2 * mm/rmap.c - physical to virtual reverse mappings
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in __set_page_dirty_buffers)
35 * lock_page_memcg move_lock (in __set_page_dirty_buffers)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in folio_lruvec_lock_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
77 #include <asm/tlbflush.h>
79 #include <trace/events/tlb.h>
83 static struct kmem_cache *anon_vma_cachep;
84 static struct kmem_cache *anon_vma_chain_cachep;
86 static inline struct anon_vma *anon_vma_alloc(void)
88 struct anon_vma *anon_vma;
90 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
92 atomic_set(&anon_vma->refcount, 1);
93 anon_vma->degree = 1; /* Reference for first vma */
94 anon_vma->parent = anon_vma;
96 * Initialise the anon_vma root to point to itself. If called
97 * from fork, the root will be reset to the parents anon_vma.
99 anon_vma->root = anon_vma;
105 static inline void anon_vma_free(struct anon_vma *anon_vma)
107 VM_BUG_ON(atomic_read(&anon_vma->refcount));
110 * Synchronize against page_lock_anon_vma_read() such that
111 * we can safely hold the lock without the anon_vma getting
114 * Relies on the full mb implied by the atomic_dec_and_test() from
115 * put_anon_vma() against the acquire barrier implied by
116 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
118 * page_lock_anon_vma_read() VS put_anon_vma()
119 * down_read_trylock() atomic_dec_and_test()
121 * atomic_read() rwsem_is_locked()
123 * LOCK should suffice since the actual taking of the lock must
124 * happen _before_ what follows.
127 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
128 anon_vma_lock_write(anon_vma);
129 anon_vma_unlock_write(anon_vma);
132 kmem_cache_free(anon_vma_cachep, anon_vma);
135 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
137 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
140 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
142 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
145 static void anon_vma_chain_link(struct vm_area_struct *vma,
146 struct anon_vma_chain *avc,
147 struct anon_vma *anon_vma)
150 avc->anon_vma = anon_vma;
151 list_add(&avc->same_vma, &vma->anon_vma_chain);
152 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
156 * __anon_vma_prepare - attach an anon_vma to a memory region
157 * @vma: the memory region in question
159 * This makes sure the memory mapping described by 'vma' has
160 * an 'anon_vma' attached to it, so that we can associate the
161 * anonymous pages mapped into it with that anon_vma.
163 * The common case will be that we already have one, which
164 * is handled inline by anon_vma_prepare(). But if
165 * not we either need to find an adjacent mapping that we
166 * can re-use the anon_vma from (very common when the only
167 * reason for splitting a vma has been mprotect()), or we
168 * allocate a new one.
170 * Anon-vma allocations are very subtle, because we may have
171 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
172 * and that may actually touch the rwsem even in the newly
173 * allocated vma (it depends on RCU to make sure that the
174 * anon_vma isn't actually destroyed).
176 * As a result, we need to do proper anon_vma locking even
177 * for the new allocation. At the same time, we do not want
178 * to do any locking for the common case of already having
181 * This must be called with the mmap_lock held for reading.
183 int __anon_vma_prepare(struct vm_area_struct *vma)
185 struct mm_struct *mm = vma->vm_mm;
186 struct anon_vma *anon_vma, *allocated;
187 struct anon_vma_chain *avc;
191 avc = anon_vma_chain_alloc(GFP_KERNEL);
195 anon_vma = find_mergeable_anon_vma(vma);
198 anon_vma = anon_vma_alloc();
199 if (unlikely(!anon_vma))
200 goto out_enomem_free_avc;
201 allocated = anon_vma;
204 anon_vma_lock_write(anon_vma);
205 /* page_table_lock to protect against threads */
206 spin_lock(&mm->page_table_lock);
207 if (likely(!vma->anon_vma)) {
208 vma->anon_vma = anon_vma;
209 anon_vma_chain_link(vma, avc, anon_vma);
210 /* vma reference or self-parent link for new root */
215 spin_unlock(&mm->page_table_lock);
216 anon_vma_unlock_write(anon_vma);
218 if (unlikely(allocated))
219 put_anon_vma(allocated);
221 anon_vma_chain_free(avc);
226 anon_vma_chain_free(avc);
232 * This is a useful helper function for locking the anon_vma root as
233 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
236 * Such anon_vma's should have the same root, so you'd expect to see
237 * just a single mutex_lock for the whole traversal.
239 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
241 struct anon_vma *new_root = anon_vma->root;
242 if (new_root != root) {
243 if (WARN_ON_ONCE(root))
244 up_write(&root->rwsem);
246 down_write(&root->rwsem);
251 static inline void unlock_anon_vma_root(struct anon_vma *root)
254 up_write(&root->rwsem);
258 * Attach the anon_vmas from src to dst.
259 * Returns 0 on success, -ENOMEM on failure.
261 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
262 * anon_vma_fork(). The first three want an exact copy of src, while the last
263 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
264 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
265 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
267 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
268 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
269 * This prevents degradation of anon_vma hierarchy to endless linear chain in
270 * case of constantly forking task. On the other hand, an anon_vma with more
271 * than one child isn't reused even if there was no alive vma, thus rmap
272 * walker has a good chance of avoiding scanning the whole hierarchy when it
273 * searches where page is mapped.
275 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
277 struct anon_vma_chain *avc, *pavc;
278 struct anon_vma *root = NULL;
280 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
281 struct anon_vma *anon_vma;
283 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
284 if (unlikely(!avc)) {
285 unlock_anon_vma_root(root);
287 avc = anon_vma_chain_alloc(GFP_KERNEL);
291 anon_vma = pavc->anon_vma;
292 root = lock_anon_vma_root(root, anon_vma);
293 anon_vma_chain_link(dst, avc, anon_vma);
296 * Reuse existing anon_vma if its degree lower than two,
297 * that means it has no vma and only one anon_vma child.
299 * Do not chose parent anon_vma, otherwise first child
300 * will always reuse it. Root anon_vma is never reused:
301 * it has self-parent reference and at least one child.
303 if (!dst->anon_vma && src->anon_vma &&
304 anon_vma != src->anon_vma && anon_vma->degree < 2)
305 dst->anon_vma = anon_vma;
308 dst->anon_vma->degree++;
309 unlock_anon_vma_root(root);
314 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
315 * decremented in unlink_anon_vmas().
316 * We can safely do this because callers of anon_vma_clone() don't care
317 * about dst->anon_vma if anon_vma_clone() failed.
319 dst->anon_vma = NULL;
320 unlink_anon_vmas(dst);
325 * Attach vma to its own anon_vma, as well as to the anon_vmas that
326 * the corresponding VMA in the parent process is attached to.
327 * Returns 0 on success, non-zero on failure.
329 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
331 struct anon_vma_chain *avc;
332 struct anon_vma *anon_vma;
335 /* Don't bother if the parent process has no anon_vma here. */
339 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
340 vma->anon_vma = NULL;
343 * First, attach the new VMA to the parent VMA's anon_vmas,
344 * so rmap can find non-COWed pages in child processes.
