1 // SPDX-License-Identifier: GPL-2.0-or-later
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/percpu.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
43 #include "internals.h"
45 static DEFINE_IDR(spi_master_idr);
47 static void spidev_release(struct device *dev)
49 struct spi_device *spi = to_spi_device(dev);
51 spi_controller_put(spi->controller);
52 kfree(spi->driver_override);
53 free_percpu(spi->pcpu_statistics);
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 const struct spi_device *spi = to_spi_device(dev);
63 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
67 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 static DEVICE_ATTR_RO(modalias);
71 static ssize_t driver_override_store(struct device *dev,
72 struct device_attribute *a,
73 const char *buf, size_t count)
75 struct spi_device *spi = to_spi_device(dev);
78 ret = driver_set_override(dev, &spi->driver_override, buf, count);
85 static ssize_t driver_override_show(struct device *dev,
86 struct device_attribute *a, char *buf)
88 const struct spi_device *spi = to_spi_device(dev);
92 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
96 static DEVICE_ATTR_RW(driver_override);
98 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
100 struct spi_statistics __percpu *pcpu_stats;
103 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
105 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
110 for_each_possible_cpu(cpu) {
111 struct spi_statistics *stat;
113 stat = per_cpu_ptr(pcpu_stats, cpu);
114 u64_stats_init(&stat->syncp);
120 #define spi_pcpu_stats_totalize(ret, in, field) \
124 for_each_possible_cpu(i) { \
125 const struct spi_statistics *pcpu_stats; \
127 unsigned int start; \
128 pcpu_stats = per_cpu_ptr(in, i); \
130 start = u64_stats_fetch_begin( \
131 &pcpu_stats->syncp); \
132 inc = u64_stats_read(&pcpu_stats->field); \
133 } while (u64_stats_fetch_retry( \
134 &pcpu_stats->syncp, start)); \
139 #define SPI_STATISTICS_ATTRS(field, file) \
140 static ssize_t spi_controller_##field##_show(struct device *dev, \
141 struct device_attribute *attr, \
144 struct spi_controller *ctlr = container_of(dev, \
145 struct spi_controller, dev); \
146 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
148 static struct device_attribute dev_attr_spi_controller_##field = { \
149 .attr = { .name = file, .mode = 0444 }, \
150 .show = spi_controller_##field##_show, \
152 static ssize_t spi_device_##field##_show(struct device *dev, \
153 struct device_attribute *attr, \
156 struct spi_device *spi = to_spi_device(dev); \
157 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
159 static struct device_attribute dev_attr_spi_device_##field = { \
160 .attr = { .name = file, .mode = 0444 }, \
161 .show = spi_device_##field##_show, \
164 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \
165 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
170 spi_pcpu_stats_totalize(val, stat, field); \
171 len = sysfs_emit(buf, "%llu\n", val); \
174 SPI_STATISTICS_ATTRS(name, file)
176 #define SPI_STATISTICS_SHOW(field) \
177 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
180 SPI_STATISTICS_SHOW(messages);
181 SPI_STATISTICS_SHOW(transfers);
182 SPI_STATISTICS_SHOW(errors);
183 SPI_STATISTICS_SHOW(timedout);
185 SPI_STATISTICS_SHOW(spi_sync);
186 SPI_STATISTICS_SHOW(spi_sync_immediate);
187 SPI_STATISTICS_SHOW(spi_async);
189 SPI_STATISTICS_SHOW(bytes);
190 SPI_STATISTICS_SHOW(bytes_rx);
191 SPI_STATISTICS_SHOW(bytes_tx);
193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
194 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
195 "transfer_bytes_histo_" number, \
196 transfer_bytes_histo[index])
197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
215 SPI_STATISTICS_SHOW(transfers_split_maxsize);
217 static struct attribute *spi_dev_attrs[] = {
218 &dev_attr_modalias.attr,
219 &dev_attr_driver_override.attr,
223 static const struct attribute_group spi_dev_group = {
224 .attrs = spi_dev_attrs,
227 static struct attribute *spi_device_statistics_attrs[] = {
228 &dev_attr_spi_device_messages.attr,
229 &dev_attr_spi_device_transfers.attr,
230 &dev_attr_spi_device_errors.attr,
231 &dev_attr_spi_device_timedout.attr,
232 &dev_attr_spi_device_spi_sync.attr,
233 &dev_attr_spi_device_spi_sync_immediate.attr,
234 &dev_attr_spi_device_spi_async.attr,
235 &dev_attr_spi_device_bytes.attr,
236 &dev_attr_spi_device_bytes_rx.attr,
237 &dev_attr_spi_device_bytes_tx.attr,
238 &dev_attr_spi_device_transfer_bytes_histo0.attr,
239 &dev_attr_spi_device_transfer_bytes_histo1.attr,
240 &dev_attr_spi_device_transfer_bytes_histo2.attr,
241 &dev_attr_spi_device_transfer_bytes_histo3.attr,
242 &dev_attr_spi_device_transfer_bytes_histo4.attr,
243 &dev_attr_spi_device_transfer_bytes_histo5.attr,
244 &dev_attr_spi_device_transfer_bytes_histo6.attr,
245 &dev_attr_spi_device_transfer_bytes_histo7.attr,
246 &dev_attr_spi_device_transfer_bytes_histo8.attr,
247 &dev_attr_spi_device_transfer_bytes_histo9.attr,
248 &dev_attr_spi_device_transfer_bytes_histo10.attr,
249 &dev_attr_spi_device_transfer_bytes_histo11.attr,
250 &dev_attr_spi_device_transfer_bytes_histo12.attr,
251 &dev_attr_spi_device_transfer_bytes_histo13.attr,
252 &dev_attr_spi_device_transfer_bytes_histo14.attr,
253 &dev_attr_spi_device_transfer_bytes_histo15.attr,
254 &dev_attr_spi_device_transfer_bytes_histo16.attr,
255 &dev_attr_spi_device_transfers_split_maxsize.attr,
259 static const struct attribute_group spi_device_statistics_group = {
260 .name = "statistics",
261 .attrs = spi_device_statistics_attrs,
264 static const struct attribute_group *spi_dev_groups[] = {
266 &spi_device_statistics_group,
270 static struct attribute *spi_controller_statistics_attrs[] = {
271 &dev_attr_spi_controller_messages.attr,
272 &dev_attr_spi_controller_transfers.attr,
273 &dev_attr_spi_controller_errors.attr,
274 &dev_attr_spi_controller_timedout.attr,
275 &dev_attr_spi_controller_spi_sync.attr,
276 &dev_attr_spi_controller_spi_sync_immediate.attr,
277 &dev_attr_spi_controller_spi_async.attr,
278 &dev_attr_spi_controller_bytes.attr,
279 &dev_attr_spi_controller_bytes_rx.attr,
280 &dev_attr_spi_controller_bytes_tx.attr,
281 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
282 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
283 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
284 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
285 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
286 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
287 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
288 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
289 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
290 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
291 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
292 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
293 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
294 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
295 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
296 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
297 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
298 &dev_attr_spi_controller_transfers_split_maxsize.attr,
302 static const struct attribute_group spi_controller_statistics_group = {
303 .name = "statistics",
304 .attrs = spi_controller_statistics_attrs,
307 static const struct attribute_group *spi_master_groups[] = {
308 &spi_controller_statistics_group,
312 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
313 struct spi_transfer *xfer,
314 struct spi_controller *ctlr)
316 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
317 struct spi_statistics *stats;
323 stats = this_cpu_ptr(pcpu_stats);
324 u64_stats_update_begin(&stats->syncp);
326 u64_stats_inc(&stats->transfers);
327 u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
329 u64_stats_add(&stats->bytes, xfer->len);
330 if ((xfer->tx_buf) &&
331 (xfer->tx_buf != ctlr->dummy_tx))
332 u64_stats_add(&stats->bytes_tx, xfer->len);
333 if ((xfer->rx_buf) &&
334 (xfer->rx_buf != ctlr->dummy_rx))
335 u64_stats_add(&stats->bytes_rx, xfer->len);
337 u64_stats_update_end(&stats->syncp);
342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343 * and the sysfs version makes coldplug work too.
345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
347 while (id->name[0]) {
348 if (!strcmp(name, id->name))
355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
357 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
359 return spi_match_id(sdrv->id_table, sdev->modalias);
361 EXPORT_SYMBOL_GPL(spi_get_device_id);
363 const void *spi_get_device_match_data(const struct spi_device *sdev)
367 match = device_get_match_data(&sdev->dev);
371 return (const void *)spi_get_device_id(sdev)->driver_data;
373 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
375 static int spi_match_device(struct device *dev, struct device_driver *drv)
377 const struct spi_device *spi = to_spi_device(dev);
378 const struct spi_driver *sdrv = to_spi_driver(drv);
380 /* Check override first, and if set, only use the named driver */
381 if (spi->driver_override)
382 return strcmp(spi->driver_override, drv->name) == 0;
384 /* Attempt an OF style match */
385 if (of_driver_match_device(dev, drv))
389 if (acpi_driver_match_device(dev, drv))
393 return !!spi_match_id(sdrv->id_table, spi->modalias);
395 return strcmp(spi->modalias, drv->name) == 0;
398 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
400 const struct spi_device *spi = to_spi_device(dev);
403 rc = acpi_device_uevent_modalias(dev, env);
407 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
410 static int spi_probe(struct device *dev)
412 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
413 struct spi_device *spi = to_spi_device(dev);
416 ret = of_clk_set_defaults(dev->of_node, false);
421 spi->irq = of_irq_get(dev->of_node, 0);
422 if (spi->irq == -EPROBE_DEFER)
423 return -EPROBE_DEFER;
428 ret = dev_pm_domain_attach(dev, true);
433 ret = sdrv->probe(spi);
435 dev_pm_domain_detach(dev, true);
441 static void spi_remove(struct device *dev)
443 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
446 sdrv->remove(to_spi_device(dev));
448 dev_pm_domain_detach(dev, true);
451 static void spi_shutdown(struct device *dev)
454 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
457 sdrv->shutdown(to_spi_device(dev));
461 struct bus_type spi_bus_type = {
463 .dev_groups = spi_dev_groups,
464 .match = spi_match_device,
465 .uevent = spi_uevent,
467 .remove = spi_remove,
468 .shutdown = spi_shutdown,
470 EXPORT_SYMBOL_GPL(spi_bus_type);
473 * __spi_register_driver - register a SPI driver
474 * @owner: owner module of the driver to register
475 * @sdrv: the driver to register
478 * Return: zero on success, else a negative error code.
480 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
482 sdrv->driver.owner = owner;
483 sdrv->driver.bus = &spi_bus_type;
486 * For Really Good Reasons we use spi: modaliases not of:
487 * modaliases for DT so module autoloading won't work if we
488 * don't have a spi_device_id as well as a compatible string.
490 if (sdrv->driver.of_match_table) {
491 const struct of_device_id *of_id;
493 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
497 /* Strip off any vendor prefix */
498 of_name = strnchr(of_id->compatible,
499 sizeof(of_id->compatible), ',');
503 of_name = of_id->compatible;
505 if (sdrv->id_table) {
506 const struct spi_device_id *spi_id;
508 spi_id = spi_match_id(sdrv->id_table, of_name);
512 if (strcmp(sdrv->driver.name, of_name) == 0)
516 pr_warn("SPI driver %s has no spi_device_id for %s\n",
517 sdrv->driver.name, of_id->compatible);
521 return driver_register(&sdrv->driver);
523 EXPORT_SYMBOL_GPL(__spi_register_driver);
525 /*-------------------------------------------------------------------------*/
528 * SPI devices should normally not be created by SPI device drivers; that
529 * would make them board-specific. Similarly with SPI controller drivers.
530 * Device registration normally goes into like arch/.../mach.../board-YYY.c
531 * with other readonly (flashable) information about mainboard devices.
535 struct list_head list;
536 struct spi_board_info board_info;
539 static LIST_HEAD(board_list);
540 static LIST_HEAD(spi_controller_list);
543 * Used to protect add/del operation for board_info list and
544 * spi_controller list, and their matching process also used
545 * to protect object of type struct idr.
547 static DEFINE_MUTEX(board_lock);
550 * spi_alloc_device - Allocate a new SPI device
551 * @ctlr: Controller to which device is connected
554 * Allows a driver to allocate and initialize a spi_device without
555 * registering it immediately. This allows a driver to directly
556 * fill the spi_device with device parameters before calling
557 * spi_add_device() on it.
559 * Caller is responsible to call spi_add_device() on the returned
560 * spi_device structure to add it to the SPI controller. If the caller
561 * needs to discard the spi_device without adding it, then it should
562 * call spi_dev_put() on it.
564 * Return: a pointer to the new device, or NULL.
