]> Git Repo - linux.git/blob - net/tls/tls_main.c
bpf: selftests: Add selftests for module kfunc support
[linux.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <[email protected]>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52
53 enum {
54         TLSV4,
55         TLSV6,
56         TLS_NUM_PROTS,
57 };
58
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66                          const struct proto *base);
67
68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72         WRITE_ONCE(sk->sk_prot,
73                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74 }
75
76 int wait_on_pending_writer(struct sock *sk, long *timeo)
77 {
78         int rc = 0;
79         DEFINE_WAIT_FUNC(wait, woken_wake_function);
80
81         add_wait_queue(sk_sleep(sk), &wait);
82         while (1) {
83                 if (!*timeo) {
84                         rc = -EAGAIN;
85                         break;
86                 }
87
88                 if (signal_pending(current)) {
89                         rc = sock_intr_errno(*timeo);
90                         break;
91                 }
92
93                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
94                         break;
95         }
96         remove_wait_queue(sk_sleep(sk), &wait);
97         return rc;
98 }
99
100 int tls_push_sg(struct sock *sk,
101                 struct tls_context *ctx,
102                 struct scatterlist *sg,
103                 u16 first_offset,
104                 int flags)
105 {
106         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
107         int ret = 0;
108         struct page *p;
109         size_t size;
110         int offset = first_offset;
111
112         size = sg->length - offset;
113         offset += sg->offset;
114
115         ctx->in_tcp_sendpages = true;
116         while (1) {
117                 if (sg_is_last(sg))
118                         sendpage_flags = flags;
119
120                 /* is sending application-limited? */
121                 tcp_rate_check_app_limited(sk);
122                 p = sg_page(sg);
123 retry:
124                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
125
126                 if (ret != size) {
127                         if (ret > 0) {
128                                 offset += ret;
129                                 size -= ret;
130                                 goto retry;
131                         }
132
133                         offset -= sg->offset;
134                         ctx->partially_sent_offset = offset;
135                         ctx->partially_sent_record = (void *)sg;
136                         ctx->in_tcp_sendpages = false;
137                         return ret;
138                 }
139
140                 put_page(p);
141                 sk_mem_uncharge(sk, sg->length);
142                 sg = sg_next(sg);
143                 if (!sg)
144                         break;
145
146                 offset = sg->offset;
147                 size = sg->length;
148         }
149
150         ctx->in_tcp_sendpages = false;
151
152         return 0;
153 }
154
155 static int tls_handle_open_record(struct sock *sk, int flags)
156 {
157         struct tls_context *ctx = tls_get_ctx(sk);
158
159         if (tls_is_pending_open_record(ctx))
160                 return ctx->push_pending_record(sk, flags);
161
162         return 0;
163 }
164
165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166                       unsigned char *record_type)
167 {
168         struct cmsghdr *cmsg;
169         int rc = -EINVAL;
170
171         for_each_cmsghdr(cmsg, msg) {
172                 if (!CMSG_OK(msg, cmsg))
173                         return -EINVAL;
174                 if (cmsg->cmsg_level != SOL_TLS)
175                         continue;
176
177                 switch (cmsg->cmsg_type) {
178                 case TLS_SET_RECORD_TYPE:
179                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180                                 return -EINVAL;
181
182                         if (msg->msg_flags & MSG_MORE)
183                                 return -EINVAL;
184
185                         rc = tls_handle_open_record(sk, msg->msg_flags);
186                         if (rc)
187                                 return rc;
188
189                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
190                         rc = 0;
191                         break;
192                 default:
193                         return -EINVAL;
194                 }
195         }
196
197         return rc;
198 }
199
200 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
201                             int flags)
202 {
203         struct scatterlist *sg;
204         u16 offset;
205
206         sg = ctx->partially_sent_record;
207         offset = ctx->partially_sent_offset;
208
209         ctx->partially_sent_record = NULL;
210         return tls_push_sg(sk, ctx, sg, offset, flags);
211 }
212
213 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
214 {
215         struct scatterlist *sg;
216
217         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
218                 put_page(sg_page(sg));
219                 sk_mem_uncharge(sk, sg->length);
220         }
221         ctx->partially_sent_record = NULL;
222 }
223
224 static void tls_write_space(struct sock *sk)
225 {
226         struct tls_context *ctx = tls_get_ctx(sk);
227
228         /* If in_tcp_sendpages call lower protocol write space handler
229          * to ensure we wake up any waiting operations there. For example
230          * if do_tcp_sendpages where to call sk_wait_event.