346 error = anon_vma_clone(vma, pvma);
350 /* An existing anon_vma has been reused, all done then. */
354 /* Then add our own anon_vma. */
355 anon_vma = anon_vma_alloc();
358 avc = anon_vma_chain_alloc(GFP_KERNEL);
360 goto out_error_free_anon_vma;
363 * The root anon_vma's rwsem is the lock actually used when we
364 * lock any of the anon_vmas in this anon_vma tree.
366 anon_vma->root = pvma->anon_vma->root;
367 anon_vma->parent = pvma->anon_vma;
369 * With refcounts, an anon_vma can stay around longer than the
370 * process it belongs to. The root anon_vma needs to be pinned until
371 * this anon_vma is freed, because the lock lives in the root.
373 get_anon_vma(anon_vma->root);
374 /* Mark this anon_vma as the one where our new (COWed) pages go. */
375 vma->anon_vma = anon_vma;
376 anon_vma_lock_write(anon_vma);
377 anon_vma_chain_link(vma, avc, anon_vma);
378 anon_vma->parent->degree++;
379 anon_vma_unlock_write(anon_vma);
383 out_error_free_anon_vma:
384 put_anon_vma(anon_vma);
386 unlink_anon_vmas(vma);
390 void unlink_anon_vmas(struct vm_area_struct *vma)
392 struct anon_vma_chain *avc, *next;
393 struct anon_vma *root = NULL;
396 * Unlink each anon_vma chained to the VMA. This list is ordered
397 * from newest to oldest, ensuring the root anon_vma gets freed last.
399 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
400 struct anon_vma *anon_vma = avc->anon_vma;
402 root = lock_anon_vma_root(root, anon_vma);
403 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
406 * Leave empty anon_vmas on the list - we'll need
407 * to free them outside the lock.
409 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
410 anon_vma->parent->degree--;
414 list_del(&avc->same_vma);
415 anon_vma_chain_free(avc);
418 vma->anon_vma->degree--;
421 * vma would still be needed after unlink, and anon_vma will be prepared
424 vma->anon_vma = NULL;
426 unlock_anon_vma_root(root);
429 * Iterate the list once more, it now only contains empty and unlinked
430 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
431 * needing to write-acquire the anon_vma->root->rwsem.
433 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
434 struct anon_vma *anon_vma = avc->anon_vma;
436 VM_WARN_ON(anon_vma->degree);
437 put_anon_vma(anon_vma);
439 list_del(&avc->same_vma);
440 anon_vma_chain_free(avc);
444 static void anon_vma_ctor(void *data)
446 struct anon_vma *anon_vma = data;
448 init_rwsem(&anon_vma->rwsem);
449 atomic_set(&anon_vma->refcount, 0);
450 anon_vma->rb_root = RB_ROOT_CACHED;
453 void __init anon_vma_init(void)
455 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
456 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
458 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
459 SLAB_PANIC|SLAB_ACCOUNT);
463 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
465 * Since there is no serialization what so ever against page_remove_rmap()
466 * the best this function can do is return a refcount increased anon_vma
467 * that might have been relevant to this page.
469 * The page might have been remapped to a different anon_vma or the anon_vma
470 * returned may already be freed (and even reused).
472 * In case it was remapped to a different anon_vma, the new anon_vma will be a
473 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
474 * ensure that any anon_vma obtained from the page will still be valid for as
475 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
477 * All users of this function must be very careful when walking the anon_vma
478 * chain and verify that the page in question is indeed mapped in it
479 * [ something equivalent to page_mapped_in_vma() ].
481 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
482 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
483 * if there is a mapcount, we can dereference the anon_vma after observing
486 struct anon_vma *page_get_anon_vma(struct page *page)
488 struct anon_vma *anon_vma = NULL;
489 unsigned long anon_mapping;
492 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
493 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
495 if (!page_mapped(page))
498 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
499 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
505 * If this page is still mapped, then its anon_vma cannot have been
506 * freed. But if it has been unmapped, we have no security against the
507 * anon_vma structure being freed and reused (for another anon_vma:
508 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
509 * above cannot corrupt).
511 if (!page_mapped(page)) {
513 put_anon_vma(anon_vma);
523 * Similar to page_get_anon_vma() except it locks the anon_vma.
525 * Its a little more complex as it tries to keep the fast path to a single
526 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
527 * reference like with page_get_anon_vma() and then block on the mutex.
529 struct anon_vma *page_lock_anon_vma_read(struct page *page)
531 struct anon_vma *anon_vma = NULL;
532 struct anon_vma *root_anon_vma;
533 unsigned long anon_mapping;
536 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
537 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
539 if (!page_mapped(page))
542 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
543 root_anon_vma = READ_ONCE(anon_vma->root);
544 if (down_read_trylock(&root_anon_vma->rwsem)) {
546 * If the page is still mapped, then this anon_vma is still
547 * its anon_vma, and holding the mutex ensures that it will
548 * not go away, see anon_vma_free().
550 if (!page_mapped(page)) {
551 up_read(&root_anon_vma->rwsem);
557 /* trylock failed, we got to sleep */
558 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
563 if (!page_mapped(page)) {
565 put_anon_vma(anon_vma);
569 /* we pinned the anon_vma, its safe to sleep */
571 anon_vma_lock_read(anon_vma);
573 if (atomic_dec_and_test(&anon_vma->refcount)) {
575 * Oops, we held the last refcount, release the lock
576 * and bail -- can't simply use put_anon_vma() because
577 * we'll deadlock on the anon_vma_lock_write() recursion.
579 anon_vma_unlock_read(anon_vma);
580 __put_anon_vma(anon_vma);
591 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
593 anon_vma_unlock_read(anon_vma);
596 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
598 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
599 * important if a PTE was dirty when it was unmapped that it's flushed
600 * before any IO is initiated on the page to prevent lost writes. Similarly,
601 * it must be flushed before freeing to prevent data leakage.
603 void try_to_unmap_flush(void)
605 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
607 if (!tlb_ubc->flush_required)
610 arch_tlbbatch_flush(&tlb_ubc->arch);
611 tlb_ubc->flush_required = false;
612 tlb_ubc->writable = false;
615 /* Flush iff there are potentially writable TLB entries that can race with IO */
616 void try_to_unmap_flush_dirty(void)
618 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
620 if (tlb_ubc->writable)
621 try_to_unmap_flush();
625 * Bits 0-14 of mm->tlb_flush_batched record pending generations.
626 * Bits 16-30 of mm->tlb_flush_batched bit record flushed generations.
628 #define TLB_FLUSH_BATCH_FLUSHED_SHIFT 16
629 #define TLB_FLUSH_BATCH_PENDING_MASK \
630 ((1 << (TLB_FLUSH_BATCH_FLUSHED_SHIFT - 1)) - 1)
631 #define TLB_FLUSH_BATCH_PENDING_LARGE \
632 (TLB_FLUSH_BATCH_PENDING_MASK / 2)
634 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
636 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
639 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
640 tlb_ubc->flush_required = true;
643 * Ensure compiler does not re-order the setting of tlb_flush_batched
644 * before the PTE is cleared.
