4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
49 #include <linux/swapops.h>
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
66 unsigned long hibernation_mode;
68 /* This context's GFP mask */
73 /* Can mapped pages be reclaimed? */
76 /* Can pages be swapped as part of reclaim? */
81 /* Scan (total_size >> priority) pages at once */
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
88 struct mem_cgroup *target_mem_cgroup;
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
97 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
99 #ifdef ARCH_HAS_PREFETCH
100 #define prefetch_prev_lru_page(_page, _base, _field) \
102 if ((_page)->lru.prev != _base) { \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
110 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113 #ifdef ARCH_HAS_PREFETCHW
114 #define prefetchw_prev_lru_page(_page, _base, _field) \
116 if ((_page)->lru.prev != _base) { \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
124 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
128 * From 0 .. 100. Higher means more swappy.
130 int vm_swappiness = 60;
131 long vm_total_pages; /* The total number of pages which the VM controls */
133 static LIST_HEAD(shrinker_list);
134 static DECLARE_RWSEM(shrinker_rwsem);
137 static bool global_reclaim(struct scan_control *sc)
139 return !sc->target_mem_cgroup;
142 static bool global_reclaim(struct scan_control *sc)
148 static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
150 if (!mem_cgroup_disabled())
151 return mem_cgroup_get_lru_size(lruvec, lru);
153 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
157 * Add a shrinker callback to be called from the vm
159 void register_shrinker(struct shrinker *shrinker)
161 atomic_long_set(&shrinker->nr_in_batch, 0);
162 down_write(&shrinker_rwsem);
163 list_add_tail(&shrinker->list, &shrinker_list);
164 up_write(&shrinker_rwsem);
166 EXPORT_SYMBOL(register_shrinker);
171 void unregister_shrinker(struct shrinker *shrinker)
173 down_write(&shrinker_rwsem);
174 list_del(&shrinker->list);
175 up_write(&shrinker_rwsem);
177 EXPORT_SYMBOL(unregister_shrinker);
179 static inline int do_shrinker_shrink(struct shrinker *shrinker,
180 struct shrink_control *sc,
181 unsigned long nr_to_scan)
183 sc->nr_to_scan = nr_to_scan;
184 return (*shrinker->shrink)(shrinker, sc);
187 #define SHRINK_BATCH 128
189 * Call the shrink functions to age shrinkable caches
191 * Here we assume it costs one seek to replace a lru page and that it also
192 * takes a seek to recreate a cache object. With this in mind we age equal
193 * percentages of the lru and ageable caches. This should balance the seeks
194 * generated by these structures.
196 * If the vm encountered mapped pages on the LRU it increase the pressure on
197 * slab to avoid swapping.
199 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
201 * `lru_pages' represents the number of on-LRU pages in all the zones which
202 * are eligible for the caller's allocation attempt. It is used for balancing
203 * slab reclaim versus page reclaim.
205 * Returns the number of slab objects which we shrunk.
207 unsigned long shrink_slab(struct shrink_control *shrink,
208 unsigned long nr_pages_scanned,
209 unsigned long lru_pages)
211 struct shrinker *shrinker;
212 unsigned long ret = 0;
214 if (nr_pages_scanned == 0)
215 nr_pages_scanned = SWAP_CLUSTER_MAX;
217 if (!down_read_trylock(&shrinker_rwsem)) {
218 /* Assume we'll be able to shrink next time */
223 list_for_each_entry(shrinker, &shrinker_list, list) {
224 unsigned long long delta;
230 long batch_size = shrinker->batch ? shrinker->batch
233 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
238 * copy the current shrinker scan count into a local variable
239 * and zero it so that other concurrent shrinker invocations
240 * don't also do this scanning work.
242 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
245 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 do_div(delta, lru_pages + 1);
249 if (total_scan < 0) {
250 printk(KERN_ERR "shrink_slab: %pF negative objects to "
252 shrinker->shrink, total_scan);
253 total_scan = max_pass;
257 * We need to avoid excessive windup on filesystem shrinkers
258 * due to large numbers of GFP_NOFS allocations causing the
259 * shrinkers to return -1 all the time. This results in a large
260 * nr being built up so when a shrink that can do some work
261 * comes along it empties the entire cache due to nr >>>
262 * max_pass. This is bad for sustaining a working set in
265 * Hence only allow the shrinker to scan the entire cache when
266 * a large delta change is calculated directly.
268 if (delta < max_pass / 4)
269 total_scan = min(total_scan, max_pass / 2);
272 * Avoid risking looping forever due to too large nr value:
273 * never try to free more than twice the estimate number of
276 if (total_scan > max_pass * 2)
277 total_scan = max_pass * 2;
279 trace_mm_shrink_slab_start(shrinker, shrink, nr,
280 nr_pages_scanned, lru_pages,
281 max_pass, delta, total_scan);
283 while (total_scan >= batch_size) {
286 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
287 shrink_ret = do_shrinker_shrink(shrinker, shrink,
289 if (shrink_ret == -1)
291 if (shrink_ret < nr_before)
292 ret += nr_before - shrink_ret;
293 count_vm_events(SLABS_SCANNED, batch_size);
294 total_scan -= batch_size;
300 * move the unused scan count back into the shrinker in a
301 * manner that handles concurrent updates. If we exhausted the
302 * scan, there is no need to do an update.
305 new_nr = atomic_long_add_return(total_scan,
306 &shrinker->nr_in_batch);
308 new_nr = atomic_long_read(&shrinker->nr_in_batch);
310 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
312 up_read(&shrinker_rwsem);
318 static inline int is_page_cache_freeable(struct page *page)
321 * A freeable page cache page is referenced only by the caller
322 * that isolated the page, the page cache radix tree and
323 * optional buffer heads at page->private.
325 return page_count(page) - page_has_private(page) == 2;
328 static int may_write_to_queue(struct backing_dev_info *bdi,
329 struct scan_control *sc)
331 if (current->flags & PF_SWAPWRITE)
333 if (!bdi_write_congested(bdi))
335 if (bdi == current->backing_dev_info)
341 * We detected a synchronous write error writing a page out. Probably
342 * -ENOSPC. We need to propagate that into the address_space for a subsequent
343 * fsync(), msync() or close().
345 * The tricky part is that after writepage we cannot touch the mapping: nothing
346 * prevents it from being freed up. But we have a ref on the page and once
347 * that page is locked, the mapping is pinned.
349 * We're allowed to run sleeping lock_page() here because we know the caller has
352 static void handle_write_error(struct address_space *mapping,
353 struct page *page, int error)
356 if (page_mapping(page) == mapping)
357 mapping_set_error(mapping, error);
361 /* possible outcome of pageout() */
363 /* failed to write page out, page is locked */
365 /* move page to the active list, page is locked */
367 /* page has been sent to the disk successfully, page is unlocked */
369 /* page is clean and locked */
374 * pageout is called by shrink_page_list() for each dirty page.
375 * Calls ->writepage().
377 static pageout_t pageout(struct page *page, struct address_space *mapping,
378 struct scan_control *sc)
381 * If the page is dirty, only perform writeback if that write
382 * will be non-blocking. To prevent this allocation from being
383 * stalled by pagecache activity. But note that there may be
384 * stalls if we need to run get_block(). We could test
385 * PagePrivate for that.
387 * If this process is currently in __generic_file_aio_write() against
388 * this page's queue, we can perform writeback even if that
391 * If the page is swapcache, write it back even if that would
392 * block, for some throttling. This happens by accident, because
393 * swap_backing_dev_info is bust: it doesn't reflect the
394 * congestion state of the swapdevs. Easy to fix, if needed.
396 if (!is_page_cache_freeable(page))
400 * Some data journaling orphaned pages can have
401 * page->mapping == NULL while being dirty with clean buffers.
403 if (page_has_private(page)) {
404 if (try_to_free_buffers(page)) {
405 ClearPageDirty(page);
406 printk("%s: orphaned page\n", __func__);
412 if (mapping->a_ops->writepage == NULL)
413 return PAGE_ACTIVATE;
414 if (!may_write_to_queue(mapping->backing_dev_info, sc))
417 if (clear_page_dirty_for_io(page)) {
419 struct writeback_control wbc = {
420 .sync_mode = WB_SYNC_NONE,
421 .nr_to_write = SWAP_CLUSTER_MAX,
423 .range_end = LLONG_MAX,
427 SetPageReclaim(page);
428 res = mapping->a_ops->writepage(page, &wbc);
430 handle_write_error(mapping, page, res);
431 if (res == AOP_WRITEPAGE_ACTIVATE) {
432 ClearPageReclaim(page);
433 return PAGE_ACTIVATE;
436 if (!PageWriteback(page)) {
437 /* synchronous write or broken a_ops? */
438 ClearPageReclaim(page);
440 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
441 inc_zone_page_state(page, NR_VMSCAN_WRITE);
449 * Same as remove_mapping, but if the page is removed from the mapping, it
450 * gets returned with a refcount of 0.
452 static int __remove_mapping(struct address_space *mapping, struct page *page)
454 BUG_ON(!PageLocked(page));
455 BUG_ON(mapping != page_mapping(page));
457 spin_lock_irq(&mapping->tree_lock);
459 * The non racy check for a busy page.
461 * Must be careful with the order of the tests. When someone has
462 * a ref to the page, it may be possible that they dirty it then
463 * drop the reference. So if PageDirty is tested before page_count
464 * here, then the following race may occur:
466 * get_user_pages(&page);
467 * [user mapping goes away]
469 * !PageDirty(page) [good]
470 * SetPageDirty(page);
472 * !page_count(page) [good, discard it]
474 * [oops, our write_to data is lost]
476 * Reversing the order of the tests ensures such a situation cannot
477 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
478 * load is not satisfied before that of page->_count.
480 * Note that if SetPageDirty is always performed via set_page_dirty,
481 * and thus under tree_lock, then this ordering is not required.
483 if (!page_freeze_refs(page, 2))
485 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
486 if (unlikely(PageDirty(page))) {
487 page_unfreeze_refs(page, 2);
491 if (PageSwapCache(page)) {
492 swp_entry_t swap = { .val = page_private(page) };
493 __delete_from_swap_cache(page);
494 spin_unlock_irq(&mapping->tree_lock);
495 swapcache_free(swap, page);
497 void (*freepage)(struct page *);
499 freepage = mapping->a_ops->freepage;
501 __delete_from_page_cache(page);
502 spin_unlock_irq(&mapping->tree_lock);
503 mem_cgroup_uncharge_cache_page(page);
505 if (freepage != NULL)
512 spin_unlock_irq(&mapping->tree_lock);
517 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
518 * someone else has a ref on the page, abort and return 0. If it was
519 * successfully detached, return 1. Assumes the caller has a single ref on
522 int remove_mapping(struct address_space *mapping, struct page *page)
524 if (__remove_mapping(mapping, page)) {
526 * Unfreezing the refcount with 1 rather than 2 effectively
527 * drops the pagecache ref for us without requiring another
530 page_unfreeze_refs(page, 1);
537 * putback_lru_page - put previously isolated page onto appropriate LRU list
538 * @page: page to be put back to appropriate lru list
540 * Add previously isolated @page to appropriate LRU list.