231          */
232         if (ctx->in_tcp_sendpages) {
233                 ctx->sk_write_space(sk);
234                 return;
235         }
236
237 #ifdef CONFIG_TLS_DEVICE
238         if (ctx->tx_conf == TLS_HW)
239                 tls_device_write_space(sk, ctx);
240         else
241 #endif
242                 tls_sw_write_space(sk, ctx);
243
244         ctx->sk_write_space(sk);
245 }
246
247 /**
248  * tls_ctx_free() - free TLS ULP context
249  * @sk:  socket to with @ctx is attached
250  * @ctx: TLS context structure
251  *
252  * Free TLS context. If @sk is %NULL caller guarantees that the socket
253  * to which @ctx was attached has no outstanding references.
254  */
255 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
256 {
257         if (!ctx)
258                 return;
259
260         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
261         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
262         mutex_destroy(&ctx->tx_lock);
263
264         if (sk)
265                 kfree_rcu(ctx, rcu);
266         else
267                 kfree(ctx);
268 }
269
270 static void tls_sk_proto_cleanup(struct sock *sk,
271                                  struct tls_context *ctx, long timeo)
272 {
273         if (unlikely(sk->sk_write_pending) &&
274             !wait_on_pending_writer(sk, &timeo))
275                 tls_handle_open_record(sk, 0);
276
277         /* We need these for tls_sw_fallback handling of other packets */
278         if (ctx->tx_conf == TLS_SW) {
279                 kfree(ctx->tx.rec_seq);
280                 kfree(ctx->tx.iv);
281                 tls_sw_release_resources_tx(sk);
282                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
283         } else if (ctx->tx_conf == TLS_HW) {
284                 tls_device_free_resources_tx(sk);
285                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
286         }
287
288         if (ctx->rx_conf == TLS_SW) {
289                 tls_sw_release_resources_rx(sk);
290                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
291         } else if (ctx->rx_conf == TLS_HW) {
292                 tls_device_offload_cleanup_rx(sk);
293                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
294         }
295 }
296
297 static void tls_sk_proto_close(struct sock *sk, long timeout)
298 {
299         struct inet_connection_sock *icsk = inet_csk(sk);
300         struct tls_context *ctx = tls_get_ctx(sk);
301         long timeo = sock_sndtimeo(sk, 0);
302         bool free_ctx;
303
304         if (ctx->tx_conf == TLS_SW)
305                 tls_sw_cancel_work_tx(ctx);
306
307         lock_sock(sk);
308         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
309
310         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
311                 tls_sk_proto_cleanup(sk, ctx, timeo);
312
313         write_lock_bh(&sk->sk_callback_lock);
314         if (free_ctx)
315                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
316         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
317         if (sk->sk_write_space == tls_write_space)
318                 sk->sk_write_space = ctx->sk_write_space;
319         write_unlock_bh(&sk->sk_callback_lock);
320         release_sock(sk);
321         if (ctx->tx_conf == TLS_SW)
322                 tls_sw_free_ctx_tx(ctx);
323         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
324                 tls_sw_strparser_done(ctx);
325         if (ctx->rx_conf == TLS_SW)
326                 tls_sw_free_ctx_rx(ctx);
327         ctx->sk_proto->close(sk, timeout);
328
329         if (free_ctx)
330                 tls_ctx_free(sk, ctx);
331 }
332
333 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
334                                   int __user *optlen, int tx)
335 {
336         int rc = 0;
337         struct tls_context *ctx = tls_get_ctx(sk);
338         struct tls_crypto_info *crypto_info;
339         struct cipher_context *cctx;
340         int len;
341
342         if (get_user(len, optlen))
343                 return -EFAULT;
344
345         if (!optval || (len < sizeof(*crypto_info))) {
346                 rc = -EINVAL;
347                 goto out;
348         }
349
350         if (!ctx) {
351                 rc = -EBUSY;
352                 goto out;
353         }
354
355         /* get user crypto info */
356         if (tx) {
357                 crypto_info = &ctx->crypto_send.info;
358                 cctx = &ctx->tx;
359         } else {
360                 crypto_info = &ctx->crypto_recv.info;
361                 cctx = &ctx->rx;
362         }
363
364         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
365                 rc = -EBUSY;
366                 goto out;
367         }
368
369         if (len == sizeof(*crypto_info)) {
370                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
371                         rc = -EFAULT;
372                 goto out;
373         }
374
375         switch (crypto_info->cipher_type) {
376         case TLS_CIPHER_AES_GCM_128: {
377                 struct tls12_crypto_info_aes_gcm_128 *
378                   crypto_info_aes_gcm_128 =
379                   container_of(crypto_info,
380                                struct tls12_crypto_info_aes_gcm_128,
