2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 #include <linux/module.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
46 #include <net/tls_toe.h>
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 const struct proto *base);
68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
72 WRITE_ONCE(sk->sk_prot,
73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
76 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 DEFINE_WAIT_FUNC(wait, woken_wake_function);
81 add_wait_queue(sk_sleep(sk), &wait);
88 if (signal_pending(current)) {
89 rc = sock_intr_errno(*timeo);
93 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96 remove_wait_queue(sk_sleep(sk), &wait);
100 int tls_push_sg(struct sock *sk,
101 struct tls_context *ctx,
102 struct scatterlist *sg,
106 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
110 int offset = first_offset;
112 size = sg->length - offset;
113 offset += sg->offset;
115 ctx->in_tcp_sendpages = true;
118 sendpage_flags = flags;
120 /* is sending application-limited? */
121 tcp_rate_check_app_limited(sk);
124 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
133 offset -= sg->offset;
134 ctx->partially_sent_offset = offset;
135 ctx->partially_sent_record = (void *)sg;
136 ctx->in_tcp_sendpages = false;
141 sk_mem_uncharge(sk, sg->length);
150 ctx->in_tcp_sendpages = false;
155 static int tls_handle_open_record(struct sock *sk, int flags)
157 struct tls_context *ctx = tls_get_ctx(sk);
159 if (tls_is_pending_open_record(ctx))
160 return ctx->push_pending_record(sk, flags);
165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166 unsigned char *record_type)
168 struct cmsghdr *cmsg;
171 for_each_cmsghdr(cmsg, msg) {
172 if (!CMSG_OK(msg, cmsg))
174 if (cmsg->cmsg_level != SOL_TLS)
177 switch (cmsg->cmsg_type) {
178 case TLS_SET_RECORD_TYPE:
179 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
182 if (msg->msg_flags & MSG_MORE)
185 rc = tls_handle_open_record(sk, msg->msg_flags);
189 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
200 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
203 struct scatterlist *sg;
206 sg = ctx->partially_sent_record;
207 offset = ctx->partially_sent_offset;
209 ctx->partially_sent_record = NULL;
210 return tls_push_sg(sk, ctx, sg, offset, flags);
213 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
215 struct scatterlist *sg;
217 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
218 put_page(sg_page(sg));
219 sk_mem_uncharge(sk, sg->length);
221 ctx->partially_sent_record = NULL;
224 static void tls_write_space(struct sock *sk)
226 struct tls_context *ctx = tls_get_ctx(sk);
228 /* If in_tcp_sendpages call lower protocol write space handler
229 * to ensure we wake up any waiting operations there. For example
230 * if do_tcp_sendpages where to call sk_wait_event.
232 if (ctx->in_tcp_sendpages) {
233 ctx->sk_write_space(sk);
237 #ifdef CONFIG_TLS_DEVICE
238 if (ctx->tx_conf == TLS_HW)
239 tls_device_write_space(sk, ctx);
242 tls_sw_write_space(sk, ctx);
244 ctx->sk_write_space(sk);
248 * tls_ctx_free() - free TLS ULP context
249 * @sk: socket to with @ctx is attached
250 * @ctx: TLS context structure
252 * Free TLS context. If @sk is %NULL caller guarantees that the socket
253 * to which @ctx was attached has no outstanding references.
