1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 #include <linux/init.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/dax.h>
23 #include <linux/buffer_head.h>
24 #include <linux/swap.h>
25 #include <linux/pagevec.h>
26 #include <linux/writeback.h>
27 #include <linux/mpage.h>
28 #include <linux/mount.h>
29 #include <linux/pseudo_fs.h>
30 #include <linux/uio.h>
31 #include <linux/namei.h>
32 #include <linux/log2.h>
33 #include <linux/cleancache.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
40 struct block_device bdev;
41 struct inode vfs_inode;
44 static const struct address_space_operations def_blk_aops;
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
48 return container_of(inode, struct bdev_inode, vfs_inode);
51 struct block_device *I_BDEV(struct inode *inode)
53 return &BDEV_I(inode)->bdev;
55 EXPORT_SYMBOL(I_BDEV);
57 static void bdev_write_inode(struct block_device *bdev)
59 struct inode *inode = bdev->bd_inode;
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
72 spin_lock(&inode->i_lock);
74 spin_unlock(&inode->i_lock);
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
86 truncate_inode_pages(mapping, 0);
88 EXPORT_SYMBOL(kill_bdev);
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
95 if (mapping->nrpages) {
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
103 cleancache_invalidate_inode(mapping);
105 EXPORT_SYMBOL(invalidate_bdev);
107 static void set_init_blocksize(struct block_device *bdev)
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
112 while (bsize < PAGE_SIZE) {
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
121 int set_blocksize(struct block_device *bdev, int size)
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
141 EXPORT_SYMBOL(set_blocksize);
143 int sb_set_blocksize(struct super_block *sb, int size)
145 if (set_blocksize(sb->s_bdev, size))
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
154 EXPORT_SYMBOL(sb_set_blocksize);
156 int sb_min_blocksize(struct super_block *sb, int size)
158 int minsize = bdev_logical_block_size(sb->s_bdev);
161 return sb_set_blocksize(sb, size);
164 EXPORT_SYMBOL(sb_min_blocksize);
167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
176 static struct inode *bdev_file_inode(struct file *file)
178 return file->f_mapping->host;
181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
191 #define DIO_INLINE_BIO_VECS 4
193 static void blkdev_bio_end_io_simple(struct bio *bio)
195 struct task_struct *waiter = bio->bi_private;
197 WRITE_ONCE(bio->bi_private, NULL);
198 blk_wake_io_task(waiter);
202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
214 if ((pos | iov_iter_alignment(iter)) &
215 (bdev_logical_block_size(bdev) - 1))
218 if (nr_pages <= DIO_INLINE_BIO_VECS)
221 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
227 bio_init(&bio, vecs, nr_pages);
228 bio_set_dev(&bio, bdev);
229 bio.bi_iter.bi_sector = pos >> 9;
230 bio.bi_write_hint = iocb->ki_hint;
231 bio.bi_private = current;
232 bio.bi_end_io = blkdev_bio_end_io_simple;
233 bio.bi_ioprio = iocb->ki_ioprio;
235 ret = bio_iov_iter_get_pages(&bio, iter);
238 ret = bio.bi_iter.bi_size;
240 if (iov_iter_rw(iter) == READ) {
241 bio.bi_opf = REQ_OP_READ;
242 if (iter_is_iovec(iter))
245 bio.bi_opf = dio_bio_write_op(iocb);
246 task_io_account_write(ret);
248 if (iocb->ki_flags & IOCB_HIPRI)
249 bio_set_polled(&bio, iocb);
251 qc = submit_bio(&bio);
253 set_current_state(TASK_UNINTERRUPTIBLE);
254 if (!READ_ONCE(bio.bi_private))
256 if (!(iocb->ki_flags & IOCB_HIPRI) ||
257 !blk_poll(bdev_get_queue(bdev), qc, true))
260 __set_current_state(TASK_RUNNING);
262 bio_release_pages(&bio, should_dirty);
263 if (unlikely(bio.bi_status))
264 ret = blk_status_to_errno(bio.bi_status);
267 if (vecs != inline_vecs)
278 struct task_struct *waiter;
283 bool should_dirty : 1;
288 static struct bio_set blkdev_dio_pool;
290 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
292 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
293 struct request_queue *q = bdev_get_queue(bdev);
295 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
298 static void blkdev_bio_end_io(struct bio *bio)
300 struct blkdev_dio *dio = bio->bi_private;
301 bool should_dirty = dio->should_dirty;
303 if (bio->bi_status && !dio->bio.bi_status)
304 dio->bio.bi_status = bio->bi_status;
306 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
308 struct kiocb *iocb = dio->iocb;
311 if (likely(!dio->bio.bi_status)) {
315 ret = blk_status_to_errno(dio->bio.bi_status);
318 dio->iocb->ki_complete(iocb, ret, 0);
322 struct task_struct *waiter = dio->waiter;
324 WRITE_ONCE(dio->waiter, NULL);
325 blk_wake_io_task(waiter);
330 bio_check_pages_dirty(bio);
332 bio_release_pages(bio, false);
338 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
340 struct file *file = iocb->ki_filp;
341 struct inode *inode = bdev_file_inode(file);
342 struct block_device *bdev = I_BDEV(inode);
343 struct blk_plug plug;
344 struct blkdev_dio *dio;
346 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
347 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
348 bool nowait = (iocb->ki_flags & IOCB_NOWAIT) != 0;
349 loff_t pos = iocb->ki_pos;
350 blk_qc_t qc = BLK_QC_T_NONE;
354 if ((pos | iov_iter_alignment(iter)) &
355 (bdev_logical_block_size(bdev) - 1))
363 bio = bio_alloc_bioset(gfp, nr_pages, &blkdev_dio_pool);
367 dio = container_of(bio, struct blkdev_dio, bio);
368 dio->is_sync = is_sync = is_sync_kiocb(iocb);
370 dio->waiter = current;
377 dio->multi_bio = false;
378 dio->should_dirty = is_read && iter_is_iovec(iter);
381 * Don't plug for HIPRI/polled IO, as those should go straight
385 blk_start_plug(&plug);
391 bio_set_dev(bio, bdev);
392 bio->bi_iter.bi_sector = pos >> 9;
393 bio->bi_write_hint = iocb->ki_hint;
394 bio->bi_private = dio;
395 bio->bi_end_io = blkdev_bio_end_io;
396 bio->bi_ioprio = iocb->ki_ioprio;
398 err = bio_iov_iter_get_pages(bio, iter);
402 bio->bi_status = BLK_STS_IOERR;
408 bio->bi_opf = REQ_OP_READ;
409 if (dio->should_dirty)
410 bio_set_pages_dirty(bio);
412 bio->bi_opf = dio_bio_write_op(iocb);
413 task_io_account_write(bio->bi_iter.bi_size);
417 * Tell underlying layer to not block for resource shortage.
