2 * Serial Attached SCSI (SAS) Expander discovery and configuration
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
7 * This file is licensed under GPLv2.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28 #include <asm/unaligned.h>
30 #include "sas_internal.h"
32 #include <scsi/sas_ata.h>
33 #include <scsi/scsi_transport.h>
34 #include <scsi/scsi_transport_sas.h>
35 #include "../scsi_sas_internal.h"
37 static int sas_discover_expander(struct domain_device *dev);
38 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
39 static int sas_configure_phy(struct domain_device *dev, int phy_id,
40 u8 *sas_addr, int include);
41 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
43 /* ---------- SMP task management ---------- */
45 static void smp_task_timedout(struct timer_list *t)
47 struct sas_task_slow *slow = from_timer(slow, t, timer);
48 struct sas_task *task = slow->task;
51 spin_lock_irqsave(&task->task_state_lock, flags);
52 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
53 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
54 complete(&task->slow_task->completion);
56 spin_unlock_irqrestore(&task->task_state_lock, flags);
59 static void smp_task_done(struct sas_task *task)
61 del_timer(&task->slow_task->timer);
62 complete(&task->slow_task->completion);
65 /* Give it some long enough timeout. In seconds. */
66 #define SMP_TIMEOUT 10
68 static int smp_execute_task_sg(struct domain_device *dev,
69 struct scatterlist *req, struct scatterlist *resp)
72 struct sas_task *task = NULL;
73 struct sas_internal *i =
74 to_sas_internal(dev->port->ha->core.shost->transportt);
76 mutex_lock(&dev->ex_dev.cmd_mutex);
77 for (retry = 0; retry < 3; retry++) {
78 if (test_bit(SAS_DEV_GONE, &dev->state)) {
83 task = sas_alloc_slow_task(GFP_KERNEL);
89 task->task_proto = dev->tproto;
90 task->smp_task.smp_req = *req;
91 task->smp_task.smp_resp = *resp;
93 task->task_done = smp_task_done;
95 task->slow_task->timer.function = smp_task_timedout;
96 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 add_timer(&task->slow_task->timer);
99 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
102 del_timer(&task->slow_task->timer);
103 pr_notice("executing SMP task failed:%d\n", res);
107 wait_for_completion(&task->slow_task->completion);
109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 pr_notice("smp task timed out or aborted\n");
111 i->dft->lldd_abort_task(task);
112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 pr_notice("SMP task aborted and not done\n");
117 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 task->task_status.stat == SAM_STAT_GOOD) {
122 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 task->task_status.stat == SAS_DATA_UNDERRUN) {
124 /* no error, but return the number of bytes of
126 res = task->task_status.residual;
129 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 task->task_status.stat == SAS_DATA_OVERRUN) {
134 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 task->task_status.stat == SAS_DEVICE_UNKNOWN)
138 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
140 SAS_ADDR(dev->sas_addr),
141 task->task_status.resp,
142 task->task_status.stat);
147 mutex_unlock(&dev->ex_dev.cmd_mutex);
149 BUG_ON(retry == 3 && task != NULL);
154 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
155 void *resp, int resp_size)
157 struct scatterlist req_sg;
158 struct scatterlist resp_sg;
160 sg_init_one(&req_sg, req, req_size);
161 sg_init_one(&resp_sg, resp, resp_size);
162 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
165 /* ---------- Allocations ---------- */
167 static inline void *alloc_smp_req(int size)
169 u8 *p = kzalloc(size, GFP_KERNEL);
175 static inline void *alloc_smp_resp(int size)
177 return kzalloc(size, GFP_KERNEL);
180 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
182 switch (phy->routing_attr) {
184 if (dev->ex_dev.t2t_supp)
190 case SUBTRACTIVE_ROUTING:
197 static enum sas_device_type to_dev_type(struct discover_resp *dr)
199 /* This is detecting a failure to transmit initial dev to host
200 * FIS as described in section J.5 of sas-2 r16
202 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
203 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
204 return SAS_SATA_PENDING;
206 return dr->attached_dev_type;
209 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
211 enum sas_device_type dev_type;
212 enum sas_linkrate linkrate;
213 u8 sas_addr[SAS_ADDR_SIZE];
214 struct smp_resp *resp = rsp;
215 struct discover_resp *dr = &resp->disc;
216 struct sas_ha_struct *ha = dev->port->ha;
217 struct expander_device *ex = &dev->ex_dev;
218 struct ex_phy *phy = &ex->ex_phy[phy_id];
219 struct sas_rphy *rphy = dev->rphy;
220 bool new_phy = !phy->phy;
224 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
226 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
228 /* FIXME: error_handling */
232 switch (resp->result) {
233 case SMP_RESP_PHY_VACANT:
234 phy->phy_state = PHY_VACANT;
237 phy->phy_state = PHY_NOT_PRESENT;
239 case SMP_RESP_FUNC_ACC:
240 phy->phy_state = PHY_EMPTY; /* do not know yet */
244 /* check if anything important changed to squelch debug */
245 dev_type = phy->attached_dev_type;
246 linkrate = phy->linkrate;
247 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
249 /* Handle vacant phy - rest of dr data is not valid so skip it */
250 if (phy->phy_state == PHY_VACANT) {
251 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
252 phy->attached_dev_type = SAS_PHY_UNUSED;
253 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
254 phy->phy_id = phy_id;
260 phy->attached_dev_type = to_dev_type(dr);
261 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
263 phy->phy_id = phy_id;
264 phy->linkrate = dr->linkrate;
265 phy->attached_sata_host = dr->attached_sata_host;
266 phy->attached_sata_dev = dr->attached_sata_dev;
267 phy->attached_sata_ps = dr->attached_sata_ps;
268 phy->attached_iproto = dr->iproto << 1;
269 phy->attached_tproto = dr->tproto << 1;
270 /* help some expanders that fail to zero sas_address in the 'no
273 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
274 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
275 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