381                                info);
382
383                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
384                         rc = -EINVAL;
385                         goto out;
386                 }
387                 lock_sock(sk);
388                 memcpy(crypto_info_aes_gcm_128->iv,
389                        cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
390                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
391                 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
392                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
393                 release_sock(sk);
394                 if (copy_to_user(optval,
395                                  crypto_info_aes_gcm_128,
396                                  sizeof(*crypto_info_aes_gcm_128)))
397                         rc = -EFAULT;
398                 break;
399         }
400         case TLS_CIPHER_AES_GCM_256: {
401                 struct tls12_crypto_info_aes_gcm_256 *
402                   crypto_info_aes_gcm_256 =
403                   container_of(crypto_info,
404                                struct tls12_crypto_info_aes_gcm_256,
405                                info);
406
407                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
408                         rc = -EINVAL;
409                         goto out;
410                 }
411                 lock_sock(sk);
412                 memcpy(crypto_info_aes_gcm_256->iv,
413                        cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
414                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
415                 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
416                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
417                 release_sock(sk);
418                 if (copy_to_user(optval,
419                                  crypto_info_aes_gcm_256,
420                                  sizeof(*crypto_info_aes_gcm_256)))
421                         rc = -EFAULT;
422                 break;
423         }
424         case TLS_CIPHER_SM4_GCM: {
425                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
426                         container_of(crypto_info,
427                                 struct tls12_crypto_info_sm4_gcm, info);
428
429                 if (len != sizeof(*sm4_gcm_info)) {
430                         rc = -EINVAL;
431                         goto out;
432                 }
433                 lock_sock(sk);
434                 memcpy(sm4_gcm_info->iv,
435                        cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
436                        TLS_CIPHER_SM4_GCM_IV_SIZE);
437                 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
438                        TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
439                 release_sock(sk);
440                 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
441                         rc = -EFAULT;
442                 break;
443         }
444         case TLS_CIPHER_SM4_CCM: {
445                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
446                         container_of(crypto_info,
447                                 struct tls12_crypto_info_sm4_ccm, info);
448
449                 if (len != sizeof(*sm4_ccm_info)) {
450                         rc = -EINVAL;
451                         goto out;
452                 }
453                 lock_sock(sk);
454                 memcpy(sm4_ccm_info->iv,
455                        cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
456                        TLS_CIPHER_SM4_CCM_IV_SIZE);
457                 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
458                        TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
459                 release_sock(sk);
460                 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
461                         rc = -EFAULT;
462                 break;
463         }
464         default:
465                 rc = -EINVAL;
466         }
467
468 out:
469         return rc;
470 }
471
472 static int do_tls_getsockopt(struct sock *sk, int optname,
473                              char __user *optval, int __user *optlen)
474 {
475         int rc = 0;
476
477         switch (optname) {
478         case TLS_TX:
479         case TLS_RX:
480                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
481                                             optname == TLS_TX);
482                 break;
483         default:
484                 rc = -ENOPROTOOPT;
485                 break;
486         }
487         return rc;
488 }
489
490 static int tls_getsockopt(struct sock *sk, int level, int optname,
491                           char __user *optval, int __user *optlen)
492 {
493         struct tls_context *ctx = tls_get_ctx(sk);
494
495         if (level != SOL_TLS)
496                 return ctx->sk_proto->getsockopt(sk, level,
497                                                  optname, optval, optlen);
498
499         return do_tls_getsockopt(sk, optname, optval, optlen);
500 }
501
502 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