255 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
260 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
261 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
262 mutex_destroy(&ctx->tx_lock);
270 static void tls_sk_proto_cleanup(struct sock *sk,
271 struct tls_context *ctx, long timeo)
273 if (unlikely(sk->sk_write_pending) &&
274 !wait_on_pending_writer(sk, &timeo))
275 tls_handle_open_record(sk, 0);
277 /* We need these for tls_sw_fallback handling of other packets */
278 if (ctx->tx_conf == TLS_SW) {
279 kfree(ctx->tx.rec_seq);
281 tls_sw_release_resources_tx(sk);
282 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
283 } else if (ctx->tx_conf == TLS_HW) {
284 tls_device_free_resources_tx(sk);
285 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
288 if (ctx->rx_conf == TLS_SW) {
289 tls_sw_release_resources_rx(sk);
290 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
291 } else if (ctx->rx_conf == TLS_HW) {
292 tls_device_offload_cleanup_rx(sk);
293 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
297 static void tls_sk_proto_close(struct sock *sk, long timeout)
299 struct inet_connection_sock *icsk = inet_csk(sk);
300 struct tls_context *ctx = tls_get_ctx(sk);
301 long timeo = sock_sndtimeo(sk, 0);
304 if (ctx->tx_conf == TLS_SW)
305 tls_sw_cancel_work_tx(ctx);
308 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
310 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
311 tls_sk_proto_cleanup(sk, ctx, timeo);
313 write_lock_bh(&sk->sk_callback_lock);
315 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
316 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
317 if (sk->sk_write_space == tls_write_space)
318 sk->sk_write_space = ctx->sk_write_space;
319 write_unlock_bh(&sk->sk_callback_lock);
321 if (ctx->tx_conf == TLS_SW)
322 tls_sw_free_ctx_tx(ctx);
323 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
324 tls_sw_strparser_done(ctx);
325 if (ctx->rx_conf == TLS_SW)
326 tls_sw_free_ctx_rx(ctx);
327 ctx->sk_proto->close(sk, timeout);
330 tls_ctx_free(sk, ctx);
333 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
334 int __user *optlen, int tx)
337 struct tls_context *ctx = tls_get_ctx(sk);
338 struct tls_crypto_info *crypto_info;
339 struct cipher_context *cctx;
342 if (get_user(len, optlen))
345 if (!optval || (len < sizeof(*crypto_info))) {
355 /* get user crypto info */
357 crypto_info = &ctx->crypto_send.info;
360 crypto_info = &ctx->crypto_recv.info;
364 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
369 if (len == sizeof(*crypto_info)) {
370 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
375 switch (crypto_info->cipher_type) {
376 case TLS_CIPHER_AES_GCM_128: {
377 struct tls12_crypto_info_aes_gcm_128 *
378 crypto_info_aes_gcm_128 =
379 container_of(crypto_info,
380 struct tls12_crypto_info_aes_gcm_128,
383 if (len != sizeof(*crypto_info_aes_gcm_128)) {
388 memcpy(crypto_info_aes_gcm_128->iv,
389 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
390 TLS_CIPHER_AES_GCM_128_IV_SIZE);
391 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
392 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
394 if (copy_to_user(optval,
395 crypto_info_aes_gcm_128,
396 sizeof(*crypto_info_aes_gcm_128)))
400 case TLS_CIPHER_AES_GCM_256: {
401 struct tls12_crypto_info_aes_gcm_256 *
402 crypto_info_aes_gcm_256 =
403 container_of(crypto_info,
404 struct tls12_crypto_info_aes_gcm_256,
407 if (len != sizeof(*crypto_info_aes_gcm_256)) {
412 memcpy(crypto_info_aes_gcm_256->iv,
413 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
414 TLS_CIPHER_AES_GCM_256_IV_SIZE);
415 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
416 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
418 if (copy_to_user(optval,
419 crypto_info_aes_gcm_256,
420 sizeof(*crypto_info_aes_gcm_256)))
424 case TLS_CIPHER_SM4_GCM: {
425 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
426 container_of(crypto_info,
427 struct tls12_crypto_info_sm4_gcm, info);
429 if (len != sizeof(*sm4_gcm_info)) {
434 memcpy(sm4_gcm_info->iv,
435 cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
436 TLS_CIPHER_SM4_GCM_IV_SIZE);
437 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
438 TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
440 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
444 case TLS_CIPHER_SM4_CCM: {
445 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
446 container_of(crypto_info,
447 struct tls12_crypto_info_sm4_ccm, info);
449 if (len != sizeof(*sm4_ccm_info)) {
454 memcpy(sm4_ccm_info->iv,
455 cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
456 TLS_CIPHER_SM4_CCM_IV_SIZE);
457 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
458 TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
460 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