418 * And if we would have blocked, return error inline instead
419 * of through the bio->bi_end_io() callback.
422 bio->bi_opf |= (REQ_NOWAIT | REQ_NOWAIT_INLINE);
424 dio->size += bio->bi_iter.bi_size;
425 pos += bio->bi_iter.bi_size;
427 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
431 if (iocb->ki_flags & IOCB_HIPRI) {
432 bio_set_polled(bio, iocb);
436 qc = submit_bio(bio);
437 if (qc == BLK_QC_T_EAGAIN) {
445 WRITE_ONCE(iocb->ki_cookie, qc);
449 if (!dio->multi_bio) {
451 * AIO needs an extra reference to ensure the dio
452 * structure which is embedded into the first bio
457 dio->multi_bio = true;
458 atomic_set(&dio->ref, 2);
460 atomic_inc(&dio->ref);
463 qc = submit_bio(bio);
464 if (qc == BLK_QC_T_EAGAIN) {
471 bio = bio_alloc(gfp, nr_pages);
480 blk_finish_plug(&plug);
486 set_current_state(TASK_UNINTERRUPTIBLE);
487 if (!READ_ONCE(dio->waiter))
490 if (!(iocb->ki_flags & IOCB_HIPRI) ||
491 !blk_poll(bdev_get_queue(bdev), qc, true))
494 __set_current_state(TASK_RUNNING);
498 ret = blk_status_to_errno(dio->bio.bi_status);
504 blk_finish_plug(&plug);
509 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
513 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
516 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
517 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
519 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
522 static __init int blkdev_init(void)
524 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
526 module_init(blkdev_init);
528 int __sync_blockdev(struct block_device *bdev, int wait)
533 return filemap_flush(bdev->bd_inode->i_mapping);
534 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
538 * Write out and wait upon all the dirty data associated with a block
539 * device via its mapping. Does not take the superblock lock.
541 int sync_blockdev(struct block_device *bdev)
543 return __sync_blockdev(bdev, 1);
545 EXPORT_SYMBOL(sync_blockdev);
548 * Write out and wait upon all dirty data associated with this
549 * device. Filesystem data as well as the underlying block
550 * device. Takes the superblock lock.
552 int fsync_bdev(struct block_device *bdev)
554 struct super_block *sb = get_super(bdev);
556 int res = sync_filesystem(sb);
560 return sync_blockdev(bdev);
562 EXPORT_SYMBOL(fsync_bdev);
565 * freeze_bdev -- lock a filesystem and force it into a consistent state
566 * @bdev: blockdevice to lock
568 * If a superblock is found on this device, we take the s_umount semaphore
569 * on it to make sure nobody unmounts until the snapshot creation is done.
570 * The reference counter (bd_fsfreeze_count) guarantees that only the last
571 * unfreeze process can unfreeze the frozen filesystem actually when multiple
572 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
573 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
576 struct super_block *freeze_bdev(struct block_device *bdev)
578 struct super_block *sb;
581 mutex_lock(&bdev->bd_fsfreeze_mutex);
582 if (++bdev->bd_fsfreeze_count > 1) {
584 * We don't even need to grab a reference - the first call
585 * to freeze_bdev grab an active reference and only the last
586 * thaw_bdev drops it.
588 sb = get_super(bdev);
591 mutex_unlock(&bdev->bd_fsfreeze_mutex);
595 sb = get_active_super(bdev);
598 if (sb->s_op->freeze_super)
599 error = sb->s_op->freeze_super(sb);
601 error = freeze_super(sb);
603 deactivate_super(sb);
604 bdev->bd_fsfreeze_count--;
605 mutex_unlock(&bdev->bd_fsfreeze_mutex);
606 return ERR_PTR(error);
608 deactivate_super(sb);
611 mutex_unlock(&bdev->bd_fsfreeze_mutex);
612 return sb; /* thaw_bdev releases s->s_umount */
614 EXPORT_SYMBOL(freeze_bdev);
617 * thaw_bdev -- unlock filesystem
618 * @bdev: blockdevice to unlock
619 * @sb: associated superblock
621 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
623 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
627 mutex_lock(&bdev->bd_fsfreeze_mutex);
628 if (!bdev->bd_fsfreeze_count)
632 if (--bdev->bd_fsfreeze_count > 0)
638 if (sb->s_op->thaw_super)
639 error = sb->s_op->thaw_super(sb);
641 error = thaw_super(sb);
643 bdev->bd_fsfreeze_count++;
645 mutex_unlock(&bdev->bd_fsfreeze_mutex);
648 EXPORT_SYMBOL(thaw_bdev);
650 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
652 return block_write_full_page(page, blkdev_get_block, wbc);
655 static int blkdev_readpage(struct file * file, struct page * page)
657 return block_read_full_page(page, blkdev_get_block);
660 static int blkdev_readpages(struct file *file, struct address_space *mapping,
661 struct list_head *pages, unsigned nr_pages)
663 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
666 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
667 loff_t pos, unsigned len, unsigned flags,
668 struct page **pagep, void **fsdata)
670 return block_write_begin(mapping, pos, len, flags, pagep,
674 static int blkdev_write_end(struct file *file, struct address_space *mapping,
675 loff_t pos, unsigned len, unsigned copied,
676 struct page *page, void *fsdata)
679 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
689 * for a block special file file_inode(file)->i_size is zero
690 * so we compute the size by hand (just as in block_read/write above)
692 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
694 struct inode *bd_inode = bdev_file_inode(file);
697 inode_lock(bd_inode);
698 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
699 inode_unlock(bd_inode);
703 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
705 struct inode *bd_inode = bdev_file_inode(filp);
706 struct block_device *bdev = I_BDEV(bd_inode);
709 error = file_write_and_wait_range(filp, start, end);
714 * There is no need to serialise calls to blkdev_issue_flush with
715 * i_mutex and doing so causes performance issues with concurrent
716 * O_SYNC writers to a block device.