541 * Page may still be unevictable for other reasons.
543 * lru_lock must not be held, interrupts must be enabled.
545 void putback_lru_page(struct page *page)
548 int active = !!TestClearPageActive(page);
549 int was_unevictable = PageUnevictable(page);
551 VM_BUG_ON(PageLRU(page));
554 ClearPageUnevictable(page);
556 if (page_evictable(page, NULL)) {
558 * For evictable pages, we can use the cache.
559 * In event of a race, worst case is we end up with an
560 * unevictable page on [in]active list.
561 * We know how to handle that.
563 lru = active + page_lru_base_type(page);
564 lru_cache_add_lru(page, lru);
567 * Put unevictable pages directly on zone's unevictable
570 lru = LRU_UNEVICTABLE;
571 add_page_to_unevictable_list(page);
573 * When racing with an mlock or AS_UNEVICTABLE clearing
574 * (page is unlocked) make sure that if the other thread
575 * does not observe our setting of PG_lru and fails
576 * isolation/check_move_unevictable_pages,
577 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
578 * the page back to the evictable list.
580 * The other side is TestClearPageMlocked() or shmem_lock().
586 * page's status can change while we move it among lru. If an evictable
587 * page is on unevictable list, it never be freed. To avoid that,
588 * check after we added it to the list, again.
590 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
591 if (!isolate_lru_page(page)) {
595 /* This means someone else dropped this page from LRU
596 * So, it will be freed or putback to LRU again. There is
597 * nothing to do here.
601 if (was_unevictable && lru != LRU_UNEVICTABLE)
602 count_vm_event(UNEVICTABLE_PGRESCUED);
603 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
604 count_vm_event(UNEVICTABLE_PGCULLED);
606 put_page(page); /* drop ref from isolate */
609 enum page_references {
611 PAGEREF_RECLAIM_CLEAN,
616 static enum page_references page_check_references(struct page *page,
617 struct scan_control *sc)
619 int referenced_ptes, referenced_page;
620 unsigned long vm_flags;
622 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
624 referenced_page = TestClearPageReferenced(page);
627 * Mlock lost the isolation race with us. Let try_to_unmap()
628 * move the page to the unevictable list.
630 if (vm_flags & VM_LOCKED)
631 return PAGEREF_RECLAIM;
633 if (referenced_ptes) {
634 if (PageSwapBacked(page))
635 return PAGEREF_ACTIVATE;
637 * All mapped pages start out with page table
638 * references from the instantiating fault, so we need
639 * to look twice if a mapped file page is used more
642 * Mark it and spare it for another trip around the
643 * inactive list. Another page table reference will
644 * lead to its activation.
646 * Note: the mark is set for activated pages as well
647 * so that recently deactivated but used pages are
650 SetPageReferenced(page);
652 if (referenced_page || referenced_ptes > 1)
653 return PAGEREF_ACTIVATE;
656 * Activate file-backed executable pages after first usage.
658 if (vm_flags & VM_EXEC)
659 return PAGEREF_ACTIVATE;
664 /* Reclaim if clean, defer dirty pages to writeback */
665 if (referenced_page && !PageSwapBacked(page))
666 return PAGEREF_RECLAIM_CLEAN;
668 return PAGEREF_RECLAIM;
672 * shrink_page_list() returns the number of reclaimed pages
674 static unsigned long shrink_page_list(struct list_head *page_list,
676 struct scan_control *sc,
677 unsigned long *ret_nr_dirty,
678 unsigned long *ret_nr_writeback)
680 LIST_HEAD(ret_pages);
681 LIST_HEAD(free_pages);
683 unsigned long nr_dirty = 0;
684 unsigned long nr_congested = 0;
685 unsigned long nr_reclaimed = 0;
686 unsigned long nr_writeback = 0;
690 while (!list_empty(page_list)) {
691 enum page_references references;
692 struct address_space *mapping;
698 page = lru_to_page(page_list);
699 list_del(&page->lru);
701 if (!trylock_page(page))
704 VM_BUG_ON(PageActive(page));
705 VM_BUG_ON(page_zone(page) != zone);
709 if (unlikely(!page_evictable(page, NULL)))
712 if (!sc->may_unmap && page_mapped(page))
715 /* Double the slab pressure for mapped and swapcache pages */
716 if (page_mapped(page) || PageSwapCache(page))
719 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
720 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
722 if (PageWriteback(page)) {
724 * memcg doesn't have any dirty pages throttling so we
725 * could easily OOM just because too many pages are in
726 * writeback and there is nothing else to reclaim.
728 * Check __GFP_IO, certainly because a loop driver
729 * thread might enter reclaim, and deadlock if it waits
730 * on a page for which it is needed to do the write
731 * (loop masks off __GFP_IO|__GFP_FS for this reason);
732 * but more thought would probably show more reasons.
734 * Don't require __GFP_FS, since we're not going into
735 * the FS, just waiting on its writeback completion.
736 * Worryingly, ext4 gfs2 and xfs allocate pages with
737 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so
738 * testing may_enter_fs here is liable to OOM on them.
740 if (global_reclaim(sc) ||
741 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
743 * This is slightly racy - end_page_writeback()
744 * might have just cleared PageReclaim, then
745 * setting PageReclaim here end up interpreted
746 * as PageReadahead - but that does not matter
747 * enough to care. What we do want is for this
748 * page to have PageReclaim set next time memcg
749 * reclaim reaches the tests above, so it will
750 * then wait_on_page_writeback() to avoid OOM;
751 * and it's also appropriate in global reclaim.
753 SetPageReclaim(page);
757 wait_on_page_writeback(page);
760 references = page_check_references(page, sc);
761 switch (references) {
762 case PAGEREF_ACTIVATE:
763 goto activate_locked;
766 case PAGEREF_RECLAIM:
767 case PAGEREF_RECLAIM_CLEAN:
768 ; /* try to reclaim the page below */
772 * Anonymous process memory has backing store?
773 * Try to allocate it some swap space here.
775 if (PageAnon(page) && !PageSwapCache(page)) {
776 if (!(sc->gfp_mask & __GFP_IO))
778 if (!add_to_swap(page))
779 goto activate_locked;
783 mapping = page_mapping(page);
786 * The page is mapped into the page tables of one or more
787 * processes. Try to unmap it here.
789 if (page_mapped(page) && mapping) {
790 switch (try_to_unmap(page, TTU_UNMAP)) {
792 goto activate_locked;
798 ; /* try to free the page below */
802 if (PageDirty(page)) {
806 * Only kswapd can writeback filesystem pages to
807 * avoid risk of stack overflow but do not writeback
808 * unless under significant pressure.
810 if (page_is_file_cache(page) &&
811 (!current_is_kswapd() ||
812 sc->priority >= DEF_PRIORITY - 2)) {
814 * Immediately reclaim when written back.
815 * Similar in principal to deactivate_page()
816 * except we already have the page isolated
817 * and know it's dirty
819 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
820 SetPageReclaim(page);
825 if (references == PAGEREF_RECLAIM_CLEAN)
829 if (!sc->may_writepage)
832 /* Page is dirty, try to write it out here */
833 switch (pageout(page, mapping, sc)) {
838 goto activate_locked;
840 if (PageWriteback(page))
846 * A synchronous write - probably a ramdisk. Go
847 * ahead and try to reclaim the page.
849 if (!trylock_page(page))
851 if (PageDirty(page) || PageWriteback(page))
853 mapping = page_mapping(page);
855 ; /* try to free the page below */
860 * If the page has buffers, try to free the buffer mappings
861 * associated with this page. If we succeed we try to free
864 * We do this even if the page is PageDirty().
865 * try_to_release_page() does not perform I/O, but it is
866 * possible for a page to have PageDirty set, but it is actually
867 * clean (all its buffers are clean). This happens if the
868 * buffers were written out directly, with submit_bh(). ext3
869 * will do this, as well as the blockdev mapping.
870 * try_to_release_page() will discover that cleanness and will
871 * drop the buffers and mark the page clean - it can be freed.
873 * Rarely, pages can have buffers and no ->mapping. These are
874 * the pages which were not successfully invalidated in
875 * truncate_complete_page(). We try to drop those buffers here
876 * and if that worked, and the page is no longer mapped into
877 * process address space (page_count == 1) it can be freed.
878 * Otherwise, leave the page on the LRU so it is swappable.
880 if (page_has_private(page)) {
881 if (!try_to_release_page(page, sc->gfp_mask))
882 goto activate_locked;
883 if (!mapping && page_count(page) == 1) {
885 if (put_page_testzero(page))
889 * rare race with speculative reference.
890 * the speculative reference will free
891 * this page shortly, so we may
892 * increment nr_reclaimed here (and
893 * leave it off the LRU).
901 if (!mapping || !__remove_mapping(mapping, page))
905 * At this point, we have no other references and there is
906 * no way to pick any more up (removed from LRU, removed
907 * from pagecache). Can use non-atomic bitops now (and
908 * we obviously don't have to worry about waking up a process
909 * waiting on the page lock, because there are no references.
911 __clear_page_locked(page);
916 * Is there need to periodically free_page_list? It would
917 * appear not as the counts should be low
919 list_add(&page->lru, &free_pages);
923 if (PageSwapCache(page))
924 try_to_free_swap(page);
926 putback_lru_page(page);
930 /* Not a candidate for swapping, so reclaim swap space. */
931 if (PageSwapCache(page) && vm_swap_full())
932 try_to_free_swap(page);
933 VM_BUG_ON(PageActive(page));
939 list_add(&page->lru, &ret_pages);
940 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
944 * Tag a zone as congested if all the dirty pages encountered were
945 * backed by a congested BDI. In this case, reclaimers should just
946 * back off and wait for congestion to clear because further reclaim
947 * will encounter the same problem
949 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
950 zone_set_flag(zone, ZONE_CONGESTED);
952 free_hot_cold_page_list(&free_pages, 1);
954 list_splice(&ret_pages, page_list);
955 count_vm_events(PGACTIVATE, pgactivate);
956 *ret_nr_dirty += nr_dirty;
957 *ret_nr_writeback += nr_writeback;
962 * Attempt to remove the specified page from its LRU. Only take this page
963 * if it is of the appropriate PageActive status. Pages which are being
964 * freed elsewhere are also ignored.
