]> Git Repo - linux.git/blob - drivers/crypto/stm32/stm32-cryp.c
tools/bpftool: Add ringbuf map to a list of known map types
[linux.git] / drivers / crypto / stm32 / stm32-cryp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) STMicroelectronics SA 2017
4  * Author: Fabien Dessenne <[email protected]>
5  */
6
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16
17 #include <crypto/aes.h>
18 #include <crypto/internal/des.h>
19 #include <crypto/engine.h>
20 #include <crypto/scatterwalk.h>
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/skcipher.h>
23
24 #define DRIVER_NAME             "stm32-cryp"
25
26 /* Bit [0] encrypt / decrypt */
27 #define FLG_ENCRYPT             BIT(0)
28 /* Bit [8..1] algo & operation mode */
29 #define FLG_AES                 BIT(1)
30 #define FLG_DES                 BIT(2)
31 #define FLG_TDES                BIT(3)
32 #define FLG_ECB                 BIT(4)
33 #define FLG_CBC                 BIT(5)
34 #define FLG_CTR                 BIT(6)
35 #define FLG_GCM                 BIT(7)
36 #define FLG_CCM                 BIT(8)
37 /* Mode mask = bits [15..0] */
38 #define FLG_MODE_MASK           GENMASK(15, 0)
39 /* Bit [31..16] status  */
40 #define FLG_CCM_PADDED_WA       BIT(16)
41
42 /* Registers */
43 #define CRYP_CR                 0x00000000
44 #define CRYP_SR                 0x00000004
45 #define CRYP_DIN                0x00000008
46 #define CRYP_DOUT               0x0000000C
47 #define CRYP_DMACR              0x00000010
48 #define CRYP_IMSCR              0x00000014
49 #define CRYP_RISR               0x00000018
50 #define CRYP_MISR               0x0000001C
51 #define CRYP_K0LR               0x00000020
52 #define CRYP_K0RR               0x00000024
53 #define CRYP_K1LR               0x00000028
54 #define CRYP_K1RR               0x0000002C
55 #define CRYP_K2LR               0x00000030
56 #define CRYP_K2RR               0x00000034
57 #define CRYP_K3LR               0x00000038
58 #define CRYP_K3RR               0x0000003C
59 #define CRYP_IV0LR              0x00000040
60 #define CRYP_IV0RR              0x00000044
61 #define CRYP_IV1LR              0x00000048
62 #define CRYP_IV1RR              0x0000004C
63 #define CRYP_CSGCMCCM0R         0x00000050
64 #define CRYP_CSGCM0R            0x00000070
65
66 /* Registers values */
67 #define CR_DEC_NOT_ENC          0x00000004
68 #define CR_TDES_ECB             0x00000000
69 #define CR_TDES_CBC             0x00000008
70 #define CR_DES_ECB              0x00000010
71 #define CR_DES_CBC              0x00000018
72 #define CR_AES_ECB              0x00000020
73 #define CR_AES_CBC              0x00000028
74 #define CR_AES_CTR              0x00000030
75 #define CR_AES_KP               0x00000038
76 #define CR_AES_GCM              0x00080000
77 #define CR_AES_CCM              0x00080008
78 #define CR_AES_UNKNOWN          0xFFFFFFFF
79 #define CR_ALGO_MASK            0x00080038
80 #define CR_DATA32               0x00000000
81 #define CR_DATA16               0x00000040
82 #define CR_DATA8                0x00000080
83 #define CR_DATA1                0x000000C0
84 #define CR_KEY128               0x00000000
85 #define CR_KEY192               0x00000100
86 #define CR_KEY256               0x00000200
87 #define CR_FFLUSH               0x00004000
88 #define CR_CRYPEN               0x00008000
89 #define CR_PH_INIT              0x00000000
90 #define CR_PH_HEADER            0x00010000
91 #define CR_PH_PAYLOAD           0x00020000
92 #define CR_PH_FINAL             0x00030000
93 #define CR_PH_MASK              0x00030000
94 #define CR_NBPBL_SHIFT          20
95
96 #define SR_BUSY                 0x00000010
97 #define SR_OFNE                 0x00000004
98
99 #define IMSCR_IN                BIT(0)
100 #define IMSCR_OUT               BIT(1)
101
102 #define MISR_IN                 BIT(0)
103 #define MISR_OUT                BIT(1)
104
105 /* Misc */
106 #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
107 #define GCM_CTR_INIT            2
108 #define _walked_in              (cryp->in_walk.offset - cryp->in_sg->offset)
109 #define _walked_out             (cryp->out_walk.offset - cryp->out_sg->offset)
110 #define CRYP_AUTOSUSPEND_DELAY  50
111
112 struct stm32_cryp_caps {
113         bool                    swap_final;
114         bool                    padding_wa;
115 };
116
117 struct stm32_cryp_ctx {
118         struct crypto_engine_ctx enginectx;
119         struct stm32_cryp       *cryp;
120         int                     keylen;
121         u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
122         unsigned long           flags;
123 };
124
125 struct stm32_cryp_reqctx {
126         unsigned long mode;
127 };
128
129 struct stm32_cryp {
130         struct list_head        list;
131         struct device           *dev;
132         void __iomem            *regs;
133         struct clk              *clk;
134         unsigned long           flags;
135         u32                     irq_status;
136         const struct stm32_cryp_caps *caps;
137         struct stm32_cryp_ctx   *ctx;
138
139         struct crypto_engine    *engine;
140
141         struct skcipher_request *req;
142         struct aead_request     *areq;
143
144         size_t                  authsize;
145         size_t                  hw_blocksize;
146
147         size_t                  total_in;
148         size_t                  total_in_save;
149         size_t                  total_out;
150         size_t                  total_out_save;
151
152         struct scatterlist      *in_sg;
153         struct scatterlist      *out_sg;
154         struct scatterlist      *out_sg_save;
155
156         struct scatterlist      in_sgl;
157         struct scatterlist      out_sgl;
158         bool                    sgs_copied;
159
160         int                     in_sg_len;
161         int                     out_sg_len;
162
163         struct scatter_walk     in_walk;
164         struct scatter_walk     out_walk;
165
166         u32                     last_ctr[4];
167         u32                     gcm_ctr;
168 };
169
170 struct stm32_cryp_list {
171         struct list_head        dev_list;
172         spinlock_t              lock; /* protect dev_list */
173 };
174
175 static struct stm32_cryp_list cryp_list = {
176         .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
177         .lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
178 };
179
180 static inline bool is_aes(struct stm32_cryp *cryp)
181 {
182         return cryp->flags & FLG_AES;
183 }
184
185 static inline bool is_des(struct stm32_cryp *cryp)
186 {
187         return cryp->flags & FLG_DES;
188 }
189
190 static inline bool is_tdes(struct stm32_cryp *cryp)
191 {
192         return cryp->flags & FLG_TDES;
193 }
194
195 static inline bool is_ecb(struct stm32_cryp *cryp)
196 {
197         return cryp->flags & FLG_ECB;
198 }
199
200 static inline bool is_cbc(struct stm32_cryp *cryp)
201 {
202         return cryp->flags & FLG_CBC;
203 }
204
205 static inline bool is_ctr(struct stm32_cryp *cryp)
206 {
207         return cryp->flags & FLG_CTR;
208 }
209
210 static inline bool is_gcm(struct stm32_cryp *cryp)
211 {
212         return cryp->flags & FLG_GCM;
213 }
214
215 static inline bool is_ccm(struct stm32_cryp *cryp)
216 {
217         return cryp->flags & FLG_CCM;
218 }
219
220 static inline bool is_encrypt(struct stm32_cryp *cryp)
221 {
222         return cryp->flags & FLG_ENCRYPT;
223 }
224
225 static inline bool is_decrypt(struct stm32_cryp *cryp)
226 {
227         return !is_encrypt(cryp);
228 }
229
230 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
231 {
232         return readl_relaxed(cryp->regs + ofst);
233 }
234
235 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
236 {
237         writel_relaxed(val, cryp->regs + ofst);
238 }
239
240 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
241 {
242         u32 status;
243
244         return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
245                         !(status & SR_BUSY), 10, 100000);
246 }
247
248 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
249 {
250         u32 status;
251
252         return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
253                         !(status & CR_CRYPEN), 10, 100000);
254 }
255
256 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
257 {
258         u32 status;
259
260         return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
261                         status & SR_OFNE, 10, 100000);
262 }
263
264 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
265
266 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
267 {
268         struct stm32_cryp *tmp, *cryp = NULL;
269
270         spin_lock_bh(&cryp_list.lock);
271         if (!ctx->cryp) {
272                 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
273                         cryp = tmp;
274                         break;
275                 }
276                 ctx->cryp = cryp;
277         } else {
278                 cryp = ctx->cryp;
279         }
280
281         spin_unlock_bh(&cryp_list.lock);
282
283         return cryp;
284 }
285
286 static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
287                                     size_t align)
288 {
289         int len = 0;
290
291         if (!total)
292                 return 0;
293
294         if (!IS_ALIGNED(total, align))
295                 return -EINVAL;
296
297         while (sg) {
298                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
299                         return -EINVAL;
300
301                 if (!IS_ALIGNED(sg->length, align))
302                         return -EINVAL;