277 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
278 phy->attached_phy_id = dr->attached_phy_id;
279 phy->phy_change_count = dr->change_count;
280 phy->routing_attr = dr->routing_attr;
281 phy->virtual = dr->virtual;
282 phy->last_da_index = -1;
284 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
285 phy->phy->identify.device_type = dr->attached_dev_type;
286 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
287 phy->phy->identify.target_port_protocols = phy->attached_tproto;
288 if (!phy->attached_tproto && dr->attached_sata_dev)
289 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
290 phy->phy->identify.phy_identifier = phy_id;
291 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
292 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
293 phy->phy->minimum_linkrate = dr->pmin_linkrate;
294 phy->phy->maximum_linkrate = dr->pmax_linkrate;
295 phy->phy->negotiated_linkrate = phy->linkrate;
296 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
300 if (sas_phy_add(phy->phy)) {
301 sas_phy_free(phy->phy);
306 switch (phy->attached_dev_type) {
307 case SAS_SATA_PENDING:
308 type = "stp pending";
314 if (phy->attached_iproto) {
315 if (phy->attached_tproto)
316 type = "host+target";
320 if (dr->attached_sata_dev)
326 case SAS_EDGE_EXPANDER_DEVICE:
327 case SAS_FANOUT_EXPANDER_DEVICE:
334 /* this routine is polled by libata error recovery so filter
335 * unimportant messages
337 if (new_phy || phy->attached_dev_type != dev_type ||
338 phy->linkrate != linkrate ||
339 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
344 /* if the attached device type changed and ata_eh is active,
345 * make sure we run revalidation when eh completes (see:
346 * sas_enable_revalidation)
348 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
349 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
351 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
352 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
353 SAS_ADDR(dev->sas_addr), phy->phy_id,
354 sas_route_char(dev, phy), phy->linkrate,
355 SAS_ADDR(phy->attached_sas_addr), type);
358 /* check if we have an existing attached ata device on this expander phy */
359 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
361 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
362 struct domain_device *dev;
363 struct sas_rphy *rphy;
368 rphy = ex_phy->port->rphy;
372 dev = sas_find_dev_by_rphy(rphy);
374 if (dev && dev_is_sata(dev))
380 #define DISCOVER_REQ_SIZE 16
381 #define DISCOVER_RESP_SIZE 56
383 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
384 u8 *disc_resp, int single)
386 struct discover_resp *dr;
389 disc_req[9] = single;
391 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
392 disc_resp, DISCOVER_RESP_SIZE);
395 dr = &((struct smp_resp *)disc_resp)->disc;
396 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
397 pr_notice("Found loopback topology, just ignore it!\n");
400 sas_set_ex_phy(dev, single, disc_resp);
404 int sas_ex_phy_discover(struct domain_device *dev, int single)
406 struct expander_device *ex = &dev->ex_dev;
411 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
415 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
421 disc_req[1] = SMP_DISCOVER;
423 if (0 <= single && single < ex->num_phys) {
424 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
428 for (i = 0; i < ex->num_phys; i++) {
429 res = sas_ex_phy_discover_helper(dev, disc_req,
441 static int sas_expander_discover(struct domain_device *dev)
443 struct expander_device *ex = &dev->ex_dev;
446 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
450 res = sas_ex_phy_discover(dev, -1);
461 #define MAX_EXPANDER_PHYS 128
463 static void ex_assign_report_general(struct domain_device *dev,
464 struct smp_resp *resp)
466 struct report_general_resp *rg = &resp->rg;
468 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
469 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
470 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
471 dev->ex_dev.t2t_supp = rg->t2t_supp;
472 dev->ex_dev.conf_route_table = rg->conf_route_table;
473 dev->ex_dev.configuring = rg->configuring;
474 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
477 #define RG_REQ_SIZE 8
478 #define RG_RESP_SIZE 32
480 static int sas_ex_general(struct domain_device *dev)
483 struct smp_resp *rg_resp;
487 rg_req = alloc_smp_req(RG_REQ_SIZE);
491 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
497 rg_req[1] = SMP_REPORT_GENERAL;
499 for (i = 0; i < 5; i++) {
500 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
504 pr_notice("RG to ex %016llx failed:0x%x\n",
505 SAS_ADDR(dev->sas_addr), res);
507 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
508 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
509 SAS_ADDR(dev->sas_addr), rg_resp->result);
510 res = rg_resp->result;
514 ex_assign_report_general(dev, rg_resp);
516 if (dev->ex_dev.configuring) {
517 pr_debug("RG: ex %llx self-configuring...\n",
518 SAS_ADDR(dev->sas_addr));
519 schedule_timeout_interruptible(5*HZ);
529 static void ex_assign_manuf_info(struct domain_device *dev, void
532 u8 *mi_resp = _mi_resp;
533 struct sas_rphy *rphy = dev->rphy;
534 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
536 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
537 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
538 memcpy(edev->product_rev, mi_resp + 36,
539 SAS_EXPANDER_PRODUCT_REV_LEN);
541 if (mi_resp[8] & 1) {
542 memcpy(edev->component_vendor_id, mi_resp + 40,
543 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
544 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
545 edev->component_revision_id = mi_resp[50];
549 #define MI_REQ_SIZE 8
550 #define MI_RESP_SIZE 64
552 static int sas_ex_manuf_info(struct domain_device *dev)
558 mi_req = alloc_smp_req(MI_REQ_SIZE);
562 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
568 mi_req[1] = SMP_REPORT_MANUF_INFO;
570 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
572 pr_notice("MI: ex %016llx failed:0x%x\n",
573 SAS_ADDR(dev->sas_addr), res);
575 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
576 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
577 SAS_ADDR(dev->sas_addr), mi_resp[2]);