718 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
719 if (error == -EOPNOTSUPP)
724 EXPORT_SYMBOL(blkdev_fsync);
727 * bdev_read_page() - Start reading a page from a block device
728 * @bdev: The device to read the page from
729 * @sector: The offset on the device to read the page to (need not be aligned)
730 * @page: The page to read
732 * On entry, the page should be locked. It will be unlocked when the page
733 * has been read. If the block driver implements rw_page synchronously,
734 * that will be true on exit from this function, but it need not be.
736 * Errors returned by this function are usually "soft", eg out of memory, or
737 * queue full; callers should try a different route to read this page rather
738 * than propagate an error back up the stack.
740 * Return: negative errno if an error occurs, 0 if submission was successful.
742 int bdev_read_page(struct block_device *bdev, sector_t sector,
745 const struct block_device_operations *ops = bdev->bd_disk->fops;
746 int result = -EOPNOTSUPP;
748 if (!ops->rw_page || bdev_get_integrity(bdev))
751 result = blk_queue_enter(bdev->bd_queue, 0);
754 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
756 blk_queue_exit(bdev->bd_queue);
759 EXPORT_SYMBOL_GPL(bdev_read_page);
762 * bdev_write_page() - Start writing a page to a block device
763 * @bdev: The device to write the page to
764 * @sector: The offset on the device to write the page to (need not be aligned)
765 * @page: The page to write
766 * @wbc: The writeback_control for the write
768 * On entry, the page should be locked and not currently under writeback.
769 * On exit, if the write started successfully, the page will be unlocked and
770 * under writeback. If the write failed already (eg the driver failed to
771 * queue the page to the device), the page will still be locked. If the
772 * caller is a ->writepage implementation, it will need to unlock the page.
774 * Errors returned by this function are usually "soft", eg out of memory, or
775 * queue full; callers should try a different route to write this page rather
776 * than propagate an error back up the stack.
778 * Return: negative errno if an error occurs, 0 if submission was successful.
780 int bdev_write_page(struct block_device *bdev, sector_t sector,
781 struct page *page, struct writeback_control *wbc)
784 const struct block_device_operations *ops = bdev->bd_disk->fops;
786 if (!ops->rw_page || bdev_get_integrity(bdev))
788 result = blk_queue_enter(bdev->bd_queue, 0);
792 set_page_writeback(page);
793 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
796 end_page_writeback(page);
798 clean_page_buffers(page);
801 blk_queue_exit(bdev->bd_queue);
804 EXPORT_SYMBOL_GPL(bdev_write_page);
810 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
811 static struct kmem_cache * bdev_cachep __read_mostly;
813 static struct inode *bdev_alloc_inode(struct super_block *sb)
815 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
818 return &ei->vfs_inode;
821 static void bdev_free_inode(struct inode *inode)
823 kmem_cache_free(bdev_cachep, BDEV_I(inode));
826 static void init_once(void *foo)
828 struct bdev_inode *ei = (struct bdev_inode *) foo;
829 struct block_device *bdev = &ei->bdev;
831 memset(bdev, 0, sizeof(*bdev));
832 mutex_init(&bdev->bd_mutex);
833 INIT_LIST_HEAD(&bdev->bd_list);
835 INIT_LIST_HEAD(&bdev->bd_holder_disks);
837 bdev->bd_bdi = &noop_backing_dev_info;
838 inode_init_once(&ei->vfs_inode);
839 /* Initialize mutex for freeze. */
840 mutex_init(&bdev->bd_fsfreeze_mutex);
843 static void bdev_evict_inode(struct inode *inode)
845 struct block_device *bdev = &BDEV_I(inode)->bdev;
846 truncate_inode_pages_final(&inode->i_data);
847 invalidate_inode_buffers(inode); /* is it needed here? */
849 spin_lock(&bdev_lock);
850 list_del_init(&bdev->bd_list);
851 spin_unlock(&bdev_lock);
852 /* Detach inode from wb early as bdi_put() may free bdi->wb */
853 inode_detach_wb(inode);
854 if (bdev->bd_bdi != &noop_backing_dev_info) {
855 bdi_put(bdev->bd_bdi);
856 bdev->bd_bdi = &noop_backing_dev_info;
860 static const struct super_operations bdev_sops = {
861 .statfs = simple_statfs,
862 .alloc_inode = bdev_alloc_inode,
863 .free_inode = bdev_free_inode,
864 .drop_inode = generic_delete_inode,
865 .evict_inode = bdev_evict_inode,
868 static int bd_init_fs_context(struct fs_context *fc)
870 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
873 fc->s_iflags |= SB_I_CGROUPWB;
874 ctx->ops = &bdev_sops;
878 static struct file_system_type bd_type = {
880 .init_fs_context = bd_init_fs_context,
881 .kill_sb = kill_anon_super,
884 struct super_block *blockdev_superblock __read_mostly;
885 EXPORT_SYMBOL_GPL(blockdev_superblock);
887 void __init bdev_cache_init(void)
890 static struct vfsmount *bd_mnt;
892 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
893 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
894 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
896 err = register_filesystem(&bd_type);
898 panic("Cannot register bdev pseudo-fs");
899 bd_mnt = kern_mount(&bd_type);
901 panic("Cannot create bdev pseudo-fs");
902 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
906 * Most likely _very_ bad one - but then it's hardly critical for small
907 * /dev and can be fixed when somebody will need really large one.
908 * Keep in mind that it will be fed through icache hash function too.
910 static inline unsigned long hash(dev_t dev)
912 return MAJOR(dev)+MINOR(dev);
915 static int bdev_test(struct inode *inode, void *data)
917 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
920 static int bdev_set(struct inode *inode, void *data)
922 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
926 static LIST_HEAD(all_bdevs);
929 * If there is a bdev inode for this device, unhash it so that it gets evicted
930 * as soon as last inode reference is dropped.
