4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
49 #include <linux/swapops.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
66 unsigned long hibernation_mode;
68 /* This context's GFP mask */
73 /* Can mapped pages be reclaimed? */
76 /* Can pages be swapped as part of reclaim? */
82 * The memory cgroup that hit its limit and as a result is the
83 * primary target of this reclaim invocation.
85 struct mem_cgroup *target_mem_cgroup;
88 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 struct mem_cgroup_zone {
95 struct mem_cgroup *mem_cgroup;
99 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
101 #ifdef ARCH_HAS_PREFETCH
102 #define prefetch_prev_lru_page(_page, _base, _field) \
104 if ((_page)->lru.prev != _base) { \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
112 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
115 #ifdef ARCH_HAS_PREFETCHW
116 #define prefetchw_prev_lru_page(_page, _base, _field) \
118 if ((_page)->lru.prev != _base) { \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
126 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130 * From 0 .. 100. Higher means more swappy.
132 int vm_swappiness = 60;
133 long vm_total_pages; /* The total number of pages which the VM controls */
135 static LIST_HEAD(shrinker_list);
136 static DECLARE_RWSEM(shrinker_rwsem);
138 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
139 static bool global_reclaim(struct scan_control *sc)
141 return !sc->target_mem_cgroup;
144 static bool global_reclaim(struct scan_control *sc)
150 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
152 if (!mem_cgroup_disabled())
153 return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
155 return &mz->zone->reclaim_stat;
158 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
161 if (!mem_cgroup_disabled())
162 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
163 zone_to_nid(mz->zone),
167 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
172 * Add a shrinker callback to be called from the vm
174 void register_shrinker(struct shrinker *shrinker)
176 atomic_long_set(&shrinker->nr_in_batch, 0);
177 down_write(&shrinker_rwsem);
178 list_add_tail(&shrinker->list, &shrinker_list);
179 up_write(&shrinker_rwsem);
181 EXPORT_SYMBOL(register_shrinker);
186 void unregister_shrinker(struct shrinker *shrinker)
188 down_write(&shrinker_rwsem);
189 list_del(&shrinker->list);
190 up_write(&shrinker_rwsem);
192 EXPORT_SYMBOL(unregister_shrinker);
194 static inline int do_shrinker_shrink(struct shrinker *shrinker,
195 struct shrink_control *sc,
196 unsigned long nr_to_scan)
198 sc->nr_to_scan = nr_to_scan;
199 return (*shrinker->shrink)(shrinker, sc);
202 #define SHRINK_BATCH 128
204 * Call the shrink functions to age shrinkable caches
206 * Here we assume it costs one seek to replace a lru page and that it also
207 * takes a seek to recreate a cache object. With this in mind we age equal
208 * percentages of the lru and ageable caches. This should balance the seeks
209 * generated by these structures.
211 * If the vm encountered mapped pages on the LRU it increase the pressure on
212 * slab to avoid swapping.
214 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
216 * `lru_pages' represents the number of on-LRU pages in all the zones which
217 * are eligible for the caller's allocation attempt. It is used for balancing
218 * slab reclaim versus page reclaim.
220 * Returns the number of slab objects which we shrunk.
222 unsigned long shrink_slab(struct shrink_control *shrink,
223 unsigned long nr_pages_scanned,
224 unsigned long lru_pages)
226 struct shrinker *shrinker;
227 unsigned long ret = 0;
229 if (nr_pages_scanned == 0)
230 nr_pages_scanned = SWAP_CLUSTER_MAX;
232 if (!down_read_trylock(&shrinker_rwsem)) {
233 /* Assume we'll be able to shrink next time */
238 list_for_each_entry(shrinker, &shrinker_list, list) {
239 unsigned long long delta;
245 long batch_size = shrinker->batch ? shrinker->batch
248 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
253 * copy the current shrinker scan count into a local variable
254 * and zero it so that other concurrent shrinker invocations
255 * don't also do this scanning work.
257 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
260 delta = (4 * nr_pages_scanned) / shrinker->seeks;
262 do_div(delta, lru_pages + 1);
264 if (total_scan < 0) {
265 printk(KERN_ERR "shrink_slab: %pF negative objects to "
267 shrinker->shrink, total_scan);
268 total_scan = max_pass;
272 * We need to avoid excessive windup on filesystem shrinkers
273 * due to large numbers of GFP_NOFS allocations causing the
274 * shrinkers to return -1 all the time. This results in a large
275 * nr being built up so when a shrink that can do some work
276 * comes along it empties the entire cache due to nr >>>
277 * max_pass. This is bad for sustaining a working set in
280 * Hence only allow the shrinker to scan the entire cache when
281 * a large delta change is calculated directly.
283 if (delta < max_pass / 4)
284 total_scan = min(total_scan, max_pass / 2);
287 * Avoid risking looping forever due to too large nr value:
288 * never try to free more than twice the estimate number of
291 if (total_scan > max_pass * 2)
292 total_scan = max_pass * 2;
294 trace_mm_shrink_slab_start(shrinker, shrink, nr,
295 nr_pages_scanned, lru_pages,
296 max_pass, delta, total_scan);
298 while (total_scan >= batch_size) {
301 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
302 shrink_ret = do_shrinker_shrink(shrinker, shrink,
304 if (shrink_ret == -1)
306 if (shrink_ret < nr_before)
307 ret += nr_before - shrink_ret;
308 count_vm_events(SLABS_SCANNED, batch_size);
309 total_scan -= batch_size;
315 * move the unused scan count back into the shrinker in a
316 * manner that handles concurrent updates. If we exhausted the
317 * scan, there is no need to do an update.
320 new_nr = atomic_long_add_return(total_scan,
321 &shrinker->nr_in_batch);
323 new_nr = atomic_long_read(&shrinker->nr_in_batch);
325 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
327 up_read(&shrinker_rwsem);
333 static inline int is_page_cache_freeable(struct page *page)
336 * A freeable page cache page is referenced only by the caller
337 * that isolated the page, the page cache radix tree and
338 * optional buffer heads at page->private.
340 return page_count(page) - page_has_private(page) == 2;
343 static int may_write_to_queue(struct backing_dev_info *bdi,
344 struct scan_control *sc)
346 if (current->flags & PF_SWAPWRITE)
348 if (!bdi_write_congested(bdi))
350 if (bdi == current->backing_dev_info)
356 * We detected a synchronous write error writing a page out. Probably
357 * -ENOSPC. We need to propagate that into the address_space for a subsequent
358 * fsync(), msync() or close().
360 * The tricky part is that after writepage we cannot touch the mapping: nothing
361 * prevents it from being freed up. But we have a ref on the page and once
362 * that page is locked, the mapping is pinned.
364 * We're allowed to run sleeping lock_page() here because we know the caller has
367 static void handle_write_error(struct address_space *mapping,
368 struct page *page, int error)
371 if (page_mapping(page) == mapping)
372 mapping_set_error(mapping, error);
376 /* possible outcome of pageout() */
378 /* failed to write page out, page is locked */
380 /* move page to the active list, page is locked */
382 /* page has been sent to the disk successfully, page is unlocked */
384 /* page is clean and locked */
389 * pageout is called by shrink_page_list() for each dirty page.
390 * Calls ->writepage().
392 static pageout_t pageout(struct page *page, struct address_space *mapping,
393 struct scan_control *sc)
396 * If the page is dirty, only perform writeback if that write
397 * will be non-blocking. To prevent this allocation from being
398 * stalled by pagecache activity. But note that there may be
399 * stalls if we need to run get_block(). We could test
400 * PagePrivate for that.
402 * If this process is currently in __generic_file_aio_write() against
403 * this page's queue, we can perform writeback even if that
406 * If the page is swapcache, write it back even if that would
407 * block, for some throttling. This happens by accident, because
408 * swap_backing_dev_info is bust: it doesn't reflect the
409 * congestion state of the swapdevs. Easy to fix, if needed.
411 if (!is_page_cache_freeable(page))
415 * Some data journaling orphaned pages can have
416 * page->mapping == NULL while being dirty with clean buffers.
418 if (page_has_private(page)) {
419 if (try_to_free_buffers(page)) {
420 ClearPageDirty(page);
421 printk("%s: orphaned page\n", __func__);
427 if (mapping->a_ops->writepage == NULL)
428 return PAGE_ACTIVATE;
429 if (!may_write_to_queue(mapping->backing_dev_info, sc))
432 if (clear_page_dirty_for_io(page)) {
434 struct writeback_control wbc = {
435 .sync_mode = WB_SYNC_NONE,
436 .nr_to_write = SWAP_CLUSTER_MAX,
438 .range_end = LLONG_MAX,
442 SetPageReclaim(page);
443 res = mapping->a_ops->writepage(page, &wbc);
445 handle_write_error(mapping, page, res);
446 if (res == AOP_WRITEPAGE_ACTIVATE) {
447 ClearPageReclaim(page);
448 return PAGE_ACTIVATE;
451 if (!PageWriteback(page)) {
452 /* synchronous write or broken a_ops? */
453 ClearPageReclaim(page);
455 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
456 inc_zone_page_state(page, NR_VMSCAN_WRITE);
464 * Same as remove_mapping, but if the page is removed from the mapping, it
465 * gets returned with a refcount of 0.
467 static int __remove_mapping(struct address_space *mapping, struct page *page)
469 BUG_ON(!PageLocked(page));
470 BUG_ON(mapping != page_mapping(page));
472 spin_lock_irq(&mapping->tree_lock);
474 * The non racy check for a busy page.
476 * Must be careful with the order of the tests. When someone has
477 * a ref to the page, it may be possible that they dirty it then
478 * drop the reference. So if PageDirty is tested before page_count
479 * here, then the following race may occur:
481 * get_user_pages(&page);
482 * [user mapping goes away]
484 * !PageDirty(page) [good]
485 * SetPageDirty(page);
487 * !page_count(page) [good, discard it]
489 * [oops, our write_to data is lost]
491 * Reversing the order of the tests ensures such a situation cannot
492 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
493 * load is not satisfied before that of page->_count.