966 * page: page to consider
967 * mode: one of the LRU isolation modes defined above
969 * returns 0 on success, -ve errno on failure.
971 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
975 /* Only take pages on the LRU. */
979 /* Do not give back unevictable pages for compaction */
980 if (PageUnevictable(page))
986 * To minimise LRU disruption, the caller can indicate that it only
987 * wants to isolate pages it will be able to operate on without
988 * blocking - clean pages for the most part.
990 * ISOLATE_CLEAN means that only clean pages should be isolated. This
991 * is used by reclaim when it is cannot write to backing storage
993 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
994 * that it is possible to migrate without blocking
996 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
997 /* All the caller can do on PageWriteback is block */
998 if (PageWriteback(page))
1001 if (PageDirty(page)) {
1002 struct address_space *mapping;
1004 /* ISOLATE_CLEAN means only clean pages */
1005 if (mode & ISOLATE_CLEAN)
1009 * Only pages without mappings or that have a
1010 * ->migratepage callback are possible to migrate
1013 mapping = page_mapping(page);
1014 if (mapping && !mapping->a_ops->migratepage)
1019 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1022 if (likely(get_page_unless_zero(page))) {
1024 * Be careful not to clear PageLRU until after we're
1025 * sure the page is not being freed elsewhere -- the
1026 * page release code relies on it.
1036 * zone->lru_lock is heavily contended. Some of the functions that
1037 * shrink the lists perform better by taking out a batch of pages
1038 * and working on them outside the LRU lock.
1040 * For pagecache intensive workloads, this function is the hottest
1041 * spot in the kernel (apart from copy_*_user functions).
1043 * Appropriate locks must be held before calling this function.
1045 * @nr_to_scan: The number of pages to look through on the list.
1046 * @lruvec: The LRU vector to pull pages from.
1047 * @dst: The temp list to put pages on to.
1048 * @nr_scanned: The number of pages that were scanned.
1049 * @sc: The scan_control struct for this reclaim session
1050 * @mode: One of the LRU isolation modes
1051 * @lru: LRU list id for isolating
1053 * returns how many pages were moved onto *@dst.
1055 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1056 struct lruvec *lruvec, struct list_head *dst,
1057 unsigned long *nr_scanned, struct scan_control *sc,
1058 isolate_mode_t mode, enum lru_list lru)
1060 struct list_head *src = &lruvec->lists[lru];
1061 unsigned long nr_taken = 0;
1064 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1068 page = lru_to_page(src);
1069 prefetchw_prev_lru_page(page, src, flags);
1071 VM_BUG_ON(!PageLRU(page));
1073 switch (__isolate_lru_page(page, mode)) {
1075 nr_pages = hpage_nr_pages(page);
1076 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
1077 list_move(&page->lru, dst);
1078 nr_taken += nr_pages;
1082 /* else it is being freed elsewhere */
1083 list_move(&page->lru, src);
1092 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1093 nr_taken, mode, is_file_lru(lru));
1098 * isolate_lru_page - tries to isolate a page from its LRU list
1099 * @page: page to isolate from its LRU list
1101 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1102 * vmstat statistic corresponding to whatever LRU list the page was on.
1104 * Returns 0 if the page was removed from an LRU list.
1105 * Returns -EBUSY if the page was not on an LRU list.
1107 * The returned page will have PageLRU() cleared. If it was found on
1108 * the active list, it will have PageActive set. If it was found on
1109 * the unevictable list, it will have the PageUnevictable bit set. That flag
1110 * may need to be cleared by the caller before letting the page go.
1112 * The vmstat statistic corresponding to the list on which the page was
1113 * found will be decremented.
1116 * (1) Must be called with an elevated refcount on the page. This is a
1117 * fundamentnal difference from isolate_lru_pages (which is called
1118 * without a stable reference).
1119 * (2) the lru_lock must not be held.
1120 * (3) interrupts must be enabled.
1122 int isolate_lru_page(struct page *page)
1126 VM_BUG_ON(!page_count(page));
1128 if (PageLRU(page)) {
1129 struct zone *zone = page_zone(page);
1130 struct lruvec *lruvec;
1132 spin_lock_irq(&zone->lru_lock);
1133 lruvec = mem_cgroup_page_lruvec(page, zone);
1134 if (PageLRU(page)) {
1135 int lru = page_lru(page);
1138 del_page_from_lru_list(page, lruvec, lru);
1141 spin_unlock_irq(&zone->lru_lock);
1147 * Are there way too many processes in the direct reclaim path already?
1149 static int too_many_isolated(struct zone *zone, int file,
1150 struct scan_control *sc)
1152 unsigned long inactive, isolated;
1154 if (current_is_kswapd())
1157 if (!global_reclaim(sc))
1161 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1162 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1164 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1165 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1168 return isolated > inactive;
1171 static noinline_for_stack void
1172 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1174 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1175 struct zone *zone = lruvec_zone(lruvec);
1176 LIST_HEAD(pages_to_free);
1179 * Put back any unfreeable pages.
1181 while (!list_empty(page_list)) {
1182 struct page *page = lru_to_page(page_list);
1185 VM_BUG_ON(PageLRU(page));
1186 list_del(&page->lru);
1187 if (unlikely(!page_evictable(page, NULL))) {
1188 spin_unlock_irq(&zone->lru_lock);
1189 putback_lru_page(page);
1190 spin_lock_irq(&zone->lru_lock);
1194 lruvec = mem_cgroup_page_lruvec(page, zone);
1197 lru = page_lru(page);
1198 add_page_to_lru_list(page, lruvec, lru);
1200 if (is_active_lru(lru)) {
1201 int file = is_file_lru(lru);
1202 int numpages = hpage_nr_pages(page);
1203 reclaim_stat->recent_rotated[file] += numpages;
1205 if (put_page_testzero(page)) {
1206 __ClearPageLRU(page);
1207 __ClearPageActive(page);
1208 del_page_from_lru_list(page, lruvec, lru);
1210 if (unlikely(PageCompound(page))) {
1211 spin_unlock_irq(&zone->lru_lock);
1212 (*get_compound_page_dtor(page))(page);
1213 spin_lock_irq(&zone->lru_lock);
1215 list_add(&page->lru, &pages_to_free);
1220 * To save our caller's stack, now use input list for pages to free.
1222 list_splice(&pages_to_free, page_list);
1226 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1227 * of reclaimed pages
1229 static noinline_for_stack unsigned long
1230 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1231 struct scan_control *sc, enum lru_list lru)
1233 LIST_HEAD(page_list);
1234 unsigned long nr_scanned;
1235 unsigned long nr_reclaimed = 0;
1236 unsigned long nr_taken;
1237 unsigned long nr_dirty = 0;
1238 unsigned long nr_writeback = 0;
1239 isolate_mode_t isolate_mode = 0;
1240 int file = is_file_lru(lru);
1241 struct zone *zone = lruvec_zone(lruvec);
1242 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1244 while (unlikely(too_many_isolated(zone, file, sc))) {
1245 congestion_wait(BLK_RW_ASYNC, HZ/10);
1247 /* We are about to die and free our memory. Return now. */
1248 if (fatal_signal_pending(current))
1249 return SWAP_CLUSTER_MAX;
1255 isolate_mode |= ISOLATE_UNMAPPED;
1256 if (!sc->may_writepage)
1257 isolate_mode |= ISOLATE_CLEAN;
1259 spin_lock_irq(&zone->lru_lock);
1261 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1262 &nr_scanned, sc, isolate_mode, lru);
1264 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1265 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1267 if (global_reclaim(sc)) {
1268 zone->pages_scanned += nr_scanned;
1269 if (current_is_kswapd())
1270 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
1272 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
1274 spin_unlock_irq(&zone->lru_lock);
1279 nr_reclaimed = shrink_page_list(&page_list, zone, sc,
1280 &nr_dirty, &nr_writeback);
1282 spin_lock_irq(&zone->lru_lock);
1284 reclaim_stat->recent_scanned[file] += nr_taken;
1286 if (global_reclaim(sc)) {
1287 if (current_is_kswapd())
1288 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1291 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1295 putback_inactive_pages(lruvec, &page_list);
1297 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1299 spin_unlock_irq(&zone->lru_lock);
1301 free_hot_cold_page_list(&page_list, 1);
1304 * If reclaim is isolating dirty pages under writeback, it implies
1305 * that the long-lived page allocation rate is exceeding the page
1306 * laundering rate. Either the global limits are not being effective
1307 * at throttling processes due to the page distribution throughout
1308 * zones or there is heavy usage of a slow backing device. The
1309 * only option is to throttle from reclaim context which is not ideal
1310 * as there is no guarantee the dirtying process is throttled in the
1311 * same way balance_dirty_pages() manages.
1313 * This scales the number of dirty pages that must be under writeback
1314 * before throttling depending on priority. It is a simple backoff
1315 * function that has the most effect in the range DEF_PRIORITY to
1316 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1317 * in trouble and reclaim is considered to be in trouble.
1319 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1320 * DEF_PRIORITY-1 50% must be PageWriteback
1321 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1323 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1324 * isolated page is PageWriteback
1326 if (nr_writeback && nr_writeback >=
1327 (nr_taken >> (DEF_PRIORITY - sc->priority)))
1328 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1330 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1332 nr_scanned, nr_reclaimed,
1334 trace_shrink_flags(file));
1335 return nr_reclaimed;
1339 * This moves pages from the active list to the inactive list.
1341 * We move them the other way if the page is referenced by one or more
1342 * processes, from rmap.
1344 * If the pages are mostly unmapped, the processing is fast and it is
1345 * appropriate to hold zone->lru_lock across the whole operation. But if
1346 * the pages are mapped, the processing is slow (page_referenced()) so we
1347 * should drop zone->lru_lock around each page. It's impossible to balance
1348 * this, so instead we remove the pages from the LRU while processing them.
1349 * It is safe to rely on PG_active against the non-LRU pages in here because
1350 * nobody will play with that bit on a non-LRU page.
1352 * The downside is that we have to touch page->_count against each page.
1353 * But we had to alter page->flags anyway.