566 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
568 struct spi_device *spi;
570 if (!spi_controller_get(ctlr))
573 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
575 spi_controller_put(ctlr);
579 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
580 if (!spi->pcpu_statistics) {
582 spi_controller_put(ctlr);
586 spi->master = spi->controller = ctlr;
587 spi->dev.parent = &ctlr->dev;
588 spi->dev.bus = &spi_bus_type;
589 spi->dev.release = spidev_release;
590 spi->mode = ctlr->buswidth_override_bits;
592 device_initialize(&spi->dev);
595 EXPORT_SYMBOL_GPL(spi_alloc_device);
597 static void spi_dev_set_name(struct spi_device *spi)
599 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
602 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
606 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
607 spi_get_chipselect(spi, 0));
610 static int spi_dev_check(struct device *dev, void *data)
612 struct spi_device *spi = to_spi_device(dev);
613 struct spi_device *new_spi = data;
615 if (spi->controller == new_spi->controller &&
616 spi_get_chipselect(spi, 0) == spi_get_chipselect(new_spi, 0))
621 static void spi_cleanup(struct spi_device *spi)
623 if (spi->controller->cleanup)
624 spi->controller->cleanup(spi);
627 static int __spi_add_device(struct spi_device *spi)
629 struct spi_controller *ctlr = spi->controller;
630 struct device *dev = ctlr->dev.parent;
634 * We need to make sure there's no other device with this
635 * chipselect **BEFORE** we call setup(), else we'll trash
638 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
640 dev_err(dev, "chipselect %d already in use\n",
641 spi_get_chipselect(spi, 0));
645 /* Controller may unregister concurrently */
646 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
647 !device_is_registered(&ctlr->dev)) {
652 spi_set_csgpiod(spi, 0, ctlr->cs_gpiods[spi_get_chipselect(spi, 0)]);
655 * Drivers may modify this initial i/o setup, but will
656 * normally rely on the device being setup. Devices
657 * using SPI_CS_HIGH can't coexist well otherwise...
659 status = spi_setup(spi);
661 dev_err(dev, "can't setup %s, status %d\n",
662 dev_name(&spi->dev), status);
666 /* Device may be bound to an active driver when this returns */
667 status = device_add(&spi->dev);
669 dev_err(dev, "can't add %s, status %d\n",
670 dev_name(&spi->dev), status);
673 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
680 * spi_add_device - Add spi_device allocated with spi_alloc_device
681 * @spi: spi_device to register
683 * Companion function to spi_alloc_device. Devices allocated with
684 * spi_alloc_device can be added onto the spi bus with this function.
686 * Return: 0 on success; negative errno on failure
688 int spi_add_device(struct spi_device *spi)
690 struct spi_controller *ctlr = spi->controller;
691 struct device *dev = ctlr->dev.parent;
694 /* Chipselects are numbered 0..max; validate. */
695 if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
696 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
697 ctlr->num_chipselect);
701 /* Set the bus ID string */
702 spi_dev_set_name(spi);
704 mutex_lock(&ctlr->add_lock);
705 status = __spi_add_device(spi);
706 mutex_unlock(&ctlr->add_lock);
709 EXPORT_SYMBOL_GPL(spi_add_device);
711 static int spi_add_device_locked(struct spi_device *spi)
713 struct spi_controller *ctlr = spi->controller;
714 struct device *dev = ctlr->dev.parent;
716 /* Chipselects are numbered 0..max; validate. */
717 if (spi_get_chipselect(spi, 0) >= ctlr->num_chipselect) {
718 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, 0),
719 ctlr->num_chipselect);
723 /* Set the bus ID string */
724 spi_dev_set_name(spi);
726 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
727 return __spi_add_device(spi);
731 * spi_new_device - instantiate one new SPI device
732 * @ctlr: Controller to which device is connected
733 * @chip: Describes the SPI device
736 * On typical mainboards, this is purely internal; and it's not needed
737 * after board init creates the hard-wired devices. Some development
738 * platforms may not be able to use spi_register_board_info though, and
739 * this is exported so that for example a USB or parport based adapter
740 * driver could add devices (which it would learn about out-of-band).
742 * Return: the new device, or NULL.
744 struct spi_device *spi_new_device(struct spi_controller *ctlr,
745 struct spi_board_info *chip)
747 struct spi_device *proxy;
751 * NOTE: caller did any chip->bus_num checks necessary.
753 * Also, unless we change the return value convention to use
754 * error-or-pointer (not NULL-or-pointer), troubleshootability
755 * suggests syslogged diagnostics are best here (ugh).
758 proxy = spi_alloc_device(ctlr);
762 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
764 spi_set_chipselect(proxy, 0, chip->chip_select);
765 proxy->max_speed_hz = chip->max_speed_hz;
766 proxy->mode = chip->mode;
767 proxy->irq = chip->irq;
768 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
769 proxy->dev.platform_data = (void *) chip->platform_data;
770 proxy->controller_data = chip->controller_data;
771 proxy->controller_state = NULL;
774 status = device_add_software_node(&proxy->dev, chip->swnode);
776 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
777 chip->modalias, status);
782 status = spi_add_device(proxy);
789 device_remove_software_node(&proxy->dev);
793 EXPORT_SYMBOL_GPL(spi_new_device);
796 * spi_unregister_device - unregister a single SPI device
797 * @spi: spi_device to unregister
799 * Start making the passed SPI device vanish. Normally this would be handled
800 * by spi_unregister_controller().
802 void spi_unregister_device(struct spi_device *spi)
807 if (spi->dev.of_node) {
808 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
809 of_node_put(spi->dev.of_node);
811 if (ACPI_COMPANION(&spi->dev))
812 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
813 device_remove_software_node(&spi->dev);
814 device_del(&spi->dev);
816 put_device(&spi->dev);
818 EXPORT_SYMBOL_GPL(spi_unregister_device);
820 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
821 struct spi_board_info *bi)
823 struct spi_device *dev;
825 if (ctlr->bus_num != bi->bus_num)
828 dev = spi_new_device(ctlr, bi);
830 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
835 * spi_register_board_info - register SPI devices for a given board
836 * @info: array of chip descriptors
837 * @n: how many descriptors are provided
840 * Board-specific early init code calls this (probably during arch_initcall)
841 * with segments of the SPI device table. Any device nodes are created later,
842 * after the relevant parent SPI controller (bus_num) is defined. We keep
843 * this table of devices forever, so that reloading a controller driver will
844 * not make Linux forget about these hard-wired devices.
846 * Other code can also call this, e.g. a particular add-on board might provide
847 * SPI devices through its expansion connector, so code initializing that board
848 * would naturally declare its SPI devices.
850 * The board info passed can safely be __initdata ... but be careful of
851 * any embedded pointers (platform_data, etc), they're copied as-is.
853 * Return: zero on success, else a negative error code.
855 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
857 struct boardinfo *bi;
863 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
867 for (i = 0; i < n; i++, bi++, info++) {
868 struct spi_controller *ctlr;
870 memcpy(&bi->board_info, info, sizeof(*info));
872 mutex_lock(&board_lock);
873 list_add_tail(&bi->list, &board_list);
874 list_for_each_entry(ctlr, &spi_controller_list, list)
875 spi_match_controller_to_boardinfo(ctlr,
877 mutex_unlock(&board_lock);
883 /*-------------------------------------------------------------------------*/
885 /* Core methods for SPI resource management */
888 * spi_res_alloc - allocate a spi resource that is life-cycle managed
889 * during the processing of a spi_message while using
891 * @spi: the spi device for which we allocate memory
892 * @release: the release code to execute for this resource
893 * @size: size to alloc and return
894 * @gfp: GFP allocation flags
896 * Return: the pointer to the allocated data
898 * This may get enhanced in the future to allocate from a memory pool
899 * of the @spi_device or @spi_controller to avoid repeated allocations.
901 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
902 size_t size, gfp_t gfp)
904 struct spi_res *sres;
906 sres = kzalloc(sizeof(*sres) + size, gfp);
910 INIT_LIST_HEAD(&sres->entry);
911 sres->release = release;
917 * spi_res_free - free an spi resource
918 * @res: pointer to the custom data of a resource
920 static void spi_res_free(void *res)
922 struct spi_res *sres = container_of(res, struct spi_res, data);
927 WARN_ON(!list_empty(&sres->entry));
932 * spi_res_add - add a spi_res to the spi_message
933 * @message: the spi message
934 * @res: the spi_resource
936 static void spi_res_add(struct spi_message *message, void *res)
938 struct spi_res *sres = container_of(res, struct spi_res, data);
940 WARN_ON(!list_empty(&sres->entry));
941 list_add_tail(&sres->entry, &message->resources);
945 * spi_res_release - release all spi resources for this message
946 * @ctlr: the @spi_controller
947 * @message: the @spi_message
949 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
951 struct spi_res *res, *tmp;
953 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
955 res->release(ctlr, message, res->data);
957 list_del(&res->entry);
963 /*-------------------------------------------------------------------------*/
965 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
967 bool activate = enable;
970 * Avoid calling into the driver (or doing delays) if the chip select
971 * isn't actually changing from the last time this was called.
973 if (!force && ((enable && spi->controller->last_cs == spi_get_chipselect(spi, 0)) ||
974 (!enable && spi->controller->last_cs != spi_get_chipselect(spi, 0))) &&
975 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
978 trace_spi_set_cs(spi, activate);
980 spi->controller->last_cs = enable ? spi_get_chipselect(spi, 0) : -1;
981 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
983 if ((spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) && !activate)
984 spi_delay_exec(&spi->cs_hold, NULL);
986 if (spi->mode & SPI_CS_HIGH)
989 if (spi_get_csgpiod(spi, 0)) {
990 if (!(spi->mode & SPI_NO_CS)) {
992 * Historically ACPI has no means of the GPIO polarity and
993 * thus the SPISerialBus() resource defines it on the per-chip
994 * basis. In order to avoid a chain of negations, the GPIO
995 * polarity is considered being Active High. Even for the cases
996 * when _DSD() is involved (in the updated versions of ACPI)
997 * the GPIO CS polarity must be defined Active High to avoid
998 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1001 if (has_acpi_companion(&spi->dev))
1002 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), !enable);
1004 /* Polarity handled by GPIO library */
1005 gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), activate);
1007 /* Some SPI masters need both GPIO CS & slave_select */
1008 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
1009 spi->controller->set_cs)
1010 spi->controller->set_cs(spi, !enable);
1011 } else if (spi->controller->set_cs) {
1012 spi->controller->set_cs(spi, !enable);
1015 if (spi_get_csgpiod(spi, 0) || !spi->controller->set_cs_timing) {
1017 spi_delay_exec(&spi->cs_setup, NULL);
1019 spi_delay_exec(&spi->cs_inactive, NULL);
1023 #ifdef CONFIG_HAS_DMA
1024 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1025 struct sg_table *sgt, void *buf, size_t len,
1026 enum dma_data_direction dir, unsigned long attrs)
1028 const bool vmalloced_buf = is_vmalloc_addr(buf);
1029 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1030 #ifdef CONFIG_HIGHMEM
1031 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1032 (unsigned long)buf < (PKMAP_BASE +
1033 (LAST_PKMAP * PAGE_SIZE)));
1035 const bool kmap_buf = false;
1039 struct page *vm_page;
1040 struct scatterlist *sg;
1045 if (vmalloced_buf || kmap_buf) {
1046 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1047 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1048 } else if (virt_addr_valid(buf)) {
1049 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1050 sgs = DIV_ROUND_UP(len, desc_len);
1055 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1060 for (i = 0; i < sgs; i++) {
1062 if (vmalloced_buf || kmap_buf) {
1064 * Next scatterlist entry size is the minimum between
1065 * the desc_len and the remaining buffer length that
1068 min = min_t(size_t, desc_len,
1070 PAGE_SIZE - offset_in_page(buf)));
1072 vm_page = vmalloc_to_page(buf);
1074 vm_page = kmap_to_page(buf);
1079 sg_set_page(sg, vm_page,
1080 min, offset_in_page(buf));
1082 min = min_t(size_t, len, desc_len);
1084 sg_set_buf(sg, sg_buf, min);
1092 ret = dma_map_sgtable(dev, sgt, dir, attrs);
1101 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1102 struct sg_table *sgt, void *buf, size_t len,
1103 enum dma_data_direction dir)
1105 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1108 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1109 struct device *dev, struct sg_table *sgt,
1110 enum dma_data_direction dir,
1111 unsigned long attrs)
1113 if (sgt->orig_nents) {
1114 dma_unmap_sgtable(dev, sgt, dir, attrs);
1116 sgt->orig_nents = 0;
1121 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1122 struct sg_table *sgt, enum dma_data_direction dir)
1124 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1127 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1129 struct device *tx_dev, *rx_dev;
1130 struct spi_transfer *xfer;
1137 tx_dev = ctlr->dma_tx->device->dev;
1138 else if (ctlr->dma_map_dev)