495 * Note that if SetPageDirty is always performed via set_page_dirty,
496 * and thus under tree_lock, then this ordering is not required.
498 if (!page_freeze_refs(page, 2))
500 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
501 if (unlikely(PageDirty(page))) {
502 page_unfreeze_refs(page, 2);
506 if (PageSwapCache(page)) {
507 swp_entry_t swap = { .val = page_private(page) };
508 __delete_from_swap_cache(page);
509 spin_unlock_irq(&mapping->tree_lock);
510 swapcache_free(swap, page);
512 void (*freepage)(struct page *);
514 freepage = mapping->a_ops->freepage;
516 __delete_from_page_cache(page);
517 spin_unlock_irq(&mapping->tree_lock);
518 mem_cgroup_uncharge_cache_page(page);
520 if (freepage != NULL)
527 spin_unlock_irq(&mapping->tree_lock);
532 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
533 * someone else has a ref on the page, abort and return 0. If it was
534 * successfully detached, return 1. Assumes the caller has a single ref on
537 int remove_mapping(struct address_space *mapping, struct page *page)
539 if (__remove_mapping(mapping, page)) {
541 * Unfreezing the refcount with 1 rather than 2 effectively
542 * drops the pagecache ref for us without requiring another
545 page_unfreeze_refs(page, 1);
552 * putback_lru_page - put previously isolated page onto appropriate LRU list
553 * @page: page to be put back to appropriate lru list
555 * Add previously isolated @page to appropriate LRU list.
556 * Page may still be unevictable for other reasons.
558 * lru_lock must not be held, interrupts must be enabled.
560 void putback_lru_page(struct page *page)
563 int active = !!TestClearPageActive(page);
564 int was_unevictable = PageUnevictable(page);
566 VM_BUG_ON(PageLRU(page));
569 ClearPageUnevictable(page);
571 if (page_evictable(page, NULL)) {
573 * For evictable pages, we can use the cache.
574 * In event of a race, worst case is we end up with an
575 * unevictable page on [in]active list.
576 * We know how to handle that.
578 lru = active + page_lru_base_type(page);
579 lru_cache_add_lru(page, lru);
582 * Put unevictable pages directly on zone's unevictable
585 lru = LRU_UNEVICTABLE;
586 add_page_to_unevictable_list(page);
588 * When racing with an mlock or AS_UNEVICTABLE clearing
589 * (page is unlocked) make sure that if the other thread
590 * does not observe our setting of PG_lru and fails
591 * isolation/check_move_unevictable_pages,
592 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
593 * the page back to the evictable list.
595 * The other side is TestClearPageMlocked() or shmem_lock().
601 * page's status can change while we move it among lru. If an evictable
602 * page is on unevictable list, it never be freed. To avoid that,
603 * check after we added it to the list, again.
605 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
606 if (!isolate_lru_page(page)) {
610 /* This means someone else dropped this page from LRU
611 * So, it will be freed or putback to LRU again. There is
612 * nothing to do here.
616 if (was_unevictable && lru != LRU_UNEVICTABLE)
617 count_vm_event(UNEVICTABLE_PGRESCUED);
618 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
619 count_vm_event(UNEVICTABLE_PGCULLED);
621 put_page(page); /* drop ref from isolate */
624 enum page_references {
626 PAGEREF_RECLAIM_CLEAN,
631 static enum page_references page_check_references(struct page *page,
632 struct mem_cgroup_zone *mz,
633 struct scan_control *sc)
635 int referenced_ptes, referenced_page;
636 unsigned long vm_flags;
638 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
640 referenced_page = TestClearPageReferenced(page);
643 * Mlock lost the isolation race with us. Let try_to_unmap()
644 * move the page to the unevictable list.
646 if (vm_flags & VM_LOCKED)
647 return PAGEREF_RECLAIM;
649 if (referenced_ptes) {
650 if (PageSwapBacked(page))
651 return PAGEREF_ACTIVATE;
653 * All mapped pages start out with page table
654 * references from the instantiating fault, so we need
655 * to look twice if a mapped file page is used more
658 * Mark it and spare it for another trip around the
659 * inactive list. Another page table reference will
660 * lead to its activation.
662 * Note: the mark is set for activated pages as well
663 * so that recently deactivated but used pages are
666 SetPageReferenced(page);
668 if (referenced_page || referenced_ptes > 1)
669 return PAGEREF_ACTIVATE;
672 * Activate file-backed executable pages after first usage.
674 if (vm_flags & VM_EXEC)
675 return PAGEREF_ACTIVATE;
680 /* Reclaim if clean, defer dirty pages to writeback */
681 if (referenced_page && !PageSwapBacked(page))
682 return PAGEREF_RECLAIM_CLEAN;
684 return PAGEREF_RECLAIM;
688 * shrink_page_list() returns the number of reclaimed pages
690 static unsigned long shrink_page_list(struct list_head *page_list,
691 struct mem_cgroup_zone *mz,
692 struct scan_control *sc,
694 unsigned long *ret_nr_dirty,
695 unsigned long *ret_nr_writeback)
697 LIST_HEAD(ret_pages);
698 LIST_HEAD(free_pages);
700 unsigned long nr_dirty = 0;
701 unsigned long nr_congested = 0;
702 unsigned long nr_reclaimed = 0;
703 unsigned long nr_writeback = 0;
707 while (!list_empty(page_list)) {
708 enum page_references references;
709 struct address_space *mapping;
715 page = lru_to_page(page_list);
716 list_del(&page->lru);
718 if (!trylock_page(page))
721 VM_BUG_ON(PageActive(page));
722 VM_BUG_ON(page_zone(page) != mz->zone);
726 if (unlikely(!page_evictable(page, NULL)))
729 if (!sc->may_unmap && page_mapped(page))
732 /* Double the slab pressure for mapped and swapcache pages */
733 if (page_mapped(page) || PageSwapCache(page))
736 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
737 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
739 if (PageWriteback(page)) {
745 references = page_check_references(page, mz, sc);
746 switch (references) {
747 case PAGEREF_ACTIVATE:
748 goto activate_locked;
751 case PAGEREF_RECLAIM:
752 case PAGEREF_RECLAIM_CLEAN:
753 ; /* try to reclaim the page below */
757 * Anonymous process memory has backing store?
758 * Try to allocate it some swap space here.
760 if (PageAnon(page) && !PageSwapCache(page)) {
761 if (!(sc->gfp_mask & __GFP_IO))
763 if (!add_to_swap(page))
764 goto activate_locked;
768 mapping = page_mapping(page);
771 * The page is mapped into the page tables of one or more
772 * processes. Try to unmap it here.
774 if (page_mapped(page) && mapping) {
775 switch (try_to_unmap(page, TTU_UNMAP)) {
777 goto activate_locked;
783 ; /* try to free the page below */
787 if (PageDirty(page)) {
791 * Only kswapd can writeback filesystem pages to
792 * avoid risk of stack overflow but do not writeback
793 * unless under significant pressure.
795 if (page_is_file_cache(page) &&
796 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
798 * Immediately reclaim when written back.
799 * Similar in principal to deactivate_page()
800 * except we already have the page isolated
801 * and know it's dirty
803 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
804 SetPageReclaim(page);
809 if (references == PAGEREF_RECLAIM_CLEAN)
813 if (!sc->may_writepage)
816 /* Page is dirty, try to write it out here */
817 switch (pageout(page, mapping, sc)) {
822 goto activate_locked;
824 if (PageWriteback(page))
830 * A synchronous write - probably a ramdisk. Go
831 * ahead and try to reclaim the page.
833 if (!trylock_page(page))
835 if (PageDirty(page) || PageWriteback(page))
837 mapping = page_mapping(page);
839 ; /* try to free the page below */
844 * If the page has buffers, try to free the buffer mappings
845 * associated with this page. If we succeed we try to free
848 * We do this even if the page is PageDirty().
849 * try_to_release_page() does not perform I/O, but it is
850 * possible for a page to have PageDirty set, but it is actually
851 * clean (all its buffers are clean). This happens if the
852 * buffers were written out directly, with submit_bh(). ext3
853 * will do this, as well as the blockdev mapping.
854 * try_to_release_page() will discover that cleanness and will
855 * drop the buffers and mark the page clean - it can be freed.
857 * Rarely, pages can have buffers and no ->mapping. These are
858 * the pages which were not successfully invalidated in
859 * truncate_complete_page(). We try to drop those buffers here
860 * and if that worked, and the page is no longer mapped into
861 * process address space (page_count == 1) it can be freed.
862 * Otherwise, leave the page on the LRU so it is swappable.
864 if (page_has_private(page)) {
865 if (!try_to_release_page(page, sc->gfp_mask))
866 goto activate_locked;
867 if (!mapping && page_count(page) == 1) {
869 if (put_page_testzero(page))
873 * rare race with speculative reference.
874 * the speculative reference will free
875 * this page shortly, so we may
876 * increment nr_reclaimed here (and
877 * leave it off the LRU).
885 if (!mapping || !__remove_mapping(mapping, page))
889 * At this point, we have no other references and there is
890 * no way to pick any more up (removed from LRU, removed
891 * from pagecache). Can use non-atomic bitops now (and
892 * we obviously don't have to worry about waking up a process
893 * waiting on the page lock, because there are no references.
895 __clear_page_locked(page);
900 * Is there need to periodically free_page_list? It would
901 * appear not as the counts should be low
903 list_add(&page->lru, &free_pages);
907 if (PageSwapCache(page))
908 try_to_free_swap(page);
910 putback_lru_page(page);
914 /* Not a candidate for swapping, so reclaim swap space. */
915 if (PageSwapCache(page) && vm_swap_full())
916 try_to_free_swap(page);
917 VM_BUG_ON(PageActive(page));
923 list_add(&page->lru, &ret_pages);
924 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
928 * Tag a zone as congested if all the dirty pages encountered were
929 * backed by a congested BDI. In this case, reclaimers should just
930 * back off and wait for congestion to clear because further reclaim
931 * will encounter the same problem
933 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
934 zone_set_flag(mz->zone, ZONE_CONGESTED);
936 free_hot_cold_page_list(&free_pages, 1);
938 list_splice(&ret_pages, page_list);
939 count_vm_events(PGACTIVATE, pgactivate);
940 *ret_nr_dirty += nr_dirty;
941 *ret_nr_writeback += nr_writeback;
946 * Attempt to remove the specified page from its LRU. Only take this page
947 * if it is of the appropriate PageActive status. Pages which are being
948 * freed elsewhere are also ignored.