581 ex_assign_manuf_info(dev, mi_resp);
588 #define PC_REQ_SIZE 44
589 #define PC_RESP_SIZE 8
591 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
592 enum phy_func phy_func,
593 struct sas_phy_linkrates *rates)
599 pc_req = alloc_smp_req(PC_REQ_SIZE);
603 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
609 pc_req[1] = SMP_PHY_CONTROL;
611 pc_req[10]= phy_func;
613 pc_req[32] = rates->minimum_linkrate << 4;
614 pc_req[33] = rates->maximum_linkrate << 4;
617 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
619 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
620 SAS_ADDR(dev->sas_addr), phy_id, res);
621 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
622 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
623 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
631 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
633 struct expander_device *ex = &dev->ex_dev;
634 struct ex_phy *phy = &ex->ex_phy[phy_id];
636 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
637 phy->linkrate = SAS_PHY_DISABLED;
640 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
642 struct expander_device *ex = &dev->ex_dev;
645 for (i = 0; i < ex->num_phys; i++) {
646 struct ex_phy *phy = &ex->ex_phy[i];
648 if (phy->phy_state == PHY_VACANT ||
649 phy->phy_state == PHY_NOT_PRESENT)
652 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
653 sas_ex_disable_phy(dev, i);
657 static int sas_dev_present_in_domain(struct asd_sas_port *port,
660 struct domain_device *dev;
662 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
664 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
665 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
671 #define RPEL_REQ_SIZE 16
672 #define RPEL_RESP_SIZE 32
673 int sas_smp_get_phy_events(struct sas_phy *phy)
678 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
679 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
681 req = alloc_smp_req(RPEL_REQ_SIZE);
685 resp = alloc_smp_resp(RPEL_RESP_SIZE);
691 req[1] = SMP_REPORT_PHY_ERR_LOG;
692 req[9] = phy->number;
694 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
695 resp, RPEL_RESP_SIZE);
700 phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
701 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
702 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
703 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
712 #ifdef CONFIG_SCSI_SAS_ATA
714 #define RPS_REQ_SIZE 16
715 #define RPS_RESP_SIZE 60
717 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
718 struct smp_resp *rps_resp)
721 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
722 u8 *resp = (u8 *)rps_resp;
727 rps_req[1] = SMP_REPORT_PHY_SATA;
730 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
731 rps_resp, RPS_RESP_SIZE);
733 /* 0x34 is the FIS type for the D2H fis. There's a potential
734 * standards cockup here. sas-2 explicitly specifies the FIS
735 * should be encoded so that FIS type is in resp[24].
736 * However, some expanders endian reverse this. Undo the
738 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
741 for (i = 0; i < 5; i++) {
746 resp[j + 0] = resp[j + 3];
747 resp[j + 1] = resp[j + 2];
758 static void sas_ex_get_linkrate(struct domain_device *parent,
759 struct domain_device *child,
760 struct ex_phy *parent_phy)
762 struct expander_device *parent_ex = &parent->ex_dev;
763 struct sas_port *port;
768 port = parent_phy->port;
770 for (i = 0; i < parent_ex->num_phys; i++) {
771 struct ex_phy *phy = &parent_ex->ex_phy[i];
773 if (phy->phy_state == PHY_VACANT ||
774 phy->phy_state == PHY_NOT_PRESENT)
777 if (SAS_ADDR(phy->attached_sas_addr) ==
778 SAS_ADDR(child->sas_addr)) {
780 child->min_linkrate = min(parent->min_linkrate,
782 child->max_linkrate = max(parent->max_linkrate,
785 sas_port_add_phy(port, phy->phy);
788 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
789 child->pathways = min(child->pathways, parent->pathways);
792 static struct domain_device *sas_ex_discover_end_dev(
793 struct domain_device *parent, int phy_id)
795 struct expander_device *parent_ex = &parent->ex_dev;
796 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
797 struct domain_device *child = NULL;
798 struct sas_rphy *rphy;
801 if (phy->attached_sata_host || phy->attached_sata_ps)
804 child = sas_alloc_device();
808 kref_get(&parent->kref);
809 child->parent = parent;
810 child->port = parent->port;
811 child->iproto = phy->attached_iproto;
812 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
813 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
815 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
816 if (unlikely(!phy->port))
818 if (unlikely(sas_port_add(phy->port) != 0)) {
819 sas_port_free(phy->port);
823 sas_ex_get_linkrate(parent, child, phy);
824 sas_device_set_phy(child, phy->port);
826 #ifdef CONFIG_SCSI_SAS_ATA
827 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
828 if (child->linkrate > parent->min_linkrate) {
829 struct sas_phy_linkrates rates = {
830 .maximum_linkrate = parent->min_linkrate,
831 .minimum_linkrate = parent->min_linkrate,
835 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
836 SAS_ADDR(child->sas_addr), phy_id);
837 ret = sas_smp_phy_control(parent, phy_id,
838 PHY_FUNC_LINK_RESET, &rates);
840 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
841 SAS_ADDR(child->sas_addr), phy_id, ret);
844 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
845 SAS_ADDR(child->sas_addr), phy_id);
846 child->linkrate = child->min_linkrate;
848 res = sas_get_ata_info(child, phy);
853 res = sas_ata_init(child);
856 rphy = sas_end_device_alloc(phy->port);
859 rphy->identify.phy_identifier = phy_id;
862 get_device(&rphy->dev);
864 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
866 res = sas_discover_sata(child);
868 pr_notice("sas_discover_sata() for device %16llx at %016llx:0x%x returned 0x%x\n",
869 SAS_ADDR(child->sas_addr),
870 SAS_ADDR(parent->sas_addr), phy_id, res);
875 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
876 child->dev_type = SAS_END_DEVICE;
877 rphy = sas_end_device_alloc(phy->port);
878 /* FIXME: error handling */
881 child->tproto = phy->attached_tproto;
885 get_device(&rphy->dev);
886 rphy->identify.phy_identifier = phy_id;