647 batch = atomic_read(&mm->tlb_flush_batched);
649 if ((batch & TLB_FLUSH_BATCH_PENDING_MASK) > TLB_FLUSH_BATCH_PENDING_LARGE) {
651 * Prevent `pending' from catching up with `flushed' because of
652 * overflow. Reset `pending' and `flushed' to be 1 and 0 if
653 * `pending' becomes large.
655 nbatch = atomic_cmpxchg(&mm->tlb_flush_batched, batch, 1);
656 if (nbatch != batch) {
661 atomic_inc(&mm->tlb_flush_batched);
665 * If the PTE was dirty then it's best to assume it's writable. The
666 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
667 * before the page is queued for IO.
670 tlb_ubc->writable = true;
674 * Returns true if the TLB flush should be deferred to the end of a batch of
675 * unmap operations to reduce IPIs.
677 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
679 bool should_defer = false;
681 if (!(flags & TTU_BATCH_FLUSH))
684 /* If remote CPUs need to be flushed then defer batch the flush */
685 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
693 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
694 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
695 * operation such as mprotect or munmap to race between reclaim unmapping
696 * the page and flushing the page. If this race occurs, it potentially allows
697 * access to data via a stale TLB entry. Tracking all mm's that have TLB
698 * batching in flight would be expensive during reclaim so instead track
699 * whether TLB batching occurred in the past and if so then do a flush here
700 * if required. This will cost one additional flush per reclaim cycle paid
701 * by the first operation at risk such as mprotect and mumap.
703 * This must be called under the PTL so that an access to tlb_flush_batched
704 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
707 void flush_tlb_batched_pending(struct mm_struct *mm)
709 int batch = atomic_read(&mm->tlb_flush_batched);
710 int pending = batch & TLB_FLUSH_BATCH_PENDING_MASK;
711 int flushed = batch >> TLB_FLUSH_BATCH_FLUSHED_SHIFT;
713 if (pending != flushed) {
716 * If the new TLB flushing is pending during flushing, leave
717 * mm->tlb_flush_batched as is, to avoid losing flushing.
719 atomic_cmpxchg(&mm->tlb_flush_batched, batch,
720 pending | (pending << TLB_FLUSH_BATCH_FLUSHED_SHIFT));
724 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
728 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
732 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
735 * At what user virtual address is page expected in vma?
736 * Caller should check the page is actually part of the vma.
738 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
740 if (PageAnon(page)) {
741 struct anon_vma *page__anon_vma = page_anon_vma(page);
743 * Note: swapoff's unuse_vma() is more efficient with this
744 * check, and needs it to match anon_vma when KSM is active.
746 if (!vma->anon_vma || !page__anon_vma ||
747 vma->anon_vma->root != page__anon_vma->root)
749 } else if (!vma->vm_file) {
751 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
755 return vma_address(page, vma);
758 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
766 pgd = pgd_offset(mm, address);
767 if (!pgd_present(*pgd))
770 p4d = p4d_offset(pgd, address);
771 if (!p4d_present(*p4d))
774 pud = pud_offset(p4d, address);
775 if (!pud_present(*pud))
778 pmd = pmd_offset(pud, address);
780 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
781 * without holding anon_vma lock for write. So when looking for a
782 * genuine pmde (in which to find pte), test present and !THP together.
786 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
792 struct page_referenced_arg {
795 unsigned long vm_flags;
796 struct mem_cgroup *memcg;
799 * arg: page_referenced_arg will be passed
801 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
802 unsigned long address, void *arg)
804 struct page_referenced_arg *pra = arg;
805 struct page_vma_mapped_walk pvmw = {
812 while (page_vma_mapped_walk(&pvmw)) {
813 address = pvmw.address;
815 if (vma->vm_flags & VM_LOCKED) {
816 page_vma_mapped_walk_done(&pvmw);
817 pra->vm_flags |= VM_LOCKED;
818 return false; /* To break the loop */
822 if (ptep_clear_flush_young_notify(vma, address,
825 * Don't treat a reference through
826 * a sequentially read mapping as such.
827 * If the page has been used in another mapping,
828 * we will catch it; if this other mapping is
829 * already gone, the unmap path will have set
830 * PG_referenced or activated the page.
832 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
835 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
836 if (pmdp_clear_flush_young_notify(vma, address,
840 /* unexpected pmd-mapped page? */
848 clear_page_idle(page);
849 if (test_and_clear_page_young(page))
854 pra->vm_flags |= vma->vm_flags;
858 return false; /* To break the loop */
863 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
865 struct page_referenced_arg *pra = arg;
866 struct mem_cgroup *memcg = pra->memcg;
868 if (!mm_match_cgroup(vma->vm_mm, memcg))
875 * page_referenced - test if the page was referenced
876 * @page: the page to test
877 * @is_locked: caller holds lock on the page
878 * @memcg: target memory cgroup
879 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
881 * Quick test_and_clear_referenced for all mappings to a page,
882 * returns the number of ptes which referenced the page.
884 int page_referenced(struct page *page,
886 struct mem_cgroup *memcg,
887 unsigned long *vm_flags)
890 struct page_referenced_arg pra = {
891 .mapcount = total_mapcount(page),
894 struct rmap_walk_control rwc = {
895 .rmap_one = page_referenced_one,
897 .anon_lock = page_lock_anon_vma_read,
904 if (!page_rmapping(page))
907 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
908 we_locked = trylock_page(page);
914 * If we are reclaiming on behalf of a cgroup, skip
915 * counting on behalf of references from different
919 rwc.invalid_vma = invalid_page_referenced_vma;
922 rmap_walk(page, &rwc);
923 *vm_flags = pra.vm_flags;
928 return pra.referenced;
931 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
932 unsigned long address, void *arg)
934 struct page_vma_mapped_walk pvmw = {
940 struct mmu_notifier_range range;
944 * We have to assume the worse case ie pmd for invalidation. Note that
945 * the page can not be free from this function.