503                                   unsigned int optlen, int tx)
504 {
505         struct tls_crypto_info *crypto_info;
506         struct tls_crypto_info *alt_crypto_info;
507         struct tls_context *ctx = tls_get_ctx(sk);
508         size_t optsize;
509         int rc = 0;
510         int conf;
511
512         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
513                 rc = -EINVAL;
514                 goto out;
515         }
516
517         if (tx) {
518                 crypto_info = &ctx->crypto_send.info;
519                 alt_crypto_info = &ctx->crypto_recv.info;
520         } else {
521                 crypto_info = &ctx->crypto_recv.info;
522                 alt_crypto_info = &ctx->crypto_send.info;
523         }
524
525         /* Currently we don't support set crypto info more than one time */
526         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
527                 rc = -EBUSY;
528                 goto out;
529         }
530
531         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
532         if (rc) {
533                 rc = -EFAULT;
534                 goto err_crypto_info;
535         }
536
537         /* check version */
538         if (crypto_info->version != TLS_1_2_VERSION &&
539             crypto_info->version != TLS_1_3_VERSION) {
540                 rc = -EINVAL;
541                 goto err_crypto_info;
542         }
543
544         /* Ensure that TLS version and ciphers are same in both directions */
545         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
546                 if (alt_crypto_info->version != crypto_info->version ||
547                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
548                         rc = -EINVAL;
549                         goto err_crypto_info;
550                 }
551         }
552
553         switch (crypto_info->cipher_type) {
554         case TLS_CIPHER_AES_GCM_128:
555                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
556                 break;
557         case TLS_CIPHER_AES_GCM_256: {
558                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
559                 break;
560         }
561         case TLS_CIPHER_AES_CCM_128:
562                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
563                 break;
564         case TLS_CIPHER_CHACHA20_POLY1305:
565                 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
566                 break;
567         case TLS_CIPHER_SM4_GCM:
568                 optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
569                 break;
570         case TLS_CIPHER_SM4_CCM:
571                 optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
572                 break;
573         default:
574                 rc = -EINVAL;
575                 goto err_crypto_info;
576         }
577
578         if (optlen != optsize) {
579                 rc = -EINVAL;
580                 goto err_crypto_info;
581         }
582
583         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
584                                       sizeof(*crypto_info),
585                                       optlen - sizeof(*crypto_info));
586         if (rc) {
587                 rc = -EFAULT;
588                 goto err_crypto_info;
589         }
590
591         if (tx) {
592                 rc = tls_set_device_offload(sk, ctx);
593                 conf = TLS_HW;
594                 if (!rc) {
595                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
596                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
597                 } else {
598                         rc = tls_set_sw_offload(sk, ctx, 1);
599                         if (rc)
600                                 goto err_crypto_info;
601                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
602                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
603                         conf = TLS_SW;
604                 }
605         } else {
606                 rc = tls_set_device_offload_rx(sk, ctx);
607                 conf = TLS_HW;
608                 if (!rc) {
609                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
610                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
611                 } else {
612                         rc = tls_set_sw_offload(sk, ctx, 0);
613                         if (rc)
614                                 goto err_crypto_info;
615                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
616                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
617                         conf = TLS_SW;
618                 }
619                 tls_sw_strparser_arm(sk, ctx);
620         }
621
622         if (tx)
623                 ctx->tx_conf = conf;
624         else
625                 ctx->rx_conf = conf;
626         update_sk_prot(sk, ctx);
627         if (tx) {
628                 ctx->sk_write_space = sk->sk_write_space;
629                 sk->sk_write_space = tls_write_space;
630         } else {
631                 sk->sk_socket->ops = &tls_sw_proto_ops;
632         }
633         goto out;
634
635 err_crypto_info:
636         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
637 out:
638         return rc;
639 }
640
641 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
642                              unsigned int optlen)
643 {
644         int rc = 0;
645
646         switch (optname) {
647         case TLS_TX:
648         case TLS_RX:
649                 lock_sock(sk);
650                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
651                                             optname == TLS_TX);
652                 release_sock(sk);
653                 break;
654         default:
655                 rc = -ENOPROTOOPT;
656                 break;
657         }
658         return rc;
659 }
660
661 static int tls_setsockopt(struct sock *sk, int level, int optname,
662                           sockptr_t optval, unsigned int optlen)
663 {
664         struct tls_context *ctx = tls_get_ctx(sk);
665
666         if (level != SOL_TLS)
667                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
668                                                  optlen);
669
670         return do_tls_setsockopt(sk, optname, optval, optlen);
671 }
672
673 struct tls_context *tls_ctx_create(struct sock *sk)
674 {
675         struct inet_connection_sock *icsk = inet_csk(sk);
676         struct tls_context *ctx;
677
678         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
679         if (!ctx)
680                 return NULL;
681
682         mutex_init(&ctx->tx_lock);
683         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
684         ctx->sk_proto = READ_ONCE(sk->sk_prot);
685         ctx->sk = sk;
686         return ctx;
687 }
688
689 static void tls_build_proto(struct sock *sk)
690 {
691         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
692         struct proto *prot = READ_ONCE(sk->sk_prot);
693
694         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
695         if (ip_ver == TLSV6 &&
696             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
697                 mutex_lock(&tcpv6_prot_mutex);
698                 if (likely(prot != saved_tcpv6_prot)) {
699                         build_protos(tls_prots[TLSV6], prot);
700                         smp_store_release(&saved_tcpv6_prot, prot);
701                 }
702                 mutex_unlock(&tcpv6_prot_mutex);
703         }
704
705         if (ip_ver == TLSV4 &&
706             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
707                 mutex_lock(&tcpv4_prot_mutex);
708                 if (likely(prot != saved_tcpv4_prot)) {
709                         build_protos(tls_prots[TLSV4], prot);
710                         smp_store_release(&saved_tcpv4_prot, prot);
711                 }
712                 mutex_unlock(&tcpv4_prot_mutex);
713         }
714 }
715
716 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
717                          const struct proto *base)
718 {
719         prot[TLS_BASE][TLS_BASE] = *base;
720         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
721         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
722         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
723
724         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
725         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
726         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
727
728         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
729         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
730         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
731         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
732
733         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
734         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
735         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
736         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
737
738 #ifdef CONFIG_TLS_DEVICE
739         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
740         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
741         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
742
743         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
744         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
745         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
746
747         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
748
749         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
750
751         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
752 #endif
753 #ifdef CONFIG_TLS_TOE
754         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
755         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
756         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
757 #endif
758 }
759
760 static int tls_init(struct sock *sk)
761 {
762         struct tls_context *ctx;
763         int rc = 0;
764
765         tls_build_proto(sk);
766
767 #ifdef CONFIG_TLS_TOE
768         if (tls_toe_bypass(sk))
769                 return 0;
770 #endif
771
772         /* The TLS ulp is currently supported only for TCP sockets
773          * in ESTABLISHED state.
774          * Supporting sockets in LISTEN state will require us
775          * to modify the accept implementation to clone rather then
776          * share the ulp context.