950 * page: page to consider
951 * mode: one of the LRU isolation modes defined above
953 * returns 0 on success, -ve errno on failure.
955 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
960 /* Only take pages on the LRU. */
964 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
965 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
968 * When checking the active state, we need to be sure we are
969 * dealing with comparible boolean values. Take the logical not
972 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
975 if (!all_lru_mode && !!page_is_file_cache(page) != file)
978 /* Do not give back unevictable pages for compaction */
979 if (PageUnevictable(page))
985 * To minimise LRU disruption, the caller can indicate that it only
986 * wants to isolate pages it will be able to operate on without
987 * blocking - clean pages for the most part.
989 * ISOLATE_CLEAN means that only clean pages should be isolated. This
990 * is used by reclaim when it is cannot write to backing storage
992 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
993 * that it is possible to migrate without blocking
995 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
996 /* All the caller can do on PageWriteback is block */
997 if (PageWriteback(page))
1000 if (PageDirty(page)) {
1001 struct address_space *mapping;
1003 /* ISOLATE_CLEAN means only clean pages */
1004 if (mode & ISOLATE_CLEAN)
1008 * Only pages without mappings or that have a
1009 * ->migratepage callback are possible to migrate
1012 mapping = page_mapping(page);
1013 if (mapping && !mapping->a_ops->migratepage)
1018 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1021 if (likely(get_page_unless_zero(page))) {
1023 * Be careful not to clear PageLRU until after we're
1024 * sure the page is not being freed elsewhere -- the
1025 * page release code relies on it.
1035 * zone->lru_lock is heavily contended. Some of the functions that
1036 * shrink the lists perform better by taking out a batch of pages
1037 * and working on them outside the LRU lock.
1039 * For pagecache intensive workloads, this function is the hottest
1040 * spot in the kernel (apart from copy_*_user functions).
1042 * Appropriate locks must be held before calling this function.
1044 * @nr_to_scan: The number of pages to look through on the list.
1045 * @mz: The mem_cgroup_zone to pull pages from.
1046 * @dst: The temp list to put pages on to.
1047 * @nr_scanned: The number of pages that were scanned.
1048 * @sc: The scan_control struct for this reclaim session
1049 * @mode: One of the LRU isolation modes
1050 * @active: True [1] if isolating active pages
1051 * @file: True [1] if isolating file [!anon] pages
1053 * returns how many pages were moved onto *@dst.
1055 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1056 struct mem_cgroup_zone *mz, struct list_head *dst,
1057 unsigned long *nr_scanned, struct scan_control *sc,
1058 isolate_mode_t mode, int active, int file)
1060 struct lruvec *lruvec;
1061 struct list_head *src;
1062 unsigned long nr_taken = 0;
1066 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1071 src = &lruvec->lists[lru];
1073 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1076 page = lru_to_page(src);
1077 prefetchw_prev_lru_page(page, src, flags);
1079 VM_BUG_ON(!PageLRU(page));
1081 switch (__isolate_lru_page(page, mode, file)) {
1083 mem_cgroup_lru_del(page);
1084 list_move(&page->lru, dst);
1085 nr_taken += hpage_nr_pages(page);
1089 /* else it is being freed elsewhere */
1090 list_move(&page->lru, src);
1100 trace_mm_vmscan_lru_isolate(sc->order,
1108 * isolate_lru_page - tries to isolate a page from its LRU list
1109 * @page: page to isolate from its LRU list
1111 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1112 * vmstat statistic corresponding to whatever LRU list the page was on.
1114 * Returns 0 if the page was removed from an LRU list.
1115 * Returns -EBUSY if the page was not on an LRU list.
1117 * The returned page will have PageLRU() cleared. If it was found on
1118 * the active list, it will have PageActive set. If it was found on
1119 * the unevictable list, it will have the PageUnevictable bit set. That flag
1120 * may need to be cleared by the caller before letting the page go.
1122 * The vmstat statistic corresponding to the list on which the page was
1123 * found will be decremented.
1126 * (1) Must be called with an elevated refcount on the page. This is a
1127 * fundamentnal difference from isolate_lru_pages (which is called
1128 * without a stable reference).
1129 * (2) the lru_lock must not be held.
1130 * (3) interrupts must be enabled.
1132 int isolate_lru_page(struct page *page)
1136 VM_BUG_ON(!page_count(page));
1138 if (PageLRU(page)) {
1139 struct zone *zone = page_zone(page);
1141 spin_lock_irq(&zone->lru_lock);
1142 if (PageLRU(page)) {
1143 int lru = page_lru(page);
1148 del_page_from_lru_list(zone, page, lru);
1150 spin_unlock_irq(&zone->lru_lock);
1156 * Are there way too many processes in the direct reclaim path already?
1158 static int too_many_isolated(struct zone *zone, int file,
1159 struct scan_control *sc)
1161 unsigned long inactive, isolated;
1163 if (current_is_kswapd())
1166 if (!global_reclaim(sc))
1170 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1171 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1173 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1174 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1177 return isolated > inactive;
1180 static noinline_for_stack void
1181 putback_inactive_pages(struct mem_cgroup_zone *mz,
1182 struct list_head *page_list)
1184 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1185 struct zone *zone = mz->zone;
1186 LIST_HEAD(pages_to_free);
1189 * Put back any unfreeable pages.
1191 while (!list_empty(page_list)) {
1192 struct page *page = lru_to_page(page_list);
1195 VM_BUG_ON(PageLRU(page));
1196 list_del(&page->lru);
1197 if (unlikely(!page_evictable(page, NULL))) {
1198 spin_unlock_irq(&zone->lru_lock);
1199 putback_lru_page(page);
1200 spin_lock_irq(&zone->lru_lock);
1204 lru = page_lru(page);
1205 add_page_to_lru_list(zone, page, lru);
1206 if (is_active_lru(lru)) {
1207 int file = is_file_lru(lru);
1208 int numpages = hpage_nr_pages(page);
1209 reclaim_stat->recent_rotated[file] += numpages;
1211 if (put_page_testzero(page)) {
1212 __ClearPageLRU(page);
1213 __ClearPageActive(page);
1214 del_page_from_lru_list(zone, page, lru);
1216 if (unlikely(PageCompound(page))) {
1217 spin_unlock_irq(&zone->lru_lock);
1218 (*get_compound_page_dtor(page))(page);
1219 spin_lock_irq(&zone->lru_lock);
1221 list_add(&page->lru, &pages_to_free);
1226 * To save our caller's stack, now use input list for pages to free.
1228 list_splice(&pages_to_free, page_list);
1231 static noinline_for_stack void
1232 update_isolated_counts(struct mem_cgroup_zone *mz,
1233 struct list_head *page_list,
1234 unsigned long *nr_anon,
1235 unsigned long *nr_file)
1237 struct zone *zone = mz->zone;
1238 unsigned int count[NR_LRU_LISTS] = { 0, };
1239 unsigned long nr_active = 0;
1244 * Count pages and clear active flags
1246 list_for_each_entry(page, page_list, lru) {
1247 int numpages = hpage_nr_pages(page);
1248 lru = page_lru_base_type(page);
1249 if (PageActive(page)) {
1251 ClearPageActive(page);
1252 nr_active += numpages;
1254 count[lru] += numpages;
1258 __count_vm_events(PGDEACTIVATE, nr_active);
1260 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1261 -count[LRU_ACTIVE_FILE]);
1262 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1263 -count[LRU_INACTIVE_FILE]);
1264 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1265 -count[LRU_ACTIVE_ANON]);
1266 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1267 -count[LRU_INACTIVE_ANON]);
1269 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1270 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1272 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1273 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1278 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1279 * of reclaimed pages
1281 static noinline_for_stack unsigned long
1282 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1283 struct scan_control *sc, int priority, int file)
1285 LIST_HEAD(page_list);
1286 unsigned long nr_scanned;
1287 unsigned long nr_reclaimed = 0;
1288 unsigned long nr_taken;
1289 unsigned long nr_anon;
1290 unsigned long nr_file;
1291 unsigned long nr_dirty = 0;
1292 unsigned long nr_writeback = 0;
1293 isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1294 struct zone *zone = mz->zone;
1295 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1297 while (unlikely(too_many_isolated(zone, file, sc))) {
1298 congestion_wait(BLK_RW_ASYNC, HZ/10);
1300 /* We are about to die and free our memory. Return now. */
1301 if (fatal_signal_pending(current))
1302 return SWAP_CLUSTER_MAX;
1308 isolate_mode |= ISOLATE_UNMAPPED;
1309 if (!sc->may_writepage)
1310 isolate_mode |= ISOLATE_CLEAN;
1312 spin_lock_irq(&zone->lru_lock);
1314 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1315 sc, isolate_mode, 0, file);
1316 if (global_reclaim(sc)) {
1317 zone->pages_scanned += nr_scanned;
1318 if (current_is_kswapd())
1319 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1322 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1325 spin_unlock_irq(&zone->lru_lock);
1330 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1332 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1333 &nr_dirty, &nr_writeback);
1335 spin_lock_irq(&zone->lru_lock);
1337 reclaim_stat->recent_scanned[0] += nr_anon;
1338 reclaim_stat->recent_scanned[1] += nr_file;
1340 if (global_reclaim(sc)) {
1341 if (current_is_kswapd())
1342 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1345 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1349 putback_inactive_pages(mz, &page_list);
1351 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1352 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1354 spin_unlock_irq(&zone->lru_lock);
1356 free_hot_cold_page_list(&page_list, 1);
1359 * If reclaim is isolating dirty pages under writeback, it implies
1360 * that the long-lived page allocation rate is exceeding the page
1361 * laundering rate. Either the global limits are not being effective
1362 * at throttling processes due to the page distribution throughout
1363 * zones or there is heavy usage of a slow backing device. The
1364 * only option is to throttle from reclaim context which is not ideal
1365 * as there is no guarantee the dirtying process is throttled in the
1366 * same way balance_dirty_pages() manages.