472 static int do_tls_getsockopt(struct sock *sk, int optname,
473 char __user *optval, int __user *optlen)
480 rc = do_tls_getsockopt_conf(sk, optval, optlen,
490 static int tls_getsockopt(struct sock *sk, int level, int optname,
491 char __user *optval, int __user *optlen)
493 struct tls_context *ctx = tls_get_ctx(sk);
495 if (level != SOL_TLS)
496 return ctx->sk_proto->getsockopt(sk, level,
497 optname, optval, optlen);
499 return do_tls_getsockopt(sk, optname, optval, optlen);
502 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
503 unsigned int optlen, int tx)
505 struct tls_crypto_info *crypto_info;
506 struct tls_crypto_info *alt_crypto_info;
507 struct tls_context *ctx = tls_get_ctx(sk);
512 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
518 crypto_info = &ctx->crypto_send.info;
519 alt_crypto_info = &ctx->crypto_recv.info;
521 crypto_info = &ctx->crypto_recv.info;
522 alt_crypto_info = &ctx->crypto_send.info;
525 /* Currently we don't support set crypto info more than one time */
526 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
531 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
534 goto err_crypto_info;
538 if (crypto_info->version != TLS_1_2_VERSION &&
539 crypto_info->version != TLS_1_3_VERSION) {
541 goto err_crypto_info;
544 /* Ensure that TLS version and ciphers are same in both directions */
545 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
546 if (alt_crypto_info->version != crypto_info->version ||
547 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
549 goto err_crypto_info;
553 switch (crypto_info->cipher_type) {
554 case TLS_CIPHER_AES_GCM_128:
555 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
557 case TLS_CIPHER_AES_GCM_256: {
558 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
561 case TLS_CIPHER_AES_CCM_128:
562 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
564 case TLS_CIPHER_CHACHA20_POLY1305:
565 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
567 case TLS_CIPHER_SM4_GCM:
568 optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
570 case TLS_CIPHER_SM4_CCM:
571 optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
575 goto err_crypto_info;
578 if (optlen != optsize) {
580 goto err_crypto_info;
583 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
584 sizeof(*crypto_info),
585 optlen - sizeof(*crypto_info));
588 goto err_crypto_info;
592 rc = tls_set_device_offload(sk, ctx);
595 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
596 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
598 rc = tls_set_sw_offload(sk, ctx, 1);
600 goto err_crypto_info;
601 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
602 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
606 rc = tls_set_device_offload_rx(sk, ctx);
609 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
610 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
612 rc = tls_set_sw_offload(sk, ctx, 0);
614 goto err_crypto_info;
615 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
616 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
619 tls_sw_strparser_arm(sk, ctx);
626 update_sk_prot(sk, ctx);
628 ctx->sk_write_space = sk->sk_write_space;
629 sk->sk_write_space = tls_write_space;
631 sk->sk_socket->ops = &tls_sw_proto_ops;
636 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
641 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
650 rc = do_tls_setsockopt_conf(sk, optval, optlen,
661 static int tls_setsockopt(struct sock *sk, int level, int optname,
662 sockptr_t optval, unsigned int optlen)
664 struct tls_context *ctx = tls_get_ctx(sk);
666 if (level != SOL_TLS)
667 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
670 return do_tls_setsockopt(sk, optname, optval, optlen);
673 struct tls_context *tls_ctx_create(struct sock *sk)
675 struct inet_connection_sock *icsk = inet_csk(sk);
676 struct tls_context *ctx;
678 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
682 mutex_init(&ctx->tx_lock);
683 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
684 ctx->sk_proto = READ_ONCE(sk->sk_prot);
689 static void tls_build_proto(struct sock *sk)
691 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
692 struct proto *prot = READ_ONCE(sk->sk_prot);
694 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
695 if (ip_ver == TLSV6 &&
696 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
697 mutex_lock(&tcpv6_prot_mutex);
698 if (likely(prot != saved_tcpv6_prot)) {
699 build_protos(tls_prots[TLSV6], prot);
700 smp_store_release(&saved_tcpv6_prot, prot);
702 mutex_unlock(&tcpv6_prot_mutex);
705 if (ip_ver == TLSV4 &&
706 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
707 mutex_lock(&tcpv4_prot_mutex);
708 if (likely(prot != saved_tcpv4_prot)) {
709 build_protos(tls_prots[TLSV4], prot);
710 smp_store_release(&saved_tcpv4_prot, prot);