932 void bdev_unhash_inode(dev_t dev)
936 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
938 remove_inode_hash(inode);
943 struct block_device *bdget(dev_t dev)
945 struct block_device *bdev;
948 inode = iget5_locked(blockdev_superblock, hash(dev),
949 bdev_test, bdev_set, &dev);
954 bdev = &BDEV_I(inode)->bdev;
956 if (inode->i_state & I_NEW) {
957 bdev->bd_contains = NULL;
958 bdev->bd_super = NULL;
959 bdev->bd_inode = inode;
960 bdev->bd_block_size = i_blocksize(inode);
961 bdev->bd_part_count = 0;
962 bdev->bd_invalidated = 0;
963 inode->i_mode = S_IFBLK;
965 inode->i_bdev = bdev;
966 inode->i_data.a_ops = &def_blk_aops;
967 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
968 spin_lock(&bdev_lock);
969 list_add(&bdev->bd_list, &all_bdevs);
970 spin_unlock(&bdev_lock);
971 unlock_new_inode(inode);
976 EXPORT_SYMBOL(bdget);
979 * bdgrab -- Grab a reference to an already referenced block device
980 * @bdev: Block device to grab a reference to.
982 struct block_device *bdgrab(struct block_device *bdev)
984 ihold(bdev->bd_inode);
987 EXPORT_SYMBOL(bdgrab);
989 long nr_blockdev_pages(void)
991 struct block_device *bdev;
993 spin_lock(&bdev_lock);
994 list_for_each_entry(bdev, &all_bdevs, bd_list) {
995 ret += bdev->bd_inode->i_mapping->nrpages;
997 spin_unlock(&bdev_lock);
1001 void bdput(struct block_device *bdev)
1003 iput(bdev->bd_inode);
1006 EXPORT_SYMBOL(bdput);
1008 static struct block_device *bd_acquire(struct inode *inode)
1010 struct block_device *bdev;
1012 spin_lock(&bdev_lock);
1013 bdev = inode->i_bdev;
1014 if (bdev && !inode_unhashed(bdev->bd_inode)) {
1016 spin_unlock(&bdev_lock);
1019 spin_unlock(&bdev_lock);
1022 * i_bdev references block device inode that was already shut down
1023 * (corresponding device got removed). Remove the reference and look
1024 * up block device inode again just in case new device got
1025 * reestablished under the same device number.
1030 bdev = bdget(inode->i_rdev);
1032 spin_lock(&bdev_lock);
1033 if (!inode->i_bdev) {
1035 * We take an additional reference to bd_inode,
1036 * and it's released in clear_inode() of inode.
1037 * So, we can access it via ->i_mapping always
1041 inode->i_bdev = bdev;
1042 inode->i_mapping = bdev->bd_inode->i_mapping;
1044 spin_unlock(&bdev_lock);
1049 /* Call when you free inode */
1051 void bd_forget(struct inode *inode)
1053 struct block_device *bdev = NULL;
1055 spin_lock(&bdev_lock);
1056 if (!sb_is_blkdev_sb(inode->i_sb))
1057 bdev = inode->i_bdev;
1058 inode->i_bdev = NULL;
1059 inode->i_mapping = &inode->i_data;
1060 spin_unlock(&bdev_lock);
1067 * bd_may_claim - test whether a block device can be claimed
1068 * @bdev: block device of interest
1069 * @whole: whole block device containing @bdev, may equal @bdev
1070 * @holder: holder trying to claim @bdev
1072 * Test whether @bdev can be claimed by @holder.
1075 * spin_lock(&bdev_lock).
1078 * %true if @bdev can be claimed, %false otherwise.
1080 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1083 if (bdev->bd_holder == holder)
1084 return true; /* already a holder */
1085 else if (bdev->bd_holder != NULL)
1086 return false; /* held by someone else */
1087 else if (whole == bdev)
1088 return true; /* is a whole device which isn't held */
1090 else if (whole->bd_holder == bd_may_claim)
1091 return true; /* is a partition of a device that is being partitioned */
1092 else if (whole->bd_holder != NULL)
1093 return false; /* is a partition of a held device */
1095 return true; /* is a partition of an un-held device */
1099 * bd_prepare_to_claim - prepare to claim a block device
1100 * @bdev: block device of interest
1101 * @whole: the whole device containing @bdev, may equal @bdev
1102 * @holder: holder trying to claim @bdev
1104 * Prepare to claim @bdev. This function fails if @bdev is already
1105 * claimed by another holder and waits if another claiming is in
1106 * progress. This function doesn't actually claim. On successful
1107 * return, the caller has ownership of bd_claiming and bd_holder[s].
1110 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1111 * it multiple times.
1114 * 0 if @bdev can be claimed, -EBUSY otherwise.
1116 static int bd_prepare_to_claim(struct block_device *bdev,
1117 struct block_device *whole, void *holder)
1120 /* if someone else claimed, fail */
1121 if (!bd_may_claim(bdev, whole, holder))
1124 /* if claiming is already in progress, wait for it to finish */
1125 if (whole->bd_claiming) {
1126 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1129 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1130 spin_unlock(&bdev_lock);
1132 finish_wait(wq, &wait);
1133 spin_lock(&bdev_lock);
1141 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1143 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1148 * Now that we hold gendisk reference we make sure bdev we looked up is
1149 * not stale. If it is, it means device got removed and created before
1150 * we looked up gendisk and we fail open in such case. Associating
1151 * unhashed bdev with newly created gendisk could lead to two bdevs
1152 * (and thus two independent caches) being associated with one device
1155 if (inode_unhashed(bdev->bd_inode)) {
1156 put_disk_and_module(disk);
1163 * bd_start_claiming - start claiming a block device
1164 * @bdev: block device of interest
1165 * @holder: holder trying to claim @bdev
1167 * @bdev is about to be opened exclusively. Check @bdev can be opened
1168 * exclusively and mark that an exclusive open is in progress. Each
1169 * successful call to this function must be matched with a call to
1170 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1173 * This function is used to gain exclusive access to the block device
1174 * without actually causing other exclusive open attempts to fail. It
1175 * should be used when the open sequence itself requires exclusive
1176 * access but may subsequently fail.
1182 * Pointer to the block device containing @bdev on success, ERR_PTR()
1185 struct block_device *bd_start_claiming(struct block_device *bdev, void *holder)
1187 struct gendisk *disk;
1188 struct block_device *whole;
1194 * @bdev might not have been initialized properly yet, look up
1195 * and grab the outer block device the hard way.