1368 * This scales the number of dirty pages that must be under writeback
1369 * before throttling depending on priority. It is a simple backoff
1370 * function that has the most effect in the range DEF_PRIORITY to
1371 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1372 * in trouble and reclaim is considered to be in trouble.
1374 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1375 * DEF_PRIORITY-1 50% must be PageWriteback
1376 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1378 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1379 * isolated page is PageWriteback
1381 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1382 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1384 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1386 nr_scanned, nr_reclaimed,
1388 trace_shrink_flags(file));
1389 return nr_reclaimed;
1393 * This moves pages from the active list to the inactive list.
1395 * We move them the other way if the page is referenced by one or more
1396 * processes, from rmap.
1398 * If the pages are mostly unmapped, the processing is fast and it is
1399 * appropriate to hold zone->lru_lock across the whole operation. But if
1400 * the pages are mapped, the processing is slow (page_referenced()) so we
1401 * should drop zone->lru_lock around each page. It's impossible to balance
1402 * this, so instead we remove the pages from the LRU while processing them.
1403 * It is safe to rely on PG_active against the non-LRU pages in here because
1404 * nobody will play with that bit on a non-LRU page.
1406 * The downside is that we have to touch page->_count against each page.
1407 * But we had to alter page->flags anyway.
1410 static void move_active_pages_to_lru(struct zone *zone,
1411 struct list_head *list,
1412 struct list_head *pages_to_free,
1415 unsigned long pgmoved = 0;
1418 while (!list_empty(list)) {
1419 struct lruvec *lruvec;
1421 page = lru_to_page(list);
1423 VM_BUG_ON(PageLRU(page));
1426 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1427 list_move(&page->lru, &lruvec->lists[lru]);
1428 pgmoved += hpage_nr_pages(page);
1430 if (put_page_testzero(page)) {
1431 __ClearPageLRU(page);
1432 __ClearPageActive(page);
1433 del_page_from_lru_list(zone, page, lru);
1435 if (unlikely(PageCompound(page))) {
1436 spin_unlock_irq(&zone->lru_lock);
1437 (*get_compound_page_dtor(page))(page);
1438 spin_lock_irq(&zone->lru_lock);
1440 list_add(&page->lru, pages_to_free);
1443 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1444 if (!is_active_lru(lru))
1445 __count_vm_events(PGDEACTIVATE, pgmoved);
1448 static void shrink_active_list(unsigned long nr_to_scan,
1449 struct mem_cgroup_zone *mz,
1450 struct scan_control *sc,
1451 int priority, int file)
1453 unsigned long nr_taken;
1454 unsigned long nr_scanned;
1455 unsigned long vm_flags;
1456 LIST_HEAD(l_hold); /* The pages which were snipped off */
1457 LIST_HEAD(l_active);
1458 LIST_HEAD(l_inactive);
1460 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1461 unsigned long nr_rotated = 0;
1462 isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1463 struct zone *zone = mz->zone;
1468 isolate_mode |= ISOLATE_UNMAPPED;
1469 if (!sc->may_writepage)
1470 isolate_mode |= ISOLATE_CLEAN;
1472 spin_lock_irq(&zone->lru_lock);
1474 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1475 isolate_mode, 1, file);
1476 if (global_reclaim(sc))
1477 zone->pages_scanned += nr_scanned;
1479 reclaim_stat->recent_scanned[file] += nr_taken;
1481 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1483 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1485 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1486 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1487 spin_unlock_irq(&zone->lru_lock);
1489 while (!list_empty(&l_hold)) {
1491 page = lru_to_page(&l_hold);
1492 list_del(&page->lru);
1494 if (unlikely(!page_evictable(page, NULL))) {
1495 putback_lru_page(page);
1499 if (unlikely(buffer_heads_over_limit)) {
1500 if (page_has_private(page) && trylock_page(page)) {
1501 if (page_has_private(page))
1502 try_to_release_page(page, 0);
1507 if (page_referenced(page, 0, sc->target_mem_cgroup,
1509 nr_rotated += hpage_nr_pages(page);
1511 * Identify referenced, file-backed active pages and
1512 * give them one more trip around the active list. So
1513 * that executable code get better chances to stay in
1514 * memory under moderate memory pressure. Anon pages
1515 * are not likely to be evicted by use-once streaming
1516 * IO, plus JVM can create lots of anon VM_EXEC pages,
1517 * so we ignore them here.
1519 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1520 list_add(&page->lru, &l_active);
1525 ClearPageActive(page); /* we are de-activating */
1526 list_add(&page->lru, &l_inactive);
1530 * Move pages back to the lru list.
1532 spin_lock_irq(&zone->lru_lock);
1534 * Count referenced pages from currently used mappings as rotated,
1535 * even though only some of them are actually re-activated. This
1536 * helps balance scan pressure between file and anonymous pages in
1539 reclaim_stat->recent_rotated[file] += nr_rotated;
1541 move_active_pages_to_lru(zone, &l_active, &l_hold,
1542 LRU_ACTIVE + file * LRU_FILE);
1543 move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1544 LRU_BASE + file * LRU_FILE);
1545 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1546 spin_unlock_irq(&zone->lru_lock);
1548 free_hot_cold_page_list(&l_hold, 1);
1552 static int inactive_anon_is_low_global(struct zone *zone)
1554 unsigned long active, inactive;
1556 active = zone_page_state(zone, NR_ACTIVE_ANON);
1557 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1559 if (inactive * zone->inactive_ratio < active)
1566 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1567 * @zone: zone to check
1568 * @sc: scan control of this context
1570 * Returns true if the zone does not have enough inactive anon pages,
1571 * meaning some active anon pages need to be deactivated.
1573 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1576 * If we don't have swap space, anonymous page deactivation
1579 if (!total_swap_pages)
1582 if (!mem_cgroup_disabled())
1583 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1586 return inactive_anon_is_low_global(mz->zone);
1589 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1595 static int inactive_file_is_low_global(struct zone *zone)
1597 unsigned long active, inactive;
1599 active = zone_page_state(zone, NR_ACTIVE_FILE);
1600 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1602 return (active > inactive);
1606 * inactive_file_is_low - check if file pages need to be deactivated
1607 * @mz: memory cgroup and zone to check
1609 * When the system is doing streaming IO, memory pressure here
1610 * ensures that active file pages get deactivated, until more
1611 * than half of the file pages are on the inactive list.
1613 * Once we get to that situation, protect the system's working
1614 * set from being evicted by disabling active file page aging.
1616 * This uses a different ratio than the anonymous pages, because
1617 * the page cache uses a use-once replacement algorithm.
1619 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1621 if (!mem_cgroup_disabled())
1622 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1625 return inactive_file_is_low_global(mz->zone);
1628 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1631 return inactive_file_is_low(mz);
1633 return inactive_anon_is_low(mz);
1636 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1637 struct mem_cgroup_zone *mz,
1638 struct scan_control *sc, int priority)
1640 int file = is_file_lru(lru);
1642 if (is_active_lru(lru)) {
1643 if (inactive_list_is_low(mz, file))
1644 shrink_active_list(nr_to_scan, mz, sc, priority, file);
1648 return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1651 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1652 struct scan_control *sc)
1654 if (global_reclaim(sc))
1655 return vm_swappiness;
1656 return mem_cgroup_swappiness(mz->mem_cgroup);
1660 * Determine how aggressively the anon and file LRU lists should be
1661 * scanned. The relative value of each set of LRU lists is determined
1662 * by looking at the fraction of the pages scanned we did rotate back
1663 * onto the active list instead of evict.
1665 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1667 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1668 unsigned long *nr, int priority)
1670 unsigned long anon, file, free;
1671 unsigned long anon_prio, file_prio;
1672 unsigned long ap, fp;
1673 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1674 u64 fraction[2], denominator;
1677 bool force_scan = false;
1680 * If the zone or memcg is small, nr[l] can be 0. This
1681 * results in no scanning on this priority and a potential
1682 * priority drop. Global direct reclaim can go to the next
1683 * zone and tends to have no problems. Global kswapd is for
1684 * zone balancing and it needs to scan a minimum amount. When
1685 * reclaiming for a memcg, a priority drop can cause high
1686 * latencies, so it's better to scan a minimum amount there as
1689 if (current_is_kswapd() && mz->zone->all_unreclaimable)
1691 if (!global_reclaim(sc))
1694 /* If we have no swap space, do not bother scanning anon pages. */
1695 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1703 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1704 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1705 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1706 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1708 if (global_reclaim(sc)) {
1709 free = zone_page_state(mz->zone, NR_FREE_PAGES);
1710 /* If we have very few page cache pages,
1711 force-scan anon pages. */
1712 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1721 * With swappiness at 100, anonymous and file have the same priority.
1722 * This scanning priority is essentially the inverse of IO cost.
1724 anon_prio = vmscan_swappiness(mz, sc);
1725 file_prio = 200 - vmscan_swappiness(mz, sc);
1728 * OK, so we have swap space and a fair amount of page cache
1729 * pages. We use the recently rotated / recently scanned
1730 * ratios to determine how valuable each cache is.
1732 * Because workloads change over time (and to avoid overflow)
1733 * we keep these statistics as a floating average, which ends
1734 * up weighing recent references more than old ones.
1736 * anon in [0], file in [1]
1738 spin_lock_irq(&mz->zone->lru_lock);
1739 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1740 reclaim_stat->recent_scanned[0] /= 2;
1741 reclaim_stat->recent_rotated[0] /= 2;
1744 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1745 reclaim_stat->recent_scanned[1] /= 2;
1746 reclaim_stat->recent_rotated[1] /= 2;
1750 * The amount of pressure on anon vs file pages is inversely
1751 * proportional to the fraction of recently scanned pages on
1752 * each list that were recently referenced and in active use.