1139 tx_dev = ctlr->dma_map_dev;
1141 tx_dev = ctlr->dev.parent;
1144 rx_dev = ctlr->dma_rx->device->dev;
1145 else if (ctlr->dma_map_dev)
1146 rx_dev = ctlr->dma_map_dev;
1148 rx_dev = ctlr->dev.parent;
1150 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1151 /* The sync is done before each transfer. */
1152 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1154 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1157 if (xfer->tx_buf != NULL) {
1158 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1159 (void *)xfer->tx_buf,
1160 xfer->len, DMA_TO_DEVICE,
1166 if (xfer->rx_buf != NULL) {
1167 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1168 xfer->rx_buf, xfer->len,
1169 DMA_FROM_DEVICE, attrs);
1171 spi_unmap_buf_attrs(ctlr, tx_dev,
1172 &xfer->tx_sg, DMA_TO_DEVICE,
1180 ctlr->cur_rx_dma_dev = rx_dev;
1181 ctlr->cur_tx_dma_dev = tx_dev;
1182 ctlr->cur_msg_mapped = true;
1187 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1189 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1190 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1191 struct spi_transfer *xfer;
1193 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1196 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1197 /* The sync has already been done after each transfer. */
1198 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1200 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1203 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1204 DMA_FROM_DEVICE, attrs);
1205 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1206 DMA_TO_DEVICE, attrs);
1209 ctlr->cur_msg_mapped = false;
1214 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1215 struct spi_transfer *xfer)
1217 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1218 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1220 if (!ctlr->cur_msg_mapped)
1223 if (xfer->tx_sg.orig_nents)
1224 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1225 if (xfer->rx_sg.orig_nents)
1226 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1229 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1230 struct spi_transfer *xfer)
1232 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1233 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1235 if (!ctlr->cur_msg_mapped)
1238 if (xfer->rx_sg.orig_nents)
1239 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1240 if (xfer->tx_sg.orig_nents)
1241 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1243 #else /* !CONFIG_HAS_DMA */
1244 static inline int __spi_map_msg(struct spi_controller *ctlr,
1245 struct spi_message *msg)
1250 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1251 struct spi_message *msg)
1256 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1257 struct spi_transfer *xfer)
1261 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1262 struct spi_transfer *xfer)
1265 #endif /* !CONFIG_HAS_DMA */
1267 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1268 struct spi_message *msg)
1270 struct spi_transfer *xfer;
1272 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1274 * Restore the original value of tx_buf or rx_buf if they are
1277 if (xfer->tx_buf == ctlr->dummy_tx)
1278 xfer->tx_buf = NULL;
1279 if (xfer->rx_buf == ctlr->dummy_rx)
1280 xfer->rx_buf = NULL;
1283 return __spi_unmap_msg(ctlr, msg);
1286 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1288 struct spi_transfer *xfer;
1290 unsigned int max_tx, max_rx;
1292 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1293 && !(msg->spi->mode & SPI_3WIRE)) {
1297 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1298 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1300 max_tx = max(xfer->len, max_tx);
1301 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1303 max_rx = max(xfer->len, max_rx);
1307 tmp = krealloc(ctlr->dummy_tx, max_tx,
1308 GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1311 ctlr->dummy_tx = tmp;
1315 tmp = krealloc(ctlr->dummy_rx, max_rx,
1316 GFP_KERNEL | GFP_DMA);
1319 ctlr->dummy_rx = tmp;
1322 if (max_tx || max_rx) {
1323 list_for_each_entry(xfer, &msg->transfers,
1328 xfer->tx_buf = ctlr->dummy_tx;
1330 xfer->rx_buf = ctlr->dummy_rx;
1335 return __spi_map_msg(ctlr, msg);
1338 static int spi_transfer_wait(struct spi_controller *ctlr,
1339 struct spi_message *msg,
1340 struct spi_transfer *xfer)
1342 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1343 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1344 u32 speed_hz = xfer->speed_hz;
1345 unsigned long long ms;
1347 if (spi_controller_is_slave(ctlr)) {
1348 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1349 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1357 * For each byte we wait for 8 cycles of the SPI clock.
1358 * Since speed is defined in Hz and we want milliseconds,
1359 * use respective multiplier, but before the division,
1360 * otherwise we may get 0 for short transfers.
1362 ms = 8LL * MSEC_PER_SEC * xfer->len;
1363 do_div(ms, speed_hz);
1366 * Increase it twice and add 200 ms tolerance, use
1367 * predefined maximum in case of overflow.
1373 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1374 msecs_to_jiffies(ms));
1377 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1378 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1379 dev_err(&msg->spi->dev,
1380 "SPI transfer timed out\n");
1388 static void _spi_transfer_delay_ns(u32 ns)
1392 if (ns <= NSEC_PER_USEC) {
1395 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1400 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1404 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1406 u32 delay = _delay->value;
1407 u32 unit = _delay->unit;
1414 case SPI_DELAY_UNIT_USECS:
1415 delay *= NSEC_PER_USEC;
1417 case SPI_DELAY_UNIT_NSECS:
1418 /* Nothing to do here */
1420 case SPI_DELAY_UNIT_SCK:
1421 /* Clock cycles need to be obtained from spi_transfer */
1425 * If there is unknown effective speed, approximate it
1426 * by underestimating with half of the requested hz.
1428 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1432 /* Convert delay to nanoseconds */
1433 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1441 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1443 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1452 delay = spi_delay_to_ns(_delay, xfer);
1456 _spi_transfer_delay_ns(delay);
1460 EXPORT_SYMBOL_GPL(spi_delay_exec);
1462 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1463 struct spi_transfer *xfer)
1465 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1466 u32 delay = xfer->cs_change_delay.value;
1467 u32 unit = xfer->cs_change_delay.unit;
1470 /* Return early on "fast" mode - for everything but USECS */
1472 if (unit == SPI_DELAY_UNIT_USECS)
1473 _spi_transfer_delay_ns(default_delay_ns);
1477 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1479 dev_err_once(&msg->spi->dev,
1480 "Use of unsupported delay unit %i, using default of %luus\n",
1481 unit, default_delay_ns / NSEC_PER_USEC);
1482 _spi_transfer_delay_ns(default_delay_ns);
1486 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1487 struct spi_transfer *xfer)
1489 _spi_transfer_cs_change_delay(msg, xfer);
1491 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1494 * spi_transfer_one_message - Default implementation of transfer_one_message()
1496 * This is a standard implementation of transfer_one_message() for
1497 * drivers which implement a transfer_one() operation. It provides
1498 * standard handling of delays and chip select management.
1500 static int spi_transfer_one_message(struct spi_controller *ctlr,
1501 struct spi_message *msg)
1503 struct spi_transfer *xfer;
1504 bool keep_cs = false;
1506 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1507 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1509 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1510 spi_set_cs(msg->spi, !xfer->cs_off, false);
1512 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1513 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1515 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1516 trace_spi_transfer_start(msg, xfer);
1518 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1519 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1521 if (!ctlr->ptp_sts_supported) {
1522 xfer->ptp_sts_word_pre = 0;
1523 ptp_read_system_prets(xfer->ptp_sts);
1526 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1527 reinit_completion(&ctlr->xfer_completion);
1530 spi_dma_sync_for_device(ctlr, xfer);
1531 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1533 spi_dma_sync_for_cpu(ctlr, xfer);
1535 if (ctlr->cur_msg_mapped &&
1536 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1537 __spi_unmap_msg(ctlr, msg);
1538 ctlr->fallback = true;
1539 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1543 SPI_STATISTICS_INCREMENT_FIELD(statm,
1545 SPI_STATISTICS_INCREMENT_FIELD(stats,
1547 dev_err(&msg->spi->dev,
1548 "SPI transfer failed: %d\n", ret);
1553 ret = spi_transfer_wait(ctlr, msg, xfer);
1558 spi_dma_sync_for_cpu(ctlr, xfer);
1561 dev_err(&msg->spi->dev,
1562 "Bufferless transfer has length %u\n",
1566 if (!ctlr->ptp_sts_supported) {
1567 ptp_read_system_postts(xfer->ptp_sts);
1568 xfer->ptp_sts_word_post = xfer->len;
1571 trace_spi_transfer_stop(msg, xfer);
1573 if (msg->status != -EINPROGRESS)
1576 spi_transfer_delay_exec(xfer);
1578 if (xfer->cs_change) {
1579 if (list_is_last(&xfer->transfer_list,
1584 spi_set_cs(msg->spi, false, false);
1585 _spi_transfer_cs_change_delay(msg, xfer);
1586 if (!list_next_entry(xfer, transfer_list)->cs_off)
1587 spi_set_cs(msg->spi, true, false);
1589 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1590 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1591 spi_set_cs(msg->spi, xfer->cs_off, false);
1594 msg->actual_length += xfer->len;
1598 if (ret != 0 || !keep_cs)
1599 spi_set_cs(msg->spi, false, false);
1601 if (msg->status == -EINPROGRESS)
1604 if (msg->status && ctlr->handle_err)
1605 ctlr->handle_err(ctlr, msg);
1607 spi_finalize_current_message(ctlr);
1613 * spi_finalize_current_transfer - report completion of a transfer
1614 * @ctlr: the controller reporting completion
1616 * Called by SPI drivers using the core transfer_one_message()
1617 * implementation to notify it that the current interrupt driven
1618 * transfer has finished and the next one may be scheduled.
1620 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1622 complete(&ctlr->xfer_completion);
1624 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1626 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1628 if (ctlr->auto_runtime_pm) {
1629 pm_runtime_mark_last_busy(ctlr->dev.parent);
1630 pm_runtime_put_autosuspend(ctlr->dev.parent);
1634 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1635 struct spi_message *msg, bool was_busy)
1637 struct spi_transfer *xfer;
1640 if (!was_busy && ctlr->auto_runtime_pm) {
1641 ret = pm_runtime_get_sync(ctlr->dev.parent);
1643 pm_runtime_put_noidle(ctlr->dev.parent);
1644 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1651 trace_spi_controller_busy(ctlr);
1653 if (!was_busy && ctlr->prepare_transfer_hardware) {
1654 ret = ctlr->prepare_transfer_hardware(ctlr);
1657 "failed to prepare transfer hardware: %d\n",
1660 if (ctlr->auto_runtime_pm)
1661 pm_runtime_put(ctlr->dev.parent);
1664 spi_finalize_current_message(ctlr);
1670 trace_spi_message_start(msg);
1672 ret = spi_split_transfers_maxsize(ctlr, msg,
1673 spi_max_transfer_size(msg->spi),
1674 GFP_KERNEL | GFP_DMA);
1677 spi_finalize_current_message(ctlr);
1681 if (ctlr->prepare_message) {
1682 ret = ctlr->prepare_message(ctlr, msg);
1684 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1687 spi_finalize_current_message(ctlr);
1690 msg->prepared = true;
1693 ret = spi_map_msg(ctlr, msg);
1696 spi_finalize_current_message(ctlr);
1700 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1701 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1702 xfer->ptp_sts_word_pre = 0;
1703 ptp_read_system_prets(xfer->ptp_sts);
1708 * Drivers implementation of transfer_one_message() must arrange for
1709 * spi_finalize_current_message() to get called. Most drivers will do
1710 * this in the calling context, but some don't. For those cases, a
1711 * completion is used to guarantee that this function does not return
1712 * until spi_finalize_current_message() is done accessing
1714 * Use of the following two flags enable to opportunistically skip the
1715 * use of the completion since its use involves expensive spin locks.
1716 * In case of a race with the context that calls
1717 * spi_finalize_current_message() the completion will always be used,
1718 * due to strict ordering of these flags using barriers.
1720 WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1721 WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1722 reinit_completion(&ctlr->cur_msg_completion);
1723 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1725 ret = ctlr->transfer_one_message(ctlr, msg);
1728 "failed to transfer one message from queue\n");
1732 WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1733 smp_mb(); /* See spi_finalize_current_message()... */
1734 if (READ_ONCE(ctlr->cur_msg_incomplete))
1735 wait_for_completion(&ctlr->cur_msg_completion);
1741 * __spi_pump_messages - function which processes spi message queue
1742 * @ctlr: controller to process queue for
1743 * @in_kthread: true if we are in the context of the message pump thread
1745 * This function checks if there is any spi message in the queue that
1746 * needs processing and if so call out to the driver to initialize hardware
1747 * and transfer each message.
1749 * Note that it is called both from the kthread itself and also from
1750 * inside spi_sync(); the queue extraction handling at the top of the
1751 * function should deal with this safely.
