1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
7 * Copyright(C) 2015 Intel Corporation.
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/kvm_host.h>
24 #define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
25 #define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
26 #define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
28 static bool msr_mtrr_valid(unsigned msr)
31 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
32 case MSR_MTRRfix64K_00000:
33 case MSR_MTRRfix16K_80000:
34 case MSR_MTRRfix16K_A0000:
35 case MSR_MTRRfix4K_C0000:
36 case MSR_MTRRfix4K_C8000:
37 case MSR_MTRRfix4K_D0000:
38 case MSR_MTRRfix4K_D8000:
39 case MSR_MTRRfix4K_E0000:
40 case MSR_MTRRfix4K_E8000:
41 case MSR_MTRRfix4K_F0000:
42 case MSR_MTRRfix4K_F8000:
50 static bool valid_mtrr_type(unsigned t)
52 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
55 bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
60 if (!msr_mtrr_valid(msr))
63 if (msr == MSR_IA32_CR_PAT) {
64 return kvm_pat_valid(data);
65 } else if (msr == MSR_MTRRdefType) {
68 return valid_mtrr_type(data & 0xff);
69 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
70 for (i = 0; i < 8 ; i++)
71 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
77 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
79 mask = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
82 if (!valid_mtrr_type(data & 0xff))
89 return (data & mask) == 0;
91 EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
93 static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
95 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
98 static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
100 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
103 static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
105 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
108 static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
111 * Intel SDM 11.11.2.2: all MTRRs are disabled when
112 * IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
113 * memory type is applied to all of physical memory.
115 * However, virtual machines can be run with CPUID such that
116 * there are no MTRRs. In that case, the firmware will never
117 * enable MTRRs and it is obviously undesirable to run the
118 * guest entirely with UC memory and we use WB.
120 if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
121 return MTRR_TYPE_UNCACHABLE;
123 return MTRR_TYPE_WRBACK;
127 * Three terms are used in the following code:
128 * - segment, it indicates the address segments covered by fixed MTRRs.
129 * - unit, it corresponds to the MSR entry in the segment.
130 * - range, a range is covered in one memory cache type.
132 struct fixed_mtrr_segment {
138 /* the start position in kvm_mtrr.fixed_ranges[]. */
142 static struct fixed_mtrr_segment fixed_seg_table[] = {
143 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
147 .range_shift = 16, /* 64K */
152 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
158 .range_shift = 14, /* 16K */
163 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
169 .range_shift = 12, /* 12K */
175 * The size of unit is covered in one MSR, one MSR entry contains
176 * 8 ranges so that unit size is always 8 * 2^range_shift.
178 static u64 fixed_mtrr_seg_unit_size(int seg)
180 return 8 << fixed_seg_table[seg].range_shift;
183 static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
186 case MSR_MTRRfix64K_00000:
190 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
192 *unit = array_index_nospec(
193 msr - MSR_MTRRfix16K_80000,
194 MSR_MTRRfix16K_A0000 - MSR_MTRRfix16K_80000 + 1);
196 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
198 *unit = array_index_nospec(
199 msr - MSR_MTRRfix4K_C0000,
200 MSR_MTRRfix4K_F8000 - MSR_MTRRfix4K_C0000 + 1);
209 static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
211 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
212 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
214 *start = mtrr_seg->start + unit * unit_size;
215 *end = *start + unit_size;
216 WARN_ON(*end > mtrr_seg->end);
219 static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
221 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
223 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
226 /* each unit has 8 ranges. */
227 return mtrr_seg->range_start + 8 * unit;
230 static int fixed_mtrr_seg_end_range_index(int seg)
232 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
235 n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
236 return mtrr_seg->range_start + n - 1;
239 static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
243 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
246 fixed_mtrr_seg_unit_range(seg, unit, start, end);
250 static int fixed_msr_to_range_index(u32 msr)
254 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
257 return fixed_mtrr_seg_unit_range_index(seg, unit);
260 static int fixed_mtrr_addr_to_seg(u64 addr)
262 struct fixed_mtrr_segment *mtrr_seg;
263 int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
265 for (seg = 0; seg < seg_num; seg++) {
266 mtrr_seg = &fixed_seg_table[seg];
267 if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
274 static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
276 struct fixed_mtrr_segment *mtrr_seg;
279 mtrr_seg = &fixed_seg_table[seg];
280 index = mtrr_seg->range_start;
281 index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
285 static u64 fixed_mtrr_range_end_addr(int seg, int index)
287 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
288 int pos = index - mtrr_seg->range_start;
290 return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
293 static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
297 *start = range->base & PAGE_MASK;
299 mask = range->mask & PAGE_MASK;
301 /* This cannot overflow because writing to the reserved bits of
302 * variable MTRRs causes a #GP.