303
304                 len += sg->length;
305                 sg = sg_next(sg);
306         }
307
308         if (len != total)
309                 return -EINVAL;
310
311         return 0;
312 }
313
314 static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
315 {
316         int ret;
317
318         ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
319                                        cryp->hw_blocksize);
320         if (ret)
321                 return ret;
322
323         ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
324                                        cryp->hw_blocksize);
325
326         return ret;
327 }
328
329 static void sg_copy_buf(void *buf, struct scatterlist *sg,
330                         unsigned int start, unsigned int nbytes, int out)
331 {
332         struct scatter_walk walk;
333
334         if (!nbytes)
335                 return;
336
337         scatterwalk_start(&walk, sg);
338         scatterwalk_advance(&walk, start);
339         scatterwalk_copychunks(buf, &walk, nbytes, out);
340         scatterwalk_done(&walk, out, 0);
341 }
342
343 static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
344 {
345         void *buf_in, *buf_out;
346         int pages, total_in, total_out;
347
348         if (!stm32_cryp_check_io_aligned(cryp)) {
349                 cryp->sgs_copied = 0;
350                 return 0;
351         }
352
353         total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
354         pages = total_in ? get_order(total_in) : 1;
355         buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
356
357         total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
358         pages = total_out ? get_order(total_out) : 1;
359         buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
360
361         if (!buf_in || !buf_out) {
362                 dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
363                 cryp->sgs_copied = 0;
364                 return -EFAULT;
365         }
366
367         sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
368
369         sg_init_one(&cryp->in_sgl, buf_in, total_in);
370         cryp->in_sg = &cryp->in_sgl;
371         cryp->in_sg_len = 1;
372
373         sg_init_one(&cryp->out_sgl, buf_out, total_out);
374         cryp->out_sg_save = cryp->out_sg;
375         cryp->out_sg = &cryp->out_sgl;
376         cryp->out_sg_len = 1;
377
378         cryp->sgs_copied = 1;
379
380         return 0;
381 }
382
383 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
384 {
385         if (!iv)
386                 return;
387
388         stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
389         stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
390
391         if (is_aes(cryp)) {
392                 stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
393                 stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
394         }
395 }
396
397 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
398 {
399         struct skcipher_request *req = cryp->req;
400         u32 *tmp = (void *)req->iv;
401
402         if (!tmp)
403                 return;
404
405         *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
406         *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
407
408         if (is_aes(cryp)) {
409                 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
410                 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
411         }
412 }
413
414 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
415 {
416         unsigned int i;
417         int r_id;
418
419         if (is_des(c)) {
420                 stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
421                 stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
422         } else {
423                 r_id = CRYP_K3RR;
424                 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
425                         stm32_cryp_write(c, r_id,
426                                          cpu_to_be32(c->ctx->key[i - 1]));
427         }
428 }
429
430 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
431 {
432         if (is_aes(cryp) && is_ecb(cryp))
433                 return CR_AES_ECB;
434
435         if (is_aes(cryp) && is_cbc(cryp))
436                 return CR_AES_CBC;
437
438         if (is_aes(cryp) && is_ctr(cryp))
439                 return CR_AES_CTR;
440
441         if (is_aes(cryp) && is_gcm(cryp))
442                 return CR_AES_GCM;
443
444         if (is_aes(cryp) && is_ccm(cryp))
445                 return CR_AES_CCM;
446
447         if (is_des(cryp) && is_ecb(cryp))
448                 return CR_DES_ECB;
449
450         if (is_des(cryp) && is_cbc(cryp))
451                 return CR_DES_CBC;
452
453         if (is_tdes(cryp) && is_ecb(cryp))
454                 return CR_TDES_ECB;
455
456         if (is_tdes(cryp) && is_cbc(cryp))
457                 return CR_TDES_CBC;
458
459         dev_err(cryp->dev, "Unknown mode\n");
460         return CR_AES_UNKNOWN;
461 }
462
463 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
464 {
465         return is_encrypt(cryp) ? cryp->areq->cryptlen :
466                                   cryp->areq->cryptlen - cryp->authsize;
467 }
468
469 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
470 {
471         int ret;
472         u32 iv[4];
473
474         /* Phase 1 : init */
475         memcpy(iv, cryp->areq->iv, 12);
476         iv[3] = cpu_to_be32(GCM_CTR_INIT);
477         cryp->gcm_ctr = GCM_CTR_INIT;
478         stm32_cryp_hw_write_iv(cryp, iv);
479
480         stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
481
482         /* Wait for end of processing */
483         ret = stm32_cryp_wait_enable(cryp);
484         if (ret)
485                 dev_err(cryp->dev, "Timeout (gcm init)\n");
486
487         return ret;
488 }
489
490 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
491 {
492         int ret;
493         u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
494         u32 *d;
495         unsigned int i, textlen;
496
497         /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
498         memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
499         memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
500         iv[AES_BLOCK_SIZE - 1] = 1;
501         stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
502
503         /* Build B0 */
504         memcpy(b0, iv, AES_BLOCK_SIZE);
505
506         b0[0] |= (8 * ((cryp->authsize - 2) / 2));
507
508         if (cryp->areq->assoclen)
509                 b0[0] |= 0x40;
510
511         textlen = stm32_cryp_get_input_text_len(cryp);
512
513         b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
514         b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
515
516         /* Enable HW */
517         stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
518
519         /* Write B0 */
520         d = (u32 *)b0;
521
522         for (i = 0; i < AES_BLOCK_32; i++) {
523                 if (!cryp->caps->padding_wa)
524                         *d = cpu_to_be32(*d);
525                 stm32_cryp_write(cryp, CRYP_DIN, *d++);
526         }
527
528         /* Wait for end of processing */
529         ret = stm32_cryp_wait_enable(cryp);
530         if (ret)
531                 dev_err(cryp->dev, "Timeout (ccm init)\n");
532
533         return ret;
534 }
535
536 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
537 {
538         int ret;
539         u32 cfg, hw_mode;
540
541         pm_runtime_get_sync(cryp->dev);
542
543         /* Disable interrupt */
544         stm32_cryp_write(cryp, CRYP_IMSCR, 0);
545
546         /* Set key */
547         stm32_cryp_hw_write_key(cryp);
548
549         /* Set configuration */
550         cfg = CR_DATA8 | CR_FFLUSH;
551
552         switch (cryp->ctx->keylen) {
553         case AES_KEYSIZE_128:
554                 cfg |= CR_KEY128;
555                 break;
556
557         case AES_KEYSIZE_192:
558                 cfg |= CR_KEY192;
559                 break;
560
561         default:
562         case AES_KEYSIZE_256:
563                 cfg |= CR_KEY256;
564                 break;
565         }
566
567         hw_mode = stm32_cryp_get_hw_mode(cryp);
568         if (hw_mode == CR_AES_UNKNOWN)
569                 return -EINVAL;
570
571         /* AES ECB/CBC decrypt: run key preparation first */
572         if (is_decrypt(cryp) &&
573             ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
574                 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
575
576                 /* Wait for end of processing */
577                 ret = stm32_cryp_wait_busy(cryp);
578                 if (ret) {
579                         dev_err(cryp->dev, "Timeout (key preparation)\n");
580                         return ret;
581                 }
582         }
583
584         cfg |= hw_mode;
585
586         if (is_decrypt(cryp))
587                 cfg |= CR_DEC_NOT_ENC;
588
589         /* Apply config and flush (valid when CRYPEN = 0) */
590         stm32_cryp_write(cryp, CRYP_CR, cfg);
591
592         switch (hw_mode) {
593         case CR_AES_GCM:
594         case CR_AES_CCM:
595                 /* Phase 1 : init */
596                 if (hw_mode == CR_AES_CCM)
597                         ret = stm32_cryp_ccm_init(cryp, cfg);
598                 else
599                         ret = stm32_cryp_gcm_init(cryp, cfg);
600
601                 if (ret)
602                         return ret;
603
604                 /* Phase 2 : header (authenticated data) */
605                 if (cryp->areq->assoclen) {