1197 disk = bdev_get_gendisk(bdev, &partno);
1199 return ERR_PTR(-ENXIO);
1202 * Normally, @bdev should equal what's returned from bdget_disk()
1203 * if partno is 0; however, some drivers (floppy) use multiple
1204 * bdev's for the same physical device and @bdev may be one of the
1205 * aliases. Keep @bdev if partno is 0. This means claimer
1206 * tracking is broken for those devices but it has always been that
1210 whole = bdget_disk(disk, 0);
1212 whole = bdgrab(bdev);
1214 put_disk_and_module(disk);
1216 return ERR_PTR(-ENOMEM);
1218 /* prepare to claim, if successful, mark claiming in progress */
1219 spin_lock(&bdev_lock);
1221 err = bd_prepare_to_claim(bdev, whole, holder);
1223 whole->bd_claiming = holder;
1224 spin_unlock(&bdev_lock);
1227 spin_unlock(&bdev_lock);
1229 return ERR_PTR(err);
1232 EXPORT_SYMBOL(bd_start_claiming);
1234 static void bd_clear_claiming(struct block_device *whole, void *holder)
1236 lockdep_assert_held(&bdev_lock);
1237 /* tell others that we're done */
1238 BUG_ON(whole->bd_claiming != holder);
1239 whole->bd_claiming = NULL;
1240 wake_up_bit(&whole->bd_claiming, 0);
1244 * bd_finish_claiming - finish claiming of a block device
1245 * @bdev: block device of interest
1246 * @whole: whole block device (returned from bd_start_claiming())
1247 * @holder: holder that has claimed @bdev
1249 * Finish exclusive open of a block device. Mark the device as exlusively
1250 * open by the holder and wake up all waiters for exclusive open to finish.
1252 void bd_finish_claiming(struct block_device *bdev, struct block_device *whole,
1255 spin_lock(&bdev_lock);
1256 BUG_ON(!bd_may_claim(bdev, whole, holder));
1258 * Note that for a whole device bd_holders will be incremented twice,
1259 * and bd_holder will be set to bd_may_claim before being set to holder
1261 whole->bd_holders++;
1262 whole->bd_holder = bd_may_claim;
1264 bdev->bd_holder = holder;
1265 bd_clear_claiming(whole, holder);
1266 spin_unlock(&bdev_lock);
1268 EXPORT_SYMBOL(bd_finish_claiming);
1271 * bd_abort_claiming - abort claiming of a block device
1272 * @bdev: block device of interest
1273 * @whole: whole block device (returned from bd_start_claiming())
1274 * @holder: holder that has claimed @bdev
1276 * Abort claiming of a block device when the exclusive open failed. This can be
1277 * also used when exclusive open is not actually desired and we just needed
1278 * to block other exclusive openers for a while.
1280 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1283 spin_lock(&bdev_lock);
1284 bd_clear_claiming(whole, holder);
1285 spin_unlock(&bdev_lock);
1287 EXPORT_SYMBOL(bd_abort_claiming);
1290 struct bd_holder_disk {
1291 struct list_head list;
1292 struct gendisk *disk;
1296 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1297 struct gendisk *disk)
1299 struct bd_holder_disk *holder;
1301 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1302 if (holder->disk == disk)
1307 static int add_symlink(struct kobject *from, struct kobject *to)
1309 return sysfs_create_link(from, to, kobject_name(to));
1312 static void del_symlink(struct kobject *from, struct kobject *to)
1314 sysfs_remove_link(from, kobject_name(to));
1318 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1319 * @bdev: the claimed slave bdev
1320 * @disk: the holding disk
1322 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1324 * This functions creates the following sysfs symlinks.
1326 * - from "slaves" directory of the holder @disk to the claimed @bdev
1327 * - from "holders" directory of the @bdev to the holder @disk
1329 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1330 * passed to bd_link_disk_holder(), then:
1332 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1333 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1335 * The caller must have claimed @bdev before calling this function and
1336 * ensure that both @bdev and @disk are valid during the creation and
1337 * lifetime of these symlinks.
1343 * 0 on success, -errno on failure.
1345 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1347 struct bd_holder_disk *holder;
1350 mutex_lock(&bdev->bd_mutex);
1352 WARN_ON_ONCE(!bdev->bd_holder);
1354 /* FIXME: remove the following once add_disk() handles errors */
1355 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1358 holder = bd_find_holder_disk(bdev, disk);
1364 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1370 INIT_LIST_HEAD(&holder->list);
1371 holder->disk = disk;
1374 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1378 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1382 * bdev could be deleted beneath us which would implicitly destroy
1383 * the holder directory. Hold on to it.
1385 kobject_get(bdev->bd_part->holder_dir);
1387 list_add(&holder->list, &bdev->bd_holder_disks);
1391 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1395 mutex_unlock(&bdev->bd_mutex);
1398 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1401 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1402 * @bdev: the calimed slave bdev
1403 * @disk: the holding disk
1405 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1410 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1412 struct bd_holder_disk *holder;
1414 mutex_lock(&bdev->bd_mutex);
1416 holder = bd_find_holder_disk(bdev, disk);
1418 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1419 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1420 del_symlink(bdev->bd_part->holder_dir,
1421 &disk_to_dev(disk)->kobj);
1422 kobject_put(bdev->bd_part->holder_dir);
1423 list_del_init(&holder->list);
1427 mutex_unlock(&bdev->bd_mutex);
1429 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1433 * flush_disk - invalidates all buffer-cache entries on a disk
1435 * @bdev: struct block device to be flushed
1436 * @kill_dirty: flag to guide handling of dirty inodes
1438 * Invalidates all buffer-cache entries on a disk. It should be called
1439 * when a disk has been changed -- either by a media change or online
1442 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1444 if (__invalidate_device(bdev, kill_dirty)) {
1445 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1446 "resized disk %s\n",
1447 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1452 if (disk_part_scan_enabled(bdev->bd_disk))
1453 bdev->bd_invalidated = 1;
1457 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1458 * @disk: struct gendisk to check
1459 * @bdev: struct bdev to adjust.
1460 * @verbose: if %true log a message about a size change if there is any
1462 * This routine checks to see if the bdev size does not match the disk size
1463 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1466 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1469 loff_t disk_size, bdev_size;
1471 disk_size = (loff_t)get_capacity(disk) << 9;
1472 bdev_size = i_size_read(bdev->bd_inode);
1473 if (disk_size != bdev_size) {
1476 "%s: detected capacity change from %lld to %lld\n",
1477 disk->disk_name, bdev_size, disk_size);
1479 i_size_write(bdev->bd_inode, disk_size);
1480 if (bdev_size > disk_size)
1481 flush_disk(bdev, false);
1486 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1487 * @disk: struct gendisk to be revalidated
1489 * This routine is a wrapper for lower-level driver's revalidate_disk
1490 * call-backs. It is used to do common pre and post operations needed
1491 * for all revalidate_disk operations.