304 *end = (*start | ~mask) + 1;
307 static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
309 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
313 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
314 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
317 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
321 if (fixed_msr_to_range(msr, &start, &end)) {
322 if (!fixed_mtrr_is_enabled(mtrr_state))
324 } else if (msr == MSR_MTRRdefType) {
328 /* variable range MTRRs. */
329 index = (msr - 0x200) / 2;
330 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
333 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
336 static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
338 return (range->mask & (1 << 11)) != 0;
341 static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
343 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
344 struct kvm_mtrr_range *tmp, *cur;
345 int index, is_mtrr_mask;
347 index = (msr - 0x200) / 2;
348 is_mtrr_mask = msr - 0x200 - 2 * index;
349 cur = &mtrr_state->var_ranges[index];
351 /* remove the entry if it's in the list. */
352 if (var_mtrr_range_is_valid(cur))
353 list_del(&mtrr_state->var_ranges[index].node);
356 * Set all illegal GPA bits in the mask, since those bits must
357 * implicitly be 0. The bits are then cleared when reading them.
362 cur->mask = data | kvm_vcpu_reserved_gpa_bits_raw(vcpu);
364 /* add it to the list if it's enabled. */
365 if (var_mtrr_range_is_valid(cur)) {
366 list_for_each_entry(tmp, &mtrr_state->head, node)
367 if (cur->base >= tmp->base)
369 list_add_tail(&cur->node, &tmp->node);
373 int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
377 if (!kvm_mtrr_valid(vcpu, msr, data))
380 index = fixed_msr_to_range_index(msr);
382 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
383 else if (msr == MSR_MTRRdefType)
384 vcpu->arch.mtrr_state.deftype = data;
385 else if (msr == MSR_IA32_CR_PAT)
386 vcpu->arch.pat = data;
388 set_var_mtrr_msr(vcpu, msr, data);
390 update_mtrr(vcpu, msr);
394 int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
398 /* MSR_MTRRcap is a readonly MSR. */
399 if (msr == MSR_MTRRcap) {
404 * VCNT = KVM_NR_VAR_MTRR
406 *pdata = 0x500 | KVM_NR_VAR_MTRR;
410 if (!msr_mtrr_valid(msr))
413 index = fixed_msr_to_range_index(msr);
415 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
416 else if (msr == MSR_MTRRdefType)
417 *pdata = vcpu->arch.mtrr_state.deftype;
418 else if (msr == MSR_IA32_CR_PAT)
419 *pdata = vcpu->arch.pat;
420 else { /* Variable MTRRs */
423 index = (msr - 0x200) / 2;
424 is_mtrr_mask = msr - 0x200 - 2 * index;
426 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
428 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
430 *pdata &= ~kvm_vcpu_reserved_gpa_bits_raw(vcpu);
436 void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
438 INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
443 struct kvm_mtrr *mtrr_state;
449 /* mtrr is completely disabled? */
451 /* [start, end) is not fully covered in MTRRs? */
454 /* private fields. */
456 /* used for fixed MTRRs. */
462 /* used for var MTRRs. */
464 struct kvm_mtrr_range *range;
465 /* max address has been covered in var MTRRs. */
473 static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
477 if (!fixed_mtrr_is_enabled(iter->mtrr_state))
480 seg = fixed_mtrr_addr_to_seg(iter->start);
485 index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
491 static bool match_var_range(struct mtrr_iter *iter,
492 struct kvm_mtrr_range *range)
496 var_mtrr_range(range, &start, &end);
497 if (!(start >= iter->end || end <= iter->start)) {
501 * the function is called when we do kvm_mtrr.head walking.