1753 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1755 struct spi_message *msg;
1756 bool was_busy = false;
1757 unsigned long flags;
1760 /* Take the IO mutex */
1761 mutex_lock(&ctlr->io_mutex);
1764 spin_lock_irqsave(&ctlr->queue_lock, flags);
1766 /* Make sure we are not already running a message */
1770 /* Check if the queue is idle */
1771 if (list_empty(&ctlr->queue) || !ctlr->running) {
1775 /* Defer any non-atomic teardown to the thread */
1777 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1778 !ctlr->unprepare_transfer_hardware) {
1779 spi_idle_runtime_pm(ctlr);
1781 ctlr->queue_empty = true;
1782 trace_spi_controller_idle(ctlr);
1784 kthread_queue_work(ctlr->kworker,
1785 &ctlr->pump_messages);
1791 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1793 kfree(ctlr->dummy_rx);
1794 ctlr->dummy_rx = NULL;
1795 kfree(ctlr->dummy_tx);
1796 ctlr->dummy_tx = NULL;
1797 if (ctlr->unprepare_transfer_hardware &&
1798 ctlr->unprepare_transfer_hardware(ctlr))
1800 "failed to unprepare transfer hardware\n");
1801 spi_idle_runtime_pm(ctlr);
1802 trace_spi_controller_idle(ctlr);
1804 spin_lock_irqsave(&ctlr->queue_lock, flags);
1805 ctlr->queue_empty = true;
1809 /* Extract head of queue */
1810 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1811 ctlr->cur_msg = msg;
1813 list_del_init(&msg->queue);
1818 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1820 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1821 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1823 ctlr->cur_msg = NULL;
1824 ctlr->fallback = false;
1826 mutex_unlock(&ctlr->io_mutex);
1828 /* Prod the scheduler in case transfer_one() was busy waiting */
1834 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1835 mutex_unlock(&ctlr->io_mutex);
1839 * spi_pump_messages - kthread work function which processes spi message queue
1840 * @work: pointer to kthread work struct contained in the controller struct
1842 static void spi_pump_messages(struct kthread_work *work)
1844 struct spi_controller *ctlr =
1845 container_of(work, struct spi_controller, pump_messages);
1847 __spi_pump_messages(ctlr, true);
1851 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1852 * @ctlr: Pointer to the spi_controller structure of the driver
1853 * @xfer: Pointer to the transfer being timestamped
1854 * @progress: How many words (not bytes) have been transferred so far
1855 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1856 * transfer, for less jitter in time measurement. Only compatible
1857 * with PIO drivers. If true, must follow up with
1858 * spi_take_timestamp_post or otherwise system will crash.
1859 * WARNING: for fully predictable results, the CPU frequency must
1860 * also be under control (governor).
1862 * This is a helper for drivers to collect the beginning of the TX timestamp
1863 * for the requested byte from the SPI transfer. The frequency with which this
1864 * function must be called (once per word, once for the whole transfer, once
1865 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1866 * greater than or equal to the requested byte at the time of the call. The
1867 * timestamp is only taken once, at the first such call. It is assumed that
1868 * the driver advances its @tx buffer pointer monotonically.
1870 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1871 struct spi_transfer *xfer,
1872 size_t progress, bool irqs_off)
1877 if (xfer->timestamped)
1880 if (progress > xfer->ptp_sts_word_pre)
1883 /* Capture the resolution of the timestamp */
1884 xfer->ptp_sts_word_pre = progress;
1887 local_irq_save(ctlr->irq_flags);
1891 ptp_read_system_prets(xfer->ptp_sts);
1893 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1896 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1897 * @ctlr: Pointer to the spi_controller structure of the driver
1898 * @xfer: Pointer to the transfer being timestamped
1899 * @progress: How many words (not bytes) have been transferred so far
1900 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1902 * This is a helper for drivers to collect the end of the TX timestamp for
1903 * the requested byte from the SPI transfer. Can be called with an arbitrary
1904 * frequency: only the first call where @tx exceeds or is equal to the
1905 * requested word will be timestamped.
1907 void spi_take_timestamp_post(struct spi_controller *ctlr,
1908 struct spi_transfer *xfer,
1909 size_t progress, bool irqs_off)
1914 if (xfer->timestamped)
1917 if (progress < xfer->ptp_sts_word_post)
1920 ptp_read_system_postts(xfer->ptp_sts);
1923 local_irq_restore(ctlr->irq_flags);
1927 /* Capture the resolution of the timestamp */
1928 xfer->ptp_sts_word_post = progress;
1930 xfer->timestamped = 1;
1932 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1935 * spi_set_thread_rt - set the controller to pump at realtime priority
1936 * @ctlr: controller to boost priority of
1938 * This can be called because the controller requested realtime priority
1939 * (by setting the ->rt value before calling spi_register_controller()) or
1940 * because a device on the bus said that its transfers needed realtime
1943 * NOTE: at the moment if any device on a bus says it needs realtime then
1944 * the thread will be at realtime priority for all transfers on that
1945 * controller. If this eventually becomes a problem we may see if we can
1946 * find a way to boost the priority only temporarily during relevant
1949 static void spi_set_thread_rt(struct spi_controller *ctlr)
1951 dev_info(&ctlr->dev,
1952 "will run message pump with realtime priority\n");
1953 sched_set_fifo(ctlr->kworker->task);
1956 static int spi_init_queue(struct spi_controller *ctlr)
1958 ctlr->running = false;
1960 ctlr->queue_empty = true;
1962 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1963 if (IS_ERR(ctlr->kworker)) {
1964 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1965 return PTR_ERR(ctlr->kworker);
1968 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1971 * Controller config will indicate if this controller should run the
1972 * message pump with high (realtime) priority to reduce the transfer
1973 * latency on the bus by minimising the delay between a transfer
1974 * request and the scheduling of the message pump thread. Without this
1975 * setting the message pump thread will remain at default priority.
1978 spi_set_thread_rt(ctlr);
1984 * spi_get_next_queued_message() - called by driver to check for queued
1986 * @ctlr: the controller to check for queued messages
1988 * If there are more messages in the queue, the next message is returned from
1991 * Return: the next message in the queue, else NULL if the queue is empty.
1993 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1995 struct spi_message *next;
1996 unsigned long flags;
1998 /* Get a pointer to the next message, if any */
1999 spin_lock_irqsave(&ctlr->queue_lock, flags);
2000 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2002 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2006 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2009 * spi_finalize_current_message() - the current message is complete
2010 * @ctlr: the controller to return the message to
2012 * Called by the driver to notify the core that the message in the front of the
2013 * queue is complete and can be removed from the queue.
2015 void spi_finalize_current_message(struct spi_controller *ctlr)
2017 struct spi_transfer *xfer;
2018 struct spi_message *mesg;
2021 mesg = ctlr->cur_msg;
2023 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2024 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2025 ptp_read_system_postts(xfer->ptp_sts);
2026 xfer->ptp_sts_word_post = xfer->len;
2030 if (unlikely(ctlr->ptp_sts_supported))
2031 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2032 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2034 spi_unmap_msg(ctlr, mesg);
2037 * In the prepare_messages callback the SPI bus has the opportunity
2038 * to split a transfer to smaller chunks.
2040 * Release the split transfers here since spi_map_msg() is done on
2041 * the split transfers.
2043 spi_res_release(ctlr, mesg);
2045 if (mesg->prepared && ctlr->unprepare_message) {
2046 ret = ctlr->unprepare_message(ctlr, mesg);
2048 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2053 mesg->prepared = false;
2055 WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2056 smp_mb(); /* See __spi_pump_transfer_message()... */
2057 if (READ_ONCE(ctlr->cur_msg_need_completion))
2058 complete(&ctlr->cur_msg_completion);
2060 trace_spi_message_done(mesg);
2064 mesg->complete(mesg->context);
2066 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2068 static int spi_start_queue(struct spi_controller *ctlr)
2070 unsigned long flags;
2072 spin_lock_irqsave(&ctlr->queue_lock, flags);
2074 if (ctlr->running || ctlr->busy) {
2075 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2079 ctlr->running = true;
2080 ctlr->cur_msg = NULL;
2081 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2083 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2088 static int spi_stop_queue(struct spi_controller *ctlr)
2090 unsigned long flags;
2091 unsigned limit = 500;
2094 spin_lock_irqsave(&ctlr->queue_lock, flags);
2097 * This is a bit lame, but is optimized for the common execution path.
2098 * A wait_queue on the ctlr->busy could be used, but then the common
2099 * execution path (pump_messages) would be required to call wake_up or
2100 * friends on every SPI message. Do this instead.
2102 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2103 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2104 usleep_range(10000, 11000);
2105 spin_lock_irqsave(&ctlr->queue_lock, flags);
2108 if (!list_empty(&ctlr->queue) || ctlr->busy)
2111 ctlr->running = false;
2113 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2116 dev_warn(&ctlr->dev, "could not stop message queue\n");
2122 static int spi_destroy_queue(struct spi_controller *ctlr)
2126 ret = spi_stop_queue(ctlr);
2129 * kthread_flush_worker will block until all work is done.
2130 * If the reason that stop_queue timed out is that the work will never
2131 * finish, then it does no good to call flush/stop thread, so
2135 dev_err(&ctlr->dev, "problem destroying queue\n");
2139 kthread_destroy_worker(ctlr->kworker);
2144 static int __spi_queued_transfer(struct spi_device *spi,
2145 struct spi_message *msg,
2148 struct spi_controller *ctlr = spi->controller;
2149 unsigned long flags;
2151 spin_lock_irqsave(&ctlr->queue_lock, flags);
2153 if (!ctlr->running) {
2154 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2157 msg->actual_length = 0;
2158 msg->status = -EINPROGRESS;
2160 list_add_tail(&msg->queue, &ctlr->queue);
2161 ctlr->queue_empty = false;
2162 if (!ctlr->busy && need_pump)
2163 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2165 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2170 * spi_queued_transfer - transfer function for queued transfers
2171 * @spi: spi device which is requesting transfer
2172 * @msg: spi message which is to handled is queued to driver queue
2174 * Return: zero on success, else a negative error code.
2176 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2178 return __spi_queued_transfer(spi, msg, true);
2181 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2185 ctlr->transfer = spi_queued_transfer;
2186 if (!ctlr->transfer_one_message)
2187 ctlr->transfer_one_message = spi_transfer_one_message;
2189 /* Initialize and start queue */
2190 ret = spi_init_queue(ctlr);
2192 dev_err(&ctlr->dev, "problem initializing queue\n");
2193 goto err_init_queue;
2195 ctlr->queued = true;
2196 ret = spi_start_queue(ctlr);
2198 dev_err(&ctlr->dev, "problem starting queue\n");
2199 goto err_start_queue;
2205 spi_destroy_queue(ctlr);
2211 * spi_flush_queue - Send all pending messages in the queue from the callers'
2213 * @ctlr: controller to process queue for
2215 * This should be used when one wants to ensure all pending messages have been
2216 * sent before doing something. Is used by the spi-mem code to make sure SPI
2217 * memory operations do not preempt regular SPI transfers that have been queued
2218 * before the spi-mem operation.
2220 void spi_flush_queue(struct spi_controller *ctlr)
2222 if (ctlr->transfer == spi_queued_transfer)
2223 __spi_pump_messages(ctlr, false);
2226 /*-------------------------------------------------------------------------*/
2228 #if defined(CONFIG_OF)
2229 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2230 struct spi_delay *delay, const char *prop)
2234 if (!of_property_read_u32(nc, prop, &value)) {
2235 if (value > U16_MAX) {
2236 delay->value = DIV_ROUND_UP(value, 1000);
2237 delay->unit = SPI_DELAY_UNIT_USECS;
2239 delay->value = value;
2240 delay->unit = SPI_DELAY_UNIT_NSECS;
2245 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2246 struct device_node *nc)
2251 /* Mode (clock phase/polarity/etc.) */
2252 if (of_property_read_bool(nc, "spi-cpha"))
2253 spi->mode |= SPI_CPHA;
2254 if (of_property_read_bool(nc, "spi-cpol"))
2255 spi->mode |= SPI_CPOL;
2256 if (of_property_read_bool(nc, "spi-3wire"))
2257 spi->mode |= SPI_3WIRE;
2258 if (of_property_read_bool(nc, "spi-lsb-first"))
2259 spi->mode |= SPI_LSB_FIRST;
2260 if (of_property_read_bool(nc, "spi-cs-high"))
2261 spi->mode |= SPI_CS_HIGH;
2263 /* Device DUAL/QUAD mode */
2264 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2267 spi->mode |= SPI_NO_TX;
2272 spi->mode |= SPI_TX_DUAL;
2275 spi->mode |= SPI_TX_QUAD;
2278 spi->mode |= SPI_TX_OCTAL;
2281 dev_warn(&ctlr->dev,
2282 "spi-tx-bus-width %d not supported\n",
2288 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2291 spi->mode |= SPI_NO_RX;
2296 spi->mode |= SPI_RX_DUAL;
2299 spi->mode |= SPI_RX_QUAD;
2302 spi->mode |= SPI_RX_OCTAL;
2305 dev_warn(&ctlr->dev,
2306 "spi-rx-bus-width %d not supported\n",
2312 if (spi_controller_is_slave(ctlr)) {
2313 if (!of_node_name_eq(nc, "slave")) {
2314 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2321 /* Device address */
2322 rc = of_property_read_u32(nc, "reg", &value);
2324 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2328 spi_set_chipselect(spi, 0, value);
2331 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2332 spi->max_speed_hz = value;
2334 /* Device CS delays */
2335 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2336 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2337 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2342 static struct spi_device *
2343 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2345 struct spi_device *spi;
2348 /* Alloc an spi_device */
2349 spi = spi_alloc_device(ctlr);
2351 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2356 /* Select device driver */
2357 rc = of_modalias_node(nc, spi->modalias,
2358 sizeof(spi->modalias));
2360 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2364 rc = of_spi_parse_dt(ctlr, spi, nc);
2368 /* Store a pointer to the node in the device structure */
2370 spi->dev.of_node = nc;
2371 spi->dev.fwnode = of_fwnode_handle(nc);
2373 /* Register the new device */
2374 rc = spi_add_device(spi);
2376 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2377 goto err_of_node_put;
2390 * of_register_spi_devices() - Register child devices onto the SPI bus
2391 * @ctlr: Pointer to spi_controller device
2393 * Registers an spi_device for each child node of controller node which
2394 * represents a valid SPI slave.