1356 static void move_active_pages_to_lru(struct lruvec *lruvec,
1357 struct list_head *list,
1358 struct list_head *pages_to_free,
1361 struct zone *zone = lruvec_zone(lruvec);
1362 unsigned long pgmoved = 0;
1366 while (!list_empty(list)) {
1367 page = lru_to_page(list);
1368 lruvec = mem_cgroup_page_lruvec(page, zone);
1370 VM_BUG_ON(PageLRU(page));
1373 nr_pages = hpage_nr_pages(page);
1374 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
1375 list_move(&page->lru, &lruvec->lists[lru]);
1376 pgmoved += nr_pages;
1378 if (put_page_testzero(page)) {
1379 __ClearPageLRU(page);
1380 __ClearPageActive(page);
1381 del_page_from_lru_list(page, lruvec, lru);
1383 if (unlikely(PageCompound(page))) {
1384 spin_unlock_irq(&zone->lru_lock);
1385 (*get_compound_page_dtor(page))(page);
1386 spin_lock_irq(&zone->lru_lock);
1388 list_add(&page->lru, pages_to_free);
1391 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1392 if (!is_active_lru(lru))
1393 __count_vm_events(PGDEACTIVATE, pgmoved);
1396 static void shrink_active_list(unsigned long nr_to_scan,
1397 struct lruvec *lruvec,
1398 struct scan_control *sc,
1401 unsigned long nr_taken;
1402 unsigned long nr_scanned;
1403 unsigned long vm_flags;
1404 LIST_HEAD(l_hold); /* The pages which were snipped off */
1405 LIST_HEAD(l_active);
1406 LIST_HEAD(l_inactive);
1408 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1409 unsigned long nr_rotated = 0;
1410 isolate_mode_t isolate_mode = 0;
1411 int file = is_file_lru(lru);
1412 struct zone *zone = lruvec_zone(lruvec);
1417 isolate_mode |= ISOLATE_UNMAPPED;
1418 if (!sc->may_writepage)
1419 isolate_mode |= ISOLATE_CLEAN;
1421 spin_lock_irq(&zone->lru_lock);
1423 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1424 &nr_scanned, sc, isolate_mode, lru);
1425 if (global_reclaim(sc))
1426 zone->pages_scanned += nr_scanned;
1428 reclaim_stat->recent_scanned[file] += nr_taken;
1430 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
1431 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1432 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1433 spin_unlock_irq(&zone->lru_lock);
1435 while (!list_empty(&l_hold)) {
1437 page = lru_to_page(&l_hold);
1438 list_del(&page->lru);
1440 if (unlikely(!page_evictable(page, NULL))) {
1441 putback_lru_page(page);
1445 if (unlikely(buffer_heads_over_limit)) {
1446 if (page_has_private(page) && trylock_page(page)) {
1447 if (page_has_private(page))
1448 try_to_release_page(page, 0);
1453 if (page_referenced(page, 0, sc->target_mem_cgroup,
1455 nr_rotated += hpage_nr_pages(page);
1457 * Identify referenced, file-backed active pages and
1458 * give them one more trip around the active list. So
1459 * that executable code get better chances to stay in
1460 * memory under moderate memory pressure. Anon pages
1461 * are not likely to be evicted by use-once streaming
1462 * IO, plus JVM can create lots of anon VM_EXEC pages,
1463 * so we ignore them here.
1465 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1466 list_add(&page->lru, &l_active);
1471 ClearPageActive(page); /* we are de-activating */
1472 list_add(&page->lru, &l_inactive);
1476 * Move pages back to the lru list.
1478 spin_lock_irq(&zone->lru_lock);
1480 * Count referenced pages from currently used mappings as rotated,
1481 * even though only some of them are actually re-activated. This
1482 * helps balance scan pressure between file and anonymous pages in
1485 reclaim_stat->recent_rotated[file] += nr_rotated;
1487 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1488 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
1489 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1490 spin_unlock_irq(&zone->lru_lock);
1492 free_hot_cold_page_list(&l_hold, 1);
1496 static int inactive_anon_is_low_global(struct zone *zone)
1498 unsigned long active, inactive;
1500 active = zone_page_state(zone, NR_ACTIVE_ANON);
1501 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1503 if (inactive * zone->inactive_ratio < active)
1510 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1511 * @lruvec: LRU vector to check
1513 * Returns true if the zone does not have enough inactive anon pages,
1514 * meaning some active anon pages need to be deactivated.
1516 static int inactive_anon_is_low(struct lruvec *lruvec)
1519 * If we don't have swap space, anonymous page deactivation
1522 if (!total_swap_pages)
1525 if (!mem_cgroup_disabled())
1526 return mem_cgroup_inactive_anon_is_low(lruvec);
1528 return inactive_anon_is_low_global(lruvec_zone(lruvec));
1531 static inline int inactive_anon_is_low(struct lruvec *lruvec)
1537 static int inactive_file_is_low_global(struct zone *zone)
1539 unsigned long active, inactive;
1541 active = zone_page_state(zone, NR_ACTIVE_FILE);
1542 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1544 return (active > inactive);
1548 * inactive_file_is_low - check if file pages need to be deactivated
1549 * @lruvec: LRU vector to check
1551 * When the system is doing streaming IO, memory pressure here
1552 * ensures that active file pages get deactivated, until more
1553 * than half of the file pages are on the inactive list.
1555 * Once we get to that situation, protect the system's working
1556 * set from being evicted by disabling active file page aging.
1558 * This uses a different ratio than the anonymous pages, because
1559 * the page cache uses a use-once replacement algorithm.
1561 static int inactive_file_is_low(struct lruvec *lruvec)
1563 if (!mem_cgroup_disabled())
1564 return mem_cgroup_inactive_file_is_low(lruvec);
1566 return inactive_file_is_low_global(lruvec_zone(lruvec));
1569 static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
1571 if (is_file_lru(lru))
1572 return inactive_file_is_low(lruvec);
1574 return inactive_anon_is_low(lruvec);
1577 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1578 struct lruvec *lruvec, struct scan_control *sc)
1580 if (is_active_lru(lru)) {
1581 if (inactive_list_is_low(lruvec, lru))
1582 shrink_active_list(nr_to_scan, lruvec, sc, lru);
1586 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
1589 static int vmscan_swappiness(struct scan_control *sc)
1591 if (global_reclaim(sc))
1592 return vm_swappiness;
1593 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1597 * Determine how aggressively the anon and file LRU lists should be
1598 * scanned. The relative value of each set of LRU lists is determined
1599 * by looking at the fraction of the pages scanned we did rotate back
1600 * onto the active list instead of evict.
1602 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1603 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
1605 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
1608 unsigned long anon, file, free;
1609 unsigned long anon_prio, file_prio;
1610 unsigned long ap, fp;
1611 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1612 u64 fraction[2], denominator;
1615 bool force_scan = false;
1616 struct zone *zone = lruvec_zone(lruvec);
1619 * If the zone or memcg is small, nr[l] can be 0. This
1620 * results in no scanning on this priority and a potential
1621 * priority drop. Global direct reclaim can go to the next
1622 * zone and tends to have no problems. Global kswapd is for
1623 * zone balancing and it needs to scan a minimum amount. When
1624 * reclaiming for a memcg, a priority drop can cause high
1625 * latencies, so it's better to scan a minimum amount there as
1628 if (current_is_kswapd() && zone->all_unreclaimable)
1630 if (!global_reclaim(sc))
1633 /* If we have no swap space, do not bother scanning anon pages. */
1634 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1642 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1643 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1644 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1645 get_lru_size(lruvec, LRU_INACTIVE_FILE);
1647 if (global_reclaim(sc)) {
1648 free = zone_page_state(zone, NR_FREE_PAGES);
1649 /* If we have very few page cache pages,
1650 force-scan anon pages. */
1651 if (unlikely(file + free <= high_wmark_pages(zone))) {
1660 * With swappiness at 100, anonymous and file have the same priority.
1661 * This scanning priority is essentially the inverse of IO cost.
1663 anon_prio = vmscan_swappiness(sc);
1664 file_prio = 200 - anon_prio;
1667 * OK, so we have swap space and a fair amount of page cache
1668 * pages. We use the recently rotated / recently scanned
1669 * ratios to determine how valuable each cache is.
1671 * Because workloads change over time (and to avoid overflow)
1672 * we keep these statistics as a floating average, which ends
1673 * up weighing recent references more than old ones.
1675 * anon in [0], file in [1]
1677 spin_lock_irq(&zone->lru_lock);
1678 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1679 reclaim_stat->recent_scanned[0] /= 2;
1680 reclaim_stat->recent_rotated[0] /= 2;
1683 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1684 reclaim_stat->recent_scanned[1] /= 2;
1685 reclaim_stat->recent_rotated[1] /= 2;
1689 * The amount of pressure on anon vs file pages is inversely
1690 * proportional to the fraction of recently scanned pages on
1691 * each list that were recently referenced and in active use.
1693 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1694 ap /= reclaim_stat->recent_rotated[0] + 1;
1696 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1697 fp /= reclaim_stat->recent_rotated[1] + 1;
1698 spin_unlock_irq(&zone->lru_lock);
1702 denominator = ap + fp + 1;
1704 for_each_evictable_lru(lru) {
1705 int file = is_file_lru(lru);
1708 scan = get_lru_size(lruvec, lru);
1709 if (sc->priority || noswap || !vmscan_swappiness(sc)) {
1710 scan >>= sc->priority;
1711 if (!scan && force_scan)
1712 scan = SWAP_CLUSTER_MAX;
1713 scan = div64_u64(scan * fraction[file], denominator);
1719 /* Use reclaim/compaction for costly allocs or under memory pressure */
1720 static bool in_reclaim_compaction(struct scan_control *sc)
1722 if (COMPACTION_BUILD && sc->order &&
1723 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1724 sc->priority < DEF_PRIORITY - 2))
1731 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1732 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1733 * true if more pages should be reclaimed such that when the page allocator
1734 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1735 * It will give up earlier than that if there is difficulty reclaiming pages.