887 sas_fill_in_rphy(child, rphy);
889 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
891 res = sas_discover_end_dev(child);
893 pr_notice("sas_discover_end_dev() for device %16llx at %016llx:0x%x returned 0x%x\n",
894 SAS_ADDR(child->sas_addr),
895 SAS_ADDR(parent->sas_addr), phy_id, res);
899 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
900 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
905 list_add_tail(&child->siblings, &parent_ex->children);
909 sas_rphy_free(child->rphy);
910 list_del(&child->disco_list_node);
911 spin_lock_irq(&parent->port->dev_list_lock);
912 list_del(&child->dev_list_node);
913 spin_unlock_irq(&parent->port->dev_list_lock);
915 sas_port_delete(phy->port);
918 sas_put_device(child);
922 /* See if this phy is part of a wide port */
923 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
925 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
928 for (i = 0; i < parent->ex_dev.num_phys; i++) {
929 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
934 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
935 SAS_ADDR_SIZE) && ephy->port) {
936 sas_port_add_phy(ephy->port, phy->phy);
937 phy->port = ephy->port;
938 phy->phy_state = PHY_DEVICE_DISCOVERED;
946 static struct domain_device *sas_ex_discover_expander(
947 struct domain_device *parent, int phy_id)
949 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
950 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
951 struct domain_device *child = NULL;
952 struct sas_rphy *rphy;
953 struct sas_expander_device *edev;
954 struct asd_sas_port *port;
957 if (phy->routing_attr == DIRECT_ROUTING) {
958 pr_warn("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not allowed\n",
959 SAS_ADDR(parent->sas_addr), phy_id,
960 SAS_ADDR(phy->attached_sas_addr),
961 phy->attached_phy_id);
964 child = sas_alloc_device();
968 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
969 /* FIXME: better error handling */
970 BUG_ON(sas_port_add(phy->port) != 0);
973 switch (phy->attached_dev_type) {
974 case SAS_EDGE_EXPANDER_DEVICE:
975 rphy = sas_expander_alloc(phy->port,
976 SAS_EDGE_EXPANDER_DEVICE);
978 case SAS_FANOUT_EXPANDER_DEVICE:
979 rphy = sas_expander_alloc(phy->port,
980 SAS_FANOUT_EXPANDER_DEVICE);
983 rphy = NULL; /* shut gcc up */
988 get_device(&rphy->dev);
989 edev = rphy_to_expander_device(rphy);
990 child->dev_type = phy->attached_dev_type;
991 kref_get(&parent->kref);
992 child->parent = parent;
994 child->iproto = phy->attached_iproto;
995 child->tproto = phy->attached_tproto;
996 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
997 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
998 sas_ex_get_linkrate(parent, child, phy);
999 edev->level = parent_ex->level + 1;
1000 parent->port->disc.max_level = max(parent->port->disc.max_level,
1002 sas_init_dev(child);
1003 sas_fill_in_rphy(child, rphy);
1006 spin_lock_irq(&parent->port->dev_list_lock);
1007 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
1008 spin_unlock_irq(&parent->port->dev_list_lock);
1010 res = sas_discover_expander(child);
1012 sas_rphy_delete(rphy);
1013 spin_lock_irq(&parent->port->dev_list_lock);
1014 list_del(&child->dev_list_node);
1015 spin_unlock_irq(&parent->port->dev_list_lock);
1016 sas_put_device(child);
1019 list_add_tail(&child->siblings, &parent->ex_dev.children);
1023 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1025 struct expander_device *ex = &dev->ex_dev;
1026 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1027 struct domain_device *child = NULL;
1031 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1032 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1033 res = sas_ex_phy_discover(dev, phy_id);
1038 /* Parent and domain coherency */
1039 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1040 SAS_ADDR(dev->port->sas_addr))) {
1041 sas_add_parent_port(dev, phy_id);
1044 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1045 SAS_ADDR(dev->parent->sas_addr))) {
1046 sas_add_parent_port(dev, phy_id);
1047 if (ex_phy->routing_attr == TABLE_ROUTING)
1048 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1052 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1053 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1055 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1056 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1057 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1058 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1061 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1064 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1065 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1066 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1067 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1068 pr_warn("unknown device type(0x%x) attached to ex %016llx phy 0x%x\n",
1069 ex_phy->attached_dev_type,
1070 SAS_ADDR(dev->sas_addr),
1075 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1077 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1078 SAS_ADDR(ex_phy->attached_sas_addr), res);
1079 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1083 if (sas_ex_join_wide_port(dev, phy_id)) {
1084 pr_debug("Attaching ex phy%d to wide port %016llx\n",
1085 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1089 switch (ex_phy->attached_dev_type) {
1090 case SAS_END_DEVICE:
1091 case SAS_SATA_PENDING:
1092 child = sas_ex_discover_end_dev(dev, phy_id);
1094 case SAS_FANOUT_EXPANDER_DEVICE:
1095 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1096 pr_debug("second fanout expander %016llx phy 0x%x attached to ex %016llx phy 0x%x\n",
1097 SAS_ADDR(ex_phy->attached_sas_addr),
1098 ex_phy->attached_phy_id,
1099 SAS_ADDR(dev->sas_addr),
1101 sas_ex_disable_phy(dev, phy_id);
1104 memcpy(dev->port->disc.fanout_sas_addr,
1105 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1107 case SAS_EDGE_EXPANDER_DEVICE:
1108 child = sas_ex_discover_expander(dev, phy_id);
1117 for (i = 0; i < ex->num_phys; i++) {
1118 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1119 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1122 * Due to races, the phy might not get added to the
1123 * wide port, so we add the phy to the wide port here.