606                         cfg |= CR_PH_HEADER;
607                 } else if (stm32_cryp_get_input_text_len(cryp)) {
608                         cfg |= CR_PH_PAYLOAD;
609                         stm32_cryp_write(cryp, CRYP_CR, cfg);
610                 } else {
611                         cfg |= CR_PH_INIT;
612                 }
613
614                 break;
615
616         case CR_DES_CBC:
617         case CR_TDES_CBC:
618         case CR_AES_CBC:
619         case CR_AES_CTR:
620                 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->iv);
621                 break;
622
623         default:
624                 break;
625         }
626
627         /* Enable now */
628         cfg |= CR_CRYPEN;
629
630         stm32_cryp_write(cryp, CRYP_CR, cfg);
631
632         cryp->flags &= ~FLG_CCM_PADDED_WA;
633
634         return 0;
635 }
636
637 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
638 {
639         if (!err && (is_gcm(cryp) || is_ccm(cryp)))
640                 /* Phase 4 : output tag */
641                 err = stm32_cryp_read_auth_tag(cryp);
642
643         if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
644                 stm32_cryp_get_iv(cryp);
645
646         if (cryp->sgs_copied) {
647                 void *buf_in, *buf_out;
648                 int pages, len;
649
650                 buf_in = sg_virt(&cryp->in_sgl);
651                 buf_out = sg_virt(&cryp->out_sgl);
652
653                 sg_copy_buf(buf_out, cryp->out_sg_save, 0,
654                             cryp->total_out_save, 1);
655
656                 len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
657                 pages = len ? get_order(len) : 1;
658                 free_pages((unsigned long)buf_in, pages);
659
660                 len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
661                 pages = len ? get_order(len) : 1;
662                 free_pages((unsigned long)buf_out, pages);
663         }
664
665         pm_runtime_mark_last_busy(cryp->dev);
666         pm_runtime_put_autosuspend(cryp->dev);
667
668         if (is_gcm(cryp) || is_ccm(cryp))
669                 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
670         else
671                 crypto_finalize_skcipher_request(cryp->engine, cryp->req,
672                                                    err);
673
674         memset(cryp->ctx->key, 0, cryp->ctx->keylen);
675 }
676
677 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
678 {
679         /* Enable interrupt and let the IRQ handler do everything */
680         stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
681
682         return 0;
683 }
684
685 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
686 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
687                                          void *areq);
688
689 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
690 {
691         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
692
693         crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
694
695         ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
696         ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
697         ctx->enginectx.op.unprepare_request = NULL;
698         return 0;
699 }
700
701 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
702 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
703                                        void *areq);
704
705 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
706 {
707         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
708
709         tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
710
711         ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
712         ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
713         ctx->enginectx.op.unprepare_request = NULL;
714
715         return 0;
716 }
717
718 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
719 {
720         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
721                         crypto_skcipher_reqtfm(req));
722         struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
723         struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
724
725         if (!cryp)
726                 return -ENODEV;
727
728         rctx->mode = mode;
729
730         return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
731 }
732
733 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
734 {
735         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
736         struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
737         struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
738
739         if (!cryp)
740                 return -ENODEV;
741
742         rctx->mode = mode;
743
744         return crypto_transfer_aead_request_to_engine(cryp->engine, req);
745 }
746
747 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
748                              unsigned int keylen)
749 {
750         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
751
752         memcpy(ctx->key, key, keylen);
753         ctx->keylen = keylen;
754
755         return 0;
756 }
757
758 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
759                                  unsigned int keylen)
760 {
761         if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
762             keylen != AES_KEYSIZE_256)
763                 return -EINVAL;
764         else
765                 return stm32_cryp_setkey(tfm, key, keylen);
766 }
767
768 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
769                                  unsigned int keylen)
770 {
771         return verify_skcipher_des_key(tfm, key) ?:
772                stm32_cryp_setkey(tfm, key, keylen);
773 }
774
775 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
776                                   unsigned int keylen)
777 {
778         return verify_skcipher_des3_key(tfm, key) ?:
779                stm32_cryp_setkey(tfm, key, keylen);
780 }
781
782 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
783                                       unsigned int keylen)
784 {
785         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
786
787         if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
788             keylen != AES_KEYSIZE_256)
789                 return -EINVAL;
790
791         memcpy(ctx->key, key, keylen);
792         ctx->keylen = keylen;
793
794         return 0;
795 }
796
797 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
798                                           unsigned int authsize)
799 {
800         return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
801 }
802
803 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
804                                           unsigned int authsize)
805 {
806         switch (authsize) {
807         case 4:
808         case 6:
809         case 8:
810         case 10:
811         case 12:
812         case 14:
813         case 16:
814                 break;
815         default:
816                 return -EINVAL;
817         }
818
819         return 0;
820 }
821
822 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
823 {
824         return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
825 }
826
827 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
828 {
829         return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
830 }
831
832 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
833 {
834         return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
835 }
836
837 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
838 {
839         return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
840 }
841
842 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
843 {
844         return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
845 }
846
847 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
848 {
849         return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
850 }
851
852 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
853 {
854         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
855 }
856
857 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
858 {
859         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
860 }
861
862 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
863 {
864         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
865 }
866
867 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
868 {
869         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
870 }
871
872 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
873 {
874         return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
875 }
876
877 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
878 {
879         return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
880 }
881
882 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
883 {
884         return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
885 }
886
887 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
888 {
889         return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
890 }
891
892 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
893 {
894         return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
895 }
896
897 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
898 {
899         return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
900 }
901
902 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
903 {
904         return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
905 }
906
907 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
908 {