1737 static inline bool should_continue_reclaim(struct lruvec *lruvec,
1738 unsigned long nr_reclaimed,
1739 unsigned long nr_scanned,
1740 struct scan_control *sc)
1742 unsigned long pages_for_compaction;
1743 unsigned long inactive_lru_pages;
1745 /* If not in reclaim/compaction mode, stop */
1746 if (!in_reclaim_compaction(sc))
1749 /* Consider stopping depending on scan and reclaim activity */
1750 if (sc->gfp_mask & __GFP_REPEAT) {
1752 * For __GFP_REPEAT allocations, stop reclaiming if the
1753 * full LRU list has been scanned and we are still failing
1754 * to reclaim pages. This full LRU scan is potentially
1755 * expensive but a __GFP_REPEAT caller really wants to succeed
1757 if (!nr_reclaimed && !nr_scanned)
1761 * For non-__GFP_REPEAT allocations which can presumably
1762 * fail without consequence, stop if we failed to reclaim
1763 * any pages from the last SWAP_CLUSTER_MAX number of
1764 * pages that were scanned. This will return to the
1765 * caller faster at the risk reclaim/compaction and
1766 * the resulting allocation attempt fails
1773 * If we have not reclaimed enough pages for compaction and the
1774 * inactive lists are large enough, continue reclaiming
1776 pages_for_compaction = (2UL << sc->order);
1777 inactive_lru_pages = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1778 if (nr_swap_pages > 0)
1779 inactive_lru_pages += get_lru_size(lruvec, LRU_INACTIVE_ANON);
1780 if (sc->nr_reclaimed < pages_for_compaction &&
1781 inactive_lru_pages > pages_for_compaction)
1784 /* If compaction would go ahead or the allocation would succeed, stop */
1785 switch (compaction_suitable(lruvec_zone(lruvec), sc->order)) {
1786 case COMPACT_PARTIAL:
1787 case COMPACT_CONTINUE:
1795 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1797 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
1799 unsigned long nr[NR_LRU_LISTS];
1800 unsigned long nr_to_scan;
1802 unsigned long nr_reclaimed, nr_scanned;
1803 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
1804 struct blk_plug plug;
1808 nr_scanned = sc->nr_scanned;
1809 get_scan_count(lruvec, sc, nr);
1811 blk_start_plug(&plug);
1812 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1813 nr[LRU_INACTIVE_FILE]) {
1814 for_each_evictable_lru(lru) {
1816 nr_to_scan = min_t(unsigned long,
1817 nr[lru], SWAP_CLUSTER_MAX);
1818 nr[lru] -= nr_to_scan;
1820 nr_reclaimed += shrink_list(lru, nr_to_scan,
1825 * On large memory systems, scan >> priority can become
1826 * really large. This is fine for the starting priority;
1827 * we want to put equal scanning pressure on each zone.
1828 * However, if the VM has a harder time of freeing pages,
1829 * with multiple processes reclaiming pages, the total
1830 * freeing target can get unreasonably large.
1832 if (nr_reclaimed >= nr_to_reclaim &&
1833 sc->priority < DEF_PRIORITY)
1836 blk_finish_plug(&plug);
1837 sc->nr_reclaimed += nr_reclaimed;
1840 * Even if we did not try to evict anon pages at all, we want to
1841 * rebalance the anon lru active/inactive ratio.
1843 if (inactive_anon_is_low(lruvec))
1844 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
1845 sc, LRU_ACTIVE_ANON);
1847 /* reclaim/compaction might need reclaim to continue */
1848 if (should_continue_reclaim(lruvec, nr_reclaimed,
1849 sc->nr_scanned - nr_scanned, sc))
1852 throttle_vm_writeout(sc->gfp_mask);
1855 static void shrink_zone(struct zone *zone, struct scan_control *sc)
1857 struct mem_cgroup *root = sc->target_mem_cgroup;
1858 struct mem_cgroup_reclaim_cookie reclaim = {
1860 .priority = sc->priority,
1862 struct mem_cgroup *memcg;
1864 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1866 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
1868 shrink_lruvec(lruvec, sc);
1871 * Limit reclaim has historically picked one memcg and
1872 * scanned it with decreasing priority levels until
1873 * nr_to_reclaim had been reclaimed. This priority
1874 * cycle is thus over after a single memcg.
1876 * Direct reclaim and kswapd, on the other hand, have
1877 * to scan all memory cgroups to fulfill the overall
1878 * scan target for the zone.
1880 if (!global_reclaim(sc)) {
1881 mem_cgroup_iter_break(root, memcg);
1884 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1888 /* Returns true if compaction should go ahead for a high-order request */
1889 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1891 unsigned long balance_gap, watermark;
1894 /* Do not consider compaction for orders reclaim is meant to satisfy */
1895 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1899 * Compaction takes time to run and there are potentially other
1900 * callers using the pages just freed. Continue reclaiming until
1901 * there is a buffer of free pages available to give compaction
1902 * a reasonable chance of completing and allocating the page
1904 balance_gap = min(low_wmark_pages(zone),
1905 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1906 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1907 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1908 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1911 * If compaction is deferred, reclaim up to a point where
1912 * compaction will have a chance of success when re-enabled
1914 if (compaction_deferred(zone, sc->order))
1915 return watermark_ok;
1917 /* If compaction is not ready to start, keep reclaiming */
1918 if (!compaction_suitable(zone, sc->order))
1921 return watermark_ok;
1925 * This is the direct reclaim path, for page-allocating processes. We only
1926 * try to reclaim pages from zones which will satisfy the caller's allocation
1929 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1931 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1933 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1934 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1935 * zone defense algorithm.
1937 * If a zone is deemed to be full of pinned pages then just give it a light
1938 * scan then give up on it.
1940 * This function returns true if a zone is being reclaimed for a costly
1941 * high-order allocation and compaction is ready to begin. This indicates to
1942 * the caller that it should consider retrying the allocation instead of
1945 static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1949 unsigned long nr_soft_reclaimed;
1950 unsigned long nr_soft_scanned;
1951 bool aborted_reclaim = false;
1954 * If the number of buffer_heads in the machine exceeds the maximum
1955 * allowed level, force direct reclaim to scan the highmem zone as
1956 * highmem pages could be pinning lowmem pages storing buffer_heads
1958 if (buffer_heads_over_limit)
1959 sc->gfp_mask |= __GFP_HIGHMEM;
1961 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1962 gfp_zone(sc->gfp_mask), sc->nodemask) {
1963 if (!populated_zone(zone))
1966 * Take care memory controller reclaiming has small influence
1969 if (global_reclaim(sc)) {
1970 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1972 if (zone->all_unreclaimable &&
1973 sc->priority != DEF_PRIORITY)
1974 continue; /* Let kswapd poll it */
1975 if (COMPACTION_BUILD) {
1977 * If we already have plenty of memory free for
1978 * compaction in this zone, don't free any more.
1979 * Even though compaction is invoked for any
1980 * non-zero order, only frequent costly order
1981 * reclamation is disruptive enough to become a
1982 * noticeable problem, like transparent huge
1985 if (compaction_ready(zone, sc)) {
1986 aborted_reclaim = true;
1991 * This steals pages from memory cgroups over softlimit
1992 * and returns the number of reclaimed pages and
1993 * scanned pages. This works for global memory pressure
1994 * and balancing, not for a memcg's limit.
1996 nr_soft_scanned = 0;
1997 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
1998 sc->order, sc->gfp_mask,
2000 sc->nr_reclaimed += nr_soft_reclaimed;
2001 sc->nr_scanned += nr_soft_scanned;
2002 /* need some check for avoid more shrink_zone() */
2005 shrink_zone(zone, sc);
2008 return aborted_reclaim;
2011 static bool zone_reclaimable(struct zone *zone)
2013 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2016 /* All zones in zonelist are unreclaimable? */
2017 static bool all_unreclaimable(struct zonelist *zonelist,
2018 struct scan_control *sc)
2023 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2024 gfp_zone(sc->gfp_mask), sc->nodemask) {
2025 if (!populated_zone(zone))
2027 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2029 if (!zone->all_unreclaimable)
2037 * This is the main entry point to direct page reclaim.
2039 * If a full scan of the inactive list fails to free enough memory then we
2040 * are "out of memory" and something needs to be killed.
2042 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2043 * high - the zone may be full of dirty or under-writeback pages, which this
2044 * caller can't do much about. We kick the writeback threads and take explicit
2045 * naps in the hope that some of these pages can be written. But if the
2046 * allocating task holds filesystem locks which prevent writeout this might not
2047 * work, and the allocation attempt will fail.
2049 * returns: 0, if no pages reclaimed
2050 * else, the number of pages reclaimed
2052 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2053 struct scan_control *sc,
2054 struct shrink_control *shrink)
2056 unsigned long total_scanned = 0;
2057 struct reclaim_state *reclaim_state = current->reclaim_state;
2060 unsigned long writeback_threshold;
2061 bool aborted_reclaim;
2063 delayacct_freepages_start();
2065 if (global_reclaim(sc))
2066 count_vm_event(ALLOCSTALL);
2070 aborted_reclaim = shrink_zones(zonelist, sc);
2073 * Don't shrink slabs when reclaiming memory from
2074 * over limit cgroups
2076 if (global_reclaim(sc)) {
2077 unsigned long lru_pages = 0;
2078 for_each_zone_zonelist(zone, z, zonelist,
2079 gfp_zone(sc->gfp_mask)) {
2080 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2083 lru_pages += zone_reclaimable_pages(zone);
2086 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2087 if (reclaim_state) {
2088 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2089 reclaim_state->reclaimed_slab = 0;
2092 total_scanned += sc->nr_scanned;
2093 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2097 * Try to write back as many pages as we just scanned. This
2098 * tends to cause slow streaming writers to write data to the
2099 * disk smoothly, at the dirtying rate, which is nice. But
2100 * that's undesirable in laptop mode, where we *want* lumpy
2101 * writeout. So in laptop mode, write out the whole world.
2103 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2104 if (total_scanned > writeback_threshold) {
2105 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2106 WB_REASON_TRY_TO_FREE_PAGES);
2107 sc->may_writepage = 1;
2110 /* Take a nap, wait for some writeback to complete */
2111 if (!sc->hibernation_mode && sc->nr_scanned &&
2112 sc->priority < DEF_PRIORITY - 2) {
2113 struct zone *preferred_zone;
2115 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2116 &cpuset_current_mems_allowed,
2118 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2120 } while (--sc->priority >= 0);
2123 delayacct_freepages_end();
2125 if (sc->nr_reclaimed)
2126 return sc->nr_reclaimed;
2129 * As hibernation is going on, kswapd is freezed so that it can't mark
2130 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2133 if (oom_killer_disabled)
2136 /* Aborted reclaim to try compaction? don't OOM, then */
2137 if (aborted_reclaim)
2140 /* top priority shrink_zones still had more to do? don't OOM, then */
2141 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2147 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2150 unsigned long pfmemalloc_reserve = 0;
2151 unsigned long free_pages = 0;
2155 for (i = 0; i <= ZONE_NORMAL; i++) {
2156 zone = &pgdat->node_zones[i];
2157 pfmemalloc_reserve += min_wmark_pages(zone);
2158 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2161 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2163 /* kswapd must be awake if processes are being throttled */
2164 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2165 pgdat->classzone_idx = min(pgdat->classzone_idx,
2166 (enum zone_type)ZONE_NORMAL);
2167 wake_up_interruptible(&pgdat->kswapd_wait);
2174 * Throttle direct reclaimers if backing storage is backed by the network
2175 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2176 * depleted. kswapd will continue to make progress and wake the processes
2177 * when the low watermark is reached
2179 static void throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2180 nodemask_t *nodemask)
2183 int high_zoneidx = gfp_zone(gfp_mask);
2187 * Kernel threads should not be throttled as they may be indirectly
2188 * responsible for cleaning pages necessary for reclaim to make forward
2189 * progress. kjournald for example may enter direct reclaim while
2190 * committing a transaction where throttling it could forcing other
2191 * processes to block on log_wait_commit().