1125 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1126 SAS_ADDR(child->sas_addr)) {
1127 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1128 if (sas_ex_join_wide_port(dev, i))
1129 pr_debug("Attaching ex phy%d to wide port %016llx\n",
1130 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1138 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1140 struct expander_device *ex = &dev->ex_dev;
1143 for (i = 0; i < ex->num_phys; i++) {
1144 struct ex_phy *phy = &ex->ex_phy[i];
1146 if (phy->phy_state == PHY_VACANT ||
1147 phy->phy_state == PHY_NOT_PRESENT)
1150 if ((phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1151 phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE) &&
1152 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1154 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1162 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1164 struct expander_device *ex = &dev->ex_dev;
1165 struct domain_device *child;
1166 u8 sub_addr[8] = {0, };
1168 list_for_each_entry(child, &ex->children, siblings) {
1169 if (child->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1170 child->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1172 if (sub_addr[0] == 0) {
1173 sas_find_sub_addr(child, sub_addr);
1178 if (sas_find_sub_addr(child, s2) &&
1179 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1181 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1182 SAS_ADDR(dev->sas_addr),
1183 SAS_ADDR(child->sas_addr),
1185 SAS_ADDR(sub_addr));
1187 sas_ex_disable_port(child, s2);
1194 * sas_ex_discover_devices - discover devices attached to this expander
1195 * @dev: pointer to the expander domain device
1196 * @single: if you want to do a single phy, else set to -1;
1198 * Configure this expander for use with its devices and register the
1199 * devices of this expander.
1201 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1203 struct expander_device *ex = &dev->ex_dev;
1204 int i = 0, end = ex->num_phys;
1207 if (0 <= single && single < end) {
1212 for ( ; i < end; i++) {
1213 struct ex_phy *ex_phy = &ex->ex_phy[i];
1215 if (ex_phy->phy_state == PHY_VACANT ||
1216 ex_phy->phy_state == PHY_NOT_PRESENT ||
1217 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1220 switch (ex_phy->linkrate) {
1221 case SAS_PHY_DISABLED:
1222 case SAS_PHY_RESET_PROBLEM:
1223 case SAS_SATA_PORT_SELECTOR:
1226 res = sas_ex_discover_dev(dev, i);
1234 sas_check_level_subtractive_boundary(dev);
1239 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1241 struct expander_device *ex = &dev->ex_dev;
1243 u8 *sub_sas_addr = NULL;
1245 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1248 for (i = 0; i < ex->num_phys; i++) {
1249 struct ex_phy *phy = &ex->ex_phy[i];
1251 if (phy->phy_state == PHY_VACANT ||
1252 phy->phy_state == PHY_NOT_PRESENT)
1255 if ((phy->attached_dev_type == SAS_FANOUT_EXPANDER_DEVICE ||
1256 phy->attached_dev_type == SAS_EDGE_EXPANDER_DEVICE) &&
1257 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1260 sub_sas_addr = &phy->attached_sas_addr[0];
1261 else if (SAS_ADDR(sub_sas_addr) !=
1262 SAS_ADDR(phy->attached_sas_addr)) {
1264 pr_notice("ex %016llx phy 0x%x diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1265 SAS_ADDR(dev->sas_addr), i,
1266 SAS_ADDR(phy->attached_sas_addr),
1267 SAS_ADDR(sub_sas_addr));
1268 sas_ex_disable_phy(dev, i);
1275 static void sas_print_parent_topology_bug(struct domain_device *child,
1276 struct ex_phy *parent_phy,
1277 struct ex_phy *child_phy)
1279 static const char *ex_type[] = {
1280 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1281 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1283 struct domain_device *parent = child->parent;
1285 pr_notice("%s ex %016llx phy 0x%x <--> %s ex %016llx phy 0x%x has %c:%c routing link!\n",
1286 ex_type[parent->dev_type],
1287 SAS_ADDR(parent->sas_addr),
1290 ex_type[child->dev_type],
1291 SAS_ADDR(child->sas_addr),
1294 sas_route_char(parent, parent_phy),
1295 sas_route_char(child, child_phy));
1298 static int sas_check_eeds(struct domain_device *child,
1299 struct ex_phy *parent_phy,
1300 struct ex_phy *child_phy)
1303 struct domain_device *parent = child->parent;
1305 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1307 pr_warn("edge ex %016llx phy S:0x%x <--> edge ex %016llx phy S:0x%x, while there is a fanout ex %016llx\n",
1308 SAS_ADDR(parent->sas_addr),
1310 SAS_ADDR(child->sas_addr),
1312 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1313 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1314 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1316 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1318 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1319 SAS_ADDR(parent->sas_addr)) ||
1320 (SAS_ADDR(parent->port->disc.eeds_a) ==
1321 SAS_ADDR(child->sas_addr)))
1323 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1324 SAS_ADDR(parent->sas_addr)) ||
1325 (SAS_ADDR(parent->port->disc.eeds_b) ==
1326 SAS_ADDR(child->sas_addr))))
1330 pr_warn("edge ex %016llx phy 0x%x <--> edge ex %016llx phy 0x%x link forms a third EEDS!\n",
1331 SAS_ADDR(parent->sas_addr),
1333 SAS_ADDR(child->sas_addr),
1340 /* Here we spill over 80 columns. It is intentional.