947 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
948 0, vma, vma->vm_mm, address,
949 vma_address_end(page, vma));
950 mmu_notifier_invalidate_range_start(&range);
952 while (page_vma_mapped_walk(&pvmw)) {
955 address = pvmw.address;
958 pte_t *pte = pvmw.pte;
960 if (!pte_dirty(*pte) && !pte_write(*pte))
963 flush_cache_page(vma, address, pte_pfn(*pte));
964 entry = ptep_clear_flush(vma, address, pte);
965 entry = pte_wrprotect(entry);
966 entry = pte_mkclean(entry);
967 set_pte_at(vma->vm_mm, address, pte, entry);
970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
971 pmd_t *pmd = pvmw.pmd;
974 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
977 flush_cache_page(vma, address, page_to_pfn(page));
978 entry = pmdp_invalidate(vma, address, pmd);
979 entry = pmd_wrprotect(entry);
980 entry = pmd_mkclean(entry);
981 set_pmd_at(vma->vm_mm, address, pmd, entry);
984 /* unexpected pmd-mapped page? */
990 * No need to call mmu_notifier_invalidate_range() as we are
991 * downgrading page table protection not changing it to point
994 * See Documentation/vm/mmu_notifier.rst
1000 mmu_notifier_invalidate_range_end(&range);
1005 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1007 if (vma->vm_flags & VM_SHARED)
1013 int folio_mkclean(struct folio *folio)
1016 struct address_space *mapping;
1017 struct rmap_walk_control rwc = {
1018 .arg = (void *)&cleaned,
1019 .rmap_one = page_mkclean_one,
1020 .invalid_vma = invalid_mkclean_vma,
1023 BUG_ON(!folio_test_locked(folio));
1025 if (!folio_mapped(folio))
1028 mapping = folio_mapping(folio);
1032 rmap_walk(&folio->page, &rwc);
1036 EXPORT_SYMBOL_GPL(folio_mkclean);
1039 * page_move_anon_rmap - move a page to our anon_vma
1040 * @page: the page to move to our anon_vma
1041 * @vma: the vma the page belongs to
1043 * When a page belongs exclusively to one process after a COW event,
1044 * that page can be moved into the anon_vma that belongs to just that
1045 * process, so the rmap code will not search the parent or sibling
1048 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1050 struct anon_vma *anon_vma = vma->anon_vma;
1052 page = compound_head(page);
1054 VM_BUG_ON_PAGE(!PageLocked(page), page);
1055 VM_BUG_ON_VMA(!anon_vma, vma);
1057 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1059 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1060 * simultaneously, so a concurrent reader (eg page_referenced()'s
1061 * PageAnon()) will not see one without the other.
1063 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1067 * __page_set_anon_rmap - set up new anonymous rmap
1068 * @page: Page or Hugepage to add to rmap
1069 * @vma: VM area to add page to.
1070 * @address: User virtual address of the mapping
1071 * @exclusive: the page is exclusively owned by the current process
1073 static void __page_set_anon_rmap(struct page *page,
1074 struct vm_area_struct *vma, unsigned long address, int exclusive)
1076 struct anon_vma *anon_vma = vma->anon_vma;
1084 * If the page isn't exclusively mapped into this vma,
1085 * we must use the _oldest_ possible anon_vma for the
1089 anon_vma = anon_vma->root;
1092 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1093 * Make sure the compiler doesn't split the stores of anon_vma and
1094 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1095 * could mistake the mapping for a struct address_space and crash.
1097 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1098 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1099 page->index = linear_page_index(vma, address);
1103 * __page_check_anon_rmap - sanity check anonymous rmap addition
1104 * @page: the page to add the mapping to
1105 * @vma: the vm area in which the mapping is added
1106 * @address: the user virtual address mapped
1108 static void __page_check_anon_rmap(struct page *page,
1109 struct vm_area_struct *vma, unsigned long address)
1112 * The page's anon-rmap details (mapping and index) are guaranteed to
1113 * be set up correctly at this point.
1115 * We have exclusion against page_add_anon_rmap because the caller
1116 * always holds the page locked.
1118 * We have exclusion against page_add_new_anon_rmap because those pages
1119 * are initially only visible via the pagetables, and the pte is locked
1120 * over the call to page_add_new_anon_rmap.
1122 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1123 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1128 * page_add_anon_rmap - add pte mapping to an anonymous page
1129 * @page: the page to add the mapping to
1130 * @vma: the vm area in which the mapping is added
1131 * @address: the user virtual address mapped
1132 * @compound: charge the page as compound or small page
1134 * The caller needs to hold the pte lock, and the page must be locked in
1135 * the anon_vma case: to serialize mapping,index checking after setting,
1136 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1137 * (but PageKsm is never downgraded to PageAnon).
1139 void page_add_anon_rmap(struct page *page,
1140 struct vm_area_struct *vma, unsigned long address, bool compound)
1142 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1146 * Special version of the above for do_swap_page, which often runs
1147 * into pages that are exclusively owned by the current process.
1148 * Everybody else should continue to use page_add_anon_rmap above.
1150 void do_page_add_anon_rmap(struct page *page,
1151 struct vm_area_struct *vma, unsigned long address, int flags)
1153 bool compound = flags & RMAP_COMPOUND;
1156 if (unlikely(PageKsm(page)))
1157 lock_page_memcg(page);
1159 VM_BUG_ON_PAGE(!PageLocked(page), page);
1163 VM_BUG_ON_PAGE(!PageLocked(page), page);
1164 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1165 mapcount = compound_mapcount_ptr(page);
1166 first = atomic_inc_and_test(mapcount);
1168 first = atomic_inc_and_test(&page->_mapcount);
1172 int nr = compound ? thp_nr_pages(page) : 1;
1174 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1175 * these counters are not modified in interrupt context, and
1176 * pte lock(a spinlock) is held, which implies preemption
1180 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1181 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1184 if (unlikely(PageKsm(page)))
1185 unlock_page_memcg(page);
1187 /* address might be in next vma when migration races vma_adjust */
1189 __page_set_anon_rmap(page, vma, address,
1190 flags & RMAP_EXCLUSIVE);
1192 __page_check_anon_rmap(page, vma, address);
1194 mlock_vma_page(page, vma, compound);
1198 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1199 * @page: the page to add the mapping to
1200 * @vma: the vm area in which the mapping is added
1201 * @address: the user virtual address mapped
1202 * @compound: charge the page as compound or small page
1204 * Same as page_add_anon_rmap but must only be called on *new* pages.
1205 * This means the inc-and-test can be bypassed.
1206 * Page does not have to be locked.
1208 void page_add_new_anon_rmap(struct page *page,
1209 struct vm_area_struct *vma, unsigned long address, bool compound)
1211 int nr = compound ? thp_nr_pages(page) : 1;
1213 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1214 __SetPageSwapBacked(page);
1216 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1217 /* increment count (starts at -1) */
1218 atomic_set(compound_mapcount_ptr(page), 0);
1219 if (hpage_pincount_available(page))
1220 atomic_set(compound_pincount_ptr(page), 0);
1222 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1224 /* Anon THP always mapped first with PMD */
1225 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1226 /* increment count (starts at -1) */
1227 atomic_set(&page->_mapcount, 0);
1229 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1230 __page_set_anon_rmap(page, vma, address, 1);
1234 * page_add_file_rmap - add pte mapping to a file page
1235 * @page: the page to add the mapping to
1236 * @vma: the vm area in which the mapping is added
1237 * @compound: charge the page as compound or small page
1239 * The caller needs to hold the pte lock.