1754 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1755 ap /= reclaim_stat->recent_rotated[0] + 1;
1757 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1758 fp /= reclaim_stat->recent_rotated[1] + 1;
1759 spin_unlock_irq(&mz->zone->lru_lock);
1763 denominator = ap + fp + 1;
1765 for_each_evictable_lru(lru) {
1766 int file = is_file_lru(lru);
1769 scan = zone_nr_lru_pages(mz, lru);
1770 if (priority || noswap || !vmscan_swappiness(mz, sc)) {
1772 if (!scan && force_scan)
1773 scan = SWAP_CLUSTER_MAX;
1774 scan = div64_u64(scan * fraction[file], denominator);
1780 /* Use reclaim/compaction for costly allocs or under memory pressure */
1781 static bool in_reclaim_compaction(int priority, struct scan_control *sc)
1783 if (COMPACTION_BUILD && sc->order &&
1784 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1785 priority < DEF_PRIORITY - 2))
1792 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1793 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1794 * true if more pages should be reclaimed such that when the page allocator
1795 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1796 * It will give up earlier than that if there is difficulty reclaiming pages.
1798 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
1799 unsigned long nr_reclaimed,
1800 unsigned long nr_scanned,
1802 struct scan_control *sc)
1804 unsigned long pages_for_compaction;
1805 unsigned long inactive_lru_pages;
1807 /* If not in reclaim/compaction mode, stop */
1808 if (!in_reclaim_compaction(priority, sc))
1811 /* Consider stopping depending on scan and reclaim activity */
1812 if (sc->gfp_mask & __GFP_REPEAT) {
1814 * For __GFP_REPEAT allocations, stop reclaiming if the
1815 * full LRU list has been scanned and we are still failing
1816 * to reclaim pages. This full LRU scan is potentially
1817 * expensive but a __GFP_REPEAT caller really wants to succeed
1819 if (!nr_reclaimed && !nr_scanned)
1823 * For non-__GFP_REPEAT allocations which can presumably
1824 * fail without consequence, stop if we failed to reclaim
1825 * any pages from the last SWAP_CLUSTER_MAX number of
1826 * pages that were scanned. This will return to the
1827 * caller faster at the risk reclaim/compaction and
1828 * the resulting allocation attempt fails
1835 * If we have not reclaimed enough pages for compaction and the
1836 * inactive lists are large enough, continue reclaiming
1838 pages_for_compaction = (2UL << sc->order);
1839 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1840 if (nr_swap_pages > 0)
1841 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1842 if (sc->nr_reclaimed < pages_for_compaction &&
1843 inactive_lru_pages > pages_for_compaction)
1846 /* If compaction would go ahead or the allocation would succeed, stop */
1847 switch (compaction_suitable(mz->zone, sc->order)) {
1848 case COMPACT_PARTIAL:
1849 case COMPACT_CONTINUE:
1857 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1859 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
1860 struct scan_control *sc)
1862 unsigned long nr[NR_LRU_LISTS];
1863 unsigned long nr_to_scan;
1865 unsigned long nr_reclaimed, nr_scanned;
1866 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1867 struct blk_plug plug;
1871 nr_scanned = sc->nr_scanned;
1872 get_scan_count(mz, sc, nr, priority);
1874 blk_start_plug(&plug);
1875 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1876 nr[LRU_INACTIVE_FILE]) {
1877 for_each_evictable_lru(lru) {
1879 nr_to_scan = min_t(unsigned long,
1880 nr[lru], SWAP_CLUSTER_MAX);
1881 nr[lru] -= nr_to_scan;
1883 nr_reclaimed += shrink_list(lru, nr_to_scan,
1888 * On large memory systems, scan >> priority can become
1889 * really large. This is fine for the starting priority;
1890 * we want to put equal scanning pressure on each zone.
1891 * However, if the VM has a harder time of freeing pages,
1892 * with multiple processes reclaiming pages, the total
1893 * freeing target can get unreasonably large.
1895 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
1898 blk_finish_plug(&plug);
1899 sc->nr_reclaimed += nr_reclaimed;
1902 * Even if we did not try to evict anon pages at all, we want to
1903 * rebalance the anon lru active/inactive ratio.
1905 if (inactive_anon_is_low(mz))
1906 shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
1908 /* reclaim/compaction might need reclaim to continue */
1909 if (should_continue_reclaim(mz, nr_reclaimed,
1910 sc->nr_scanned - nr_scanned,
1914 throttle_vm_writeout(sc->gfp_mask);
1917 static void shrink_zone(int priority, struct zone *zone,
1918 struct scan_control *sc)
1920 struct mem_cgroup *root = sc->target_mem_cgroup;
1921 struct mem_cgroup_reclaim_cookie reclaim = {
1923 .priority = priority,
1925 struct mem_cgroup *memcg;
1927 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1929 struct mem_cgroup_zone mz = {
1930 .mem_cgroup = memcg,
1934 shrink_mem_cgroup_zone(priority, &mz, sc);
1936 * Limit reclaim has historically picked one memcg and
1937 * scanned it with decreasing priority levels until
1938 * nr_to_reclaim had been reclaimed. This priority
1939 * cycle is thus over after a single memcg.
1941 * Direct reclaim and kswapd, on the other hand, have
1942 * to scan all memory cgroups to fulfill the overall
1943 * scan target for the zone.
1945 if (!global_reclaim(sc)) {
1946 mem_cgroup_iter_break(root, memcg);
1949 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1953 /* Returns true if compaction should go ahead for a high-order request */
1954 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1956 unsigned long balance_gap, watermark;
1959 /* Do not consider compaction for orders reclaim is meant to satisfy */
1960 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1964 * Compaction takes time to run and there are potentially other
1965 * callers using the pages just freed. Continue reclaiming until
1966 * there is a buffer of free pages available to give compaction
1967 * a reasonable chance of completing and allocating the page
1969 balance_gap = min(low_wmark_pages(zone),
1970 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1971 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1972 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1973 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1976 * If compaction is deferred, reclaim up to a point where
1977 * compaction will have a chance of success when re-enabled
1979 if (compaction_deferred(zone, sc->order))
1980 return watermark_ok;
1982 /* If compaction is not ready to start, keep reclaiming */
1983 if (!compaction_suitable(zone, sc->order))
1986 return watermark_ok;
1990 * This is the direct reclaim path, for page-allocating processes. We only
1991 * try to reclaim pages from zones which will satisfy the caller's allocation
1994 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1996 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1998 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1999 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2000 * zone defense algorithm.
2002 * If a zone is deemed to be full of pinned pages then just give it a light
2003 * scan then give up on it.
2005 * This function returns true if a zone is being reclaimed for a costly
2006 * high-order allocation and compaction is ready to begin. This indicates to
2007 * the caller that it should consider retrying the allocation instead of
2010 static bool shrink_zones(int priority, struct zonelist *zonelist,
2011 struct scan_control *sc)
2015 unsigned long nr_soft_reclaimed;
2016 unsigned long nr_soft_scanned;
2017 bool aborted_reclaim = false;
2020 * If the number of buffer_heads in the machine exceeds the maximum
2021 * allowed level, force direct reclaim to scan the highmem zone as
2022 * highmem pages could be pinning lowmem pages storing buffer_heads
2024 if (buffer_heads_over_limit)
2025 sc->gfp_mask |= __GFP_HIGHMEM;
2027 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2028 gfp_zone(sc->gfp_mask), sc->nodemask) {
2029 if (!populated_zone(zone))
2032 * Take care memory controller reclaiming has small influence
2035 if (global_reclaim(sc)) {
2036 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2038 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2039 continue; /* Let kswapd poll it */
2040 if (COMPACTION_BUILD) {
2042 * If we already have plenty of memory free for
2043 * compaction in this zone, don't free any more.
2044 * Even though compaction is invoked for any
2045 * non-zero order, only frequent costly order
2046 * reclamation is disruptive enough to become a
2047 * noticeable problem, like transparent huge
2050 if (compaction_ready(zone, sc)) {
2051 aborted_reclaim = true;
2056 * This steals pages from memory cgroups over softlimit
2057 * and returns the number of reclaimed pages and
2058 * scanned pages. This works for global memory pressure
2059 * and balancing, not for a memcg's limit.
2061 nr_soft_scanned = 0;
2062 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2063 sc->order, sc->gfp_mask,
2065 sc->nr_reclaimed += nr_soft_reclaimed;
2066 sc->nr_scanned += nr_soft_scanned;
2067 /* need some check for avoid more shrink_zone() */
2070 shrink_zone(priority, zone, sc);
2073 return aborted_reclaim;
2076 static bool zone_reclaimable(struct zone *zone)
2078 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2081 /* All zones in zonelist are unreclaimable? */
2082 static bool all_unreclaimable(struct zonelist *zonelist,
2083 struct scan_control *sc)
2088 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2089 gfp_zone(sc->gfp_mask), sc->nodemask) {
2090 if (!populated_zone(zone))
2092 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2094 if (!zone->all_unreclaimable)
2102 * This is the main entry point to direct page reclaim.
2104 * If a full scan of the inactive list fails to free enough memory then we
2105 * are "out of memory" and something needs to be killed.
2107 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2108 * high - the zone may be full of dirty or under-writeback pages, which this
2109 * caller can't do much about. We kick the writeback threads and take explicit
2110 * naps in the hope that some of these pages can be written. But if the
2111 * allocating task holds filesystem locks which prevent writeout this might not
2112 * work, and the allocation attempt will fail.
2114 * returns: 0, if no pages reclaimed
2115 * else, the number of pages reclaimed
2117 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2118 struct scan_control *sc,
2119 struct shrink_control *shrink)
2122 unsigned long total_scanned = 0;
2123 struct reclaim_state *reclaim_state = current->reclaim_state;
2126 unsigned long writeback_threshold;
2127 bool aborted_reclaim;
2129 delayacct_freepages_start();
2131 if (global_reclaim(sc))
2132 count_vm_event(ALLOCSTALL);
2134 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2136 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2139 * Don't shrink slabs when reclaiming memory from
2140 * over limit cgroups
2142 if (global_reclaim(sc)) {
2143 unsigned long lru_pages = 0;
2144 for_each_zone_zonelist(zone, z, zonelist,
2145 gfp_zone(sc->gfp_mask)) {
2146 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2149 lru_pages += zone_reclaimable_pages(zone);
2152 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2153 if (reclaim_state) {
2154 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2155 reclaim_state->reclaimed_slab = 0;
2158 total_scanned += sc->nr_scanned;
2159 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2163 * Try to write back as many pages as we just scanned. This
2164 * tends to cause slow streaming writers to write data to the
2165 * disk smoothly, at the dirtying rate, which is nice. But
2166 * that's undesirable in laptop mode, where we *want* lumpy
2167 * writeout. So in laptop mode, write out the whole world.