1342 static int sas_check_parent_topology(struct domain_device *child)
1344 struct expander_device *child_ex = &child->ex_dev;
1345 struct expander_device *parent_ex;
1352 if (child->parent->dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1353 child->parent->dev_type != SAS_FANOUT_EXPANDER_DEVICE)
1356 parent_ex = &child->parent->ex_dev;
1358 for (i = 0; i < parent_ex->num_phys; i++) {
1359 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1360 struct ex_phy *child_phy;
1362 if (parent_phy->phy_state == PHY_VACANT ||
1363 parent_phy->phy_state == PHY_NOT_PRESENT)
1366 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1369 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1371 switch (child->parent->dev_type) {
1372 case SAS_EDGE_EXPANDER_DEVICE:
1373 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1374 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1375 child_phy->routing_attr != TABLE_ROUTING) {
1376 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1379 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1380 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1381 res = sas_check_eeds(child, parent_phy, child_phy);
1382 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1383 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1386 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1387 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1388 (child_phy->routing_attr == TABLE_ROUTING &&
1389 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1392 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1397 case SAS_FANOUT_EXPANDER_DEVICE:
1398 if (parent_phy->routing_attr != TABLE_ROUTING ||
1399 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1400 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1412 #define RRI_REQ_SIZE 16
1413 #define RRI_RESP_SIZE 44
1415 static int sas_configure_present(struct domain_device *dev, int phy_id,
1416 u8 *sas_addr, int *index, int *present)
1419 struct expander_device *ex = &dev->ex_dev;
1420 struct ex_phy *phy = &ex->ex_phy[phy_id];
1427 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1431 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1437 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1438 rri_req[9] = phy_id;
1440 for (i = 0; i < ex->max_route_indexes ; i++) {
1441 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1442 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1447 if (res == SMP_RESP_NO_INDEX) {
1448 pr_warn("overflow of indexes: dev %016llx phy 0x%x index 0x%x\n",
1449 SAS_ADDR(dev->sas_addr), phy_id, i);
1451 } else if (res != SMP_RESP_FUNC_ACC) {
1452 pr_notice("%s: dev %016llx phy 0x%x index 0x%x result 0x%x\n",
1453 __func__, SAS_ADDR(dev->sas_addr), phy_id,
1457 if (SAS_ADDR(sas_addr) != 0) {
1458 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1460 if ((rri_resp[12] & 0x80) == 0x80)
1465 } else if (SAS_ADDR(rri_resp+16) == 0) {
1470 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1471 phy->last_da_index < i) {
1472 phy->last_da_index = i;
1485 #define CRI_REQ_SIZE 44
1486 #define CRI_RESP_SIZE 8
1488 static int sas_configure_set(struct domain_device *dev, int phy_id,
1489 u8 *sas_addr, int index, int include)
1495 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1499 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1505 cri_req[1] = SMP_CONF_ROUTE_INFO;
1506 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1507 cri_req[9] = phy_id;
1508 if (SAS_ADDR(sas_addr) == 0 || !include)
1509 cri_req[12] |= 0x80;
1510 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1512 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1517 if (res == SMP_RESP_NO_INDEX) {
1518 pr_warn("overflow of indexes: dev %016llx phy 0x%x index 0x%x\n",
1519 SAS_ADDR(dev->sas_addr), phy_id, index);
1527 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1528 u8 *sas_addr, int include)
1534 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1537 if (include ^ present)
1538 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1544 * sas_configure_parent - configure routing table of parent
1545 * @parent: parent expander
1546 * @child: child expander
1547 * @sas_addr: SAS port identifier of device directly attached to child
1548 * @include: whether or not to include @child in the expander routing table
1550 static int sas_configure_parent(struct domain_device *parent,
1551 struct domain_device *child,
1552 u8 *sas_addr, int include)
1554 struct expander_device *ex_parent = &parent->ex_dev;
1558 if (parent->parent) {
1559 res = sas_configure_parent(parent->parent, parent, sas_addr,
1565 if (ex_parent->conf_route_table == 0) {
1566 pr_debug("ex %016llx has self-configuring routing table\n",
1567 SAS_ADDR(parent->sas_addr));
1571 for (i = 0; i < ex_parent->num_phys; i++) {
1572 struct ex_phy *phy = &ex_parent->ex_phy[i];
1574 if ((phy->routing_attr == TABLE_ROUTING) &&
1575 (SAS_ADDR(phy->attached_sas_addr) ==
1576 SAS_ADDR(child->sas_addr))) {
1577 res = sas_configure_phy(parent, i, sas_addr, include);
1587 * sas_configure_routing - configure routing
1588 * @dev: expander device
1589 * @sas_addr: port identifier of device directly attached to the expander device
1591 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1594 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1598 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1601 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1606 * sas_discover_expander - expander discovery
1607 * @dev: pointer to expander domain device
1609 * See comment in sas_discover_sata().