1493 int revalidate_disk(struct gendisk *disk)
1497 if (disk->fops->revalidate_disk)
1498 ret = disk->fops->revalidate_disk(disk);
1501 * Hidden disks don't have associated bdev so there's no point in
1504 if (!(disk->flags & GENHD_FL_HIDDEN)) {
1505 struct block_device *bdev = bdget_disk(disk, 0);
1510 mutex_lock(&bdev->bd_mutex);
1511 check_disk_size_change(disk, bdev, ret == 0);
1512 bdev->bd_invalidated = 0;
1513 mutex_unlock(&bdev->bd_mutex);
1518 EXPORT_SYMBOL(revalidate_disk);
1521 * This routine checks whether a removable media has been changed,
1522 * and invalidates all buffer-cache-entries in that case. This
1523 * is a relatively slow routine, so we have to try to minimize using
1524 * it. Thus it is called only upon a 'mount' or 'open'. This
1525 * is the best way of combining speed and utility, I think.
1526 * People changing diskettes in the middle of an operation deserve
1529 int check_disk_change(struct block_device *bdev)
1531 struct gendisk *disk = bdev->bd_disk;
1532 const struct block_device_operations *bdops = disk->fops;
1533 unsigned int events;
1535 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1536 DISK_EVENT_EJECT_REQUEST);
1537 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1540 flush_disk(bdev, true);
1541 if (bdops->revalidate_disk)
1542 bdops->revalidate_disk(bdev->bd_disk);
1546 EXPORT_SYMBOL(check_disk_change);
1548 void bd_set_size(struct block_device *bdev, loff_t size)
1550 inode_lock(bdev->bd_inode);
1551 i_size_write(bdev->bd_inode, size);
1552 inode_unlock(bdev->bd_inode);
1554 EXPORT_SYMBOL(bd_set_size);
1556 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1561 * mutex_lock(part->bd_mutex)
1562 * mutex_lock_nested(whole->bd_mutex, 1)
1565 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1567 struct gendisk *disk;
1571 bool first_open = false;
1573 if (mode & FMODE_READ)
1575 if (mode & FMODE_WRITE)
1578 * hooks: /n/, see "layering violations".
1581 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1591 disk = bdev_get_gendisk(bdev, &partno);
1595 disk_block_events(disk);
1596 mutex_lock_nested(&bdev->bd_mutex, for_part);
1597 if (!bdev->bd_openers) {
1599 bdev->bd_disk = disk;
1600 bdev->bd_queue = disk->queue;
1601 bdev->bd_contains = bdev;
1602 bdev->bd_partno = partno;
1606 bdev->bd_part = disk_get_part(disk, partno);
1611 if (disk->fops->open) {
1612 ret = disk->fops->open(bdev, mode);
1613 if (ret == -ERESTARTSYS) {
1614 /* Lost a race with 'disk' being
1615 * deleted, try again.
1618 disk_put_part(bdev->bd_part);
1619 bdev->bd_part = NULL;
1620 bdev->bd_disk = NULL;
1621 bdev->bd_queue = NULL;
1622 mutex_unlock(&bdev->bd_mutex);
1623 disk_unblock_events(disk);
1624 put_disk_and_module(disk);
1630 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1631 set_init_blocksize(bdev);
1635 * If the device is invalidated, rescan partition
1636 * if open succeeded or failed with -ENOMEDIUM.
1637 * The latter is necessary to prevent ghost
1638 * partitions on a removed medium.
1640 if (bdev->bd_invalidated) {
1642 rescan_partitions(disk, bdev);
1643 else if (ret == -ENOMEDIUM)
1644 invalidate_partitions(disk, bdev);
1650 struct block_device *whole;
1651 whole = bdget_disk(disk, 0);
1656 ret = __blkdev_get(whole, mode, 1);
1659 bdev->bd_contains = whole;
1660 bdev->bd_part = disk_get_part(disk, partno);
1661 if (!(disk->flags & GENHD_FL_UP) ||
1662 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1666 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1667 set_init_blocksize(bdev);
1670 if (bdev->bd_bdi == &noop_backing_dev_info)
1671 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1673 if (bdev->bd_contains == bdev) {
1675 if (bdev->bd_disk->fops->open)
1676 ret = bdev->bd_disk->fops->open(bdev, mode);
1677 /* the same as first opener case, read comment there */
1678 if (bdev->bd_invalidated) {
1680 rescan_partitions(bdev->bd_disk, bdev);
1681 else if (ret == -ENOMEDIUM)
1682 invalidate_partitions(bdev->bd_disk, bdev);
1685 goto out_unlock_bdev;
1690 bdev->bd_part_count++;
1691 mutex_unlock(&bdev->bd_mutex);
1692 disk_unblock_events(disk);
1693 /* only one opener holds refs to the module and disk */
1695 put_disk_and_module(disk);
1699 disk_put_part(bdev->bd_part);
1700 bdev->bd_disk = NULL;
1701 bdev->bd_part = NULL;
1702 bdev->bd_queue = NULL;
1703 if (bdev != bdev->bd_contains)
1704 __blkdev_put(bdev->bd_contains, mode, 1);
1705 bdev->bd_contains = NULL;
1707 mutex_unlock(&bdev->bd_mutex);
1708 disk_unblock_events(disk);
1709 put_disk_and_module(disk);
1717 * blkdev_get - open a block device
1718 * @bdev: block_device to open
1719 * @mode: FMODE_* mask
1720 * @holder: exclusive holder identifier
1722 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1723 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1724 * @holder is invalid. Exclusive opens may nest for the same @holder.
1726 * On success, the reference count of @bdev is unchanged. On failure,
1733 * 0 on success, -errno on failure.
1735 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1737 struct block_device *whole = NULL;
1740 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1742 if ((mode & FMODE_EXCL) && holder) {
1743 whole = bd_start_claiming(bdev, holder);
1744 if (IS_ERR(whole)) {
1746 return PTR_ERR(whole);
1750 res = __blkdev_get(bdev, mode, 0);
1753 struct gendisk *disk = whole->bd_disk;
1755 /* finish claiming */
1756 mutex_lock(&bdev->bd_mutex);
1757 bd_finish_claiming(bdev, whole, holder);
1759 * Block event polling for write claims if requested. Any
1760 * write holder makes the write_holder state stick until
1761 * all are released. This is good enough and tracking
1762 * individual writeable reference is too fragile given the
1763 * way @mode is used in blkdev_get/put().