2169 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2170 if (total_scanned > writeback_threshold) {
2171 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2172 WB_REASON_TRY_TO_FREE_PAGES);
2173 sc->may_writepage = 1;
2176 /* Take a nap, wait for some writeback to complete */
2177 if (!sc->hibernation_mode && sc->nr_scanned &&
2178 priority < DEF_PRIORITY - 2) {
2179 struct zone *preferred_zone;
2181 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2182 &cpuset_current_mems_allowed,
2184 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2189 delayacct_freepages_end();
2191 if (sc->nr_reclaimed)
2192 return sc->nr_reclaimed;
2195 * As hibernation is going on, kswapd is freezed so that it can't mark
2196 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2199 if (oom_killer_disabled)
2202 /* Aborted reclaim to try compaction? don't OOM, then */
2203 if (aborted_reclaim)
2206 /* top priority shrink_zones still had more to do? don't OOM, then */
2207 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2213 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2214 gfp_t gfp_mask, nodemask_t *nodemask)
2216 unsigned long nr_reclaimed;
2217 struct scan_control sc = {
2218 .gfp_mask = gfp_mask,
2219 .may_writepage = !laptop_mode,
2220 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2224 .target_mem_cgroup = NULL,
2225 .nodemask = nodemask,
2227 struct shrink_control shrink = {
2228 .gfp_mask = sc.gfp_mask,
2231 trace_mm_vmscan_direct_reclaim_begin(order,
2235 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2237 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2239 return nr_reclaimed;
2242 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2244 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2245 gfp_t gfp_mask, bool noswap,
2247 unsigned long *nr_scanned)
2249 struct scan_control sc = {
2251 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2252 .may_writepage = !laptop_mode,
2254 .may_swap = !noswap,
2256 .target_mem_cgroup = memcg,
2258 struct mem_cgroup_zone mz = {
2259 .mem_cgroup = memcg,
2263 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2264 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2266 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2271 * NOTE: Although we can get the priority field, using it
2272 * here is not a good idea, since it limits the pages we can scan.
2273 * if we don't reclaim here, the shrink_zone from balance_pgdat
2274 * will pick up pages from other mem cgroup's as well. We hack
2275 * the priority and make it zero.
2277 shrink_mem_cgroup_zone(0, &mz, &sc);
2279 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2281 *nr_scanned = sc.nr_scanned;
2282 return sc.nr_reclaimed;
2285 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2289 struct zonelist *zonelist;
2290 unsigned long nr_reclaimed;
2292 struct scan_control sc = {
2293 .may_writepage = !laptop_mode,
2295 .may_swap = !noswap,
2296 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2298 .target_mem_cgroup = memcg,
2299 .nodemask = NULL, /* we don't care the placement */
2300 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2301 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2303 struct shrink_control shrink = {
2304 .gfp_mask = sc.gfp_mask,
2308 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2309 * take care of from where we get pages. So the node where we start the
2310 * scan does not need to be the current node.
2312 nid = mem_cgroup_select_victim_node(memcg);
2314 zonelist = NODE_DATA(nid)->node_zonelists;
2316 trace_mm_vmscan_memcg_reclaim_begin(0,
2320 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2322 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2324 return nr_reclaimed;
2328 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2331 struct mem_cgroup *memcg;
2333 if (!total_swap_pages)
2336 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2338 struct mem_cgroup_zone mz = {
2339 .mem_cgroup = memcg,
2343 if (inactive_anon_is_low(&mz))
2344 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2347 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2352 * pgdat_balanced is used when checking if a node is balanced for high-order
2353 * allocations. Only zones that meet watermarks and are in a zone allowed
2354 * by the callers classzone_idx are added to balanced_pages. The total of
2355 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2356 * for the node to be considered balanced. Forcing all zones to be balanced
2357 * for high orders can cause excessive reclaim when there are imbalanced zones.
2358 * The choice of 25% is due to
2359 * o a 16M DMA zone that is balanced will not balance a zone on any
2360 * reasonable sized machine
2361 * o On all other machines, the top zone must be at least a reasonable
2362 * percentage of the middle zones. For example, on 32-bit x86, highmem
2363 * would need to be at least 256M for it to be balance a whole node.
2364 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2365 * to balance a node on its own. These seemed like reasonable ratios.
2367 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2370 unsigned long present_pages = 0;
2373 for (i = 0; i <= classzone_idx; i++)
2374 present_pages += pgdat->node_zones[i].present_pages;
2376 /* A special case here: if zone has no page, we think it's balanced */
2377 return balanced_pages >= (present_pages >> 2);
2380 /* is kswapd sleeping prematurely? */
2381 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2385 unsigned long balanced = 0;
2386 bool all_zones_ok = true;
2388 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2392 /* Check the watermark levels */
2393 for (i = 0; i <= classzone_idx; i++) {
2394 struct zone *zone = pgdat->node_zones + i;
2396 if (!populated_zone(zone))
2400 * balance_pgdat() skips over all_unreclaimable after
2401 * DEF_PRIORITY. Effectively, it considers them balanced so
2402 * they must be considered balanced here as well if kswapd
2405 if (zone->all_unreclaimable) {
2406 balanced += zone->present_pages;
2410 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2412 all_zones_ok = false;
2414 balanced += zone->present_pages;
2418 * For high-order requests, the balanced zones must contain at least
2419 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2423 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2425 return !all_zones_ok;
2429 * For kswapd, balance_pgdat() will work across all this node's zones until
2430 * they are all at high_wmark_pages(zone).
2432 * Returns the final order kswapd was reclaiming at
2434 * There is special handling here for zones which are full of pinned pages.
2435 * This can happen if the pages are all mlocked, or if they are all used by
2436 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2437 * What we do is to detect the case where all pages in the zone have been
2438 * scanned twice and there has been zero successful reclaim. Mark the zone as
2439 * dead and from now on, only perform a short scan. Basically we're polling
2440 * the zone for when the problem goes away.
2442 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2443 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2444 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2445 * lower zones regardless of the number of free pages in the lower zones. This
2446 * interoperates with the page allocator fallback scheme to ensure that aging
2447 * of pages is balanced across the zones.
2449 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2453 unsigned long balanced;
2456 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2457 unsigned long total_scanned;
2458 struct reclaim_state *reclaim_state = current->reclaim_state;
2459 unsigned long nr_soft_reclaimed;
2460 unsigned long nr_soft_scanned;
2461 struct scan_control sc = {
2462 .gfp_mask = GFP_KERNEL,
2466 * kswapd doesn't want to be bailed out while reclaim. because
2467 * we want to put equal scanning pressure on each zone.
2469 .nr_to_reclaim = ULONG_MAX,
2471 .target_mem_cgroup = NULL,
2473 struct shrink_control shrink = {
2474 .gfp_mask = sc.gfp_mask,
2478 sc.nr_reclaimed = 0;
2479 sc.may_writepage = !laptop_mode;
2480 count_vm_event(PAGEOUTRUN);
2482 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2483 unsigned long lru_pages = 0;
2484 int has_under_min_watermark_zone = 0;
2490 * Scan in the highmem->dma direction for the highest
2491 * zone which needs scanning
2493 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2494 struct zone *zone = pgdat->node_zones + i;
2496 if (!populated_zone(zone))
2499 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2503 * Do some background aging of the anon list, to give
2504 * pages a chance to be referenced before reclaiming.
2506 age_active_anon(zone, &sc, priority);
2509 * If the number of buffer_heads in the machine
2510 * exceeds the maximum allowed level and this node
2511 * has a highmem zone, force kswapd to reclaim from
2512 * it to relieve lowmem pressure.
2514 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2519 if (!zone_watermark_ok_safe(zone, order,
2520 high_wmark_pages(zone), 0, 0)) {
2524 /* If balanced, clear the congested flag */
2525 zone_clear_flag(zone, ZONE_CONGESTED);
2531 for (i = 0; i <= end_zone; i++) {
2532 struct zone *zone = pgdat->node_zones + i;
2534 lru_pages += zone_reclaimable_pages(zone);
2538 * Now scan the zone in the dma->highmem direction, stopping
2539 * at the last zone which needs scanning.
2541 * We do this because the page allocator works in the opposite
2542 * direction. This prevents the page allocator from allocating
2543 * pages behind kswapd's direction of progress, which would
2544 * cause too much scanning of the lower zones.
2546 for (i = 0; i <= end_zone; i++) {
2547 struct zone *zone = pgdat->node_zones + i;
2548 int nr_slab, testorder;
2549 unsigned long balance_gap;
2551 if (!populated_zone(zone))
2554 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2559 nr_soft_scanned = 0;
2561 * Call soft limit reclaim before calling shrink_zone.
2563 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2566 sc.nr_reclaimed += nr_soft_reclaimed;
2567 total_scanned += nr_soft_scanned;
2570 * We put equal pressure on every zone, unless
2571 * one zone has way too many pages free
2572 * already. The "too many pages" is defined
2573 * as the high wmark plus a "gap" where the
2574 * gap is either the low watermark or 1%
2575 * of the zone, whichever is smaller.
2577 balance_gap = min(low_wmark_pages(zone),
2578 (zone->present_pages +
2579 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2580 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2582 * Kswapd reclaims only single pages with compaction
2583 * enabled. Trying too hard to reclaim until contiguous
2584 * free pages have become available can hurt performance
2585 * by evicting too much useful data from memory.
2586 * Do not reclaim more than needed for compaction.