1241 void page_add_file_rmap(struct page *page,
1242 struct vm_area_struct *vma, bool compound)
1246 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1247 lock_page_memcg(page);
1248 if (compound && PageTransHuge(page)) {
1249 int nr_pages = thp_nr_pages(page);
1251 for (i = 0, nr = 0; i < nr_pages; i++) {
1252 if (atomic_inc_and_test(&page[i]._mapcount))
1255 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1257 if (PageSwapBacked(page))
1258 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1261 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1264 if (PageTransCompound(page) && page_mapping(page)) {
1265 VM_WARN_ON_ONCE(!PageLocked(page));
1266 SetPageDoubleMap(compound_head(page));
1268 if (!atomic_inc_and_test(&page->_mapcount))
1271 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1273 unlock_page_memcg(page);
1275 mlock_vma_page(page, vma, compound);
1278 static void page_remove_file_rmap(struct page *page, bool compound)
1282 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1284 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1285 if (unlikely(PageHuge(page))) {
1286 /* hugetlb pages are always mapped with pmds */
1287 atomic_dec(compound_mapcount_ptr(page));
1291 /* page still mapped by someone else? */
1292 if (compound && PageTransHuge(page)) {
1293 int nr_pages = thp_nr_pages(page);
1295 for (i = 0, nr = 0; i < nr_pages; i++) {
1296 if (atomic_add_negative(-1, &page[i]._mapcount))
1299 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1301 if (PageSwapBacked(page))
1302 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1305 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1308 if (!atomic_add_negative(-1, &page->_mapcount))
1313 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1314 * these counters are not modified in interrupt context, and
1315 * pte lock(a spinlock) is held, which implies preemption disabled.
1317 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1320 static void page_remove_anon_compound_rmap(struct page *page)
1324 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1327 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1328 if (unlikely(PageHuge(page)))
1331 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1334 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1336 if (TestClearPageDoubleMap(page)) {
1338 * Subpages can be mapped with PTEs too. Check how many of
1339 * them are still mapped.
1341 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1342 if (atomic_add_negative(-1, &page[i]._mapcount))
1347 * Queue the page for deferred split if at least one small
1348 * page of the compound page is unmapped, but at least one
1349 * small page is still mapped.
1351 if (nr && nr < thp_nr_pages(page))
1352 deferred_split_huge_page(page);
1354 nr = thp_nr_pages(page);
1358 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1362 * page_remove_rmap - take down pte mapping from a page
1363 * @page: page to remove mapping from
1364 * @vma: the vm area from which the mapping is removed
1365 * @compound: uncharge the page as compound or small page
1367 * The caller needs to hold the pte lock.
1369 void page_remove_rmap(struct page *page,
1370 struct vm_area_struct *vma, bool compound)
1372 lock_page_memcg(page);
1374 if (!PageAnon(page)) {
1375 page_remove_file_rmap(page, compound);
1380 page_remove_anon_compound_rmap(page);
1384 /* page still mapped by someone else? */
1385 if (!atomic_add_negative(-1, &page->_mapcount))
1389 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1390 * these counters are not modified in interrupt context, and
1391 * pte lock(a spinlock) is held, which implies preemption disabled.
1393 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1395 if (PageTransCompound(page))
1396 deferred_split_huge_page(compound_head(page));
1399 * It would be tidy to reset the PageAnon mapping here,
1400 * but that might overwrite a racing page_add_anon_rmap
1401 * which increments mapcount after us but sets mapping
1402 * before us: so leave the reset to free_unref_page,
1403 * and remember that it's only reliable while mapped.
1404 * Leaving it set also helps swapoff to reinstate ptes
1405 * faster for those pages still in swapcache.
1408 unlock_page_memcg(page);
1410 munlock_vma_page(page, vma, compound);
1414 * @arg: enum ttu_flags will be passed to this argument
1416 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1417 unsigned long address, void *arg)
1419 struct mm_struct *mm = vma->vm_mm;
1420 struct page_vma_mapped_walk pvmw = {
1426 struct page *subpage;
1428 struct mmu_notifier_range range;
1429 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1432 * When racing against e.g. zap_pte_range() on another cpu,
1433 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1434 * try_to_unmap() may return before page_mapped() has become false,
1435 * if page table locking is skipped: use TTU_SYNC to wait for that.
1437 if (flags & TTU_SYNC)
1438 pvmw.flags = PVMW_SYNC;
1440 if (flags & TTU_SPLIT_HUGE_PMD)
1441 split_huge_pmd_address(vma, address, false, page);
1444 * For THP, we have to assume the worse case ie pmd for invalidation.
1445 * For hugetlb, it could be much worse if we need to do pud
1446 * invalidation in the case of pmd sharing.
1448 * Note that the page can not be free in this function as call of
1449 * try_to_unmap() must hold a reference on the page.
1451 range.end = PageKsm(page) ?
1452 address + PAGE_SIZE : vma_address_end(page, vma);
1453 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1454 address, range.end);
1455 if (PageHuge(page)) {
1457 * If sharing is possible, start and end will be adjusted
1460 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1463 mmu_notifier_invalidate_range_start(&range);
1465 while (page_vma_mapped_walk(&pvmw)) {
1466 /* Unexpected PMD-mapped THP? */
1467 VM_BUG_ON_PAGE(!pvmw.pte, page);
1470 * If the page is in an mlock()d vma, we must not swap it out.
1472 if (!(flags & TTU_IGNORE_MLOCK) &&
1473 (vma->vm_flags & VM_LOCKED)) {
1474 /* Restore the mlock which got missed */
1475 mlock_vma_page(page, vma, false);
1476 page_vma_mapped_walk_done(&pvmw);
1481 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1482 address = pvmw.address;
1484 if (PageHuge(page) && !PageAnon(page)) {
1486 * To call huge_pmd_unshare, i_mmap_rwsem must be
1487 * held in write mode. Caller needs to explicitly
1488 * do this outside rmap routines.
1490 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1491 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1493 * huge_pmd_unshare unmapped an entire PMD
1494 * page. There is no way of knowing exactly
1495 * which PMDs may be cached for this mm, so
1496 * we must flush them all. start/end were
1497 * already adjusted above to cover this range.
1499 flush_cache_range(vma, range.start, range.end);
1500 flush_tlb_range(vma, range.start, range.end);
1501 mmu_notifier_invalidate_range(mm, range.start,
1505 * The ref count of the PMD page was dropped
1506 * which is part of the way map counting
1507 * is done for shared PMDs. Return 'true'
1508 * here. When there is no other sharing,
1509 * huge_pmd_unshare returns false and we will
1510 * unmap the actual page and drop map count
1513 page_vma_mapped_walk_done(&pvmw);
1518 /* Nuke the page table entry. */
1519 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1520 if (should_defer_flush(mm, flags)) {
1522 * We clear the PTE but do not flush so potentially
1523 * a remote CPU could still be writing to the page.
1524 * If the entry was previously clean then the
1525 * architecture must guarantee that a clear->dirty
1526 * transition on a cached TLB entry is written through
1527 * and traps if the PTE is unmapped.
1529 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1531 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1533 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1536 /* Move the dirty bit to the page. Now the pte is gone. */
1537 if (pte_dirty(pteval))
1538 set_page_dirty(page);
1540 /* Update high watermark before we lower rss */
1541 update_hiwater_rss(mm);
1543 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1544 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1545 if (PageHuge(page)) {
1546 hugetlb_count_sub(compound_nr(page), mm);
1547 set_huge_swap_pte_at(mm, address,
1549 vma_mmu_pagesize(vma));
1551 dec_mm_counter(mm, mm_counter(page));
1552 set_pte_at(mm, address, pvmw.pte, pteval);
1555 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1557 * The guest indicated that the page content is of no
1558 * interest anymore. Simply discard the pte, vmscan
1559 * will take care of the rest.