2193 if (current->flags & PF_KTHREAD)
2196 /* Check if the pfmemalloc reserves are ok */
2197 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2198 pgdat = zone->zone_pgdat;
2199 if (pfmemalloc_watermark_ok(pgdat))
2202 /* Account for the throttling */
2203 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2206 * If the caller cannot enter the filesystem, it's possible that it
2207 * is due to the caller holding an FS lock or performing a journal
2208 * transaction in the case of a filesystem like ext[3|4]. In this case,
2209 * it is not safe to block on pfmemalloc_wait as kswapd could be
2210 * blocked waiting on the same lock. Instead, throttle for up to a
2211 * second before continuing.
2213 if (!(gfp_mask & __GFP_FS)) {
2214 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2215 pfmemalloc_watermark_ok(pgdat), HZ);
2219 /* Throttle until kswapd wakes the process */
2220 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2221 pfmemalloc_watermark_ok(pgdat));
2224 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2225 gfp_t gfp_mask, nodemask_t *nodemask)
2227 unsigned long nr_reclaimed;
2228 struct scan_control sc = {
2229 .gfp_mask = gfp_mask,
2230 .may_writepage = !laptop_mode,
2231 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2235 .priority = DEF_PRIORITY,
2236 .target_mem_cgroup = NULL,
2237 .nodemask = nodemask,
2239 struct shrink_control shrink = {
2240 .gfp_mask = sc.gfp_mask,
2243 throttle_direct_reclaim(gfp_mask, zonelist, nodemask);
2246 * Do not enter reclaim if fatal signal is pending. 1 is returned so
2247 * that the page allocator does not consider triggering OOM
2249 if (fatal_signal_pending(current))
2252 trace_mm_vmscan_direct_reclaim_begin(order,
2256 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2258 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2260 return nr_reclaimed;
2265 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2266 gfp_t gfp_mask, bool noswap,
2268 unsigned long *nr_scanned)
2270 struct scan_control sc = {
2272 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2273 .may_writepage = !laptop_mode,
2275 .may_swap = !noswap,
2278 .target_mem_cgroup = memcg,
2280 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2282 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2283 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2285 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
2290 * NOTE: Although we can get the priority field, using it
2291 * here is not a good idea, since it limits the pages we can scan.
2292 * if we don't reclaim here, the shrink_zone from balance_pgdat
2293 * will pick up pages from other mem cgroup's as well. We hack
2294 * the priority and make it zero.
2296 shrink_lruvec(lruvec, &sc);
2298 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2300 *nr_scanned = sc.nr_scanned;
2301 return sc.nr_reclaimed;
2304 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2308 struct zonelist *zonelist;
2309 unsigned long nr_reclaimed;
2311 struct scan_control sc = {
2312 .may_writepage = !laptop_mode,
2314 .may_swap = !noswap,
2315 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2317 .priority = DEF_PRIORITY,
2318 .target_mem_cgroup = memcg,
2319 .nodemask = NULL, /* we don't care the placement */
2320 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2321 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2323 struct shrink_control shrink = {
2324 .gfp_mask = sc.gfp_mask,
2328 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2329 * take care of from where we get pages. So the node where we start the
2330 * scan does not need to be the current node.
2332 nid = mem_cgroup_select_victim_node(memcg);
2334 zonelist = NODE_DATA(nid)->node_zonelists;
2336 trace_mm_vmscan_memcg_reclaim_begin(0,
2340 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2342 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2344 return nr_reclaimed;
2348 static void age_active_anon(struct zone *zone, struct scan_control *sc)
2350 struct mem_cgroup *memcg;
2352 if (!total_swap_pages)
2355 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2357 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
2359 if (inactive_anon_is_low(lruvec))
2360 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2361 sc, LRU_ACTIVE_ANON);
2363 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2368 * pgdat_balanced is used when checking if a node is balanced for high-order
2369 * allocations. Only zones that meet watermarks and are in a zone allowed
2370 * by the callers classzone_idx are added to balanced_pages. The total of
2371 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2372 * for the node to be considered balanced. Forcing all zones to be balanced
2373 * for high orders can cause excessive reclaim when there are imbalanced zones.
2374 * The choice of 25% is due to
2375 * o a 16M DMA zone that is balanced will not balance a zone on any
2376 * reasonable sized machine
2377 * o On all other machines, the top zone must be at least a reasonable
2378 * percentage of the middle zones. For example, on 32-bit x86, highmem
2379 * would need to be at least 256M for it to be balance a whole node.
2380 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2381 * to balance a node on its own. These seemed like reasonable ratios.
2383 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2386 unsigned long present_pages = 0;
2389 for (i = 0; i <= classzone_idx; i++)
2390 present_pages += pgdat->node_zones[i].present_pages;
2392 /* A special case here: if zone has no page, we think it's balanced */
2393 return balanced_pages >= (present_pages >> 2);
2397 * Prepare kswapd for sleeping. This verifies that there are no processes
2398 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2400 * Returns true if kswapd is ready to sleep
2402 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
2406 unsigned long balanced = 0;
2407 bool all_zones_ok = true;
2409 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2414 * There is a potential race between when kswapd checks its watermarks
2415 * and a process gets throttled. There is also a potential race if
2416 * processes get throttled, kswapd wakes, a large process exits therby
2417 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2418 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2419 * so wake them now if necessary. If necessary, processes will wake
2420 * kswapd and get throttled again
2422 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2423 wake_up(&pgdat->pfmemalloc_wait);
2427 /* Check the watermark levels */
2428 for (i = 0; i <= classzone_idx; i++) {
2429 struct zone *zone = pgdat->node_zones + i;
2431 if (!populated_zone(zone))
2435 * balance_pgdat() skips over all_unreclaimable after
2436 * DEF_PRIORITY. Effectively, it considers them balanced so
2437 * they must be considered balanced here as well if kswapd
2440 if (zone->all_unreclaimable) {
2441 balanced += zone->present_pages;
2445 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2447 all_zones_ok = false;
2449 balanced += zone->present_pages;
2453 * For high-order requests, the balanced zones must contain at least
2454 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2458 return pgdat_balanced(pgdat, balanced, classzone_idx);
2460 return all_zones_ok;
2464 * For kswapd, balance_pgdat() will work across all this node's zones until
2465 * they are all at high_wmark_pages(zone).
2467 * Returns the final order kswapd was reclaiming at
2469 * There is special handling here for zones which are full of pinned pages.
2470 * This can happen if the pages are all mlocked, or if they are all used by
2471 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2472 * What we do is to detect the case where all pages in the zone have been
2473 * scanned twice and there has been zero successful reclaim. Mark the zone as
2474 * dead and from now on, only perform a short scan. Basically we're polling
2475 * the zone for when the problem goes away.
2477 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2478 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2479 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2480 * lower zones regardless of the number of free pages in the lower zones. This
2481 * interoperates with the page allocator fallback scheme to ensure that aging
2482 * of pages is balanced across the zones.
2484 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2488 unsigned long balanced;
2490 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2491 unsigned long total_scanned;
2492 struct reclaim_state *reclaim_state = current->reclaim_state;
2493 unsigned long nr_soft_reclaimed;
2494 unsigned long nr_soft_scanned;
2495 struct scan_control sc = {
2496 .gfp_mask = GFP_KERNEL,
2500 * kswapd doesn't want to be bailed out while reclaim. because
2501 * we want to put equal scanning pressure on each zone.
2503 .nr_to_reclaim = ULONG_MAX,
2505 .target_mem_cgroup = NULL,
2507 struct shrink_control shrink = {
2508 .gfp_mask = sc.gfp_mask,
2512 sc.priority = DEF_PRIORITY;
2513 sc.nr_reclaimed = 0;
2514 sc.may_writepage = !laptop_mode;
2515 count_vm_event(PAGEOUTRUN);
2518 unsigned long lru_pages = 0;
2519 int has_under_min_watermark_zone = 0;
2525 * Scan in the highmem->dma direction for the highest
2526 * zone which needs scanning
2528 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2529 struct zone *zone = pgdat->node_zones + i;
2531 if (!populated_zone(zone))
2534 if (zone->all_unreclaimable &&
2535 sc.priority != DEF_PRIORITY)
2539 * Do some background aging of the anon list, to give
2540 * pages a chance to be referenced before reclaiming.
2542 age_active_anon(zone, &sc);
2545 * If the number of buffer_heads in the machine
2546 * exceeds the maximum allowed level and this node
2547 * has a highmem zone, force kswapd to reclaim from
2548 * it to relieve lowmem pressure.
2550 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2555 if (!zone_watermark_ok_safe(zone, order,
2556 high_wmark_pages(zone), 0, 0)) {
2560 /* If balanced, clear the congested flag */
2561 zone_clear_flag(zone, ZONE_CONGESTED);
2567 for (i = 0; i <= end_zone; i++) {
2568 struct zone *zone = pgdat->node_zones + i;
2570 lru_pages += zone_reclaimable_pages(zone);
2574 * Now scan the zone in the dma->highmem direction, stopping
2575 * at the last zone which needs scanning.
2577 * We do this because the page allocator works in the opposite
2578 * direction. This prevents the page allocator from allocating
2579 * pages behind kswapd's direction of progress, which would
2580 * cause too much scanning of the lower zones.
2582 for (i = 0; i <= end_zone; i++) {
2583 struct zone *zone = pgdat->node_zones + i;
2584 int nr_slab, testorder;
2585 unsigned long balance_gap;
2587 if (!populated_zone(zone))
2590 if (zone->all_unreclaimable &&
2591 sc.priority != DEF_PRIORITY)
2596 nr_soft_scanned = 0;
2598 * Call soft limit reclaim before calling shrink_zone.
2600 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2603 sc.nr_reclaimed += nr_soft_reclaimed;
2604 total_scanned += nr_soft_scanned;
2607 * We put equal pressure on every zone, unless
2608 * one zone has way too many pages free
2609 * already. The "too many pages" is defined
2610 * as the high wmark plus a "gap" where the
2611 * gap is either the low watermark or 1%
2612 * of the zone, whichever is smaller.