909         return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
910 }
911
912 static int stm32_cryp_prepare_req(struct skcipher_request *req,
913                                   struct aead_request *areq)
914 {
915         struct stm32_cryp_ctx *ctx;
916         struct stm32_cryp *cryp;
917         struct stm32_cryp_reqctx *rctx;
918         int ret;
919
920         if (!req && !areq)
921                 return -EINVAL;
922
923         ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
924                     crypto_aead_ctx(crypto_aead_reqtfm(areq));
925
926         cryp = ctx->cryp;
927
928         if (!cryp)
929                 return -ENODEV;
930
931         rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
932         rctx->mode &= FLG_MODE_MASK;
933
934         ctx->cryp = cryp;
935
936         cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
937         cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
938         cryp->ctx = ctx;
939
940         if (req) {
941                 cryp->req = req;
942                 cryp->areq = NULL;
943                 cryp->total_in = req->cryptlen;
944                 cryp->total_out = cryp->total_in;
945         } else {
946                 /*
947                  * Length of input and output data:
948                  * Encryption case:
949                  *  INPUT  =   AssocData  ||   PlainText
950                  *          <- assoclen ->  <- cryptlen ->
951                  *          <------- total_in ----------->
952                  *
953                  *  OUTPUT =   AssocData  ||  CipherText  ||   AuthTag
954                  *          <- assoclen ->  <- cryptlen ->  <- authsize ->
955                  *          <---------------- total_out ----------------->
956                  *
957                  * Decryption case:
958                  *  INPUT  =   AssocData  ||  CipherText  ||  AuthTag
959                  *          <- assoclen ->  <--------- cryptlen --------->
960                  *                                          <- authsize ->
961                  *          <---------------- total_in ------------------>
962                  *
963                  *  OUTPUT =   AssocData  ||   PlainText
964                  *          <- assoclen ->  <- crypten - authsize ->
965                  *          <---------- total_out ----------------->
966                  */
967                 cryp->areq = areq;
968                 cryp->req = NULL;
969                 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
970                 cryp->total_in = areq->assoclen + areq->cryptlen;
971                 if (is_encrypt(cryp))
972                         /* Append auth tag to output */
973                         cryp->total_out = cryp->total_in + cryp->authsize;
974                 else
975                         /* No auth tag in output */
976                         cryp->total_out = cryp->total_in - cryp->authsize;
977         }
978
979         cryp->total_in_save = cryp->total_in;
980         cryp->total_out_save = cryp->total_out;
981
982         cryp->in_sg = req ? req->src : areq->src;
983         cryp->out_sg = req ? req->dst : areq->dst;
984         cryp->out_sg_save = cryp->out_sg;
985
986         cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
987         if (cryp->in_sg_len < 0) {
988                 dev_err(cryp->dev, "Cannot get in_sg_len\n");
989                 ret = cryp->in_sg_len;
990                 return ret;
991         }
992
993         cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
994         if (cryp->out_sg_len < 0) {
995                 dev_err(cryp->dev, "Cannot get out_sg_len\n");
996                 ret = cryp->out_sg_len;
997                 return ret;
998         }
999
1000         ret = stm32_cryp_copy_sgs(cryp);
1001         if (ret)
1002                 return ret;
1003
1004         scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1005         scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1006
1007         if (is_gcm(cryp) || is_ccm(cryp)) {
1008                 /* In output, jump after assoc data */
1009                 scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1010                 cryp->total_out -= cryp->areq->assoclen;
1011         }
1012
1013         ret = stm32_cryp_hw_init(cryp);
1014         return ret;
1015 }
1016
1017 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1018                                          void *areq)
1019 {
1020         struct skcipher_request *req = container_of(areq,
1021                                                       struct skcipher_request,
1022                                                       base);
1023
1024         return stm32_cryp_prepare_req(req, NULL);
1025 }
1026
1027 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1028 {
1029         struct skcipher_request *req = container_of(areq,
1030                                                       struct skcipher_request,
1031                                                       base);
1032         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1033                         crypto_skcipher_reqtfm(req));
1034         struct stm32_cryp *cryp = ctx->cryp;
1035
1036         if (!cryp)
1037                 return -ENODEV;
1038
1039         return stm32_cryp_cpu_start(cryp);
1040 }
1041
1042 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1043 {
1044         struct aead_request *req = container_of(areq, struct aead_request,
1045                                                 base);
1046
1047         return stm32_cryp_prepare_req(NULL, req);
1048 }
1049
1050 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1051 {
1052         struct aead_request *req = container_of(areq, struct aead_request,
1053                                                 base);
1054         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1055         struct stm32_cryp *cryp = ctx->cryp;
1056
1057         if (!cryp)
1058                 return -ENODEV;
1059
1060         if (unlikely(!cryp->areq->assoclen &&
1061                      !stm32_cryp_get_input_text_len(cryp))) {
1062                 /* No input data to process: get tag and finish */
1063                 stm32_cryp_finish_req(cryp, 0);
1064                 return 0;
1065         }
1066
1067         return stm32_cryp_cpu_start(cryp);
1068 }
1069
1070 static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1071                                 unsigned int n)
1072 {
1073         scatterwalk_advance(&cryp->out_walk, n);
1074
1075         if (unlikely(cryp->out_sg->length == _walked_out)) {
1076                 cryp->out_sg = sg_next(cryp->out_sg);
1077                 if (cryp->out_sg) {
1078                         scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1079                         return (sg_virt(cryp->out_sg) + _walked_out);
1080                 }
1081         }
1082
1083         return (u32 *)((u8 *)dst + n);
1084 }
1085
1086 static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1087                                unsigned int n)
1088 {
1089         scatterwalk_advance(&cryp->in_walk, n);
1090
1091         if (unlikely(cryp->in_sg->length == _walked_in)) {
1092                 cryp->in_sg = sg_next(cryp->in_sg);
1093                 if (cryp->in_sg) {
1094                         scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1095                         return (sg_virt(cryp->in_sg) + _walked_in);
1096                 }
1097         }
1098
1099         return (u32 *)((u8 *)src + n);
1100 }
1101
1102 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1103 {
1104         u32 cfg, size_bit, *dst, d32;
1105         u8 *d8;
1106         unsigned int i, j;
1107         int ret = 0;
1108
1109         /* Update Config */
1110         cfg = stm32_cryp_read(cryp, CRYP_CR);
1111
1112         cfg &= ~CR_PH_MASK;
1113         cfg |= CR_PH_FINAL;
1114         cfg &= ~CR_DEC_NOT_ENC;
1115         cfg |= CR_CRYPEN;
1116
1117         stm32_cryp_write(cryp, CRYP_CR, cfg);
1118
1119         if (is_gcm(cryp)) {
1120                 /* GCM: write aad and payload size (in bits) */
1121                 size_bit = cryp->areq->assoclen * 8;
1122                 if (cryp->caps->swap_final)
1123                         size_bit = cpu_to_be32(size_bit);
1124
1125                 stm32_cryp_write(cryp, CRYP_DIN, 0);
1126                 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1127
1128                 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1129                                 cryp->areq->cryptlen - AES_BLOCK_SIZE;
1130                 size_bit *= 8;
1131                 if (cryp->caps->swap_final)
1132                         size_bit = cpu_to_be32(size_bit);
1133
1134                 stm32_cryp_write(cryp, CRYP_DIN, 0);
1135                 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1136         } else {
1137                 /* CCM: write CTR0 */
1138                 u8 iv[AES_BLOCK_SIZE];
1139                 u32 *iv32 = (u32 *)iv;
1140
1141                 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1142                 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1143
1144                 for (i = 0; i < AES_BLOCK_32; i++) {
1145                         if (!cryp->caps->padding_wa)
1146                                 *iv32 = cpu_to_be32(*iv32);
1147                         stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1148                 }
1149         }
1150
1151         /* Wait for output data */
1152         ret = stm32_cryp_wait_output(cryp);
1153         if (ret) {