1560 * A future reference will then fault in a new zero
1561 * page. When userfaultfd is active, we must not drop
1562 * this page though, as its main user (postcopy
1563 * migration) will not expect userfaults on already
1566 dec_mm_counter(mm, mm_counter(page));
1567 /* We have to invalidate as we cleared the pte */
1568 mmu_notifier_invalidate_range(mm, address,
1569 address + PAGE_SIZE);
1570 } else if (PageAnon(page)) {
1571 swp_entry_t entry = { .val = page_private(subpage) };
1574 * Store the swap location in the pte.
1575 * See handle_pte_fault() ...
1577 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1580 /* We have to invalidate as we cleared the pte */
1581 mmu_notifier_invalidate_range(mm, address,
1582 address + PAGE_SIZE);
1583 page_vma_mapped_walk_done(&pvmw);
1587 /* MADV_FREE page check */
1588 if (!PageSwapBacked(page)) {
1589 if (!PageDirty(page)) {
1590 /* Invalidate as we cleared the pte */
1591 mmu_notifier_invalidate_range(mm,
1592 address, address + PAGE_SIZE);
1593 dec_mm_counter(mm, MM_ANONPAGES);
1598 * If the page was redirtied, it cannot be
1599 * discarded. Remap the page to page table.
1601 set_pte_at(mm, address, pvmw.pte, pteval);
1602 SetPageSwapBacked(page);
1604 page_vma_mapped_walk_done(&pvmw);
1608 if (swap_duplicate(entry) < 0) {
1609 set_pte_at(mm, address, pvmw.pte, pteval);
1611 page_vma_mapped_walk_done(&pvmw);
1614 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1615 set_pte_at(mm, address, pvmw.pte, pteval);
1617 page_vma_mapped_walk_done(&pvmw);
1620 if (list_empty(&mm->mmlist)) {
1621 spin_lock(&mmlist_lock);
1622 if (list_empty(&mm->mmlist))
1623 list_add(&mm->mmlist, &init_mm.mmlist);
1624 spin_unlock(&mmlist_lock);
1626 dec_mm_counter(mm, MM_ANONPAGES);
1627 inc_mm_counter(mm, MM_SWAPENTS);
1628 swp_pte = swp_entry_to_pte(entry);
1629 if (pte_soft_dirty(pteval))
1630 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1631 if (pte_uffd_wp(pteval))
1632 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1633 set_pte_at(mm, address, pvmw.pte, swp_pte);
1634 /* Invalidate as we cleared the pte */
1635 mmu_notifier_invalidate_range(mm, address,
1636 address + PAGE_SIZE);
1639 * This is a locked file-backed page, thus it cannot
1640 * be removed from the page cache and replaced by a new
1641 * page before mmu_notifier_invalidate_range_end, so no
1642 * concurrent thread might update its page table to
1643 * point at new page while a device still is using this
1646 * See Documentation/vm/mmu_notifier.rst
1648 dec_mm_counter(mm, mm_counter_file(page));
1652 * No need to call mmu_notifier_invalidate_range() it has be
1653 * done above for all cases requiring it to happen under page
1654 * table lock before mmu_notifier_invalidate_range_end()
1656 * See Documentation/vm/mmu_notifier.rst
1658 page_remove_rmap(subpage, vma, PageHuge(page));
1662 mmu_notifier_invalidate_range_end(&range);
1667 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1669 return vma_is_temporary_stack(vma);
1672 static int page_not_mapped(struct page *page)
1674 return !page_mapped(page);
1678 * try_to_unmap - try to remove all page table mappings to a page
1679 * @page: the page to get unmapped
1680 * @flags: action and flags
1682 * Tries to remove all the page table entries which are mapping this
1683 * page, used in the pageout path. Caller must hold the page lock.
1685 * It is the caller's responsibility to check if the page is still
1686 * mapped when needed (use TTU_SYNC to prevent accounting races).
1688 void try_to_unmap(struct page *page, enum ttu_flags flags)
1690 struct rmap_walk_control rwc = {
1691 .rmap_one = try_to_unmap_one,
1692 .arg = (void *)flags,
1693 .done = page_not_mapped,
1694 .anon_lock = page_lock_anon_vma_read,
1697 if (flags & TTU_RMAP_LOCKED)
1698 rmap_walk_locked(page, &rwc);
1700 rmap_walk(page, &rwc);
1704 * @arg: enum ttu_flags will be passed to this argument.
1706 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1707 * containing migration entries.
1709 static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1710 unsigned long address, void *arg)
1712 struct mm_struct *mm = vma->vm_mm;
1713 struct page_vma_mapped_walk pvmw = {
1719 struct page *subpage;
1721 struct mmu_notifier_range range;
1722 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1725 * When racing against e.g. zap_pte_range() on another cpu,
1726 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1727 * try_to_migrate() may return before page_mapped() has become false,
1728 * if page table locking is skipped: use TTU_SYNC to wait for that.
1730 if (flags & TTU_SYNC)
1731 pvmw.flags = PVMW_SYNC;
1734 * unmap_page() in mm/huge_memory.c is the only user of migration with
1735 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1737 if (flags & TTU_SPLIT_HUGE_PMD)
1738 split_huge_pmd_address(vma, address, true, page);
1741 * For THP, we have to assume the worse case ie pmd for invalidation.
1742 * For hugetlb, it could be much worse if we need to do pud
1743 * invalidation in the case of pmd sharing.
1745 * Note that the page can not be free in this function as call of
1746 * try_to_unmap() must hold a reference on the page.
1748 range.end = PageKsm(page) ?
1749 address + PAGE_SIZE : vma_address_end(page, vma);
1750 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1751 address, range.end);
1752 if (PageHuge(page)) {
1754 * If sharing is possible, start and end will be adjusted
1757 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1760 mmu_notifier_invalidate_range_start(&range);
1762 while (page_vma_mapped_walk(&pvmw)) {
1763 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1764 /* PMD-mapped THP migration entry */
1766 VM_BUG_ON_PAGE(PageHuge(page) ||
1767 !PageTransCompound(page), page);
1769 set_pmd_migration_entry(&pvmw, page);
1774 /* Unexpected PMD-mapped THP? */
1775 VM_BUG_ON_PAGE(!pvmw.pte, page);
1777 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1778 address = pvmw.address;
1780 if (PageHuge(page) && !PageAnon(page)) {
1782 * To call huge_pmd_unshare, i_mmap_rwsem must be
1783 * held in write mode. Caller needs to explicitly
1784 * do this outside rmap routines.
1786 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1787 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1789 * huge_pmd_unshare unmapped an entire PMD
1790 * page. There is no way of knowing exactly
1791 * which PMDs may be cached for this mm, so
1792 * we must flush them all. start/end were
1793 * already adjusted above to cover this range.