1611 static int sas_discover_expander(struct domain_device *dev)
1615 res = sas_notify_lldd_dev_found(dev);
1619 res = sas_ex_general(dev);
1622 res = sas_ex_manuf_info(dev);
1626 res = sas_expander_discover(dev);
1628 pr_warn("expander %016llx discovery failed(0x%x)\n",
1629 SAS_ADDR(dev->sas_addr), res);
1633 sas_check_ex_subtractive_boundary(dev);
1634 res = sas_check_parent_topology(dev);
1639 sas_notify_lldd_dev_gone(dev);
1643 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1646 struct domain_device *dev;
1648 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1649 if (dev->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1650 dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1651 struct sas_expander_device *ex =
1652 rphy_to_expander_device(dev->rphy);
1654 if (level == ex->level)
1655 res = sas_ex_discover_devices(dev, -1);
1657 res = sas_ex_discover_devices(port->port_dev, -1);
1665 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1671 level = port->disc.max_level;
1672 res = sas_ex_level_discovery(port, level);
1674 } while (level < port->disc.max_level);
1679 int sas_discover_root_expander(struct domain_device *dev)
1682 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1684 res = sas_rphy_add(dev->rphy);
1688 ex->level = dev->port->disc.max_level; /* 0 */
1689 res = sas_discover_expander(dev);
1693 sas_ex_bfs_disc(dev->port);
1698 sas_rphy_remove(dev->rphy);
1703 /* ---------- Domain revalidation ---------- */
1705 static int sas_get_phy_discover(struct domain_device *dev,
1706 int phy_id, struct smp_resp *disc_resp)
1711 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1715 disc_req[1] = SMP_DISCOVER;
1716 disc_req[9] = phy_id;
1718 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1719 disc_resp, DISCOVER_RESP_SIZE);
1722 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1723 res = disc_resp->result;
1731 static int sas_get_phy_change_count(struct domain_device *dev,
1732 int phy_id, int *pcc)
1735 struct smp_resp *disc_resp;
1737 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1741 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1743 *pcc = disc_resp->disc.change_count;
1749 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1750 u8 *sas_addr, enum sas_device_type *type)
1753 struct smp_resp *disc_resp;
1754 struct discover_resp *dr;
1756 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1759 dr = &disc_resp->disc;
1761 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1763 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1764 *type = to_dev_type(dr);
1766 memset(sas_addr, 0, 8);
1772 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1773 int from_phy, bool update)
1775 struct expander_device *ex = &dev->ex_dev;
1779 for (i = from_phy; i < ex->num_phys; i++) {
1780 int phy_change_count = 0;
1782 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1784 case SMP_RESP_PHY_VACANT:
1785 case SMP_RESP_NO_PHY:
1787 case SMP_RESP_FUNC_ACC:
1793 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1795 ex->ex_phy[i].phy_change_count =
1804 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1808 struct smp_resp *rg_resp;
1810 rg_req = alloc_smp_req(RG_REQ_SIZE);
1814 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1820 rg_req[1] = SMP_REPORT_GENERAL;
1822 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1826 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1827 res = rg_resp->result;
1831 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1838 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1839 * @dev:domain device to be detect.
1840 * @src_dev: the device which originated BROADCAST(CHANGE).
1842 * Add self-configuration expander support. Suppose two expander cascading,
1843 * when the first level expander is self-configuring, hotplug the disks in
1844 * second level expander, BROADCAST(CHANGE) will not only be originated
1845 * in the second level expander, but also be originated in the first level
1846 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1847 * expander changed count in two level expanders will all increment at least
1848 * once, but the phy which chang count has changed is the source device which
1852 static int sas_find_bcast_dev(struct domain_device *dev,
1853 struct domain_device **src_dev)
1855 struct expander_device *ex = &dev->ex_dev;
1856 int ex_change_count = -1;
1859 struct domain_device *ch;
1861 res = sas_get_ex_change_count(dev, &ex_change_count);
1864 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1865 /* Just detect if this expander phys phy change count changed,
1866 * in order to determine if this expander originate BROADCAST,
1867 * and do not update phy change count field in our structure.
1869 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1872 ex->ex_change_count = ex_change_count;
1873 pr_info("Expander phy change count has changed\n");
1876 pr_info("Expander phys DID NOT change\n");
1878 list_for_each_entry(ch, &ex->children, siblings) {
1879 if (ch->dev_type == SAS_EDGE_EXPANDER_DEVICE || ch->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1880 res = sas_find_bcast_dev(ch, src_dev);
1889 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1891 struct expander_device *ex = &dev->ex_dev;
1892 struct domain_device *child, *n;
1894 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1895 set_bit(SAS_DEV_GONE, &child->state);
1896 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1897 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1898 sas_unregister_ex_tree(port, child);
1900 sas_unregister_dev(port, child);
1902 sas_unregister_dev(port, dev);
1905 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1906 int phy_id, bool last)
1908 struct expander_device *ex_dev = &parent->ex_dev;
1909 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1910 struct domain_device *child, *n, *found = NULL;
1912 list_for_each_entry_safe(child, n,
1913 &ex_dev->children, siblings) {
1914 if (SAS_ADDR(child->sas_addr) ==
1915 SAS_ADDR(phy->attached_sas_addr)) {
1916 set_bit(SAS_DEV_GONE, &child->state);
1917 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1918 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
1919 sas_unregister_ex_tree(parent->port, child);
1921 sas_unregister_dev(parent->port, child);
1926 sas_disable_routing(parent, phy->attached_sas_addr);
1928 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1930 sas_port_delete_phy(phy->port, phy->phy);
1931 sas_device_set_phy(found, phy->port);