502 * Range has the minimum base address which interleaves
503 * [looker->start_max, looker->end).
505 iter->partial_map |= iter->start_max < start;
507 /* update the max address has been covered. */
508 iter->start_max = max(iter->start_max, end);
515 static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
517 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
519 list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
520 if (match_var_range(iter, iter->range))
524 iter->partial_map |= iter->start_max < iter->end;
527 static void mtrr_lookup_var_start(struct mtrr_iter *iter)
529 struct kvm_mtrr *mtrr_state = iter->mtrr_state;
532 iter->start_max = iter->start;
534 iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
536 __mtrr_lookup_var_next(iter);
539 static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
541 /* terminate the lookup. */
542 if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
550 /* have looked up for all fixed MTRRs. */
551 if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
552 return mtrr_lookup_var_start(iter);
554 /* switch to next segment. */
555 if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
559 static void mtrr_lookup_var_next(struct mtrr_iter *iter)
561 __mtrr_lookup_var_next(iter);
564 static void mtrr_lookup_start(struct mtrr_iter *iter)
566 if (!mtrr_is_enabled(iter->mtrr_state)) {
567 iter->mtrr_disabled = true;
571 if (!mtrr_lookup_fixed_start(iter))
572 mtrr_lookup_var_start(iter);
575 static void mtrr_lookup_init(struct mtrr_iter *iter,
576 struct kvm_mtrr *mtrr_state, u64 start, u64 end)
578 iter->mtrr_state = mtrr_state;
581 iter->mtrr_disabled = false;
582 iter->partial_map = false;
586 mtrr_lookup_start(iter);
589 static bool mtrr_lookup_okay(struct mtrr_iter *iter)
592 iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
597 iter->mem_type = iter->range->base & 0xff;
604 static void mtrr_lookup_next(struct mtrr_iter *iter)
607 mtrr_lookup_fixed_next(iter);
609 mtrr_lookup_var_next(iter);
612 #define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
613 for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
614 mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
616 u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
618 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
619 struct mtrr_iter iter;
622 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
623 | (1 << MTRR_TYPE_WRTHROUGH);
625 start = gfn_to_gpa(gfn);
626 end = start + PAGE_SIZE;
628 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
629 int curr_type = iter.mem_type;
632 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
642 * If two or more variable memory ranges match and the
643 * memory types are identical, then that memory type is
646 if (type == curr_type)
650 * If two or more variable memory ranges match and one of
651 * the memory types is UC, the UC memory type used.
653 if (curr_type == MTRR_TYPE_UNCACHABLE)
654 return MTRR_TYPE_UNCACHABLE;
657 * If two or more variable memory ranges match and the
658 * memory types are WT and WB, the WT memory type is used.
660 if (((1 << type) & wt_wb_mask) &&
661 ((1 << curr_type) & wt_wb_mask)) {
662 type = MTRR_TYPE_WRTHROUGH;
667 * For overlaps not defined by the above rules, processor
668 * behavior is undefined.
671 /* We use WB for this undefined behavior. :( */
672 return MTRR_TYPE_WRBACK;
675 if (iter.mtrr_disabled)
676 return mtrr_disabled_type(vcpu);
678 /* not contained in any MTRRs. */
680 return mtrr_default_type(mtrr_state);
683 * We just check one page, partially covered by MTRRs is
686 WARN_ON(iter.partial_map);
690 EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
692 bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
695 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
696 struct mtrr_iter iter;
700 start = gfn_to_gpa(gfn);
701 end = gfn_to_gpa(gfn + page_num);
702 mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
704 type = iter.mem_type;
708 if (type != iter.mem_type)
712 if (iter.mtrr_disabled)
715 if (!iter.partial_map)
721 return type == mtrr_default_type(mtrr_state);