1795 flush_cache_range(vma, range.start, range.end);
1796 flush_tlb_range(vma, range.start, range.end);
1797 mmu_notifier_invalidate_range(mm, range.start,
1801 * The ref count of the PMD page was dropped
1802 * which is part of the way map counting
1803 * is done for shared PMDs. Return 'true'
1804 * here. When there is no other sharing,
1805 * huge_pmd_unshare returns false and we will
1806 * unmap the actual page and drop map count
1809 page_vma_mapped_walk_done(&pvmw);
1814 /* Nuke the page table entry. */
1815 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1816 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1818 /* Move the dirty bit to the page. Now the pte is gone. */
1819 if (pte_dirty(pteval))
1820 set_page_dirty(page);
1822 /* Update high watermark before we lower rss */
1823 update_hiwater_rss(mm);
1825 if (is_zone_device_page(page)) {
1826 unsigned long pfn = page_to_pfn(page);
1831 * Store the pfn of the page in a special migration
1832 * pte. do_swap_page() will wait until the migration
1833 * pte is removed and then restart fault handling.
1835 entry = pte_to_swp_entry(pteval);
1836 if (is_writable_device_private_entry(entry))
1837 entry = make_writable_migration_entry(pfn);
1839 entry = make_readable_migration_entry(pfn);
1840 swp_pte = swp_entry_to_pte(entry);
1843 * pteval maps a zone device page and is therefore
1846 if (pte_swp_soft_dirty(pteval))
1847 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1848 if (pte_swp_uffd_wp(pteval))
1849 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1850 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1852 * No need to invalidate here it will synchronize on
1853 * against the special swap migration pte.
1855 * The assignment to subpage above was computed from a
1856 * swap PTE which results in an invalid pointer.
1857 * Since only PAGE_SIZE pages can currently be
1858 * migrated, just set it to page. This will need to be
1859 * changed when hugepage migrations to device private
1860 * memory are supported.
1863 } else if (PageHWPoison(page)) {
1864 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1865 if (PageHuge(page)) {
1866 hugetlb_count_sub(compound_nr(page), mm);
1867 set_huge_swap_pte_at(mm, address,
1869 vma_mmu_pagesize(vma));
1871 dec_mm_counter(mm, mm_counter(page));
1872 set_pte_at(mm, address, pvmw.pte, pteval);
1875 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1877 * The guest indicated that the page content is of no
1878 * interest anymore. Simply discard the pte, vmscan
1879 * will take care of the rest.
1880 * A future reference will then fault in a new zero
1881 * page. When userfaultfd is active, we must not drop
1882 * this page though, as its main user (postcopy
1883 * migration) will not expect userfaults on already
1886 dec_mm_counter(mm, mm_counter(page));
1887 /* We have to invalidate as we cleared the pte */
1888 mmu_notifier_invalidate_range(mm, address,
1889 address + PAGE_SIZE);
1894 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1895 set_pte_at(mm, address, pvmw.pte, pteval);
1897 page_vma_mapped_walk_done(&pvmw);
1902 * Store the pfn of the page in a special migration
1903 * pte. do_swap_page() will wait until the migration
1904 * pte is removed and then restart fault handling.
1906 if (pte_write(pteval))
1907 entry = make_writable_migration_entry(
1908 page_to_pfn(subpage));
1910 entry = make_readable_migration_entry(
1911 page_to_pfn(subpage));
1913 swp_pte = swp_entry_to_pte(entry);
1914 if (pte_soft_dirty(pteval))
1915 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1916 if (pte_uffd_wp(pteval))
1917 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1918 set_pte_at(mm, address, pvmw.pte, swp_pte);
1920 * No need to invalidate here it will synchronize on
1921 * against the special swap migration pte.
1926 * No need to call mmu_notifier_invalidate_range() it has be
1927 * done above for all cases requiring it to happen under page
1928 * table lock before mmu_notifier_invalidate_range_end()
1930 * See Documentation/vm/mmu_notifier.rst
1932 page_remove_rmap(subpage, vma, PageHuge(page));
1936 mmu_notifier_invalidate_range_end(&range);
1942 * try_to_migrate - try to replace all page table mappings with swap entries
1943 * @page: the page to replace page table entries for
1944 * @flags: action and flags
1946 * Tries to remove all the page table entries which are mapping this page and
1947 * replace them with special swap entries. Caller must hold the page lock.
1949 void try_to_migrate(struct page *page, enum ttu_flags flags)
1951 struct rmap_walk_control rwc = {
1952 .rmap_one = try_to_migrate_one,
1953 .arg = (void *)flags,
1954 .done = page_not_mapped,
1955 .anon_lock = page_lock_anon_vma_read,
1959 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
1960 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
1962 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
1966 if (is_zone_device_page(page) && !is_device_private_page(page))
1970 * During exec, a temporary VMA is setup and later moved.
1971 * The VMA is moved under the anon_vma lock but not the
1972 * page tables leading to a race where migration cannot
1973 * find the migration ptes. Rather than increasing the
1974 * locking requirements of exec(), migration skips
1975 * temporary VMAs until after exec() completes.
1977 if (!PageKsm(page) && PageAnon(page))
1978 rwc.invalid_vma = invalid_migration_vma;
1980 if (flags & TTU_RMAP_LOCKED)
1981 rmap_walk_locked(page, &rwc);
1983 rmap_walk(page, &rwc);
1986 #ifdef CONFIG_DEVICE_PRIVATE
1987 struct make_exclusive_args {
1988 struct mm_struct *mm;
1989 unsigned long address;
1994 static bool page_make_device_exclusive_one(struct page *page,
1995 struct vm_area_struct *vma, unsigned long address, void *priv)
1997 struct mm_struct *mm = vma->vm_mm;
1998 struct page_vma_mapped_walk pvmw = {
2003 struct make_exclusive_args *args = priv;
2005 struct page *subpage;
2007 struct mmu_notifier_range range;
2011 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2012 vma->vm_mm, address, min(vma->vm_end,
2013 address + page_size(page)), args->owner);
2014 mmu_notifier_invalidate_range_start(&range);
2016 while (page_vma_mapped_walk(&pvmw)) {
2017 /* Unexpected PMD-mapped THP? */
2018 VM_BUG_ON_PAGE(!pvmw.pte, page);
2020 if (!pte_present(*pvmw.pte)) {
2022 page_vma_mapped_walk_done(&pvmw);
2026 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2027 address = pvmw.address;
2029 /* Nuke the page table entry. */
2030 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2031 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2033 /* Move the dirty bit to the page. Now the pte is gone. */
2034 if (pte_dirty(pteval))
2035 set_page_dirty(page);
2038 * Check that our target page is still mapped at the expected
2041 if (args->mm == mm && args->address == address &&
2046 * Store the pfn of the page in a special migration
2047 * pte. do_swap_page() will wait until the migration
2048 * pte is removed and then restart fault handling.
2050 if (pte_write(pteval))
2051 entry = make_writable_device_exclusive_entry(
2052 page_to_pfn(subpage));
2054 entry = make_readable_device_exclusive_entry(
2055 page_to_pfn(subpage));
2056 swp_pte = swp_entry_to_pte(entry);
2057 if (pte_soft_dirty(pteval))
2058 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2059 if (pte_uffd_wp(pteval))
2060 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2062 set_pte_at(mm, address, pvmw.pte, swp_pte);
2065 * There is a reference on the page for the swap entry which has
2066 * been removed, so shouldn't take another.