1932 if (phy->port->num_phys == 0)
1933 list_add_tail(&phy->port->del_list,
1934 &parent->port->sas_port_del_list);
1939 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1942 struct expander_device *ex_root = &root->ex_dev;
1943 struct domain_device *child;
1946 list_for_each_entry(child, &ex_root->children, siblings) {
1947 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
1948 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1949 struct sas_expander_device *ex =
1950 rphy_to_expander_device(child->rphy);
1952 if (level > ex->level)
1953 res = sas_discover_bfs_by_root_level(child,
1955 else if (level == ex->level)
1956 res = sas_ex_discover_devices(child, -1);
1962 static int sas_discover_bfs_by_root(struct domain_device *dev)
1965 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1966 int level = ex->level+1;
1968 res = sas_ex_discover_devices(dev, -1);
1972 res = sas_discover_bfs_by_root_level(dev, level);
1975 } while (level <= dev->port->disc.max_level);
1980 static int sas_discover_new(struct domain_device *dev, int phy_id)
1982 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1983 struct domain_device *child;
1986 pr_debug("ex %016llx phy%d new device attached\n",
1987 SAS_ADDR(dev->sas_addr), phy_id);
1988 res = sas_ex_phy_discover(dev, phy_id);
1992 if (sas_ex_join_wide_port(dev, phy_id))
1995 res = sas_ex_discover_devices(dev, phy_id);
1998 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1999 if (SAS_ADDR(child->sas_addr) ==
2000 SAS_ADDR(ex_phy->attached_sas_addr)) {
2001 if (child->dev_type == SAS_EDGE_EXPANDER_DEVICE ||
2002 child->dev_type == SAS_FANOUT_EXPANDER_DEVICE)
2003 res = sas_discover_bfs_by_root(child);
2010 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
2015 /* treat device directed resets as flutter, if we went
2016 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
2018 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
2019 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
2025 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2027 struct expander_device *ex = &dev->ex_dev;
2028 struct ex_phy *phy = &ex->ex_phy[phy_id];
2029 enum sas_device_type type = SAS_PHY_UNUSED;
2033 memset(sas_addr, 0, 8);
2034 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2036 case SMP_RESP_NO_PHY:
2037 phy->phy_state = PHY_NOT_PRESENT;
2038 sas_unregister_devs_sas_addr(dev, phy_id, last);
2040 case SMP_RESP_PHY_VACANT:
2041 phy->phy_state = PHY_VACANT;
2042 sas_unregister_devs_sas_addr(dev, phy_id, last);
2044 case SMP_RESP_FUNC_ACC:
2052 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2053 phy->phy_state = PHY_EMPTY;
2054 sas_unregister_devs_sas_addr(dev, phy_id, last);
2056 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2057 dev_type_flutter(type, phy->attached_dev_type)) {
2058 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2061 sas_ex_phy_discover(dev, phy_id);
2063 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2064 action = ", needs recovery";
2065 pr_debug("ex %016llx phy 0x%x broadcast flutter%s\n",
2066 SAS_ADDR(dev->sas_addr), phy_id, action);
2070 /* we always have to delete the old device when we went here */
2071 pr_info("ex %016llx phy 0x%x replace %016llx\n",
2072 SAS_ADDR(dev->sas_addr), phy_id,
2073 SAS_ADDR(phy->attached_sas_addr));
2074 sas_unregister_devs_sas_addr(dev, phy_id, last);
2076 return sas_discover_new(dev, phy_id);
2080 * sas_rediscover - revalidate the domain.
2081 * @dev:domain device to be detect.
2082 * @phy_id: the phy id will be detected.
2084 * NOTE: this process _must_ quit (return) as soon as any connection
2085 * errors are encountered. Connection recovery is done elsewhere.
2086 * Discover process only interrogates devices in order to discover the
2087 * domain.For plugging out, we un-register the device only when it is
2088 * the last phy in the port, for other phys in this port, we just delete it
2089 * from the port.For inserting, we do discovery when it is the
2090 * first phy,for other phys in this port, we add it to the port to
2091 * forming the wide-port.
2093 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2095 struct expander_device *ex = &dev->ex_dev;
2096 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2099 bool last = true; /* is this the last phy of the port */
2101 pr_debug("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2102 SAS_ADDR(dev->sas_addr), phy_id);
2104 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2105 for (i = 0; i < ex->num_phys; i++) {
2106 struct ex_phy *phy = &ex->ex_phy[i];
2110 if (SAS_ADDR(phy->attached_sas_addr) ==
2111 SAS_ADDR(changed_phy->attached_sas_addr)) {
2112 pr_debug("phy%d part of wide port with phy%d\n",
2118 res = sas_rediscover_dev(dev, phy_id, last);
2120 res = sas_discover_new(dev, phy_id);
2125 * sas_ex_revalidate_domain - revalidate the domain
2126 * @port_dev: port domain device.
2128 * NOTE: this process _must_ quit (return) as soon as any connection
2129 * errors are encountered. Connection recovery is done elsewhere.
2130 * Discover process only interrogates devices in order to discover the
2133 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2136 struct domain_device *dev = NULL;
2138 res = sas_find_bcast_dev(port_dev, &dev);
2139 if (res == 0 && dev) {
2140 struct expander_device *ex = &dev->ex_dev;
2145 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2148 res = sas_rediscover(dev, phy_id);
2150 } while (i < ex->num_phys);
2155 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2156 struct sas_rphy *rphy)
2158 struct domain_device *dev;
2159 unsigned int rcvlen = 0;
2162 /* no rphy means no smp target support (ie aic94xx host) */
2164 return sas_smp_host_handler(job, shost);
2166 switch (rphy->identify.device_type) {
2167 case SAS_EDGE_EXPANDER_DEVICE:
2168 case SAS_FANOUT_EXPANDER_DEVICE:
2171 pr_err("%s: can we send a smp request to a device?\n",
2176 dev = sas_find_dev_by_rphy(rphy);
2178 pr_err("%s: fail to find a domain_device?\n", __func__);
2182 /* do we need to support multiple segments? */
2183 if (job->request_payload.sg_cnt > 1 ||
2184 job->reply_payload.sg_cnt > 1) {
2185 pr_info("%s: multiple segments req %u, rsp %u\n",
2186 __func__, job->request_payload.payload_len,
2187 job->reply_payload.payload_len);
2191 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2192 job->reply_payload.sg_list);
2194 /* bsg_job_done() requires the length received */
2195 rcvlen = job->reply_payload.payload_len - ret;
2200 bsg_job_done(job, ret, rcvlen);