2 * PXA2xx SPI DMA engine support.
4 * Copyright (C) 2013, Intel Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
21 #include "spi-pxa2xx.h"
23 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
26 struct spi_message *msg = drv_data->controller->cur_msg;
29 * It is possible that one CPU is handling ROR interrupt and other
30 * just gets DMA completion. Calling pump_transfers() twice for the
31 * same transfer leads to problems thus we prevent concurrent calls
32 * by using ->dma_running.
34 if (atomic_dec_and_test(&drv_data->dma_running)) {
36 * If the other CPU is still handling the ROR interrupt we
37 * might not know about the error yet. So we re-check the
38 * ROR bit here before we clear the status register.
41 u32 status = pxa2xx_spi_read(drv_data, SSSR)
43 error = status & SSSR_ROR;
46 /* Clear status & disable interrupts */
47 pxa2xx_spi_write(drv_data, SSCR1,
48 pxa2xx_spi_read(drv_data, SSCR1)
49 & ~drv_data->dma_cr1);
50 write_SSSR_CS(drv_data, drv_data->clear_sr);
51 if (!pxa25x_ssp_comp(drv_data))
52 pxa2xx_spi_write(drv_data, SSTO, 0);
55 /* In case we got an error we disable the SSP now */
56 pxa2xx_spi_write(drv_data, SSCR0,
57 pxa2xx_spi_read(drv_data, SSCR0)
62 spi_finalize_current_transfer(drv_data->controller);
66 static void pxa2xx_spi_dma_callback(void *data)
68 pxa2xx_spi_dma_transfer_complete(data, false);
71 static struct dma_async_tx_descriptor *
72 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
73 enum dma_transfer_direction dir,
74 struct spi_transfer *xfer)
76 struct chip_data *chip =
77 spi_get_ctldata(drv_data->controller->cur_msg->spi);
78 enum dma_slave_buswidth width;
79 struct dma_slave_config cfg;
80 struct dma_chan *chan;
84 switch (drv_data->n_bytes) {
86 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
89 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
92 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
96 memset(&cfg, 0, sizeof(cfg));
99 if (dir == DMA_MEM_TO_DEV) {
100 cfg.dst_addr = drv_data->ssdr_physical;
101 cfg.dst_addr_width = width;
102 cfg.dst_maxburst = chip->dma_burst_size;
105 chan = drv_data->controller->dma_tx;
107 cfg.src_addr = drv_data->ssdr_physical;
108 cfg.src_addr_width = width;
109 cfg.src_maxburst = chip->dma_burst_size;
112 chan = drv_data->controller->dma_rx;
115 ret = dmaengine_slave_config(chan, &cfg);
117 dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
121 return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
122 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
125 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
129 status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
130 if (status & SSSR_ROR) {
131 dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
133 dmaengine_terminate_async(drv_data->controller->dma_rx);
134 dmaengine_terminate_async(drv_data->controller->dma_tx);
136 pxa2xx_spi_dma_transfer_complete(drv_data, true);
143 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
144 struct spi_transfer *xfer)
146 struct dma_async_tx_descriptor *tx_desc, *rx_desc;
149 tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer);
151 dev_err(&drv_data->pdev->dev,
152 "failed to get DMA TX descriptor\n");
157 rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer);
159 dev_err(&drv_data->pdev->dev,
160 "failed to get DMA RX descriptor\n");
165 /* We are ready when RX completes */
166 rx_desc->callback = pxa2xx_spi_dma_callback;
167 rx_desc->callback_param = drv_data;
169 dmaengine_submit(rx_desc);
170 dmaengine_submit(tx_desc);
174 dmaengine_terminate_async(drv_data->controller->dma_tx);
179 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
181 dma_async_issue_pending(drv_data->controller->dma_rx);
182 dma_async_issue_pending(drv_data->controller->dma_tx);
184 atomic_set(&drv_data->dma_running, 1);
187 void pxa2xx_spi_dma_stop(struct driver_data *drv_data)
189 atomic_set(&drv_data->dma_running, 0);
190 dmaengine_terminate_sync(drv_data->controller->dma_rx);
191 dmaengine_terminate_sync(drv_data->controller->dma_tx);
194 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
196 struct pxa2xx_spi_controller *pdata = drv_data->controller_info;
197 struct device *dev = &drv_data->pdev->dev;
198 struct spi_controller *controller = drv_data->controller;
202 dma_cap_set(DMA_SLAVE, mask);
204 controller->dma_tx = dma_request_slave_channel_compat(mask,
205 pdata->dma_filter, pdata->tx_param, dev, "tx");
206 if (!controller->dma_tx)
209 controller->dma_rx = dma_request_slave_channel_compat(mask,
210 pdata->dma_filter, pdata->rx_param, dev, "rx");
211 if (!controller->dma_rx) {
212 dma_release_channel(controller->dma_tx);
213 controller->dma_tx = NULL;
220 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
222 struct spi_controller *controller = drv_data->controller;
224 if (controller->dma_rx) {
225 dmaengine_terminate_sync(controller->dma_rx);
226 dma_release_channel(controller->dma_rx);
227 controller->dma_rx = NULL;
229 if (controller->dma_tx) {
230 dmaengine_terminate_sync(controller->dma_tx);
231 dma_release_channel(controller->dma_tx);
232 controller->dma_tx = NULL;
236 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
237 struct spi_device *spi,
238 u8 bits_per_word, u32 *burst_code,
241 struct pxa2xx_spi_chip *chip_info = spi->controller_data;
244 * If the DMA burst size is given in chip_info we use that,
245 * otherwise we use the default. Also we use the default FIFO
246 * thresholds for now.
248 *burst_code = chip_info ? chip_info->dma_burst_size : 1;
249 *threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
250 | SSCR1_TxTresh(TX_THRESH_DFLT);