2068 page_remove_rmap(subpage, vma, false);
2071 mmu_notifier_invalidate_range_end(&range);
2077 * page_make_device_exclusive - mark the page exclusively owned by a device
2078 * @page: the page to replace page table entries for
2079 * @mm: the mm_struct where the page is expected to be mapped
2080 * @address: address where the page is expected to be mapped
2081 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2083 * Tries to remove all the page table entries which are mapping this page and
2084 * replace them with special device exclusive swap entries to grant a device
2085 * exclusive access to the page. Caller must hold the page lock.
2087 * Returns false if the page is still mapped, or if it could not be unmapped
2088 * from the expected address. Otherwise returns true (success).
2090 static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2091 unsigned long address, void *owner)
2093 struct make_exclusive_args args = {
2099 struct rmap_walk_control rwc = {
2100 .rmap_one = page_make_device_exclusive_one,
2101 .done = page_not_mapped,
2102 .anon_lock = page_lock_anon_vma_read,
2107 * Restrict to anonymous pages for now to avoid potential writeback
2108 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2111 if (!PageAnon(page) || PageTail(page))
2114 rmap_walk(page, &rwc);
2116 return args.valid && !page_mapcount(page);
2120 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2121 * @mm: mm_struct of assoicated target process
2122 * @start: start of the region to mark for exclusive device access
2123 * @end: end address of region
2124 * @pages: returns the pages which were successfully marked for exclusive access
2125 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2127 * Returns: number of pages found in the range by GUP. A page is marked for
2128 * exclusive access only if the page pointer is non-NULL.
2130 * This function finds ptes mapping page(s) to the given address range, locks
2131 * them and replaces mappings with special swap entries preventing userspace CPU
2132 * access. On fault these entries are replaced with the original mapping after
2133 * calling MMU notifiers.
2135 * A driver using this to program access from a device must use a mmu notifier
2136 * critical section to hold a device specific lock during programming. Once
2137 * programming is complete it should drop the page lock and reference after
2138 * which point CPU access to the page will revoke the exclusive access.
2140 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2141 unsigned long end, struct page **pages,
2144 long npages = (end - start) >> PAGE_SHIFT;
2147 npages = get_user_pages_remote(mm, start, npages,
2148 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2153 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2154 if (!trylock_page(pages[i])) {
2160 if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2161 unlock_page(pages[i]);
2169 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2172 void __put_anon_vma(struct anon_vma *anon_vma)
2174 struct anon_vma *root = anon_vma->root;
2176 anon_vma_free(anon_vma);
2177 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2178 anon_vma_free(root);
2181 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2182 struct rmap_walk_control *rwc)
2184 struct anon_vma *anon_vma;
2187 return rwc->anon_lock(page);
2190 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2191 * because that depends on page_mapped(); but not all its usages
2192 * are holding mmap_lock. Users without mmap_lock are required to
2193 * take a reference count to prevent the anon_vma disappearing
2195 anon_vma = page_anon_vma(page);
2199 anon_vma_lock_read(anon_vma);
2204 * rmap_walk_anon - do something to anonymous page using the object-based
2206 * @page: the page to be handled
2207 * @rwc: control variable according to each walk type
2209 * Find all the mappings of a page using the mapping pointer and the vma chains
2210 * contained in the anon_vma struct it points to.
2212 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
2215 struct anon_vma *anon_vma;
2216 pgoff_t pgoff_start, pgoff_end;
2217 struct anon_vma_chain *avc;
2220 anon_vma = page_anon_vma(page);
2221 /* anon_vma disappear under us? */
2222 VM_BUG_ON_PAGE(!anon_vma, page);
2224 anon_vma = rmap_walk_anon_lock(page, rwc);
2229 pgoff_start = page_to_pgoff(page);
2230 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2231 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2232 pgoff_start, pgoff_end) {
2233 struct vm_area_struct *vma = avc->vma;
2234 unsigned long address = vma_address(page, vma);
2236 VM_BUG_ON_VMA(address == -EFAULT, vma);
2239 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2242 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2244 if (rwc->done && rwc->done(page))
2249 anon_vma_unlock_read(anon_vma);
2253 * rmap_walk_file - do something to file page using the object-based rmap method
2254 * @page: the page to be handled
2255 * @rwc: control variable according to each walk type
2257 * Find all the mappings of a page using the mapping pointer and the vma chains
2258 * contained in the address_space struct it points to.
2260 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2263 struct address_space *mapping = page_mapping(page);
2264 pgoff_t pgoff_start, pgoff_end;
2265 struct vm_area_struct *vma;
2268 * The page lock not only makes sure that page->mapping cannot
2269 * suddenly be NULLified by truncation, it makes sure that the
2270 * structure at mapping cannot be freed and reused yet,
2271 * so we can safely take mapping->i_mmap_rwsem.
2273 VM_BUG_ON_PAGE(!PageLocked(page), page);
2278 pgoff_start = page_to_pgoff(page);
2279 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2281 i_mmap_lock_read(mapping);
2282 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2283 pgoff_start, pgoff_end) {
2284 unsigned long address = vma_address(page, vma);
2286 VM_BUG_ON_VMA(address == -EFAULT, vma);
2289 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2292 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2294 if (rwc->done && rwc->done(page))
2300 i_mmap_unlock_read(mapping);
2303 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
2305 if (unlikely(PageKsm(page)))
2306 rmap_walk_ksm(page, rwc);
2307 else if (PageAnon(page))
2308 rmap_walk_anon(page, rwc, false);
2310 rmap_walk_file(page, rwc, false);
2313 /* Like rmap_walk, but caller holds relevant rmap lock */
2314 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2316 /* no ksm support for now */
2317 VM_BUG_ON_PAGE(PageKsm(page), page);
2319 rmap_walk_anon(page, rwc, true);
2321 rmap_walk_file(page, rwc, true);
2324 #ifdef CONFIG_HUGETLB_PAGE
2326 * The following two functions are for anonymous (private mapped) hugepages.
2327 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2328 * and no lru code, because we handle hugepages differently from common pages.
2330 void hugepage_add_anon_rmap(struct page *page,
2331 struct vm_area_struct *vma, unsigned long address)
2333 struct anon_vma *anon_vma = vma->anon_vma;
2336 BUG_ON(!PageLocked(page));
2338 /* address might be in next vma when migration races vma_adjust */
2339 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2341 __page_set_anon_rmap(page, vma, address, 0);
2344 void hugepage_add_new_anon_rmap(struct page *page,
2345 struct vm_area_struct *vma, unsigned long address)
2347 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2348 atomic_set(compound_mapcount_ptr(page), 0);
2349 if (hpage_pincount_available(page))
2350 atomic_set(compound_pincount_ptr(page), 0);
2352 __page_set_anon_rmap(page, vma, address, 1);
2354 #endif /* CONFIG_HUGETLB_PAGE */