2396 static void of_register_spi_devices(struct spi_controller *ctlr)
2398 struct spi_device *spi;
2399 struct device_node *nc;
2401 if (!ctlr->dev.of_node)
2404 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2405 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2407 spi = of_register_spi_device(ctlr, nc);
2409 dev_warn(&ctlr->dev,
2410 "Failed to create SPI device for %pOF\n", nc);
2411 of_node_clear_flag(nc, OF_POPULATED);
2416 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2420 * spi_new_ancillary_device() - Register ancillary SPI device
2421 * @spi: Pointer to the main SPI device registering the ancillary device
2422 * @chip_select: Chip Select of the ancillary device
2424 * Register an ancillary SPI device; for example some chips have a chip-select
2425 * for normal device usage and another one for setup/firmware upload.
2427 * This may only be called from main SPI device's probe routine.
2429 * Return: 0 on success; negative errno on failure
2431 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2434 struct spi_device *ancillary;
2437 /* Alloc an spi_device */
2438 ancillary = spi_alloc_device(spi->controller);
2444 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2446 /* Use provided chip-select for ancillary device */
2447 spi_set_chipselect(ancillary, 0, chip_select);
2449 /* Take over SPI mode/speed from SPI main device */
2450 ancillary->max_speed_hz = spi->max_speed_hz;
2451 ancillary->mode = spi->mode;
2453 /* Register the new device */
2454 rc = spi_add_device_locked(ancillary);
2456 dev_err(&spi->dev, "failed to register ancillary device\n");
2463 spi_dev_put(ancillary);
2466 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2469 struct acpi_spi_lookup {
2470 struct spi_controller *ctlr;
2480 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2482 struct acpi_resource_spi_serialbus *sb;
2485 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2488 sb = &ares->data.spi_serial_bus;
2489 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2492 *count = *count + 1;
2498 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2499 * @adev: ACPI device
2501 * Returns the number of SpiSerialBus resources in the ACPI-device's
2502 * resource-list; or a negative error code.
2504 int acpi_spi_count_resources(struct acpi_device *adev)
2510 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2514 acpi_dev_free_resource_list(&r);
2518 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2520 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2521 struct acpi_spi_lookup *lookup)
2523 const union acpi_object *obj;
2525 if (!x86_apple_machine)
2528 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2529 && obj->buffer.length >= 4)
2530 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2532 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2533 && obj->buffer.length == 8)
2534 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2536 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2537 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2538 lookup->mode |= SPI_LSB_FIRST;
2540 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2541 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2542 lookup->mode |= SPI_CPOL;
2544 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2545 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2546 lookup->mode |= SPI_CPHA;
2549 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2551 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2553 struct acpi_spi_lookup *lookup = data;
2554 struct spi_controller *ctlr = lookup->ctlr;
2556 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2557 struct acpi_resource_spi_serialbus *sb;
2558 acpi_handle parent_handle;
2561 sb = &ares->data.spi_serial_bus;
2562 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2564 if (lookup->index != -1 && lookup->n++ != lookup->index)
2567 status = acpi_get_handle(NULL,
2568 sb->resource_source.string_ptr,
2571 if (ACPI_FAILURE(status))
2575 if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2578 struct acpi_device *adev;
2580 adev = acpi_fetch_acpi_dev(parent_handle);
2584 ctlr = acpi_spi_find_controller_by_adev(adev);
2586 return -EPROBE_DEFER;
2588 lookup->ctlr = ctlr;
2592 * ACPI DeviceSelection numbering is handled by the
2593 * host controller driver in Windows and can vary
2594 * from driver to driver. In Linux we always expect
2595 * 0 .. max - 1 so we need to ask the driver to
2596 * translate between the two schemes.
2598 if (ctlr->fw_translate_cs) {
2599 int cs = ctlr->fw_translate_cs(ctlr,
2600 sb->device_selection);
2603 lookup->chip_select = cs;
2605 lookup->chip_select = sb->device_selection;
2608 lookup->max_speed_hz = sb->connection_speed;
2609 lookup->bits_per_word = sb->data_bit_length;
2611 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2612 lookup->mode |= SPI_CPHA;
2613 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2614 lookup->mode |= SPI_CPOL;
2615 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2616 lookup->mode |= SPI_CS_HIGH;
2618 } else if (lookup->irq < 0) {
2621 if (acpi_dev_resource_interrupt(ares, 0, &r))
2622 lookup->irq = r.start;
2625 /* Always tell the ACPI core to skip this resource */
2630 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2631 * @ctlr: controller to which the spi device belongs
2632 * @adev: ACPI Device for the spi device
2633 * @index: Index of the spi resource inside the ACPI Node
2635 * This should be used to allocate a new spi device from and ACPI Node.
2636 * The caller is responsible for calling spi_add_device to register the spi device.
2638 * If ctlr is set to NULL, the Controller for the spi device will be looked up
2639 * using the resource.
2640 * If index is set to -1, index is not used.
2641 * Note: If index is -1, ctlr must be set.
2643 * Return: a pointer to the new device, or ERR_PTR on error.
2645 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2646 struct acpi_device *adev,
2649 acpi_handle parent_handle = NULL;
2650 struct list_head resource_list;
2651 struct acpi_spi_lookup lookup = {};
2652 struct spi_device *spi;
2655 if (!ctlr && index == -1)
2656 return ERR_PTR(-EINVAL);
2660 lookup.index = index;
2663 INIT_LIST_HEAD(&resource_list);
2664 ret = acpi_dev_get_resources(adev, &resource_list,
2665 acpi_spi_add_resource, &lookup);
2666 acpi_dev_free_resource_list(&resource_list);
2669 /* Found SPI in _CRS but it points to another controller */
2670 return ERR_PTR(ret);
2672 if (!lookup.max_speed_hz &&
2673 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2674 ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2675 /* Apple does not use _CRS but nested devices for SPI slaves */
2676 acpi_spi_parse_apple_properties(adev, &lookup);
2679 if (!lookup.max_speed_hz)
2680 return ERR_PTR(-ENODEV);
2682 spi = spi_alloc_device(lookup.ctlr);
2684 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2685 dev_name(&adev->dev));
2686 return ERR_PTR(-ENOMEM);
2689 ACPI_COMPANION_SET(&spi->dev, adev);
2690 spi->max_speed_hz = lookup.max_speed_hz;
2691 spi->mode |= lookup.mode;
2692 spi->irq = lookup.irq;
2693 spi->bits_per_word = lookup.bits_per_word;
2694 spi_set_chipselect(spi, 0, lookup.chip_select);
2698 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2700 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2701 struct acpi_device *adev)
2703 struct spi_device *spi;
2705 if (acpi_bus_get_status(adev) || !adev->status.present ||
2706 acpi_device_enumerated(adev))
2709 spi = acpi_spi_device_alloc(ctlr, adev, -1);
2711 if (PTR_ERR(spi) == -ENOMEM)
2712 return AE_NO_MEMORY;
2717 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2718 sizeof(spi->modalias));
2721 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2723 acpi_device_set_enumerated(adev);
2725 adev->power.flags.ignore_parent = true;
2726 if (spi_add_device(spi)) {
2727 adev->power.flags.ignore_parent = false;
2728 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2729 dev_name(&adev->dev));
2736 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2737 void *data, void **return_value)
2739 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2740 struct spi_controller *ctlr = data;
2745 return acpi_register_spi_device(ctlr, adev);
2748 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2750 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2755 handle = ACPI_HANDLE(ctlr->dev.parent);
2759 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2760 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2761 acpi_spi_add_device, NULL, ctlr, NULL);
2762 if (ACPI_FAILURE(status))
2763 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2766 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2767 #endif /* CONFIG_ACPI */
2769 static void spi_controller_release(struct device *dev)
2771 struct spi_controller *ctlr;
2773 ctlr = container_of(dev, struct spi_controller, dev);
2777 static struct class spi_master_class = {
2778 .name = "spi_master",
2779 .owner = THIS_MODULE,
2780 .dev_release = spi_controller_release,
2781 .dev_groups = spi_master_groups,
2784 #ifdef CONFIG_SPI_SLAVE
2786 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2788 * @spi: device used for the current transfer
2790 int spi_slave_abort(struct spi_device *spi)
2792 struct spi_controller *ctlr = spi->controller;
2794 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2795 return ctlr->slave_abort(ctlr);
2799 EXPORT_SYMBOL_GPL(spi_slave_abort);
2801 int spi_target_abort(struct spi_device *spi)
2803 struct spi_controller *ctlr = spi->controller;
2805 if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2806 return ctlr->target_abort(ctlr);
2810 EXPORT_SYMBOL_GPL(spi_target_abort);
2812 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2815 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2817 struct device *child;
2819 child = device_find_any_child(&ctlr->dev);
2820 return sprintf(buf, "%s\n",
2821 child ? to_spi_device(child)->modalias : NULL);
2824 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2825 const char *buf, size_t count)
2827 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2829 struct spi_device *spi;
2830 struct device *child;
2834 rc = sscanf(buf, "%31s", name);
2835 if (rc != 1 || !name[0])
2838 child = device_find_any_child(&ctlr->dev);
2840 /* Remove registered slave */
2841 device_unregister(child);
2845 if (strcmp(name, "(null)")) {
2846 /* Register new slave */
2847 spi = spi_alloc_device(ctlr);
2851 strscpy(spi->modalias, name, sizeof(spi->modalias));
2853 rc = spi_add_device(spi);
2863 static DEVICE_ATTR_RW(slave);
2865 static struct attribute *spi_slave_attrs[] = {
2866 &dev_attr_slave.attr,
2870 static const struct attribute_group spi_slave_group = {
2871 .attrs = spi_slave_attrs,
2874 static const struct attribute_group *spi_slave_groups[] = {
2875 &spi_controller_statistics_group,
2880 static struct class spi_slave_class = {
2881 .name = "spi_slave",
2882 .owner = THIS_MODULE,
2883 .dev_release = spi_controller_release,
2884 .dev_groups = spi_slave_groups,
2887 extern struct class spi_slave_class; /* dummy */
2891 * __spi_alloc_controller - allocate an SPI master or slave controller
2892 * @dev: the controller, possibly using the platform_bus
2893 * @size: how much zeroed driver-private data to allocate; the pointer to this
2894 * memory is in the driver_data field of the returned device, accessible
2895 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2896 * drivers granting DMA access to portions of their private data need to
2897 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2898 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2899 * slave (true) controller
2900 * Context: can sleep
2902 * This call is used only by SPI controller drivers, which are the
2903 * only ones directly touching chip registers. It's how they allocate
2904 * an spi_controller structure, prior to calling spi_register_controller().
2906 * This must be called from context that can sleep.
2908 * The caller is responsible for assigning the bus number and initializing the
2909 * controller's methods before calling spi_register_controller(); and (after
2910 * errors adding the device) calling spi_controller_put() to prevent a memory
2913 * Return: the SPI controller structure on success, else NULL.
2915 struct spi_controller *__spi_alloc_controller(struct device *dev,
2916 unsigned int size, bool slave)
2918 struct spi_controller *ctlr;
2919 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2924 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2928 device_initialize(&ctlr->dev);
2929 INIT_LIST_HEAD(&ctlr->queue);
2930 spin_lock_init(&ctlr->queue_lock);
2931 spin_lock_init(&ctlr->bus_lock_spinlock);
2932 mutex_init(&ctlr->bus_lock_mutex);
2933 mutex_init(&ctlr->io_mutex);
2934 mutex_init(&ctlr->add_lock);
2936 ctlr->num_chipselect = 1;
2937 ctlr->slave = slave;
2938 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2939 ctlr->dev.class = &spi_slave_class;
2941 ctlr->dev.class = &spi_master_class;
2942 ctlr->dev.parent = dev;
2943 pm_suspend_ignore_children(&ctlr->dev, true);
2944 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2948 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2950 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2952 spi_controller_put(*(struct spi_controller **)ctlr);
2956 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2957 * @dev: physical device of SPI controller
2958 * @size: how much zeroed driver-private data to allocate
2959 * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2960 * Context: can sleep
2962 * Allocate an SPI controller and automatically release a reference on it
2963 * when @dev is unbound from its driver. Drivers are thus relieved from
2964 * having to call spi_controller_put().