712 mutex_unlock(&tcpv4_prot_mutex);
716 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
717 const struct proto *base)
719 prot[TLS_BASE][TLS_BASE] = *base;
720 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
721 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
722 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
724 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
725 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
726 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
728 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
729 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
730 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
731 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
733 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
734 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
735 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
736 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
738 #ifdef CONFIG_TLS_DEVICE
739 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
740 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
741 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
743 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
744 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
745 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
747 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
749 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
751 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
753 #ifdef CONFIG_TLS_TOE
754 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
755 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
756 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
760 static int tls_init(struct sock *sk)
762 struct tls_context *ctx;
767 #ifdef CONFIG_TLS_TOE
768 if (tls_toe_bypass(sk))
772 /* The TLS ulp is currently supported only for TCP sockets
773 * in ESTABLISHED state.
774 * Supporting sockets in LISTEN state will require us
775 * to modify the accept implementation to clone rather then
776 * share the ulp context.
778 if (sk->sk_state != TCP_ESTABLISHED)
781 /* allocate tls context */
782 write_lock_bh(&sk->sk_callback_lock);
783 ctx = tls_ctx_create(sk);
789 ctx->tx_conf = TLS_BASE;
790 ctx->rx_conf = TLS_BASE;
791 update_sk_prot(sk, ctx);
793 write_unlock_bh(&sk->sk_callback_lock);
797 static void tls_update(struct sock *sk, struct proto *p,
798 void (*write_space)(struct sock *sk))
800 struct tls_context *ctx;
802 ctx = tls_get_ctx(sk);
804 ctx->sk_write_space = write_space;
807 /* Pairs with lockless read in sk_clone_lock(). */
808 WRITE_ONCE(sk->sk_prot, p);
809 sk->sk_write_space = write_space;
813 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
815 u16 version, cipher_type;
816 struct tls_context *ctx;
817 struct nlattr *start;
820 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
825 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
830 version = ctx->prot_info.version;
832 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
836 cipher_type = ctx->prot_info.cipher_type;
838 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
842 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
846 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
851 nla_nest_end(skb, start);
856 nla_nest_cancel(skb, start);
860 static size_t tls_get_info_size(const struct sock *sk)
864 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
865 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
866 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
867 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
868 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
874 static int __net_init tls_init_net(struct net *net)
878 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
879 if (!net->mib.tls_statistics)
882 err = tls_proc_init(net);
888 free_percpu(net->mib.tls_statistics);
892 static void __net_exit tls_exit_net(struct net *net)
895 free_percpu(net->mib.tls_statistics);
898 static struct pernet_operations tls_proc_ops = {
899 .init = tls_init_net,
900 .exit = tls_exit_net,
903 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
905 .owner = THIS_MODULE,
907 .update = tls_update,
908 .get_info = tls_get_info,
909 .get_info_size = tls_get_info_size,
912 static int __init tls_register(void)
916 err = register_pernet_subsys(&tls_proc_ops);
920 tls_sw_proto_ops = inet_stream_ops;
921 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
922 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked;
925 tcp_register_ulp(&tcp_tls_ulp_ops);
930 static void __exit tls_unregister(void)
932 tcp_unregister_ulp(&tcp_tls_ulp_ops);
933 tls_device_cleanup();
934 unregister_pernet_subsys(&tls_proc_ops);
937 module_init(tls_register);
938 module_exit(tls_unregister);