2589 if (COMPACTION_BUILD && order &&
2590 compaction_suitable(zone, order) !=
2594 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2595 !zone_watermark_ok_safe(zone, testorder,
2596 high_wmark_pages(zone) + balance_gap,
2598 shrink_zone(priority, zone, &sc);
2600 reclaim_state->reclaimed_slab = 0;
2601 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2602 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2603 total_scanned += sc.nr_scanned;
2605 if (nr_slab == 0 && !zone_reclaimable(zone))
2606 zone->all_unreclaimable = 1;
2610 * If we've done a decent amount of scanning and
2611 * the reclaim ratio is low, start doing writepage
2612 * even in laptop mode
2614 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2615 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2616 sc.may_writepage = 1;
2618 if (zone->all_unreclaimable) {
2619 if (end_zone && end_zone == i)
2624 if (!zone_watermark_ok_safe(zone, testorder,
2625 high_wmark_pages(zone), end_zone, 0)) {
2628 * We are still under min water mark. This
2629 * means that we have a GFP_ATOMIC allocation
2630 * failure risk. Hurry up!
2632 if (!zone_watermark_ok_safe(zone, order,
2633 min_wmark_pages(zone), end_zone, 0))
2634 has_under_min_watermark_zone = 1;
2637 * If a zone reaches its high watermark,
2638 * consider it to be no longer congested. It's
2639 * possible there are dirty pages backed by
2640 * congested BDIs but as pressure is relieved,
2641 * spectulatively avoid congestion waits
2643 zone_clear_flag(zone, ZONE_CONGESTED);
2644 if (i <= *classzone_idx)
2645 balanced += zone->present_pages;
2649 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2650 break; /* kswapd: all done */
2652 * OK, kswapd is getting into trouble. Take a nap, then take
2653 * another pass across the zones.
2655 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2656 if (has_under_min_watermark_zone)
2657 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2659 congestion_wait(BLK_RW_ASYNC, HZ/10);
2663 * We do this so kswapd doesn't build up large priorities for
2664 * example when it is freeing in parallel with allocators. It
2665 * matches the direct reclaim path behaviour in terms of impact
2666 * on zone->*_priority.
2668 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2674 * order-0: All zones must meet high watermark for a balanced node
2675 * high-order: Balanced zones must make up at least 25% of the node
2676 * for the node to be balanced
2678 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2684 * Fragmentation may mean that the system cannot be
2685 * rebalanced for high-order allocations in all zones.
2686 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2687 * it means the zones have been fully scanned and are still
2688 * not balanced. For high-order allocations, there is
2689 * little point trying all over again as kswapd may
2692 * Instead, recheck all watermarks at order-0 as they
2693 * are the most important. If watermarks are ok, kswapd will go
2694 * back to sleep. High-order users can still perform direct
2695 * reclaim if they wish.
2697 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2698 order = sc.order = 0;
2704 * If kswapd was reclaiming at a higher order, it has the option of
2705 * sleeping without all zones being balanced. Before it does, it must
2706 * ensure that the watermarks for order-0 on *all* zones are met and
2707 * that the congestion flags are cleared. The congestion flag must
2708 * be cleared as kswapd is the only mechanism that clears the flag
2709 * and it is potentially going to sleep here.
2712 int zones_need_compaction = 1;
2714 for (i = 0; i <= end_zone; i++) {
2715 struct zone *zone = pgdat->node_zones + i;
2717 if (!populated_zone(zone))
2720 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2723 /* Would compaction fail due to lack of free memory? */
2724 if (COMPACTION_BUILD &&
2725 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2728 /* Confirm the zone is balanced for order-0 */
2729 if (!zone_watermark_ok(zone, 0,
2730 high_wmark_pages(zone), 0, 0)) {
2731 order = sc.order = 0;
2735 /* Check if the memory needs to be defragmented. */
2736 if (zone_watermark_ok(zone, order,
2737 low_wmark_pages(zone), *classzone_idx, 0))
2738 zones_need_compaction = 0;
2740 /* If balanced, clear the congested flag */
2741 zone_clear_flag(zone, ZONE_CONGESTED);
2744 if (zones_need_compaction)
2745 compact_pgdat(pgdat, order);
2749 * Return the order we were reclaiming at so sleeping_prematurely()
2750 * makes a decision on the order we were last reclaiming at. However,
2751 * if another caller entered the allocator slow path while kswapd
2752 * was awake, order will remain at the higher level
2754 *classzone_idx = end_zone;
2758 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2763 if (freezing(current) || kthread_should_stop())
2766 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2768 /* Try to sleep for a short interval */
2769 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2770 remaining = schedule_timeout(HZ/10);
2771 finish_wait(&pgdat->kswapd_wait, &wait);
2772 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2776 * After a short sleep, check if it was a premature sleep. If not, then
2777 * go fully to sleep until explicitly woken up.
2779 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2780 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2783 * vmstat counters are not perfectly accurate and the estimated
2784 * value for counters such as NR_FREE_PAGES can deviate from the
2785 * true value by nr_online_cpus * threshold. To avoid the zone
2786 * watermarks being breached while under pressure, we reduce the
2787 * per-cpu vmstat threshold while kswapd is awake and restore
2788 * them before going back to sleep.
2790 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2792 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2795 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2797 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2799 finish_wait(&pgdat->kswapd_wait, &wait);
2803 * The background pageout daemon, started as a kernel thread
2804 * from the init process.
2806 * This basically trickles out pages so that we have _some_
2807 * free memory available even if there is no other activity
2808 * that frees anything up. This is needed for things like routing
2809 * etc, where we otherwise might have all activity going on in
2810 * asynchronous contexts that cannot page things out.
2812 * If there are applications that are active memory-allocators
2813 * (most normal use), this basically shouldn't matter.
2815 static int kswapd(void *p)
2817 unsigned long order, new_order;
2818 unsigned balanced_order;
2819 int classzone_idx, new_classzone_idx;
2820 int balanced_classzone_idx;
2821 pg_data_t *pgdat = (pg_data_t*)p;
2822 struct task_struct *tsk = current;
2824 struct reclaim_state reclaim_state = {
2825 .reclaimed_slab = 0,
2827 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2829 lockdep_set_current_reclaim_state(GFP_KERNEL);
2831 if (!cpumask_empty(cpumask))
2832 set_cpus_allowed_ptr(tsk, cpumask);
2833 current->reclaim_state = &reclaim_state;
2836 * Tell the memory management that we're a "memory allocator",
2837 * and that if we need more memory we should get access to it
2838 * regardless (see "__alloc_pages()"). "kswapd" should
2839 * never get caught in the normal page freeing logic.
2841 * (Kswapd normally doesn't need memory anyway, but sometimes
2842 * you need a small amount of memory in order to be able to
2843 * page out something else, and this flag essentially protects
2844 * us from recursively trying to free more memory as we're
2845 * trying to free the first piece of memory in the first place).
2847 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2850 order = new_order = 0;
2852 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2853 balanced_classzone_idx = classzone_idx;
2858 * If the last balance_pgdat was unsuccessful it's unlikely a
2859 * new request of a similar or harder type will succeed soon
2860 * so consider going to sleep on the basis we reclaimed at
2862 if (balanced_classzone_idx >= new_classzone_idx &&
2863 balanced_order == new_order) {
2864 new_order = pgdat->kswapd_max_order;
2865 new_classzone_idx = pgdat->classzone_idx;
2866 pgdat->kswapd_max_order = 0;
2867 pgdat->classzone_idx = pgdat->nr_zones - 1;
2870 if (order < new_order || classzone_idx > new_classzone_idx) {
2872 * Don't sleep if someone wants a larger 'order'
2873 * allocation or has tigher zone constraints
2876 classzone_idx = new_classzone_idx;
2878 kswapd_try_to_sleep(pgdat, balanced_order,
2879 balanced_classzone_idx);
2880 order = pgdat->kswapd_max_order;
2881 classzone_idx = pgdat->classzone_idx;
2883 new_classzone_idx = classzone_idx;
2884 pgdat->kswapd_max_order = 0;
2885 pgdat->classzone_idx = pgdat->nr_zones - 1;
2888 ret = try_to_freeze();
2889 if (kthread_should_stop())
2893 * We can speed up thawing tasks if we don't call balance_pgdat
2894 * after returning from the refrigerator
2897 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2898 balanced_classzone_idx = classzone_idx;
2899 balanced_order = balance_pgdat(pgdat, order,
2900 &balanced_classzone_idx);
2907 * A zone is low on free memory, so wake its kswapd task to service it.
2909 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2913 if (!populated_zone(zone))
2916 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2918 pgdat = zone->zone_pgdat;
2919 if (pgdat->kswapd_max_order < order) {
2920 pgdat->kswapd_max_order = order;
2921 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2923 if (!waitqueue_active(&pgdat->kswapd_wait))
2925 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2928 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2929 wake_up_interruptible(&pgdat->kswapd_wait);
2933 * The reclaimable count would be mostly accurate.