2966 * The arguments to this function are identical to __spi_alloc_controller().
2968 * Return: the SPI controller structure on success, else NULL.
2970 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2974 struct spi_controller **ptr, *ctlr;
2976 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2981 ctlr = __spi_alloc_controller(dev, size, slave);
2983 ctlr->devm_allocated = true;
2985 devres_add(dev, ptr);
2992 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2995 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2996 * @ctlr: The SPI master to grab GPIO descriptors for
2998 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3001 struct gpio_desc **cs;
3002 struct device *dev = &ctlr->dev;
3003 unsigned long native_cs_mask = 0;
3004 unsigned int num_cs_gpios = 0;
3006 nb = gpiod_count(dev, "cs");
3008 /* No GPIOs at all is fine, else return the error */
3014 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3016 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3020 ctlr->cs_gpiods = cs;
3022 for (i = 0; i < nb; i++) {
3024 * Most chipselects are active low, the inverted
3025 * semantics are handled by special quirks in gpiolib,
3026 * so initializing them GPIOD_OUT_LOW here means
3027 * "unasserted", in most cases this will drive the physical
3030 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3033 return PTR_ERR(cs[i]);
3037 * If we find a CS GPIO, name it after the device and
3042 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3046 gpiod_set_consumer_name(cs[i], gpioname);
3051 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3052 dev_err(dev, "Invalid native chip select %d\n", i);
3055 native_cs_mask |= BIT(i);
3058 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3060 if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
3061 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3062 dev_err(dev, "No unused native chip select available\n");
3069 static int spi_controller_check_ops(struct spi_controller *ctlr)
3072 * The controller may implement only the high-level SPI-memory like
3073 * operations if it does not support regular SPI transfers, and this is
3075 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3076 * one of the ->transfer_xxx() method be implemented.
3078 if (!ctlr->mem_ops || (ctlr->mem_ops && !ctlr->mem_ops->exec_op)) {
3079 if (!ctlr->transfer && !ctlr->transfer_one &&
3080 !ctlr->transfer_one_message) {
3089 * spi_register_controller - register SPI master or slave controller
3090 * @ctlr: initialized master, originally from spi_alloc_master() or
3092 * Context: can sleep
3094 * SPI controllers connect to their drivers using some non-SPI bus,
3095 * such as the platform bus. The final stage of probe() in that code
3096 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3098 * SPI controllers use board specific (often SOC specific) bus numbers,
3099 * and board-specific addressing for SPI devices combines those numbers
3100 * with chip select numbers. Since SPI does not directly support dynamic
3101 * device identification, boards need configuration tables telling which
3102 * chip is at which address.
3104 * This must be called from context that can sleep. It returns zero on
3105 * success, else a negative error code (dropping the controller's refcount).
3106 * After a successful return, the caller is responsible for calling
3107 * spi_unregister_controller().
3109 * Return: zero on success, else a negative error code.
3111 int spi_register_controller(struct spi_controller *ctlr)
3113 struct device *dev = ctlr->dev.parent;
3114 struct boardinfo *bi;
3116 int id, first_dynamic;
3122 * Make sure all necessary hooks are implemented before registering
3123 * the SPI controller.
3125 status = spi_controller_check_ops(ctlr);
3129 if (ctlr->bus_num >= 0) {
3130 /* Devices with a fixed bus num must check-in with the num */
3131 mutex_lock(&board_lock);
3132 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3133 ctlr->bus_num + 1, GFP_KERNEL);
3134 mutex_unlock(&board_lock);
3135 if (WARN(id < 0, "couldn't get idr"))
3136 return id == -ENOSPC ? -EBUSY : id;
3138 } else if (ctlr->dev.of_node) {
3139 /* Allocate dynamic bus number using Linux idr */
3140 id = of_alias_get_id(ctlr->dev.of_node, "spi");
3143 mutex_lock(&board_lock);
3144 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3145 ctlr->bus_num + 1, GFP_KERNEL);
3146 mutex_unlock(&board_lock);
3147 if (WARN(id < 0, "couldn't get idr"))
3148 return id == -ENOSPC ? -EBUSY : id;
3151 if (ctlr->bus_num < 0) {
3152 first_dynamic = of_alias_get_highest_id("spi");
3153 if (first_dynamic < 0)
3158 mutex_lock(&board_lock);
3159 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3161 mutex_unlock(&board_lock);
3162 if (WARN(id < 0, "couldn't get idr"))
3166 ctlr->bus_lock_flag = 0;
3167 init_completion(&ctlr->xfer_completion);
3168 init_completion(&ctlr->cur_msg_completion);
3169 if (!ctlr->max_dma_len)
3170 ctlr->max_dma_len = INT_MAX;
3173 * Register the device, then userspace will see it.
3174 * Registration fails if the bus ID is in use.
3176 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3178 if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3179 status = spi_get_gpio_descs(ctlr);
3183 * A controller using GPIO descriptors always
3184 * supports SPI_CS_HIGH if need be.
3186 ctlr->mode_bits |= SPI_CS_HIGH;
3190 * Even if it's just one always-selected device, there must
3191 * be at least one chipselect.
3193 if (!ctlr->num_chipselect) {
3198 /* Setting last_cs to -1 means no chip selected */
3201 status = device_add(&ctlr->dev);
3204 dev_dbg(dev, "registered %s %s\n",
3205 spi_controller_is_slave(ctlr) ? "slave" : "master",
3206 dev_name(&ctlr->dev));
3209 * If we're using a queued driver, start the queue. Note that we don't
3210 * need the queueing logic if the driver is only supporting high-level
3211 * memory operations.
3213 if (ctlr->transfer) {
3214 dev_info(dev, "controller is unqueued, this is deprecated\n");
3215 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3216 status = spi_controller_initialize_queue(ctlr);
3218 device_del(&ctlr->dev);
3222 /* Add statistics */
3223 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3224 if (!ctlr->pcpu_statistics) {
3225 dev_err(dev, "Error allocating per-cpu statistics\n");
3230 mutex_lock(&board_lock);
3231 list_add_tail(&ctlr->list, &spi_controller_list);
3232 list_for_each_entry(bi, &board_list, list)
3233 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3234 mutex_unlock(&board_lock);
3236 /* Register devices from the device tree and ACPI */
3237 of_register_spi_devices(ctlr);
3238 acpi_register_spi_devices(ctlr);
3242 spi_destroy_queue(ctlr);
3244 mutex_lock(&board_lock);
3245 idr_remove(&spi_master_idr, ctlr->bus_num);
3246 mutex_unlock(&board_lock);
3249 EXPORT_SYMBOL_GPL(spi_register_controller);
3251 static void devm_spi_unregister(struct device *dev, void *res)
3253 spi_unregister_controller(*(struct spi_controller **)res);
3257 * devm_spi_register_controller - register managed SPI master or slave
3259 * @dev: device managing SPI controller
3260 * @ctlr: initialized controller, originally from spi_alloc_master() or
3262 * Context: can sleep
3264 * Register a SPI device as with spi_register_controller() which will
3265 * automatically be unregistered and freed.
3267 * Return: zero on success, else a negative error code.
3269 int devm_spi_register_controller(struct device *dev,
3270 struct spi_controller *ctlr)
3272 struct spi_controller **ptr;
3275 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3279 ret = spi_register_controller(ctlr);
3282 devres_add(dev, ptr);
3289 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3291 static int __unregister(struct device *dev, void *null)
3293 spi_unregister_device(to_spi_device(dev));
3298 * spi_unregister_controller - unregister SPI master or slave controller
3299 * @ctlr: the controller being unregistered
3300 * Context: can sleep
3302 * This call is used only by SPI controller drivers, which are the
3303 * only ones directly touching chip registers.
3305 * This must be called from context that can sleep.
3307 * Note that this function also drops a reference to the controller.
3309 void spi_unregister_controller(struct spi_controller *ctlr)
3311 struct spi_controller *found;
3312 int id = ctlr->bus_num;
3314 /* Prevent addition of new devices, unregister existing ones */
3315 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3316 mutex_lock(&ctlr->add_lock);
3318 device_for_each_child(&ctlr->dev, NULL, __unregister);
3320 /* First make sure that this controller was ever added */
3321 mutex_lock(&board_lock);
3322 found = idr_find(&spi_master_idr, id);
3323 mutex_unlock(&board_lock);
3325 if (spi_destroy_queue(ctlr))
3326 dev_err(&ctlr->dev, "queue remove failed\n");
3328 mutex_lock(&board_lock);
3329 list_del(&ctlr->list);
3330 mutex_unlock(&board_lock);
3332 device_del(&ctlr->dev);
3335 mutex_lock(&board_lock);
3337 idr_remove(&spi_master_idr, id);
3338 mutex_unlock(&board_lock);
3340 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3341 mutex_unlock(&ctlr->add_lock);
3343 /* Release the last reference on the controller if its driver
3344 * has not yet been converted to devm_spi_alloc_master/slave().
3346 if (!ctlr->devm_allocated)
3347 put_device(&ctlr->dev);
3349 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3351 int spi_controller_suspend(struct spi_controller *ctlr)
3355 /* Basically no-ops for non-queued controllers */
3359 ret = spi_stop_queue(ctlr);
3361 dev_err(&ctlr->dev, "queue stop failed\n");
3365 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3367 int spi_controller_resume(struct spi_controller *ctlr)
3374 ret = spi_start_queue(ctlr);
3376 dev_err(&ctlr->dev, "queue restart failed\n");
3380 EXPORT_SYMBOL_GPL(spi_controller_resume);
3382 /*-------------------------------------------------------------------------*/
3384 /* Core methods for spi_message alterations */
3386 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3387 struct spi_message *msg,
3390 struct spi_replaced_transfers *rxfer = res;
3393 /* Call extra callback if requested */
3395 rxfer->release(ctlr, msg, res);
3397 /* Insert replaced transfers back into the message */
3398 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3400 /* Remove the formerly inserted entries */
3401 for (i = 0; i < rxfer->inserted; i++)
3402 list_del(&rxfer->inserted_transfers[i].transfer_list);
3406 * spi_replace_transfers - replace transfers with several transfers
3407 * and register change with spi_message.resources
3408 * @msg: the spi_message we work upon
3409 * @xfer_first: the first spi_transfer we want to replace
3410 * @remove: number of transfers to remove
3411 * @insert: the number of transfers we want to insert instead
3412 * @release: extra release code necessary in some circumstances
3413 * @extradatasize: extra data to allocate (with alignment guarantees
3414 * of struct @spi_transfer)
3417 * Returns: pointer to @spi_replaced_transfers,
3418 * PTR_ERR(...) in case of errors.
3420 static struct spi_replaced_transfers *spi_replace_transfers(
3421 struct spi_message *msg,
3422 struct spi_transfer *xfer_first,
3425 spi_replaced_release_t release,
3426 size_t extradatasize,
3429 struct spi_replaced_transfers *rxfer;
3430 struct spi_transfer *xfer;
3433 /* Allocate the structure using spi_res */
3434 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3435 struct_size(rxfer, inserted_transfers, insert)
3439 return ERR_PTR(-ENOMEM);
3441 /* The release code to invoke before running the generic release */
3442 rxfer->release = release;
3444 /* Assign extradata */
3447 &rxfer->inserted_transfers[insert];
3449 /* Init the replaced_transfers list */
3450 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3453 * Assign the list_entry after which we should reinsert
3454 * the @replaced_transfers - it may be spi_message.messages!
3456 rxfer->replaced_after = xfer_first->transfer_list.prev;
3458 /* Remove the requested number of transfers */
3459 for (i = 0; i < remove; i++) {
3461 * If the entry after replaced_after it is msg->transfers
3462 * then we have been requested to remove more transfers
3463 * than are in the list.
3465 if (rxfer->replaced_after->next == &msg->transfers) {
3466 dev_err(&msg->spi->dev,
3467 "requested to remove more spi_transfers than are available\n");
3468 /* Insert replaced transfers back into the message */
3469 list_splice(&rxfer->replaced_transfers,
3470 rxfer->replaced_after);
3472 /* Free the spi_replace_transfer structure... */
3473 spi_res_free(rxfer);
3475 /* ...and return with an error */
3476 return ERR_PTR(-EINVAL);
3480 * Remove the entry after replaced_after from list of
3481 * transfers and add it to list of replaced_transfers.
3483 list_move_tail(rxfer->replaced_after->next,
3484 &rxfer->replaced_transfers);
3488 * Create copy of the given xfer with identical settings
3489 * based on the first transfer to get removed.