1765 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1766 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1767 bdev->bd_write_holder = true;
1768 disk_block_events(disk);
1771 mutex_unlock(&bdev->bd_mutex);
1777 EXPORT_SYMBOL(blkdev_get);
1780 * blkdev_get_by_path - open a block device by name
1781 * @path: path to the block device to open
1782 * @mode: FMODE_* mask
1783 * @holder: exclusive holder identifier
1785 * Open the blockdevice described by the device file at @path. @mode
1786 * and @holder are identical to blkdev_get().
1788 * On success, the returned block_device has reference count of one.
1794 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1796 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1799 struct block_device *bdev;
1802 bdev = lookup_bdev(path);
1806 err = blkdev_get(bdev, mode, holder);
1808 return ERR_PTR(err);
1810 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1811 blkdev_put(bdev, mode);
1812 return ERR_PTR(-EACCES);
1817 EXPORT_SYMBOL(blkdev_get_by_path);
1820 * blkdev_get_by_dev - open a block device by device number
1821 * @dev: device number of block device to open
1822 * @mode: FMODE_* mask
1823 * @holder: exclusive holder identifier
1825 * Open the blockdevice described by device number @dev. @mode and
1826 * @holder are identical to blkdev_get().
1828 * Use it ONLY if you really do not have anything better - i.e. when
1829 * you are behind a truly sucky interface and all you are given is a
1830 * device number. _Never_ to be used for internal purposes. If you
1831 * ever need it - reconsider your API.
1833 * On success, the returned block_device has reference count of one.
1839 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1841 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1843 struct block_device *bdev;
1848 return ERR_PTR(-ENOMEM);
1850 err = blkdev_get(bdev, mode, holder);
1852 return ERR_PTR(err);
1856 EXPORT_SYMBOL(blkdev_get_by_dev);
1858 static int blkdev_open(struct inode * inode, struct file * filp)
1860 struct block_device *bdev;
1863 * Preserve backwards compatibility and allow large file access
1864 * even if userspace doesn't ask for it explicitly. Some mkfs
1865 * binary needs it. We might want to drop this workaround
1866 * during an unstable branch.
1868 filp->f_flags |= O_LARGEFILE;
1870 filp->f_mode |= FMODE_NOWAIT;
1872 if (filp->f_flags & O_NDELAY)
1873 filp->f_mode |= FMODE_NDELAY;
1874 if (filp->f_flags & O_EXCL)
1875 filp->f_mode |= FMODE_EXCL;
1876 if ((filp->f_flags & O_ACCMODE) == 3)
1877 filp->f_mode |= FMODE_WRITE_IOCTL;
1879 bdev = bd_acquire(inode);
1883 filp->f_mapping = bdev->bd_inode->i_mapping;
1884 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1886 return blkdev_get(bdev, filp->f_mode, filp);
1889 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1891 struct gendisk *disk = bdev->bd_disk;
1892 struct block_device *victim = NULL;
1894 mutex_lock_nested(&bdev->bd_mutex, for_part);
1896 bdev->bd_part_count--;
1898 if (!--bdev->bd_openers) {
1899 WARN_ON_ONCE(bdev->bd_holders);
1900 sync_blockdev(bdev);
1903 bdev_write_inode(bdev);
1905 if (bdev->bd_contains == bdev) {
1906 if (disk->fops->release)
1907 disk->fops->release(disk, mode);
1909 if (!bdev->bd_openers) {
1910 disk_put_part(bdev->bd_part);
1911 bdev->bd_part = NULL;
1912 bdev->bd_disk = NULL;
1913 if (bdev != bdev->bd_contains)
1914 victim = bdev->bd_contains;
1915 bdev->bd_contains = NULL;
1917 put_disk_and_module(disk);
1919 mutex_unlock(&bdev->bd_mutex);
1922 __blkdev_put(victim, mode, 1);
1925 void blkdev_put(struct block_device *bdev, fmode_t mode)
1927 mutex_lock(&bdev->bd_mutex);
1929 if (mode & FMODE_EXCL) {
1933 * Release a claim on the device. The holder fields
1934 * are protected with bdev_lock. bd_mutex is to
1935 * synchronize disk_holder unlinking.
1937 spin_lock(&bdev_lock);
1939 WARN_ON_ONCE(--bdev->bd_holders < 0);
1940 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1942 /* bd_contains might point to self, check in a separate step */
1943 if ((bdev_free = !bdev->bd_holders))
1944 bdev->bd_holder = NULL;
1945 if (!bdev->bd_contains->bd_holders)
1946 bdev->bd_contains->bd_holder = NULL;
1948 spin_unlock(&bdev_lock);
1951 * If this was the last claim, remove holder link and
1952 * unblock evpoll if it was a write holder.
1954 if (bdev_free && bdev->bd_write_holder) {
1955 disk_unblock_events(bdev->bd_disk);
1956 bdev->bd_write_holder = false;
1961 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1962 * event. This is to ensure detection of media removal commanded
1963 * from userland - e.g. eject(1).
1965 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1967 mutex_unlock(&bdev->bd_mutex);
1969 __blkdev_put(bdev, mode, 0);
1971 EXPORT_SYMBOL(blkdev_put);
1973 static int blkdev_close(struct inode * inode, struct file * filp)
1975 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1976 blkdev_put(bdev, filp->f_mode);
1980 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1982 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1983 fmode_t mode = file->f_mode;
1986 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1987 * to updated it before every ioctl.
1989 if (file->f_flags & O_NDELAY)
1990 mode |= FMODE_NDELAY;
1992 mode &= ~FMODE_NDELAY;
1994 return blkdev_ioctl(bdev, mode, cmd, arg);
1998 * Write data to the block device. Only intended for the block device itself
1999 * and the raw driver which basically is a fake block device.