1154                 dev_err(cryp->dev, "Timeout (read tag)\n");
1155                 return ret;
1156         }
1157
1158         if (is_encrypt(cryp)) {
1159                 /* Get and write tag */
1160                 dst = sg_virt(cryp->out_sg) + _walked_out;
1161
1162                 for (i = 0; i < AES_BLOCK_32; i++) {
1163                         if (cryp->total_out >= sizeof(u32)) {
1164                                 /* Read a full u32 */
1165                                 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1166
1167                                 dst = stm32_cryp_next_out(cryp, dst,
1168                                                           sizeof(u32));
1169                                 cryp->total_out -= sizeof(u32);
1170                         } else if (!cryp->total_out) {
1171                                 /* Empty fifo out (data from input padding) */
1172                                 stm32_cryp_read(cryp, CRYP_DOUT);
1173                         } else {
1174                                 /* Read less than an u32 */
1175                                 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1176                                 d8 = (u8 *)&d32;
1177
1178                                 for (j = 0; j < cryp->total_out; j++) {
1179                                         *((u8 *)dst) = *(d8++);
1180                                         dst = stm32_cryp_next_out(cryp, dst, 1);
1181                                 }
1182                                 cryp->total_out = 0;
1183                         }
1184                 }
1185         } else {
1186                 /* Get and check tag */
1187                 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1188
1189                 scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1190                                          cryp->total_in_save - cryp->authsize,
1191                                          cryp->authsize, 0);
1192
1193                 for (i = 0; i < AES_BLOCK_32; i++)
1194                         out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1195
1196                 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1197                         ret = -EBADMSG;
1198         }
1199
1200         /* Disable cryp */
1201         cfg &= ~CR_CRYPEN;
1202         stm32_cryp_write(cryp, CRYP_CR, cfg);
1203
1204         return ret;
1205 }
1206
1207 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1208 {
1209         u32 cr;
1210
1211         if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1212                 cryp->last_ctr[3] = 0;
1213                 cryp->last_ctr[2]++;
1214                 if (!cryp->last_ctr[2]) {
1215                         cryp->last_ctr[1]++;
1216                         if (!cryp->last_ctr[1])
1217                                 cryp->last_ctr[0]++;
1218                 }
1219
1220                 cr = stm32_cryp_read(cryp, CRYP_CR);
1221                 stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1222
1223                 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1224
1225                 stm32_cryp_write(cryp, CRYP_CR, cr);
1226         }
1227
1228         cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1229         cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1230         cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1231         cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1232 }
1233
1234 static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1235 {
1236         unsigned int i, j;
1237         u32 d32, *dst;
1238         u8 *d8;
1239         size_t tag_size;
1240
1241         /* Do no read tag now (if any) */
1242         if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1243                 tag_size = cryp->authsize;
1244         else
1245                 tag_size = 0;
1246
1247         dst = sg_virt(cryp->out_sg) + _walked_out;
1248
1249         for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1250                 if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1251                         /* Read a full u32 */
1252                         *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1253
1254                         dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1255                         cryp->total_out -= sizeof(u32);
1256                 } else if (cryp->total_out == tag_size) {
1257                         /* Empty fifo out (data from input padding) */
1258                         d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1259                 } else {
1260                         /* Read less than an u32 */
1261                         d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1262                         d8 = (u8 *)&d32;
1263
1264                         for (j = 0; j < cryp->total_out - tag_size; j++) {
1265                                 *((u8 *)dst) = *(d8++);
1266                                 dst = stm32_cryp_next_out(cryp, dst, 1);
1267                         }
1268                         cryp->total_out = tag_size;
1269                 }
1270         }
1271
1272         return !(cryp->total_out - tag_size) || !cryp->total_in;
1273 }
1274
1275 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1276 {
1277         unsigned int i, j;
1278         u32 *src;
1279         u8 d8[4];
1280         size_t tag_size;
1281
1282         /* Do no write tag (if any) */
1283         if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1284                 tag_size = cryp->authsize;
1285         else
1286                 tag_size = 0;
1287
1288         src = sg_virt(cryp->in_sg) + _walked_in;
1289
1290         for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1291                 if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1292                         /* Write a full u32 */
1293                         stm32_cryp_write(cryp, CRYP_DIN, *src);
1294
1295                         src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1296                         cryp->total_in -= sizeof(u32);
1297                 } else if (cryp->total_in == tag_size) {
1298                         /* Write padding data */
1299                         stm32_cryp_write(cryp, CRYP_DIN, 0);
1300                 } else {
1301                         /* Write less than an u32 */
1302                         memset(d8, 0, sizeof(u32));
1303                         for (j = 0; j < cryp->total_in - tag_size; j++) {
1304                                 d8[j] = *((u8 *)src);
1305                                 src = stm32_cryp_next_in(cryp, src, 1);
1306                         }
1307
1308                         stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1309                         cryp->total_in = tag_size;
1310                 }
1311         }
1312 }
1313
1314 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1315 {
1316         int err;
1317         u32 cfg, tmp[AES_BLOCK_32];
1318         size_t total_in_ori = cryp->total_in;
1319         struct scatterlist *out_sg_ori = cryp->out_sg;
1320         unsigned int i;
1321
1322         /* 'Special workaround' procedure described in the datasheet */
1323
1324         /* a) disable ip */
1325         stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1326         cfg = stm32_cryp_read(cryp, CRYP_CR);
1327         cfg &= ~CR_CRYPEN;
1328         stm32_cryp_write(cryp, CRYP_CR, cfg);
1329
1330         /* b) Update IV1R */
1331         stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1332
1333         /* c) change mode to CTR */
1334         cfg &= ~CR_ALGO_MASK;
1335         cfg |= CR_AES_CTR;
1336         stm32_cryp_write(cryp, CRYP_CR, cfg);
1337
1338         /* a) enable IP */
1339         cfg |= CR_CRYPEN;
1340         stm32_cryp_write(cryp, CRYP_CR, cfg);
1341
1342         /* b) pad and write the last block */
1343         stm32_cryp_irq_write_block(cryp);
1344         cryp->total_in = total_in_ori;
1345         err = stm32_cryp_wait_output(cryp);
1346         if (err) {
1347                 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1348                 return stm32_cryp_finish_req(cryp, err);
1349         }
1350
1351         /* c) get and store encrypted data */
1352         stm32_cryp_irq_read_data(cryp);
1353         scatterwalk_map_and_copy(tmp, out_sg_ori,
1354                                  cryp->total_in_save - total_in_ori,
1355                                  total_in_ori, 0);
1356
1357         /* d) change mode back to AES GCM */
1358         cfg &= ~CR_ALGO_MASK;
1359         cfg |= CR_AES_GCM;
1360         stm32_cryp_write(cryp, CRYP_CR, cfg);
1361
1362         /* e) change phase to Final */
1363         cfg &= ~CR_PH_MASK;
1364         cfg |= CR_PH_FINAL;
1365         stm32_cryp_write(cryp, CRYP_CR, cfg);
1366
1367         /* f) write padded data */
1368         for (i = 0; i < AES_BLOCK_32; i++) {
1369                 if (cryp->total_in)
1370                         stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1371                 else
1372                         stm32_cryp_write(cryp, CRYP_DIN, 0);
1373
1374                 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1375         }
1376
1377         /* g) Empty fifo out */
1378         err = stm32_cryp_wait_output(cryp);
1379         if (err) {
1380                 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1381                 return stm32_cryp_finish_req(cryp, err);
1382         }
1383
1384         for (i = 0; i < AES_BLOCK_32; i++)
1385                 stm32_cryp_read(cryp, CRYP_DOUT);
1386