3491 for (i = 0; i < insert; i++) {
3492 /* We need to run in reverse order */
3493 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3495 /* Copy all spi_transfer data */
3496 memcpy(xfer, xfer_first, sizeof(*xfer));
3499 list_add(&xfer->transfer_list, rxfer->replaced_after);
3501 /* Clear cs_change and delay for all but the last */
3503 xfer->cs_change = false;
3504 xfer->delay.value = 0;
3508 /* Set up inserted... */
3509 rxfer->inserted = insert;
3511 /* ...and register it with spi_res/spi_message */
3512 spi_res_add(msg, rxfer);
3517 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3518 struct spi_message *msg,
3519 struct spi_transfer **xferp,
3523 struct spi_transfer *xfer = *xferp, *xfers;
3524 struct spi_replaced_transfers *srt;
3528 /* Calculate how many we have to replace */
3529 count = DIV_ROUND_UP(xfer->len, maxsize);
3531 /* Create replacement */
3532 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3534 return PTR_ERR(srt);
3535 xfers = srt->inserted_transfers;
3538 * Now handle each of those newly inserted spi_transfers.
3539 * Note that the replacements spi_transfers all are preset
3540 * to the same values as *xferp, so tx_buf, rx_buf and len
3541 * are all identical (as well as most others)
3542 * so we just have to fix up len and the pointers.
3544 * This also includes support for the depreciated
3545 * spi_message.is_dma_mapped interface.
3549 * The first transfer just needs the length modified, so we
3550 * run it outside the loop.
3552 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3554 /* All the others need rx_buf/tx_buf also set */
3555 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3556 /* Update rx_buf, tx_buf and dma */
3557 if (xfers[i].rx_buf)
3558 xfers[i].rx_buf += offset;
3559 if (xfers[i].rx_dma)
3560 xfers[i].rx_dma += offset;
3561 if (xfers[i].tx_buf)
3562 xfers[i].tx_buf += offset;
3563 if (xfers[i].tx_dma)
3564 xfers[i].tx_dma += offset;
3567 xfers[i].len = min(maxsize, xfers[i].len - offset);
3571 * We set up xferp to the last entry we have inserted,
3572 * so that we skip those already split transfers.
3574 *xferp = &xfers[count - 1];
3576 /* Increment statistics counters */
3577 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3578 transfers_split_maxsize);
3579 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3580 transfers_split_maxsize);
3586 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3587 * when an individual transfer exceeds a
3589 * @ctlr: the @spi_controller for this transfer
3590 * @msg: the @spi_message to transform
3591 * @maxsize: the maximum when to apply this
3592 * @gfp: GFP allocation flags
3594 * Return: status of transformation
3596 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3597 struct spi_message *msg,
3601 struct spi_transfer *xfer;
3605 * Iterate over the transfer_list,
3606 * but note that xfer is advanced to the last transfer inserted
3607 * to avoid checking sizes again unnecessarily (also xfer does
3608 * potentially belong to a different list by the time the
3609 * replacement has happened).
3611 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3612 if (xfer->len > maxsize) {
3613 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3622 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3624 /*-------------------------------------------------------------------------*/
3626 /* Core methods for SPI controller protocol drivers. Some of the
3627 * other core methods are currently defined as inline functions.
3630 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3633 if (ctlr->bits_per_word_mask) {
3634 /* Only 32 bits fit in the mask */
3635 if (bits_per_word > 32)
3637 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3645 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3646 * @spi: the device that requires specific CS timing configuration
3648 * Return: zero on success, else a negative error code.
3650 static int spi_set_cs_timing(struct spi_device *spi)
3652 struct device *parent = spi->controller->dev.parent;
3655 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3656 if (spi->controller->auto_runtime_pm) {
3657 status = pm_runtime_get_sync(parent);
3659 pm_runtime_put_noidle(parent);
3660 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3665 status = spi->controller->set_cs_timing(spi);
3666 pm_runtime_mark_last_busy(parent);
3667 pm_runtime_put_autosuspend(parent);
3669 status = spi->controller->set_cs_timing(spi);
3676 * spi_setup - setup SPI mode and clock rate
3677 * @spi: the device whose settings are being modified
3678 * Context: can sleep, and no requests are queued to the device
3680 * SPI protocol drivers may need to update the transfer mode if the
3681 * device doesn't work with its default. They may likewise need
3682 * to update clock rates or word sizes from initial values. This function
3683 * changes those settings, and must be called from a context that can sleep.
3684 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3685 * effect the next time the device is selected and data is transferred to
3686 * or from it. When this function returns, the spi device is deselected.
3688 * Note that this call will fail if the protocol driver specifies an option
3689 * that the underlying controller or its driver does not support. For
3690 * example, not all hardware supports wire transfers using nine bit words,
3691 * LSB-first wire encoding, or active-high chipselects.
3693 * Return: zero on success, else a negative error code.
3695 int spi_setup(struct spi_device *spi)
3697 unsigned bad_bits, ugly_bits;
3701 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3702 * are set at the same time.
3704 if ((hweight_long(spi->mode &
3705 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3706 (hweight_long(spi->mode &
3707 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3709 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3712 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3713 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3714 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3715 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3718 * Help drivers fail *cleanly* when they need options
3719 * that aren't supported with their current controller.
3720 * SPI_CS_WORD has a fallback software implementation,
3721 * so it is ignored here.
3723 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3724 SPI_NO_TX | SPI_NO_RX);
3725 ugly_bits = bad_bits &
3726 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3727 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3730 "setup: ignoring unsupported mode bits %x\n",
3732 spi->mode &= ~ugly_bits;
3733 bad_bits &= ~ugly_bits;
3736 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3741 if (!spi->bits_per_word) {
3742 spi->bits_per_word = 8;
3745 * Some controllers may not support the default 8 bits-per-word
3746 * so only perform the check when this is explicitly provided.
3748 status = __spi_validate_bits_per_word(spi->controller,
3749 spi->bits_per_word);
3754 if (spi->controller->max_speed_hz &&
3755 (!spi->max_speed_hz ||
3756 spi->max_speed_hz > spi->controller->max_speed_hz))
3757 spi->max_speed_hz = spi->controller->max_speed_hz;
3759 mutex_lock(&spi->controller->io_mutex);
3761 if (spi->controller->setup) {
3762 status = spi->controller->setup(spi);
3764 mutex_unlock(&spi->controller->io_mutex);
3765 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3771 status = spi_set_cs_timing(spi);
3773 mutex_unlock(&spi->controller->io_mutex);
3777 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3778 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3780 mutex_unlock(&spi->controller->io_mutex);
3781 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3787 * We do not want to return positive value from pm_runtime_get,
3788 * there are many instances of devices calling spi_setup() and
3789 * checking for a non-zero return value instead of a negative
3794 spi_set_cs(spi, false, true);
3795 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3796 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3798 spi_set_cs(spi, false, true);
3801 mutex_unlock(&spi->controller->io_mutex);
3803 if (spi->rt && !spi->controller->rt) {
3804 spi->controller->rt = true;
3805 spi_set_thread_rt(spi->controller);
3808 trace_spi_setup(spi, status);
3810 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3811 spi->mode & SPI_MODE_X_MASK,
3812 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3813 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3814 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3815 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3816 spi->bits_per_word, spi->max_speed_hz,
3821 EXPORT_SYMBOL_GPL(spi_setup);
3823 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3824 struct spi_device *spi)
3828 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3832 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3836 if (delay1 < delay2)
3837 memcpy(&xfer->word_delay, &spi->word_delay,
3838 sizeof(xfer->word_delay));
3843 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3845 struct spi_controller *ctlr = spi->controller;
3846 struct spi_transfer *xfer;
3849 if (list_empty(&message->transfers))
3853 * If an SPI controller does not support toggling the CS line on each
3854 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3855 * for the CS line, we can emulate the CS-per-word hardware function by
3856 * splitting transfers into one-word transfers and ensuring that
3857 * cs_change is set for each transfer.
3859 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3860 spi_get_csgpiod(spi, 0))) {
3864 maxsize = (spi->bits_per_word + 7) / 8;
3866 /* spi_split_transfers_maxsize() requires message->spi */
3869 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3874 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3875 /* Don't change cs_change on the last entry in the list */
3876 if (list_is_last(&xfer->transfer_list, &message->transfers))
3878 xfer->cs_change = 1;
3883 * Half-duplex links include original MicroWire, and ones with
3884 * only one data pin like SPI_3WIRE (switches direction) or where
3885 * either MOSI or MISO is missing. They can also be caused by
3886 * software limitations.
3888 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3889 (spi->mode & SPI_3WIRE)) {
3890 unsigned flags = ctlr->flags;
3892 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3893 if (xfer->rx_buf && xfer->tx_buf)
3895 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3897 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3903 * Set transfer bits_per_word and max speed as spi device default if
3904 * it is not set for this transfer.
3905 * Set transfer tx_nbits and rx_nbits as single transfer default
3906 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3907 * Ensure transfer word_delay is at least as long as that required by
3910 message->frame_length = 0;
3911 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3912 xfer->effective_speed_hz = 0;
3913 message->frame_length += xfer->len;
3914 if (!xfer->bits_per_word)
3915 xfer->bits_per_word = spi->bits_per_word;
3917 if (!xfer->speed_hz)
3918 xfer->speed_hz = spi->max_speed_hz;
3920 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3921 xfer->speed_hz = ctlr->max_speed_hz;
3923 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3927 * SPI transfer length should be multiple of SPI word size
3928 * where SPI word size should be power-of-two multiple.
3930 if (xfer->bits_per_word <= 8)
3932 else if (xfer->bits_per_word <= 16)
3937 /* No partial transfers accepted */
3938 if (xfer->len % w_size)
3941 if (xfer->speed_hz && ctlr->min_speed_hz &&
3942 xfer->speed_hz < ctlr->min_speed_hz)
3945 if (xfer->tx_buf && !xfer->tx_nbits)
3946 xfer->tx_nbits = SPI_NBITS_SINGLE;
3947 if (xfer->rx_buf && !xfer->rx_nbits)
3948 xfer->rx_nbits = SPI_NBITS_SINGLE;
3950 * Check transfer tx/rx_nbits:
3951 * 1. check the value matches one of single, dual and quad
3952 * 2. check tx/rx_nbits match the mode in spi_device
3955 if (spi->mode & SPI_NO_TX)
3957 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3958 xfer->tx_nbits != SPI_NBITS_DUAL &&
3959 xfer->tx_nbits != SPI_NBITS_QUAD)
3961 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3962 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3964 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3965 !(spi->mode & SPI_TX_QUAD))
3968 /* Check transfer rx_nbits */
3970 if (spi->mode & SPI_NO_RX)
3972 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3973 xfer->rx_nbits != SPI_NBITS_DUAL &&
3974 xfer->rx_nbits != SPI_NBITS_QUAD)
3976 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3977 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3979 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3980 !(spi->mode & SPI_RX_QUAD))
3984 if (_spi_xfer_word_delay_update(xfer, spi))
3988 message->status = -EINPROGRESS;
3993 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3995 struct spi_controller *ctlr = spi->controller;
3996 struct spi_transfer *xfer;
3999 * Some controllers do not support doing regular SPI transfers. Return
4000 * ENOTSUPP when this is the case.
4002 if (!ctlr->transfer)
4007 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4008 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4010 trace_spi_message_submit(message);
4012 if (!ctlr->ptp_sts_supported) {
4013 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4014 xfer->ptp_sts_word_pre = 0;
4015 ptp_read_system_prets(xfer->ptp_sts);
4019 return ctlr->transfer(spi, message);
4023 * spi_async - asynchronous SPI transfer
4024 * @spi: device with which data will be exchanged
4025 * @message: describes the data transfers, including completion callback
4026 * Context: any (irqs may be blocked, etc)
4028 * This call may be used in_irq and other contexts which can't sleep,
4029 * as well as from task contexts which can sleep.
4031 * The completion callback is invoked in a context which can't sleep.
4032 * Before that invocation, the value of message->status is undefined.
4033 * When the callback is issued, message->status holds either zero (to
4034 * indicate complete success) or a negative error code. After that
4035 * callback returns, the driver which issued the transfer request may
4036 * deallocate the associated memory; it's no longer in use by any SPI
4037 * core or controller driver code.
4039 * Note that although all messages to a spi_device are handled in
4040 * FIFO order, messages may go to different devices in other orders.
4041 * Some device might be higher priority, or have various "hard" access
4042 * time requirements, for example.
4044 * On detection of any fault during the transfer, processing of
4045 * the entire message is aborted, and the device is deselected.
4046 * Until returning from the associated message completion callback,
4047 * no other spi_message queued to that device will be processed.
4048 * (This rule applies equally to all the synchronous transfer calls,
4049 * which are wrappers around this core asynchronous primitive.)
4051 * Return: zero on success, else a negative error code.
