 write_unlock_bh(&sk->sk_callback_lock);
2300 strp_check_rcv(&rx_ctx->strp);
2303 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2305 struct tls_context *tls_ctx = tls_get_ctx(sk);
2306 struct tls_prot_info *prot = &tls_ctx->prot_info;
2307 struct tls_crypto_info *crypto_info;
2308 struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2309 struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2310 struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2311 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2312 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2313 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2314 struct cipher_context *cctx;
2315 struct crypto_aead **aead;
2316 struct strp_callbacks cb;
2317 u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2318 struct crypto_tfm *tfm;
2319 char *iv, *rec_seq, *key, *salt, *cipher_name;
2329 if (!ctx->priv_ctx_tx) {
2330 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2335 ctx->priv_ctx_tx = sw_ctx_tx;
2338 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2341 if (!ctx->priv_ctx_rx) {
2342 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2347 ctx->priv_ctx_rx = sw_ctx_rx;
2350 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2355 crypto_init_wait(&sw_ctx_tx->async_wait);
2356 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2357 crypto_info = &ctx->crypto_send.info;
2359 aead = &sw_ctx_tx->aead_send;
2360 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2361 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2362 sw_ctx_tx->tx_work.sk = sk;
2364 crypto_init_wait(&sw_ctx_rx->async_wait);
2365 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2366 crypto_info = &ctx->crypto_recv.info;
2368 skb_queue_head_init(&sw_ctx_rx->rx_list);
2369 aead = &sw_ctx_rx->aead_recv;
2372 switch (crypto_info->cipher_type) {
2373 case TLS_CIPHER_AES_GCM_128: {
2374 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2375 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2376 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2377 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2378 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2380 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2382 (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2383 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2384 key = gcm_128_info->key;
2385 salt = gcm_128_info->salt;
2386 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2387 cipher_name = "gcm(aes)";
2390 case TLS_CIPHER_AES_GCM_256: {
2391 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2392 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2393 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2394 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2395 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2397 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2399 (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2400 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2401 key = gcm_256_info->key;
2402 salt = gcm_256_info->salt;
2403 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2404 cipher_name = "gcm(aes)";
2407 case TLS_CIPHER_AES_CCM_128: {
2408 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2409 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2410 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2411 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2412 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2414 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2416 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2417 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2418 key = ccm_128_info->key;
2419 salt = ccm_128_info->salt;
2420 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2421 cipher_name = "ccm(aes)";
2424 case TLS_CIPHER_CHACHA20_POLY1305: {
2425 chacha20_poly1305_info = (void *)crypto_info;
2427 tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2428 iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2429 iv = chacha20_poly1305_info->iv;
2430 rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2431 rec_seq = chacha20_poly1305_info->rec_seq;
2432 keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2433 key = chacha20_poly1305_info->key;
2434 salt = chacha20_poly1305_info->salt;
2435 salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2436 cipher_name = "rfc7539(chacha20,poly1305)";
2439 case TLS_CIPHER_SM4_GCM: {
2440 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2442 sm4_gcm_info = (void *)crypto_info;
2443 nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2444 tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2445 iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2446 iv = sm4_gcm_info->iv;
2447 rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2448 rec_seq = sm4_gcm_info->rec_seq;
2449 keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2450 key = sm4_gcm_info->key;
2451 salt = sm4_gcm_info->salt;
2452 salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2453 cipher_name = "gcm(sm4)";
2456 case TLS_CIPHER_SM4_CCM: {
2457 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2459 sm4_ccm_info = (void *)crypto_info;
2460 nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2461 tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2462 iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2463 iv = sm4_ccm_info->iv;
2464 rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2465 rec_seq = sm4_ccm_info->rec_seq;
2466 keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2467 key = sm4_ccm_info->key;
2468 salt = sm4_ccm_info->salt;
2469 salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2470 cipher_name = "ccm(sm4)";
2478 /* Sanity-check the sizes for stack allocations. */
2479 if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2480 rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2485 if (crypto_info->version == TLS_1_3_VERSION) {
2487 prot->aad_size = TLS_HEADER_SIZE;
2488 prot->tail_size = 1;
2490 prot->aad_size = TLS_AAD_SPACE_SIZE;
2491 prot->tail_size = 0;
2494 prot->version = crypto_info->version;
2495 prot->cipher_type = crypto_info->cipher_type;
2496 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2497 prot->tag_size = tag_size;
2498 prot->overhead_size = prot->prepend_size +
2499 prot->tag_size + prot->tail_size;
2500 prot->iv_size = iv_size;
2501 prot->salt_size = salt_size;
2502 cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2507 /* Note: 128 & 256 bit salt are the same size */
2508 prot->rec_seq_size = rec_seq_size;
2509 memcpy(cctx->iv, salt, salt_size);
2510 memcpy(cctx->iv + salt_size, iv, iv_size);
2511 cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2512 if (!cctx->rec_seq) {
2518 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2519 if (IS_ERR(*aead)) {
2520 rc = PTR_ERR(*aead);
2526 ctx->push_pending_record = tls_sw_push_pending_record;
2528 rc = crypto_aead_setkey(*aead, key, keysize);
2533 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2538 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2540 if (crypto_info->version == TLS_1_3_VERSION)
2541 sw_ctx_rx->async_capable = 0;
2543 sw_ctx_rx->async_capable =
2544 !!(tfm->__crt_alg->cra_flags &
2547 /* Set up strparser */
2548 memset(&cb, 0, sizeof(cb));
2549 cb.rcv_msg = tls_queue;
2550 cb.parse_msg = tls_read_size;
2552 strp_init(&sw_ctx_rx->strp, sk, &cb);
2558 crypto_free_aead(*aead);
2561 kfree(cctx->rec_seq);
2562 cctx->rec_seq = NULL;
2568 kfree(ctx->priv_ctx_tx);
2569 ctx->priv_ctx_tx = NULL;
2571 kfree(ctx->priv_ctx_rx);
2572 ctx->priv_ctx_rx = NULL;