1387         /* h) run the he normal Final phase */
1388         stm32_cryp_finish_req(cryp, 0);
1389 }
1390
1391 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1392 {
1393         u32 cfg, payload_bytes;
1394
1395         /* disable ip, set NPBLB and reneable ip */
1396         cfg = stm32_cryp_read(cryp, CRYP_CR);
1397         cfg &= ~CR_CRYPEN;
1398         stm32_cryp_write(cryp, CRYP_CR, cfg);
1399
1400         payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1401                                            cryp->total_in;
1402         cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1403         cfg |= CR_CRYPEN;
1404         stm32_cryp_write(cryp, CRYP_CR, cfg);
1405 }
1406
1407 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1408 {
1409         int err = 0;
1410         u32 cfg, iv1tmp;
1411         u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1412         size_t last_total_out, total_in_ori = cryp->total_in;
1413         struct scatterlist *out_sg_ori = cryp->out_sg;
1414         unsigned int i;
1415
1416         /* 'Special workaround' procedure described in the datasheet */
1417         cryp->flags |= FLG_CCM_PADDED_WA;
1418
1419         /* a) disable ip */
1420         stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1421
1422         cfg = stm32_cryp_read(cryp, CRYP_CR);
1423         cfg &= ~CR_CRYPEN;
1424         stm32_cryp_write(cryp, CRYP_CR, cfg);
1425
1426         /* b) get IV1 from CRYP_CSGCMCCM7 */
1427         iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1428
1429         /* c) Load CRYP_CSGCMCCMxR */
1430         for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1431                 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1432
1433         /* d) Write IV1R */
1434         stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1435
1436         /* e) change mode to CTR */
1437         cfg &= ~CR_ALGO_MASK;
1438         cfg |= CR_AES_CTR;
1439         stm32_cryp_write(cryp, CRYP_CR, cfg);
1440
1441         /* a) enable IP */
1442         cfg |= CR_CRYPEN;
1443         stm32_cryp_write(cryp, CRYP_CR, cfg);
1444
1445         /* b) pad and write the last block */
1446         stm32_cryp_irq_write_block(cryp);
1447         cryp->total_in = total_in_ori;
1448         err = stm32_cryp_wait_output(cryp);
1449         if (err) {
1450                 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1451                 return stm32_cryp_finish_req(cryp, err);
1452         }
1453
1454         /* c) get and store decrypted data */
1455         last_total_out = cryp->total_out;
1456         stm32_cryp_irq_read_data(cryp);
1457
1458         memset(tmp, 0, sizeof(tmp));
1459         scatterwalk_map_and_copy(tmp, out_sg_ori,
1460                                  cryp->total_out_save - last_total_out,
1461                                  last_total_out, 0);
1462
1463         /* d) Load again CRYP_CSGCMCCMxR */
1464         for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1465                 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1466
1467         /* e) change mode back to AES CCM */
1468         cfg &= ~CR_ALGO_MASK;
1469         cfg |= CR_AES_CCM;
1470         stm32_cryp_write(cryp, CRYP_CR, cfg);
1471
1472         /* f) change phase to header */
1473         cfg &= ~CR_PH_MASK;
1474         cfg |= CR_PH_HEADER;
1475         stm32_cryp_write(cryp, CRYP_CR, cfg);
1476
1477         /* g) XOR and write padded data */
1478         for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1479                 tmp[i] ^= cstmp1[i];
1480                 tmp[i] ^= cstmp2[i];
1481                 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1482         }
1483
1484         /* h) wait for completion */
1485         err = stm32_cryp_wait_busy(cryp);
1486         if (err)
1487                 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1488
1489         /* i) run the he normal Final phase */
1490         stm32_cryp_finish_req(cryp, err);
1491 }
1492
1493 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1494 {
1495         if (unlikely(!cryp->total_in)) {
1496                 dev_warn(cryp->dev, "No more data to process\n");
1497                 return;
1498         }
1499
1500         if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1501                      (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1502                      is_encrypt(cryp))) {
1503                 /* Padding for AES GCM encryption */
1504                 if (cryp->caps->padding_wa)
1505                         /* Special case 1 */
1506                         return stm32_cryp_irq_write_gcm_padded_data(cryp);
1507
1508                 /* Setting padding bytes (NBBLB) */
1509                 stm32_cryp_irq_set_npblb(cryp);
1510         }
1511
1512         if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1513                      (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1514                      is_decrypt(cryp))) {
1515                 /* Padding for AES CCM decryption */
1516                 if (cryp->caps->padding_wa)
1517                         /* Special case 2 */
1518                         return stm32_cryp_irq_write_ccm_padded_data(cryp);
1519
1520                 /* Setting padding bytes (NBBLB) */
1521                 stm32_cryp_irq_set_npblb(cryp);
1522         }
1523
1524         if (is_aes(cryp) && is_ctr(cryp))
1525                 stm32_cryp_check_ctr_counter(cryp);
1526
1527         stm32_cryp_irq_write_block(cryp);
1528 }
1529
1530 static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1531 {
1532         int err;
1533         unsigned int i, j;
1534         u32 cfg, *src;
1535
1536         src = sg_virt(cryp->in_sg) + _walked_in;
1537
1538         for (i = 0; i < AES_BLOCK_32; i++) {
1539                 stm32_cryp_write(cryp, CRYP_DIN, *src);
1540
1541                 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1542                 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1543
1544                 /* Check if whole header written */
1545                 if ((cryp->total_in_save - cryp->total_in) ==
1546                                 cryp->areq->assoclen) {
1547                         /* Write padding if needed */
1548                         for (j = i + 1; j < AES_BLOCK_32; j++)
1549                                 stm32_cryp_write(cryp, CRYP_DIN, 0);
1550
1551                         /* Wait for completion */
1552                         err = stm32_cryp_wait_busy(cryp);
1553                         if (err) {
1554                                 dev_err(cryp->dev, "Timeout (gcm header)\n");
1555                                 return stm32_cryp_finish_req(cryp, err);
1556                         }
1557
1558                         if (stm32_cryp_get_input_text_len(cryp)) {
1559                                 /* Phase 3 : payload */
1560                                 cfg = stm32_cryp_read(cryp, CRYP_CR);
1561                                 cfg &= ~CR_CRYPEN;
1562                                 stm32_cryp_write(cryp, CRYP_CR, cfg);
1563
1564                                 cfg &= ~CR_PH_MASK;
1565                                 cfg |= CR_PH_PAYLOAD;
1566                                 cfg |= CR_CRYPEN;
1567                                 stm32_cryp_write(cryp, CRYP_CR, cfg);
1568                         } else {
1569                                 /* Phase 4 : tag */
1570                                 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1571                                 stm32_cryp_finish_req(cryp, 0);
1572                         }
1573
1574                         break;
1575                 }
1576
1577                 if (!cryp->total_in)
1578                         break;
1579         }
1580 }
1581
1582 static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1583 {
1584         int err;
1585         unsigned int i = 0, j, k;
1586         u32 alen, cfg, *src;
1587         u8 d8[4];
1588
1589         src = sg_virt(cryp->in_sg) + _walked_in;
1590         alen = cryp->areq->assoclen;
1591
1592         if (!_walked_in) {
1593                 if (cryp->areq->assoclen <= 65280) {
1594                         /* Write first u32 of B1 */
1595                         d8[0] = (alen >> 8) & 0xFF;
1596                         d8[1] = alen & 0xFF;
1597                         d8[2] = *((u8 *)src);
1598                         src = stm32_cryp_next_in(cryp, src, 1);
1599                         d8[3] = *((u8 *)src);
1600                         src = stm32_cryp_next_in(cryp, src, 1);
1601
1602                         stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1603                         i++;
1604
1605                         cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1606                 } else {
1607                         /* Build the two first u32 of B1 */
1608                         d8[0] = 0xFF;
1609                         d8[1] = 0xFE;
1610                         d8[2] = alen & 0xFF000000;
1611                         d8[3] = alen & 0x00FF0000;
1612
1613                         stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1614                         i++;
1615
1616                         d8[0] = alen & 0x0000FF00;
1617                         d8[1] = alen & 0x000000FF;
1618                         d8[2] = *((u8 *)src);
1619                         src = stm32_cryp_next_in(cryp, src, 1);
1620                         d8[3] = *((u8 *)src);
1621                         src = stm32_cryp_next_in(cryp, src, 1);
1622
1623                         stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1624                         i++;