2614 balance_gap = min(low_wmark_pages(zone),
2615 (zone->present_pages +
2616 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2617 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2619 * Kswapd reclaims only single pages with compaction
2620 * enabled. Trying too hard to reclaim until contiguous
2621 * free pages have become available can hurt performance
2622 * by evicting too much useful data from memory.
2623 * Do not reclaim more than needed for compaction.
2626 if (COMPACTION_BUILD && order &&
2627 compaction_suitable(zone, order) !=
2631 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2632 !zone_watermark_ok_safe(zone, testorder,
2633 high_wmark_pages(zone) + balance_gap,
2635 shrink_zone(zone, &sc);
2637 reclaim_state->reclaimed_slab = 0;
2638 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2639 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2640 total_scanned += sc.nr_scanned;
2642 if (nr_slab == 0 && !zone_reclaimable(zone))
2643 zone->all_unreclaimable = 1;
2647 * If we've done a decent amount of scanning and
2648 * the reclaim ratio is low, start doing writepage
2649 * even in laptop mode
2651 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2652 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2653 sc.may_writepage = 1;
2655 if (zone->all_unreclaimable) {
2656 if (end_zone && end_zone == i)
2661 if (!zone_watermark_ok_safe(zone, testorder,
2662 high_wmark_pages(zone), end_zone, 0)) {
2665 * We are still under min water mark. This
2666 * means that we have a GFP_ATOMIC allocation
2667 * failure risk. Hurry up!
2669 if (!zone_watermark_ok_safe(zone, order,
2670 min_wmark_pages(zone), end_zone, 0))
2671 has_under_min_watermark_zone = 1;
2674 * If a zone reaches its high watermark,
2675 * consider it to be no longer congested. It's
2676 * possible there are dirty pages backed by
2677 * congested BDIs but as pressure is relieved,
2678 * speculatively avoid congestion waits
2680 zone_clear_flag(zone, ZONE_CONGESTED);
2681 if (i <= *classzone_idx)
2682 balanced += zone->present_pages;
2688 * If the low watermark is met there is no need for processes
2689 * to be throttled on pfmemalloc_wait as they should not be
2690 * able to safely make forward progress. Wake them
2692 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
2693 pfmemalloc_watermark_ok(pgdat))
2694 wake_up(&pgdat->pfmemalloc_wait);
2696 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2697 break; /* kswapd: all done */
2699 * OK, kswapd is getting into trouble. Take a nap, then take
2700 * another pass across the zones.
2702 if (total_scanned && (sc.priority < DEF_PRIORITY - 2)) {
2703 if (has_under_min_watermark_zone)
2704 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2706 congestion_wait(BLK_RW_ASYNC, HZ/10);
2710 * We do this so kswapd doesn't build up large priorities for
2711 * example when it is freeing in parallel with allocators. It
2712 * matches the direct reclaim path behaviour in terms of impact
2713 * on zone->*_priority.
2715 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2717 } while (--sc.priority >= 0);
2721 * order-0: All zones must meet high watermark for a balanced node
2722 * high-order: Balanced zones must make up at least 25% of the node
2723 * for the node to be balanced
2725 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2731 * Fragmentation may mean that the system cannot be
2732 * rebalanced for high-order allocations in all zones.
2733 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2734 * it means the zones have been fully scanned and are still
2735 * not balanced. For high-order allocations, there is
2736 * little point trying all over again as kswapd may
2739 * Instead, recheck all watermarks at order-0 as they
2740 * are the most important. If watermarks are ok, kswapd will go
2741 * back to sleep. High-order users can still perform direct
2742 * reclaim if they wish.
2744 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2745 order = sc.order = 0;
2751 * If kswapd was reclaiming at a higher order, it has the option of
2752 * sleeping without all zones being balanced. Before it does, it must
2753 * ensure that the watermarks for order-0 on *all* zones are met and
2754 * that the congestion flags are cleared. The congestion flag must
2755 * be cleared as kswapd is the only mechanism that clears the flag
2756 * and it is potentially going to sleep here.
2759 int zones_need_compaction = 1;
2761 for (i = 0; i <= end_zone; i++) {
2762 struct zone *zone = pgdat->node_zones + i;
2764 if (!populated_zone(zone))
2767 if (zone->all_unreclaimable &&
2768 sc.priority != DEF_PRIORITY)
2771 /* Would compaction fail due to lack of free memory? */
2772 if (COMPACTION_BUILD &&
2773 compaction_suitable(zone, order) == COMPACT_SKIPPED)
2776 /* Confirm the zone is balanced for order-0 */
2777 if (!zone_watermark_ok(zone, 0,
2778 high_wmark_pages(zone), 0, 0)) {
2779 order = sc.order = 0;
2783 /* Check if the memory needs to be defragmented. */
2784 if (zone_watermark_ok(zone, order,
2785 low_wmark_pages(zone), *classzone_idx, 0))
2786 zones_need_compaction = 0;
2788 /* If balanced, clear the congested flag */
2789 zone_clear_flag(zone, ZONE_CONGESTED);
2792 if (zones_need_compaction)
2793 compact_pgdat(pgdat, order);
2797 * Return the order we were reclaiming at so prepare_kswapd_sleep()
2798 * makes a decision on the order we were last reclaiming at. However,
2799 * if another caller entered the allocator slow path while kswapd
2800 * was awake, order will remain at the higher level
2802 *classzone_idx = end_zone;
2806 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2811 if (freezing(current) || kthread_should_stop())
2814 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2816 /* Try to sleep for a short interval */
2817 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2818 remaining = schedule_timeout(HZ/10);
2819 finish_wait(&pgdat->kswapd_wait, &wait);
2820 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2824 * After a short sleep, check if it was a premature sleep. If not, then
2825 * go fully to sleep until explicitly woken up.
2827 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
2828 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2831 * vmstat counters are not perfectly accurate and the estimated
2832 * value for counters such as NR_FREE_PAGES can deviate from the
2833 * true value by nr_online_cpus * threshold. To avoid the zone
2834 * watermarks being breached while under pressure, we reduce the
2835 * per-cpu vmstat threshold while kswapd is awake and restore
2836 * them before going back to sleep.
2838 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2840 if (!kthread_should_stop())
2843 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2846 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2848 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2850 finish_wait(&pgdat->kswapd_wait, &wait);
2854 * The background pageout daemon, started as a kernel thread
2855 * from the init process.
2857 * This basically trickles out pages so that we have _some_
2858 * free memory available even if there is no other activity
2859 * that frees anything up. This is needed for things like routing
2860 * etc, where we otherwise might have all activity going on in
2861 * asynchronous contexts that cannot page things out.
2863 * If there are applications that are active memory-allocators
2864 * (most normal use), this basically shouldn't matter.
2866 static int kswapd(void *p)
2868 unsigned long order, new_order;
2869 unsigned balanced_order;
2870 int classzone_idx, new_classzone_idx;
2871 int balanced_classzone_idx;
2872 pg_data_t *pgdat = (pg_data_t*)p;
2873 struct task_struct *tsk = current;
2875 struct reclaim_state reclaim_state = {
2876 .reclaimed_slab = 0,
2878 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2880 lockdep_set_current_reclaim_state(GFP_KERNEL);
2882 if (!cpumask_empty(cpumask))
2883 set_cpus_allowed_ptr(tsk, cpumask);
2884 current->reclaim_state = &reclaim_state;
2887 * Tell the memory management that we're a "memory allocator",
2888 * and that if we need more memory we should get access to it
2889 * regardless (see "__alloc_pages()"). "kswapd" should
2890 * never get caught in the normal page freeing logic.
2892 * (Kswapd normally doesn't need memory anyway, but sometimes
2893 * you need a small amount of memory in order to be able to
2894 * page out something else, and this flag essentially protects
2895 * us from recursively trying to free more memory as we're
2896 * trying to free the first piece of memory in the first place).
2898 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2901 order = new_order = 0;
2903 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2904 balanced_classzone_idx = classzone_idx;
2909 * If the last balance_pgdat was unsuccessful it's unlikely a
2910 * new request of a similar or harder type will succeed soon
2911 * so consider going to sleep on the basis we reclaimed at
2913 if (balanced_classzone_idx >= new_classzone_idx &&
2914 balanced_order == new_order) {
2915 new_order = pgdat->kswapd_max_order;
2916 new_classzone_idx = pgdat->classzone_idx;
2917 pgdat->kswapd_max_order = 0;
2918 pgdat->classzone_idx = pgdat->nr_zones - 1;
2921 if (order < new_order || classzone_idx > new_classzone_idx) {
2923 * Don't sleep if someone wants a larger 'order'
2924 * allocation or has tigher zone constraints
2927 classzone_idx = new_classzone_idx;
2929 kswapd_try_to_sleep(pgdat, balanced_order,
2930 balanced_classzone_idx);
2931 order = pgdat->kswapd_max_order;
2932 classzone_idx = pgdat->classzone_idx;
2934 new_classzone_idx = classzone_idx;
2935 pgdat->kswapd_max_order = 0;
2936 pgdat->classzone_idx = pgdat->nr_zones - 1;
2939 ret = try_to_freeze();
2940 if (kthread_should_stop())
2944 * We can speed up thawing tasks if we don't call balance_pgdat
2945 * after returning from the refrigerator
2948 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
2949 balanced_classzone_idx = classzone_idx;
2950 balanced_order = balance_pgdat(pgdat, order,
2951 &balanced_classzone_idx);
2958 * A zone is low on free memory, so wake its kswapd task to service it.
2960 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
2964 if (!populated_zone(zone))
2967 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2969 pgdat = zone->zone_pgdat;
2970 if (pgdat->kswapd_max_order < order) {
2971 pgdat->kswapd_max_order = order;
2972 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2974 if (!waitqueue_active(&pgdat->kswapd_wait))
2976 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2979 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
2980 wake_up_interruptible(&pgdat->kswapd_wait);
2984 * The reclaimable count would be mostly accurate.