2001 * Does not take i_mutex for the write and thus is not for general purpose
2004 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
2006 struct file *file = iocb->ki_filp;
2007 struct inode *bd_inode = bdev_file_inode(file);
2008 loff_t size = i_size_read(bd_inode);
2009 struct blk_plug plug;
2012 if (bdev_read_only(I_BDEV(bd_inode)))
2015 if (!iov_iter_count(from))
2018 if (iocb->ki_pos >= size)
2021 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
2024 iov_iter_truncate(from, size - iocb->ki_pos);
2026 blk_start_plug(&plug);
2027 ret = __generic_file_write_iter(iocb, from);
2029 ret = generic_write_sync(iocb, ret);
2030 blk_finish_plug(&plug);
2033 EXPORT_SYMBOL_GPL(blkdev_write_iter);
2035 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
2037 struct file *file = iocb->ki_filp;
2038 struct inode *bd_inode = bdev_file_inode(file);
2039 loff_t size = i_size_read(bd_inode);
2040 loff_t pos = iocb->ki_pos;
2046 iov_iter_truncate(to, size);
2047 return generic_file_read_iter(iocb, to);
2049 EXPORT_SYMBOL_GPL(blkdev_read_iter);
2052 * Try to release a page associated with block device when the system
2053 * is under memory pressure.
2055 static int blkdev_releasepage(struct page *page, gfp_t wait)
2057 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
2059 if (super && super->s_op->bdev_try_to_free_page)
2060 return super->s_op->bdev_try_to_free_page(super, page, wait);
2062 return try_to_free_buffers(page);
2065 static int blkdev_writepages(struct address_space *mapping,
2066 struct writeback_control *wbc)
2068 return generic_writepages(mapping, wbc);
2071 static const struct address_space_operations def_blk_aops = {
2072 .readpage = blkdev_readpage,
2073 .readpages = blkdev_readpages,
2074 .writepage = blkdev_writepage,
2075 .write_begin = blkdev_write_begin,
2076 .write_end = blkdev_write_end,
2077 .writepages = blkdev_writepages,
2078 .releasepage = blkdev_releasepage,
2079 .direct_IO = blkdev_direct_IO,
2080 .migratepage = buffer_migrate_page_norefs,
2081 .is_dirty_writeback = buffer_check_dirty_writeback,
2084 #define BLKDEV_FALLOC_FL_SUPPORTED \
2085 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2086 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2088 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2091 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2092 struct address_space *mapping;
2093 loff_t end = start + len - 1;
2097 /* Fail if we don't recognize the flags. */
2098 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2101 /* Don't go off the end of the device. */
2102 isize = i_size_read(bdev->bd_inode);
2106 if (mode & FALLOC_FL_KEEP_SIZE) {
2107 len = isize - start;
2108 end = start + len - 1;
2114 * Don't allow IO that isn't aligned to logical block size.
2116 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2119 /* Invalidate the page cache, including dirty pages. */
2120 mapping = bdev->bd_inode->i_mapping;
2121 truncate_inode_pages_range(mapping, start, end);
2124 case FALLOC_FL_ZERO_RANGE:
2125 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2126 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2127 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2129 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2130 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2131 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2133 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2134 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2144 * Invalidate again; if someone wandered in and dirtied a page,
2145 * the caller will be given -EBUSY. The third argument is
2146 * inclusive, so the rounding here is safe.
2148 return invalidate_inode_pages2_range(mapping,
2149 start >> PAGE_SHIFT,
2153 const struct file_operations def_blk_fops = {
2154 .open = blkdev_open,
2155 .release = blkdev_close,
2156 .llseek = block_llseek,
2157 .read_iter = blkdev_read_iter,
2158 .write_iter = blkdev_write_iter,
2159 .iopoll = blkdev_iopoll,
2160 .mmap = generic_file_mmap,
2161 .fsync = blkdev_fsync,
2162 .unlocked_ioctl = block_ioctl,
2163 #ifdef CONFIG_COMPAT
2164 .compat_ioctl = compat_blkdev_ioctl,
2166 .splice_read = generic_file_splice_read,
2167 .splice_write = iter_file_splice_write,
2168 .fallocate = blkdev_fallocate,
2171 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2174 mm_segment_t old_fs = get_fs();
2176 res = blkdev_ioctl(bdev, 0, cmd, arg);
2181 EXPORT_SYMBOL(ioctl_by_bdev);
2184 * lookup_bdev - lookup a struct block_device by name
2185 * @pathname: special file representing the block device
2187 * Get a reference to the blockdevice at @pathname in the current
2188 * namespace if possible and return it. Return ERR_PTR(error)
2191 struct block_device *lookup_bdev(const char *pathname)
2193 struct block_device *bdev;
2194 struct inode *inode;
2198 if (!pathname || !*pathname)
2199 return ERR_PTR(-EINVAL);
2201 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2203 return ERR_PTR(error);
2205 inode = d_backing_inode(path.dentry);
2207 if (!S_ISBLK(inode->i_mode))
2210 if (!may_open_dev(&path))
2213 bdev = bd_acquire(inode);
2220 bdev = ERR_PTR(error);
2223 EXPORT_SYMBOL(lookup_bdev);
2225 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2227 struct super_block *sb = get_super(bdev);
2232 * no need to lock the super, get_super holds the
2233 * read mutex so the filesystem cannot go away
2234 * under us (->put_super runs with the write lock
2237 shrink_dcache_sb(sb);
2238 res = invalidate_inodes(sb, kill_dirty);
2241 invalidate_bdev(bdev);
2244 EXPORT_SYMBOL(__invalidate_device);
2246 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2248 struct inode *inode, *old_inode = NULL;
2250 spin_lock(&blockdev_superblock->s_inode_list_lock);
2251 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2252 struct address_space *mapping = inode->i_mapping;
2253 struct block_device *bdev;
2255 spin_lock(&inode->i_lock);
2256 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2257 mapping->nrpages == 0) {
2258 spin_unlock(&inode->i_lock);
2262 spin_unlock(&inode->i_lock);
2263 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2265 * We hold a reference to 'inode' so it couldn't have been
2266 * removed from s_inodes list while we dropped the
2267 * s_inode_list_lock We cannot iput the inode now as we can
2268 * be holding the last reference and we cannot iput it under
2269 * s_inode_list_lock. So we keep the reference and iput it
2274 bdev = I_BDEV(inode);
2276 mutex_lock(&bdev->bd_mutex);
2277 if (bdev->bd_openers)
2279 mutex_unlock(&bdev->bd_mutex);
2281 spin_lock(&blockdev_superblock->s_inode_list_lock);
2283 spin_unlock(&blockdev_superblock->s_inode_list_lock);