1625
1626                         cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1627                 }
1628         }
1629
1630         /* Write next u32 */
1631         for (; i < AES_BLOCK_32; i++) {
1632                 /* Build an u32 */
1633                 memset(d8, 0, sizeof(u32));
1634                 for (k = 0; k < sizeof(u32); k++) {
1635                         d8[k] = *((u8 *)src);
1636                         src = stm32_cryp_next_in(cryp, src, 1);
1637
1638                         cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1639                         if ((cryp->total_in_save - cryp->total_in) == alen)
1640                                 break;
1641                 }
1642
1643                 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1644
1645                 if ((cryp->total_in_save - cryp->total_in) == alen) {
1646                         /* Write padding if needed */
1647                         for (j = i + 1; j < AES_BLOCK_32; j++)
1648                                 stm32_cryp_write(cryp, CRYP_DIN, 0);
1649
1650                         /* Wait for completion */
1651                         err = stm32_cryp_wait_busy(cryp);
1652                         if (err) {
1653                                 dev_err(cryp->dev, "Timeout (ccm header)\n");
1654                                 return stm32_cryp_finish_req(cryp, err);
1655                         }
1656
1657                         if (stm32_cryp_get_input_text_len(cryp)) {
1658                                 /* Phase 3 : payload */
1659                                 cfg = stm32_cryp_read(cryp, CRYP_CR);
1660                                 cfg &= ~CR_CRYPEN;
1661                                 stm32_cryp_write(cryp, CRYP_CR, cfg);
1662
1663                                 cfg &= ~CR_PH_MASK;
1664                                 cfg |= CR_PH_PAYLOAD;
1665                                 cfg |= CR_CRYPEN;
1666                                 stm32_cryp_write(cryp, CRYP_CR, cfg);
1667                         } else {
1668                                 /* Phase 4 : tag */
1669                                 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1670                                 stm32_cryp_finish_req(cryp, 0);
1671                         }
1672
1673                         break;
1674                 }
1675         }
1676 }
1677
1678 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1679 {
1680         struct stm32_cryp *cryp = arg;
1681         u32 ph;
1682
1683         if (cryp->irq_status & MISR_OUT)
1684                 /* Output FIFO IRQ: read data */
1685                 if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1686                         /* All bytes processed, finish */
1687                         stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1688                         stm32_cryp_finish_req(cryp, 0);
1689                         return IRQ_HANDLED;
1690                 }
1691
1692         if (cryp->irq_status & MISR_IN) {
1693                 if (is_gcm(cryp)) {
1694                         ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1695                         if (unlikely(ph == CR_PH_HEADER))
1696                                 /* Write Header */
1697                                 stm32_cryp_irq_write_gcm_header(cryp);
1698                         else
1699                                 /* Input FIFO IRQ: write data */
1700                                 stm32_cryp_irq_write_data(cryp);
1701                         cryp->gcm_ctr++;
1702                 } else if (is_ccm(cryp)) {
1703                         ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1704                         if (unlikely(ph == CR_PH_HEADER))
1705                                 /* Write Header */
1706                                 stm32_cryp_irq_write_ccm_header(cryp);
1707                         else
1708                                 /* Input FIFO IRQ: write data */
1709                                 stm32_cryp_irq_write_data(cryp);
1710                 } else {
1711                         /* Input FIFO IRQ: write data */
1712                         stm32_cryp_irq_write_data(cryp);
1713                 }
1714         }
1715
1716         return IRQ_HANDLED;
1717 }
1718
1719 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1720 {
1721         struct stm32_cryp *cryp = arg;
1722
1723         cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1724
1725         return IRQ_WAKE_THREAD;
1726 }
1727
1728 static struct skcipher_alg crypto_algs[] = {
1729 {
1730         .base.cra_name          = "ecb(aes)",
1731         .base.cra_driver_name   = "stm32-ecb-aes",
1732         .base.cra_priority      = 200,
1733         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1734         .base.cra_blocksize     = AES_BLOCK_SIZE,
1735         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1736         .base.cra_alignmask     = 0xf,
1737         .base.cra_module        = THIS_MODULE,
1738
1739         .init                   = stm32_cryp_init_tfm,
1740         .min_keysize            = AES_MIN_KEY_SIZE,
1741         .max_keysize            = AES_MAX_KEY_SIZE,
1742         .setkey                 = stm32_cryp_aes_setkey,
1743         .encrypt                = stm32_cryp_aes_ecb_encrypt,
1744         .decrypt                = stm32_cryp_aes_ecb_decrypt,
1745 },
1746 {
1747         .base.cra_name          = "cbc(aes)",
1748         .base.cra_driver_name   = "stm32-cbc-aes",
1749         .base.cra_priority      = 200,
1750         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1751         .base.cra_blocksize     = AES_BLOCK_SIZE,
1752         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1753         .base.cra_alignmask     = 0xf,
1754         .base.cra_module        = THIS_MODULE,
1755
1756         .init                   = stm32_cryp_init_tfm,
1757         .min_keysize            = AES_MIN_KEY_SIZE,
1758         .max_keysize            = AES_MAX_KEY_SIZE,
1759         .ivsize                 = AES_BLOCK_SIZE,
1760         .setkey                 = stm32_cryp_aes_setkey,
1761         .encrypt                = stm32_cryp_aes_cbc_encrypt,
1762         .decrypt                = stm32_cryp_aes_cbc_decrypt,
1763 },
1764 {
1765         .base.cra_name          = "ctr(aes)",
1766         .base.cra_driver_name   = "stm32-ctr-aes",
1767         .base.cra_priority      = 200,
1768         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1769         .base.cra_blocksize     = 1,
1770         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1771         .base.cra_alignmask     = 0xf,
1772         .base.cra_module        = THIS_MODULE,
1773
1774         .init                   = stm32_cryp_init_tfm,
1775         .min_keysize            = AES_MIN_KEY_SIZE,
1776         .max_keysize            = AES_MAX_KEY_SIZE,
1777         .ivsize                 = AES_BLOCK_SIZE,
1778         .setkey                 = stm32_cryp_aes_setkey,
1779         .encrypt                = stm32_cryp_aes_ctr_encrypt,
1780         .decrypt                = stm32_cryp_aes_ctr_decrypt,
1781 },
1782 {
1783         .base.cra_name          = "ecb(des)",
1784         .base.cra_driver_name   = "stm32-ecb-des",
1785         .base.cra_priority      = 200,
1786         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1787         .base.cra_blocksize     = DES_BLOCK_SIZE,
1788         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1789         .base.cra_alignmask     = 0xf,
1790         .base.cra_module        = THIS_MODULE,
1791
1792         .init                   = stm32_cryp_init_tfm,
1793         .min_keysize            = DES_BLOCK_SIZE,
1794         .max_keysize            = DES_BLOCK_SIZE,
1795         .setkey                 = stm32_cryp_des_setkey,
1796         .encrypt                = stm32_cryp_des_ecb_encrypt,
1797         .decrypt                = stm32_cryp_des_ecb_decrypt,
1798 },
1799 {
1800         .base.cra_name          = "cbc(des)",
1801         .base.cra_driver_name   = "stm32-cbc-des",
1802         .base.cra_priority      = 200,
1803         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1804         .base.cra_blocksize     = DES_BLOCK_SIZE,
1805         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1806         .base.cra_alignmask     = 0xf,
1807         .base.cra_module        = THIS_MODULE,
1808
1809         .init                   = stm32_cryp_init_tfm,
1810         .min_keysize            = DES_BLOCK_SIZE,
1811         .max_keysize            = DES_BLOCK_SIZE,
1812         .ivsize                 = DES_BLOCK_SIZE,
1813         .setkey                 = stm32_cryp_des_setkey,
1814         .encrypt                = stm32_cryp_des_cbc_encrypt,
1815         .decrypt                = stm32_cryp_des_cbc_decrypt,
1816 },
1817 {
1818         .base.cra_name          = "ecb(des3_ede)",
1819         .base.cra_driver_name   = "stm32-ecb-des3",
1820         .base.cra_priority      = 200,
1821         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1822         .base.cra_blocksize     = DES_BLOCK_SIZE,
1823         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1824         .base.cra_alignmask     = 0xf,
1825         .base.cra_module        = THIS_MODULE,
1826
1827         .init                   = stm32_cryp_init_tfm,
1828         .min_keysize            = 3 * DES_BLOCK_SIZE,
1829         .max_keysize            = 3 * DES_BLOCK_SIZE,
1830         .setkey                 = stm32_cryp_tdes_setkey,
1831         .encrypt                = stm32_cryp_tdes_ecb_encrypt,