2985 * The less reclaimable pages may be
2986 * - mlocked pages, which will be moved to unevictable list when encountered
2987 * - mapped pages, which may require several travels to be reclaimed
2988 * - dirty pages, which is not "instantly" reclaimable
2990 unsigned long global_reclaimable_pages(void)
2994 nr = global_page_state(NR_ACTIVE_FILE) +
2995 global_page_state(NR_INACTIVE_FILE);
2997 if (nr_swap_pages > 0)
2998 nr += global_page_state(NR_ACTIVE_ANON) +
2999 global_page_state(NR_INACTIVE_ANON);
3004 unsigned long zone_reclaimable_pages(struct zone *zone)
3008 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3009 zone_page_state(zone, NR_INACTIVE_FILE);
3011 if (nr_swap_pages > 0)
3012 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3013 zone_page_state(zone, NR_INACTIVE_ANON);
3018 #ifdef CONFIG_HIBERNATION
3020 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3023 * Rather than trying to age LRUs the aim is to preserve the overall
3024 * LRU order by reclaiming preferentially
3025 * inactive > active > active referenced > active mapped
3027 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3029 struct reclaim_state reclaim_state;
3030 struct scan_control sc = {
3031 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3035 .nr_to_reclaim = nr_to_reclaim,
3036 .hibernation_mode = 1,
3038 .priority = DEF_PRIORITY,
3040 struct shrink_control shrink = {
3041 .gfp_mask = sc.gfp_mask,
3043 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3044 struct task_struct *p = current;
3045 unsigned long nr_reclaimed;
3047 p->flags |= PF_MEMALLOC;
3048 lockdep_set_current_reclaim_state(sc.gfp_mask);
3049 reclaim_state.reclaimed_slab = 0;
3050 p->reclaim_state = &reclaim_state;
3052 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3054 p->reclaim_state = NULL;
3055 lockdep_clear_current_reclaim_state();
3056 p->flags &= ~PF_MEMALLOC;
3058 return nr_reclaimed;
3060 #endif /* CONFIG_HIBERNATION */
3062 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3063 not required for correctness. So if the last cpu in a node goes
3064 away, we get changed to run anywhere: as the first one comes back,
3065 restore their cpu bindings. */
3066 static int __devinit cpu_callback(struct notifier_block *nfb,
3067 unsigned long action, void *hcpu)
3071 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3072 for_each_node_state(nid, N_HIGH_MEMORY) {
3073 pg_data_t *pgdat = NODE_DATA(nid);
3074 const struct cpumask *mask;
3076 mask = cpumask_of_node(pgdat->node_id);
3078 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3079 /* One of our CPUs online: restore mask */
3080 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3087 * This kswapd start function will be called by init and node-hot-add.
3088 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3090 int kswapd_run(int nid)
3092 pg_data_t *pgdat = NODE_DATA(nid);
3098 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3099 if (IS_ERR(pgdat->kswapd)) {
3100 /* failure at boot is fatal */
3101 BUG_ON(system_state == SYSTEM_BOOTING);
3102 printk("Failed to start kswapd on node %d\n",nid);
3109 * Called by memory hotplug when all memory in a node is offlined. Caller must
3110 * hold lock_memory_hotplug().
3112 void kswapd_stop(int nid)
3114 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3117 kthread_stop(kswapd);
3118 NODE_DATA(nid)->kswapd = NULL;
3122 static int __init kswapd_init(void)
3127 for_each_node_state(nid, N_HIGH_MEMORY)
3129 hotcpu_notifier(cpu_callback, 0);
3133 module_init(kswapd_init)
3139 * If non-zero call zone_reclaim when the number of free pages falls below
3142 int zone_reclaim_mode __read_mostly;
3144 #define RECLAIM_OFF 0
3145 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3146 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3147 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3150 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3151 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3154 #define ZONE_RECLAIM_PRIORITY 4
3157 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3160 int sysctl_min_unmapped_ratio = 1;
3163 * If the number of slab pages in a zone grows beyond this percentage then
3164 * slab reclaim needs to occur.
3166 int sysctl_min_slab_ratio = 5;
3168 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3170 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3171 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3172 zone_page_state(zone, NR_ACTIVE_FILE);
3175 * It's possible for there to be more file mapped pages than
3176 * accounted for by the pages on the file LRU lists because
3177 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3179 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3182 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3183 static long zone_pagecache_reclaimable(struct zone *zone)
3185 long nr_pagecache_reclaimable;
3189 * If RECLAIM_SWAP is set, then all file pages are considered
3190 * potentially reclaimable. Otherwise, we have to worry about
3191 * pages like swapcache and zone_unmapped_file_pages() provides
3194 if (zone_reclaim_mode & RECLAIM_SWAP)
3195 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3197 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3199 /* If we can't clean pages, remove dirty pages from consideration */
3200 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3201 delta += zone_page_state(zone, NR_FILE_DIRTY);
3203 /* Watch for any possible underflows due to delta */
3204 if (unlikely(delta > nr_pagecache_reclaimable))
3205 delta = nr_pagecache_reclaimable;
3207 return nr_pagecache_reclaimable - delta;
3211 * Try to free up some pages from this zone through reclaim.
3213 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3215 /* Minimum pages needed in order to stay on node */
3216 const unsigned long nr_pages = 1 << order;
3217 struct task_struct *p = current;
3218 struct reclaim_state reclaim_state;
3219 struct scan_control sc = {
3220 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3221 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3223 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3225 .gfp_mask = gfp_mask,
3227 .priority = ZONE_RECLAIM_PRIORITY,
3229 struct shrink_control shrink = {
3230 .gfp_mask = sc.gfp_mask,
3232 unsigned long nr_slab_pages0, nr_slab_pages1;
3236 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3237 * and we also need to be able to write out pages for RECLAIM_WRITE
3240 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3241 lockdep_set_current_reclaim_state(gfp_mask);
3242 reclaim_state.reclaimed_slab = 0;
3243 p->reclaim_state = &reclaim_state;
3245 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3247 * Free memory by calling shrink zone with increasing
3248 * priorities until we have enough memory freed.
3251 shrink_zone(zone, &sc);
3252 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3255 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3256 if (nr_slab_pages0 > zone->min_slab_pages) {
3258 * shrink_slab() does not currently allow us to determine how
3259 * many pages were freed in this zone. So we take the current
3260 * number of slab pages and shake the slab until it is reduced
3261 * by the same nr_pages that we used for reclaiming unmapped
3264 * Note that shrink_slab will free memory on all zones and may
3268 unsigned long lru_pages = zone_reclaimable_pages(zone);
3270 /* No reclaimable slab or very low memory pressure */
3271 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3274 /* Freed enough memory */
3275 nr_slab_pages1 = zone_page_state(zone,
3276 NR_SLAB_RECLAIMABLE);
3277 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3282 * Update nr_reclaimed by the number of slab pages we
3283 * reclaimed from this zone.
3285 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3286 if (nr_slab_pages1 < nr_slab_pages0)
3287 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3290 p->reclaim_state = NULL;
3291 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3292 lockdep_clear_current_reclaim_state();
3293 return sc.nr_reclaimed >= nr_pages;
3296 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3302 * Zone reclaim reclaims unmapped file backed pages and
3303 * slab pages if we are over the defined limits.
3305 * A small portion of unmapped file backed pages is needed for
3306 * file I/O otherwise pages read by file I/O will be immediately
3307 * thrown out if the zone is overallocated. So we do not reclaim
3308 * if less than a specified percentage of the zone is used by
3309 * unmapped file backed pages.
3311 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3312 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3313 return ZONE_RECLAIM_FULL;
3315 if (zone->all_unreclaimable)
3316 return ZONE_RECLAIM_FULL;
3319 * Do not scan if the allocation should not be delayed.
3321 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3322 return ZONE_RECLAIM_NOSCAN;
3325 * Only run zone reclaim on the local zone or on zones that do not
3326 * have associated processors. This will favor the local processor
3327 * over remote processors and spread off node memory allocations
3328 * as wide as possible.
3330 node_id = zone_to_nid(zone);
3331 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3332 return ZONE_RECLAIM_NOSCAN;
3334 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3335 return ZONE_RECLAIM_NOSCAN;
3337 ret = __zone_reclaim(zone, gfp_mask, order);
3338 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3341 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3348 * page_evictable - test whether a page is evictable
3349 * @page: the page to test
3350 * @vma: the VMA in which the page is or will be mapped, may be NULL
3352 * Test whether page is evictable--i.e., should be placed on active/inactive
3353 * lists vs unevictable list. The vma argument is !NULL when called from the
3354 * fault path to determine how to instantate a new page.
3356 * Reasons page might not be evictable:
3357 * (1) page's mapping marked unevictable
3358 * (2) page is part of an mlocked VMA
3361 int page_evictable(struct page *page, struct vm_area_struct *vma)
3364 if (mapping_unevictable(page_mapping(page)))
3367 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
3375 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3376 * @pages: array of pages to check
3377 * @nr_pages: number of pages to check
3379 * Checks pages for evictability and moves them to the appropriate lru list.
3381 * This function is only used for SysV IPC SHM_UNLOCK.
3383 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3385 struct lruvec *lruvec;
3386 struct zone *zone = NULL;
3391 for (i = 0; i < nr_pages; i++) {
3392 struct page *page = pages[i];
3393 struct zone *pagezone;
3396 pagezone = page_zone(page);
3397 if (pagezone != zone) {
3399 spin_unlock_irq(&zone->lru_lock);
3401 spin_lock_irq(&zone->lru_lock);
3403 lruvec = mem_cgroup_page_lruvec(page, zone);
3405 if (!PageLRU(page) || !PageUnevictable(page))
3408 if (page_evictable(page, NULL)) {
3409 enum lru_list lru = page_lru_base_type(page);
3411 VM_BUG_ON(PageActive(page));
3412 ClearPageUnevictable(page);
3413 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3414 add_page_to_lru_list(page, lruvec, lru);
3420 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3421 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3422 spin_unlock_irq(&zone->lru_lock);
3425 #endif /* CONFIG_SHMEM */
3427 static void warn_scan_unevictable_pages(void)
3429 printk_once(KERN_WARNING
3430 "%s: The scan_unevictable_pages sysctl/node-interface has been "
3431 "disabled for lack of a legitimate use case. If you have "
3437 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3438 * all nodes' unevictable lists for evictable pages
3440 unsigned long scan_unevictable_pages;
3442 int scan_unevictable_handler(struct ctl_table *table, int write,
3443 void __user *buffer,
3444 size_t *length, loff_t *ppos)
3446 warn_scan_unevictable_pages();
3447 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3448 scan_unevictable_pages = 0;
3454 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3455 * a specified node's per zone unevictable lists for evictable pages.
3458 static ssize_t read_scan_unevictable_node(struct device *dev,
3459 struct device_attribute *attr,
3462 warn_scan_unevictable_pages();
3463 return sprintf(buf, "0\n"); /* always zero; should fit... */
3466 static ssize_t write_scan_unevictable_node(struct device *dev,
3467 struct device_attribute *attr,
3468 const char *buf, size_t count)
3470 warn_scan_unevictable_pages();
3475 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3476 read_scan_unevictable_node,
3477 write_scan_unevictable_node);
3479 int scan_unevictable_register_node(struct node *node)
3481 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3484 void scan_unevictable_unregister_node(struct node *node)
3486 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);