777          */
778         if (sk->sk_state != TCP_ESTABLISHED)
779                 return -ENOTCONN;
780
781         /* allocate tls context */
782         write_lock_bh(&sk->sk_callback_lock);
783         ctx = tls_ctx_create(sk);
784         if (!ctx) {
785                 rc = -ENOMEM;
786                 goto out;
787         }
788
789         ctx->tx_conf = TLS_BASE;
790         ctx->rx_conf = TLS_BASE;
791         update_sk_prot(sk, ctx);
792 out:
793         write_unlock_bh(&sk->sk_callback_lock);
794         return rc;
795 }
796
797 static void tls_update(struct sock *sk, struct proto *p,
798                        void (*write_space)(struct sock *sk))
799 {
800         struct tls_context *ctx;
801
802         ctx = tls_get_ctx(sk);
803         if (likely(ctx)) {
804                 ctx->sk_write_space = write_space;
805                 ctx->sk_proto = p;
806         } else {
807                 /* Pairs with lockless read in sk_clone_lock(). */
808                 WRITE_ONCE(sk->sk_prot, p);
809                 sk->sk_write_space = write_space;
810         }
811 }
812
813 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
814 {
815         u16 version, cipher_type;
816         struct tls_context *ctx;
817         struct nlattr *start;
818         int err;
819
820         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
821         if (!start)
822                 return -EMSGSIZE;
823
824         rcu_read_lock();
825         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
826         if (!ctx) {
827                 err = 0;
828                 goto nla_failure;
829         }
830         version = ctx->prot_info.version;
831         if (version) {
832                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
833                 if (err)
834                         goto nla_failure;
835         }
836         cipher_type = ctx->prot_info.cipher_type;
837         if (cipher_type) {
838                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
839                 if (err)
840                         goto nla_failure;
841         }
842         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
843         if (err)
844                 goto nla_failure;
845
846         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
847         if (err)
848                 goto nla_failure;
849
850         rcu_read_unlock();
851         nla_nest_end(skb, start);
852         return 0;
853
854 nla_failure:
855         rcu_read_unlock();
856         nla_nest_cancel(skb, start);
857         return err;
858 }
859
860 static size_t tls_get_info_size(const struct sock *sk)
861 {
862         size_t size = 0;
863
864         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
865                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
866                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
867                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
868                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
869                 0;
870
871         return size;
872 }
873
874 static int __net_init tls_init_net(struct net *net)
875 {
876         int err;
877
878         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
879         if (!net->mib.tls_statistics)
880                 return -ENOMEM;
881
882         err = tls_proc_init(net);
883         if (err)
884                 goto err_free_stats;
885
886         return 0;
887 err_free_stats:
888         free_percpu(net->mib.tls_statistics);
889         return err;
890 }
891
892 static void __net_exit tls_exit_net(struct net *net)
893 {
894         tls_proc_fini(net);
895         free_percpu(net->mib.tls_statistics);
896 }
897
898 static struct pernet_operations tls_proc_ops = {
899         .init = tls_init_net,
900         .exit = tls_exit_net,
901 };
902
903 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
904         .name                   = "tls",
905         .owner                  = THIS_MODULE,
906         .init                   = tls_init,
907         .update                 = tls_update,
908         .get_info               = tls_get_info,
909         .get_info_size          = tls_get_info_size,
910 };
911
912 static int __init tls_register(void)
913 {
914         int err;
915
916         err = register_pernet_subsys(&tls_proc_ops);
917         if (err)
918                 return err;
919
920         tls_sw_proto_ops = inet_stream_ops;
921         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
922         tls_sw_proto_ops.sendpage_locked   = tls_sw_sendpage_locked;
923
924         tls_device_init();
925         tcp_register_ulp(&tcp_tls_ulp_ops);
926
927         return 0;
928 }
929
930 static void __exit tls_unregister(void)
931 {
932         tcp_unregister_ulp(&tcp_tls_ulp_ops);
933         tls_device_cleanup();
934         unregister_pernet_subsys(&tls_proc_ops);
935 }
936
937 module_init(tls_register);
938 module_exit(tls_unregister);
This page took 0.08805 seconds and 4 git commands to generate.