1832         .decrypt                = stm32_cryp_tdes_ecb_decrypt,
1833 },
1834 {
1835         .base.cra_name          = "cbc(des3_ede)",
1836         .base.cra_driver_name   = "stm32-cbc-des3",
1837         .base.cra_priority      = 200,
1838         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1839         .base.cra_blocksize     = DES_BLOCK_SIZE,
1840         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1841         .base.cra_alignmask     = 0xf,
1842         .base.cra_module        = THIS_MODULE,
1843
1844         .init                   = stm32_cryp_init_tfm,
1845         .min_keysize            = 3 * DES_BLOCK_SIZE,
1846         .max_keysize            = 3 * DES_BLOCK_SIZE,
1847         .ivsize                 = DES_BLOCK_SIZE,
1848         .setkey                 = stm32_cryp_tdes_setkey,
1849         .encrypt                = stm32_cryp_tdes_cbc_encrypt,
1850         .decrypt                = stm32_cryp_tdes_cbc_decrypt,
1851 },
1852 };
1853
1854 static struct aead_alg aead_algs[] = {
1855 {
1856         .setkey         = stm32_cryp_aes_aead_setkey,
1857         .setauthsize    = stm32_cryp_aes_gcm_setauthsize,
1858         .encrypt        = stm32_cryp_aes_gcm_encrypt,
1859         .decrypt        = stm32_cryp_aes_gcm_decrypt,
1860         .init           = stm32_cryp_aes_aead_init,
1861         .ivsize         = 12,
1862         .maxauthsize    = AES_BLOCK_SIZE,
1863
1864         .base = {
1865                 .cra_name               = "gcm(aes)",
1866                 .cra_driver_name        = "stm32-gcm-aes",
1867                 .cra_priority           = 200,
1868                 .cra_flags              = CRYPTO_ALG_ASYNC,
1869                 .cra_blocksize          = 1,
1870                 .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1871                 .cra_alignmask          = 0xf,
1872                 .cra_module             = THIS_MODULE,
1873         },
1874 },
1875 {
1876         .setkey         = stm32_cryp_aes_aead_setkey,
1877         .setauthsize    = stm32_cryp_aes_ccm_setauthsize,
1878         .encrypt        = stm32_cryp_aes_ccm_encrypt,
1879         .decrypt        = stm32_cryp_aes_ccm_decrypt,
1880         .init           = stm32_cryp_aes_aead_init,
1881         .ivsize         = AES_BLOCK_SIZE,
1882         .maxauthsize    = AES_BLOCK_SIZE,
1883
1884         .base = {
1885                 .cra_name               = "ccm(aes)",
1886                 .cra_driver_name        = "stm32-ccm-aes",
1887                 .cra_priority           = 200,
1888                 .cra_flags              = CRYPTO_ALG_ASYNC,
1889                 .cra_blocksize          = 1,
1890                 .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1891                 .cra_alignmask          = 0xf,
1892                 .cra_module             = THIS_MODULE,
1893         },
1894 },
1895 };
1896
1897 static const struct stm32_cryp_caps f7_data = {
1898         .swap_final = true,
1899         .padding_wa = true,
1900 };
1901
1902 static const struct stm32_cryp_caps mp1_data = {
1903         .swap_final = false,
1904         .padding_wa = false,
1905 };
1906
1907 static const struct of_device_id stm32_dt_ids[] = {
1908         { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1909         { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1910         {},
1911 };
1912 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1913
1914 static int stm32_cryp_probe(struct platform_device *pdev)
1915 {
1916         struct device *dev = &pdev->dev;
1917         struct stm32_cryp *cryp;
1918         struct reset_control *rst;
1919         int irq, ret;
1920
1921         cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1922         if (!cryp)
1923                 return -ENOMEM;
1924
1925         cryp->caps = of_device_get_match_data(dev);
1926         if (!cryp->caps)
1927                 return -ENODEV;
1928
1929         cryp->dev = dev;
1930
1931         cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1932         if (IS_ERR(cryp->regs))
1933                 return PTR_ERR(cryp->regs);
1934
1935         irq = platform_get_irq(pdev, 0);
1936         if (irq < 0)
1937                 return irq;
1938
1939         ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1940                                         stm32_cryp_irq_thread, IRQF_ONESHOT,
1941                                         dev_name(dev), cryp);
1942         if (ret) {
1943                 dev_err(dev, "Cannot grab IRQ\n");
1944                 return ret;
1945         }
1946
1947         cryp->clk = devm_clk_get(dev, NULL);
1948         if (IS_ERR(cryp->clk)) {
1949                 dev_err(dev, "Could not get clock\n");
1950                 return PTR_ERR(cryp->clk);
1951         }
1952
1953         ret = clk_prepare_enable(cryp->clk);
1954         if (ret) {
1955                 dev_err(cryp->dev, "Failed to enable clock\n");
1956                 return ret;
1957         }
1958
1959         pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1960         pm_runtime_use_autosuspend(dev);
1961
1962         pm_runtime_get_noresume(dev);
1963         pm_runtime_set_active(dev);
1964         pm_runtime_enable(dev);
1965
1966         rst = devm_reset_control_get(dev, NULL);
1967         if (!IS_ERR(rst)) {
1968                 reset_control_assert(rst);
1969                 udelay(2);
1970                 reset_control_deassert(rst);
1971         }
1972
1973         platform_set_drvdata(pdev, cryp);
1974
1975         spin_lock(&cryp_list.lock);
1976         list_add(&cryp->list, &cryp_list.dev_list);
1977         spin_unlock(&cryp_list.lock);
1978
1979         /* Initialize crypto engine */
1980         cryp->engine = crypto_engine_alloc_init(dev, 1);
1981         if (!cryp->engine) {
1982                 dev_err(dev, "Could not init crypto engine\n");
1983                 ret = -ENOMEM;
1984                 goto err_engine1;
1985         }
1986
1987         ret = crypto_engine_start(cryp->engine);
1988         if (ret) {
1989                 dev_err(dev, "Could not start crypto engine\n");
1990                 goto err_engine2;
1991         }
1992
1993         ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
1994         if (ret) {
1995                 dev_err(dev, "Could not register algs\n");
1996                 goto err_algs;
1997         }
1998
1999         ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2000         if (ret)
2001                 goto err_aead_algs;
2002
2003         dev_info(dev, "Initialized\n");
2004
2005         pm_runtime_put_sync(dev);
2006
2007         return 0;
2008
2009 err_aead_algs:
2010         crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2011 err_algs:
2012 err_engine2:
2013         crypto_engine_exit(cryp->engine);
2014 err_engine1:
2015         spin_lock(&cryp_list.lock);
2016         list_del(&cryp->list);
2017         spin_unlock(&cryp_list.lock);
2018
2019         pm_runtime_disable(dev);
2020         pm_runtime_put_noidle(dev);
2021         pm_runtime_disable(dev);
2022         pm_runtime_put_noidle(dev);
2023
2024         clk_disable_unprepare(cryp->clk);
2025
2026         return ret;
2027 }
2028
2029 static int stm32_cryp_remove(struct platform_device *pdev)
2030 {
2031         struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2032         int ret;
2033
2034         if (!cryp)
2035                 return -ENODEV;
2036
2037         ret = pm_runtime_get_sync(cryp->dev);
2038         if (ret < 0)
2039                 return ret;
2040
2041         crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2042         crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2043
2044         crypto_engine_exit(cryp->engine);
2045
2046         spin_lock(&cryp_list.lock);
2047         list_del(&cryp->list);
2048         spin_unlock(&cryp_list.lock);
2049
2050         pm_runtime_disable(cryp->dev);
2051         pm_runtime_put_noidle(cryp->dev);
2052
2053         clk_disable_unprepare(cryp->clk);
2054
2055         return 0;
2056 }
2057
2058 #ifdef CONFIG_PM
2059 static int stm32_cryp_runtime_suspend(struct device *dev)
2060 {
2061         struct stm32_cryp *cryp = dev_get_drvdata(dev);
2062
2063         clk_disable_unprepare(cryp->clk);
2064
2065         return 0;
2066 }
2067
2068 static int stm32_cryp_runtime_resume(struct device *dev)
2069 {
2070         struct stm32_cryp *cryp = dev_get_drvdata(dev);
2071         int ret;
2072
2073         ret = clk_prepare_enable(cryp->clk);
2074         if (ret) {
2075                 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2076                 return ret;
2077         }
2078
2079         return 0;
2080 }
2081 #endif
2082
2083 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2084         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2085                                 pm_runtime_force_resume)
2086         SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2087                            stm32_cryp_runtime_resume, NULL)
2088 };
2089
2090 static struct platform_driver stm32_cryp_driver = {
2091         .probe  = stm32_cryp_probe,
2092         .remove = stm32_cryp_remove,
2093         .driver = {
2094                 .name           = DRIVER_NAME,
2095                 .pm             = &stm32_cryp_pm_ops,
2096                 .of_match_table = stm32_dt_ids,
2097         },
2098 };
2099
2100 module_platform_driver(stm32_cryp_driver);
2101
2102 MODULE_AUTHOR("Fabien Dessenne <[email protected]>");
2103 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2104 MODULE_LICENSE("GPL");
This page took 0.157417 seconds and 4 git commands to generate.