2934 * The less reclaimable pages may be
2935 * - mlocked pages, which will be moved to unevictable list when encountered
2936 * - mapped pages, which may require several travels to be reclaimed
2937 * - dirty pages, which is not "instantly" reclaimable
2939 unsigned long global_reclaimable_pages(void)
2943 nr = global_page_state(NR_ACTIVE_FILE) +
2944 global_page_state(NR_INACTIVE_FILE);
2946 if (nr_swap_pages > 0)
2947 nr += global_page_state(NR_ACTIVE_ANON) +
2948 global_page_state(NR_INACTIVE_ANON);
2953 unsigned long zone_reclaimable_pages(struct zone *zone)
2957 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2958 zone_page_state(zone, NR_INACTIVE_FILE);
2960 if (nr_swap_pages > 0)
2961 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2962 zone_page_state(zone, NR_INACTIVE_ANON);
2967 #ifdef CONFIG_HIBERNATION
2969 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2972 * Rather than trying to age LRUs the aim is to preserve the overall
2973 * LRU order by reclaiming preferentially
2974 * inactive > active > active referenced > active mapped
2976 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
2978 struct reclaim_state reclaim_state;
2979 struct scan_control sc = {
2980 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2984 .nr_to_reclaim = nr_to_reclaim,
2985 .hibernation_mode = 1,
2988 struct shrink_control shrink = {
2989 .gfp_mask = sc.gfp_mask,
2991 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2992 struct task_struct *p = current;
2993 unsigned long nr_reclaimed;
2995 p->flags |= PF_MEMALLOC;
2996 lockdep_set_current_reclaim_state(sc.gfp_mask);
2997 reclaim_state.reclaimed_slab = 0;
2998 p->reclaim_state = &reclaim_state;
3000 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3002 p->reclaim_state = NULL;
3003 lockdep_clear_current_reclaim_state();
3004 p->flags &= ~PF_MEMALLOC;
3006 return nr_reclaimed;
3008 #endif /* CONFIG_HIBERNATION */
3010 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3011 not required for correctness. So if the last cpu in a node goes
3012 away, we get changed to run anywhere: as the first one comes back,
3013 restore their cpu bindings. */
3014 static int __devinit cpu_callback(struct notifier_block *nfb,
3015 unsigned long action, void *hcpu)
3019 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3020 for_each_node_state(nid, N_HIGH_MEMORY) {
3021 pg_data_t *pgdat = NODE_DATA(nid);
3022 const struct cpumask *mask;
3024 mask = cpumask_of_node(pgdat->node_id);
3026 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3027 /* One of our CPUs online: restore mask */
3028 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3035 * This kswapd start function will be called by init and node-hot-add.
3036 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3038 int kswapd_run(int nid)
3040 pg_data_t *pgdat = NODE_DATA(nid);
3046 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3047 if (IS_ERR(pgdat->kswapd)) {
3048 /* failure at boot is fatal */
3049 BUG_ON(system_state == SYSTEM_BOOTING);
3050 printk("Failed to start kswapd on node %d\n",nid);
3057 * Called by memory hotplug when all memory in a node is offlined.
3059 void kswapd_stop(int nid)
3061 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3064 kthread_stop(kswapd);
3067 static int __init kswapd_init(void)
3072 for_each_node_state(nid, N_HIGH_MEMORY)
3074 hotcpu_notifier(cpu_callback, 0);
3078 module_init(kswapd_init)
3084 * If non-zero call zone_reclaim when the number of free pages falls below
3087 int zone_reclaim_mode __read_mostly;
3089 #define RECLAIM_OFF 0
3090 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3091 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3092 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3095 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3096 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3099 #define ZONE_RECLAIM_PRIORITY 4
3102 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3105 int sysctl_min_unmapped_ratio = 1;
3108 * If the number of slab pages in a zone grows beyond this percentage then
3109 * slab reclaim needs to occur.
3111 int sysctl_min_slab_ratio = 5;
3113 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3115 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3116 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3117 zone_page_state(zone, NR_ACTIVE_FILE);
3120 * It's possible for there to be more file mapped pages than
3121 * accounted for by the pages on the file LRU lists because
3122 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3124 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3127 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3128 static long zone_pagecache_reclaimable(struct zone *zone)
3130 long nr_pagecache_reclaimable;
3134 * If RECLAIM_SWAP is set, then all file pages are considered
3135 * potentially reclaimable. Otherwise, we have to worry about
3136 * pages like swapcache and zone_unmapped_file_pages() provides
3139 if (zone_reclaim_mode & RECLAIM_SWAP)
3140 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3142 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3144 /* If we can't clean pages, remove dirty pages from consideration */
3145 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3146 delta += zone_page_state(zone, NR_FILE_DIRTY);
3148 /* Watch for any possible underflows due to delta */
3149 if (unlikely(delta > nr_pagecache_reclaimable))
3150 delta = nr_pagecache_reclaimable;
3152 return nr_pagecache_reclaimable - delta;
3156 * Try to free up some pages from this zone through reclaim.
3158 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3160 /* Minimum pages needed in order to stay on node */
3161 const unsigned long nr_pages = 1 << order;
3162 struct task_struct *p = current;
3163 struct reclaim_state reclaim_state;
3165 struct scan_control sc = {
3166 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3167 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3169 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3171 .gfp_mask = gfp_mask,
3174 struct shrink_control shrink = {
3175 .gfp_mask = sc.gfp_mask,
3177 unsigned long nr_slab_pages0, nr_slab_pages1;
3181 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3182 * and we also need to be able to write out pages for RECLAIM_WRITE
3185 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3186 lockdep_set_current_reclaim_state(gfp_mask);
3187 reclaim_state.reclaimed_slab = 0;
3188 p->reclaim_state = &reclaim_state;
3190 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3192 * Free memory by calling shrink zone with increasing
3193 * priorities until we have enough memory freed.
3195 priority = ZONE_RECLAIM_PRIORITY;
3197 shrink_zone(priority, zone, &sc);
3199 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3202 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3203 if (nr_slab_pages0 > zone->min_slab_pages) {
3205 * shrink_slab() does not currently allow us to determine how
3206 * many pages were freed in this zone. So we take the current
3207 * number of slab pages and shake the slab until it is reduced
3208 * by the same nr_pages that we used for reclaiming unmapped
3211 * Note that shrink_slab will free memory on all zones and may
3215 unsigned long lru_pages = zone_reclaimable_pages(zone);
3217 /* No reclaimable slab or very low memory pressure */
3218 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3221 /* Freed enough memory */
3222 nr_slab_pages1 = zone_page_state(zone,
3223 NR_SLAB_RECLAIMABLE);
3224 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3229 * Update nr_reclaimed by the number of slab pages we
3230 * reclaimed from this zone.
3232 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3233 if (nr_slab_pages1 < nr_slab_pages0)
3234 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3237 p->reclaim_state = NULL;
3238 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3239 lockdep_clear_current_reclaim_state();
3240 return sc.nr_reclaimed >= nr_pages;
3243 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3249 * Zone reclaim reclaims unmapped file backed pages and
3250 * slab pages if we are over the defined limits.
3252 * A small portion of unmapped file backed pages is needed for
3253 * file I/O otherwise pages read by file I/O will be immediately
3254 * thrown out if the zone is overallocated. So we do not reclaim
3255 * if less than a specified percentage of the zone is used by
3256 * unmapped file backed pages.
3258 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3259 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3260 return ZONE_RECLAIM_FULL;
3262 if (zone->all_unreclaimable)
3263 return ZONE_RECLAIM_FULL;
3266 * Do not scan if the allocation should not be delayed.
3268 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3269 return ZONE_RECLAIM_NOSCAN;
3272 * Only run zone reclaim on the local zone or on zones that do not
3273 * have associated processors. This will favor the local processor
3274 * over remote processors and spread off node memory allocations
3275 * as wide as possible.
3277 node_id = zone_to_nid(zone);
3278 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3279 return ZONE_RECLAIM_NOSCAN;
3281 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3282 return ZONE_RECLAIM_NOSCAN;
3284 ret = __zone_reclaim(zone, gfp_mask, order);
3285 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3288 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3295 * page_evictable - test whether a page is evictable
3296 * @page: the page to test
3297 * @vma: the VMA in which the page is or will be mapped, may be NULL
3299 * Test whether page is evictable--i.e., should be placed on active/inactive
3300 * lists vs unevictable list. The vma argument is !NULL when called from the
3301 * fault path to determine how to instantate a new page.
3303 * Reasons page might not be evictable:
3304 * (1) page's mapping marked unevictable
3305 * (2) page is part of an mlocked VMA
3308 int page_evictable(struct page *page, struct vm_area_struct *vma)
3311 if (mapping_unevictable(page_mapping(page)))
3314 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3322 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3323 * @pages: array of pages to check
3324 * @nr_pages: number of pages to check
3326 * Checks pages for evictability and moves them to the appropriate lru list.
3328 * This function is only used for SysV IPC SHM_UNLOCK.
3330 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3332 struct lruvec *lruvec;
3333 struct zone *zone = NULL;
3338 for (i = 0; i < nr_pages; i++) {
3339 struct page *page = pages[i];
3340 struct zone *pagezone;
3343 pagezone = page_zone(page);
3344 if (pagezone != zone) {
3346 spin_unlock_irq(&zone->lru_lock);
3348 spin_lock_irq(&zone->lru_lock);
3351 if (!PageLRU(page) || !PageUnevictable(page))
3354 if (page_evictable(page, NULL)) {
3355 enum lru_list lru = page_lru_base_type(page);
3357 VM_BUG_ON(PageActive(page));
3358 ClearPageUnevictable(page);
3359 __dec_zone_state(zone, NR_UNEVICTABLE);
3360 lruvec = mem_cgroup_lru_move_lists(zone, page,
3361 LRU_UNEVICTABLE, lru);
3362 list_move(&page->lru, &lruvec->lists[lru]);
3363 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3369 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3370 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3371 spin_unlock_irq(&zone->lru_lock);
3374 #endif /* CONFIG_SHMEM */
3376 static void warn_scan_unevictable_pages(void)
3378 printk_once(KERN_WARNING
3379 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3380 "disabled for lack of a legitimate use case. If you have "
3386 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3387 * all nodes' unevictable lists for evictable pages
3389 unsigned long scan_unevictable_pages;
3391 int scan_unevictable_handler(struct ctl_table *table, int write,
3392 void __user *buffer,
3393 size_t *length, loff_t *ppos)
3395 warn_scan_unevictable_pages();
3396 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3397 scan_unevictable_pages = 0;
3403 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3404 * a specified node's per zone unevictable lists for evictable pages.
3407 static ssize_t read_scan_unevictable_node(struct device *dev,
3408 struct device_attribute *attr,
3411 warn_scan_unevictable_pages();
3412 return sprintf(buf, "0\n"); /* always zero; should fit... */
3415 static ssize_t write_scan_unevictable_node(struct device *dev,
3416 struct device_attribute *attr,
3417 const char *buf, size_t count)
3419 warn_scan_unevictable_pages();
3424 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3425 read_scan_unevictable_node,
3426 write_scan_unevictable_node);
3428 int scan_unevictable_register_node(struct node *node)
3430 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3433 void scan_unevictable_unregister_node(struct node *node)
3435 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);