4053 int spi_async(struct spi_device *spi, struct spi_message *message)
4055 struct spi_controller *ctlr = spi->controller;
4057 unsigned long flags;
4059 ret = __spi_validate(spi, message);
4063 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4065 if (ctlr->bus_lock_flag)
4068 ret = __spi_async(spi, message);
4070 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4074 EXPORT_SYMBOL_GPL(spi_async);
4077 * spi_async_locked - version of spi_async with exclusive bus usage
4078 * @spi: device with which data will be exchanged
4079 * @message: describes the data transfers, including completion callback
4080 * Context: any (irqs may be blocked, etc)
4082 * This call may be used in_irq and other contexts which can't sleep,
4083 * as well as from task contexts which can sleep.
4085 * The completion callback is invoked in a context which can't sleep.
4086 * Before that invocation, the value of message->status is undefined.
4087 * When the callback is issued, message->status holds either zero (to
4088 * indicate complete success) or a negative error code. After that
4089 * callback returns, the driver which issued the transfer request may
4090 * deallocate the associated memory; it's no longer in use by any SPI
4091 * core or controller driver code.
4093 * Note that although all messages to a spi_device are handled in
4094 * FIFO order, messages may go to different devices in other orders.
4095 * Some device might be higher priority, or have various "hard" access
4096 * time requirements, for example.
4098 * On detection of any fault during the transfer, processing of
4099 * the entire message is aborted, and the device is deselected.
4100 * Until returning from the associated message completion callback,
4101 * no other spi_message queued to that device will be processed.
4102 * (This rule applies equally to all the synchronous transfer calls,
4103 * which are wrappers around this core asynchronous primitive.)
4105 * Return: zero on success, else a negative error code.
4107 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
4109 struct spi_controller *ctlr = spi->controller;
4111 unsigned long flags;
4113 ret = __spi_validate(spi, message);
4117 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4119 ret = __spi_async(spi, message);
4121 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4127 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4132 mutex_lock(&ctlr->io_mutex);
4134 was_busy = ctlr->busy;
4136 ctlr->cur_msg = msg;
4137 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4141 ctlr->cur_msg = NULL;
4142 ctlr->fallback = false;
4145 kfree(ctlr->dummy_rx);
4146 ctlr->dummy_rx = NULL;
4147 kfree(ctlr->dummy_tx);
4148 ctlr->dummy_tx = NULL;
4149 if (ctlr->unprepare_transfer_hardware &&
4150 ctlr->unprepare_transfer_hardware(ctlr))
4152 "failed to unprepare transfer hardware\n");
4153 spi_idle_runtime_pm(ctlr);
4157 mutex_unlock(&ctlr->io_mutex);
4160 /*-------------------------------------------------------------------------*/
4163 * Utility methods for SPI protocol drivers, layered on
4164 * top of the core. Some other utility methods are defined as
4168 static void spi_complete(void *arg)
4173 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4175 DECLARE_COMPLETION_ONSTACK(done);
4177 struct spi_controller *ctlr = spi->controller;
4179 status = __spi_validate(spi, message);
4185 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4186 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4189 * Checking queue_empty here only guarantees async/sync message
4190 * ordering when coming from the same context. It does not need to
4191 * guard against reentrancy from a different context. The io_mutex
4192 * will catch those cases.
4194 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4195 message->actual_length = 0;
4196 message->status = -EINPROGRESS;
4198 trace_spi_message_submit(message);
4200 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4201 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4203 __spi_transfer_message_noqueue(ctlr, message);
4205 return message->status;
4209 * There are messages in the async queue that could have originated
4210 * from the same context, so we need to preserve ordering.
4211 * Therefor we send the message to the async queue and wait until they
4214 message->complete = spi_complete;
4215 message->context = &done;
4216 status = spi_async_locked(spi, message);
4218 wait_for_completion(&done);
4219 status = message->status;
4221 message->context = NULL;
4227 * spi_sync - blocking/synchronous SPI data transfers
4228 * @spi: device with which data will be exchanged
4229 * @message: describes the data transfers
4230 * Context: can sleep
4232 * This call may only be used from a context that may sleep. The sleep
4233 * is non-interruptible, and has no timeout. Low-overhead controller
4234 * drivers may DMA directly into and out of the message buffers.
4236 * Note that the SPI device's chip select is active during the message,
4237 * and then is normally disabled between messages. Drivers for some
4238 * frequently-used devices may want to minimize costs of selecting a chip,
4239 * by leaving it selected in anticipation that the next message will go
4240 * to the same chip. (That may increase power usage.)
4242 * Also, the caller is guaranteeing that the memory associated with the
4243 * message will not be freed before this call returns.
4245 * Return: zero on success, else a negative error code.
4247 int spi_sync(struct spi_device *spi, struct spi_message *message)
4251 mutex_lock(&spi->controller->bus_lock_mutex);
4252 ret = __spi_sync(spi, message);
4253 mutex_unlock(&spi->controller->bus_lock_mutex);
4257 EXPORT_SYMBOL_GPL(spi_sync);
4260 * spi_sync_locked - version of spi_sync with exclusive bus usage
4261 * @spi: device with which data will be exchanged
4262 * @message: describes the data transfers
4263 * Context: can sleep
4265 * This call may only be used from a context that may sleep. The sleep
4266 * is non-interruptible, and has no timeout. Low-overhead controller
4267 * drivers may DMA directly into and out of the message buffers.
4269 * This call should be used by drivers that require exclusive access to the
4270 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4271 * be released by a spi_bus_unlock call when the exclusive access is over.
4273 * Return: zero on success, else a negative error code.
4275 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4277 return __spi_sync(spi, message);
4279 EXPORT_SYMBOL_GPL(spi_sync_locked);
4282 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4283 * @ctlr: SPI bus master that should be locked for exclusive bus access
4284 * Context: can sleep
4286 * This call may only be used from a context that may sleep. The sleep
4287 * is non-interruptible, and has no timeout.
4289 * This call should be used by drivers that require exclusive access to the
4290 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4291 * exclusive access is over. Data transfer must be done by spi_sync_locked
4292 * and spi_async_locked calls when the SPI bus lock is held.
4294 * Return: always zero.
4296 int spi_bus_lock(struct spi_controller *ctlr)
4298 unsigned long flags;
4300 mutex_lock(&ctlr->bus_lock_mutex);
4302 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4303 ctlr->bus_lock_flag = 1;
4304 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4306 /* Mutex remains locked until spi_bus_unlock() is called */
4310 EXPORT_SYMBOL_GPL(spi_bus_lock);
4313 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4314 * @ctlr: SPI bus master that was locked for exclusive bus access
4315 * Context: can sleep
4317 * This call may only be used from a context that may sleep. The sleep
4318 * is non-interruptible, and has no timeout.
4320 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4323 * Return: always zero.
4325 int spi_bus_unlock(struct spi_controller *ctlr)
4327 ctlr->bus_lock_flag = 0;
4329 mutex_unlock(&ctlr->bus_lock_mutex);
4333 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4335 /* Portable code must never pass more than 32 bytes */
4336 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4341 * spi_write_then_read - SPI synchronous write followed by read
4342 * @spi: device with which data will be exchanged
4343 * @txbuf: data to be written (need not be dma-safe)
4344 * @n_tx: size of txbuf, in bytes
4345 * @rxbuf: buffer into which data will be read (need not be dma-safe)
4346 * @n_rx: size of rxbuf, in bytes
4347 * Context: can sleep
4349 * This performs a half duplex MicroWire style transaction with the
4350 * device, sending txbuf and then reading rxbuf. The return value
4351 * is zero for success, else a negative errno status code.
4352 * This call may only be used from a context that may sleep.
4354 * Parameters to this routine are always copied using a small buffer.
4355 * Performance-sensitive or bulk transfer code should instead use
4356 * spi_{async,sync}() calls with dma-safe buffers.
4358 * Return: zero on success, else a negative error code.
4360 int spi_write_then_read(struct spi_device *spi,
4361 const void *txbuf, unsigned n_tx,
4362 void *rxbuf, unsigned n_rx)
4364 static DEFINE_MUTEX(lock);
4367 struct spi_message message;
4368 struct spi_transfer x[2];
4372 * Use preallocated DMA-safe buffer if we can. We can't avoid
4373 * copying here, (as a pure convenience thing), but we can
4374 * keep heap costs out of the hot path unless someone else is
4375 * using the pre-allocated buffer or the transfer is too large.
4377 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4378 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4379 GFP_KERNEL | GFP_DMA);
4386 spi_message_init(&message);
4387 memset(x, 0, sizeof(x));
4390 spi_message_add_tail(&x[0], &message);
4394 spi_message_add_tail(&x[1], &message);
4397 memcpy(local_buf, txbuf, n_tx);
4398 x[0].tx_buf = local_buf;
4399 x[1].rx_buf = local_buf + n_tx;
4402 status = spi_sync(spi, &message);
4404 memcpy(rxbuf, x[1].rx_buf, n_rx);
4406 if (x[0].tx_buf == buf)
4407 mutex_unlock(&lock);
4413 EXPORT_SYMBOL_GPL(spi_write_then_read);
4415 /*-------------------------------------------------------------------------*/
4417 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4418 /* Must call put_device() when done with returned spi_device device */
4419 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4421 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4423 return dev ? to_spi_device(dev) : NULL;
4426 /* The spi controllers are not using spi_bus, so we find it with another way */
4427 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4431 dev = class_find_device_by_of_node(&spi_master_class, node);
4432 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4433 dev = class_find_device_by_of_node(&spi_slave_class, node);
4437 /* Reference got in class_find_device */
4438 return container_of(dev, struct spi_controller, dev);
4441 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4444 struct of_reconfig_data *rd = arg;
4445 struct spi_controller *ctlr;
4446 struct spi_device *spi;
4448 switch (of_reconfig_get_state_change(action, arg)) {
4449 case OF_RECONFIG_CHANGE_ADD:
4450 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4452 return NOTIFY_OK; /* Not for us */
4454 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4455 put_device(&ctlr->dev);
4460 * Clear the flag before adding the device so that fw_devlink
4461 * doesn't skip adding consumers to this device.
4463 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4464 spi = of_register_spi_device(ctlr, rd->dn);
4465 put_device(&ctlr->dev);
4468 pr_err("%s: failed to create for '%pOF'\n",
4470 of_node_clear_flag(rd->dn, OF_POPULATED);
4471 return notifier_from_errno(PTR_ERR(spi));
4475 case OF_RECONFIG_CHANGE_REMOVE:
4476 /* Already depopulated? */
4477 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4480 /* Find our device by node */
4481 spi = of_find_spi_device_by_node(rd->dn);
4483 return NOTIFY_OK; /* No? not meant for us */
4485 /* Unregister takes one ref away */
4486 spi_unregister_device(spi);
4488 /* And put the reference of the find */
4489 put_device(&spi->dev);
4496 static struct notifier_block spi_of_notifier = {
4497 .notifier_call = of_spi_notify,
4499 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4500 extern struct notifier_block spi_of_notifier;
4501 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4503 #if IS_ENABLED(CONFIG_ACPI)
4504 static int spi_acpi_controller_match(struct device *dev, const void *data)
4506 return ACPI_COMPANION(dev->parent) == data;
4509 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4513 dev = class_find_device(&spi_master_class, NULL, adev,
4514 spi_acpi_controller_match);
4515 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4516 dev = class_find_device(&spi_slave_class, NULL, adev,
4517 spi_acpi_controller_match);
4521 return container_of(dev, struct spi_controller, dev);
4524 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4528 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4529 return to_spi_device(dev);
4532 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4535 struct acpi_device *adev = arg;
4536 struct spi_controller *ctlr;
4537 struct spi_device *spi;
4540 case ACPI_RECONFIG_DEVICE_ADD:
4541 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4545 acpi_register_spi_device(ctlr, adev);
4546 put_device(&ctlr->dev);
4548 case ACPI_RECONFIG_DEVICE_REMOVE:
4549 if (!acpi_device_enumerated(adev))
4552 spi = acpi_spi_find_device_by_adev(adev);
4556 spi_unregister_device(spi);
4557 put_device(&spi->dev);
4564 static struct notifier_block spi_acpi_notifier = {
4565 .notifier_call = acpi_spi_notify,
4568 extern struct notifier_block spi_acpi_notifier;
4571 static int __init spi_init(void)
4575 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4581 status = bus_register(&spi_bus_type);
4585 status = class_register(&spi_master_class);
4589 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4590 status = class_register(&spi_slave_class);
4595 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4596 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4597 if (IS_ENABLED(CONFIG_ACPI))
4598 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4603 class_unregister(&spi_master_class);
4605 bus_unregister(&spi_bus_type);
4614 * A board_info is normally registered in arch_initcall(),
4615 * but even essential drivers wait till later.
4617 * REVISIT only boardinfo really needs static linking. The rest (device and
4618 * driver registration) _could_ be dynamically linked (modular) ... Costs
4619 * include needing to have boardinfo data structures be much more public.
4621 postcore_initcall(spi_init);