1 // SPDX-License-Identifier: GPL-2.0
3 * Memory Migration functionality - linux/mm/migrate.c
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 #include <linux/memory.h>
53 #include <linux/random.h>
55 #include <asm/tlbflush.h>
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/migrate.h>
62 int isolate_movable_page(struct page *page, isolate_mode_t mode)
64 struct address_space *mapping;
67 * Avoid burning cycles with pages that are yet under __free_pages(),
68 * or just got freed under us.
70 * In case we 'win' a race for a movable page being freed under us and
71 * raise its refcount preventing __free_pages() from doing its job
72 * the put_page() at the end of this block will take care of
73 * release this page, thus avoiding a nasty leakage.
75 if (unlikely(!get_page_unless_zero(page)))
79 * Check PageMovable before holding a PG_lock because page's owner
80 * assumes anybody doesn't touch PG_lock of newly allocated page
81 * so unconditionally grabbing the lock ruins page's owner side.
83 if (unlikely(!__PageMovable(page)))
86 * As movable pages are not isolated from LRU lists, concurrent
87 * compaction threads can race against page migration functions
88 * as well as race against the releasing a page.
90 * In order to avoid having an already isolated movable page
91 * being (wrongly) re-isolated while it is under migration,
92 * or to avoid attempting to isolate pages being released,
93 * lets be sure we have the page lock
94 * before proceeding with the movable page isolation steps.
96 if (unlikely(!trylock_page(page)))
99 if (!PageMovable(page) || PageIsolated(page))
100 goto out_no_isolated;
102 mapping = page_mapping(page);
103 VM_BUG_ON_PAGE(!mapping, page);
105 if (!mapping->a_ops->isolate_page(page, mode))
106 goto out_no_isolated;
108 /* Driver shouldn't use PG_isolated bit of page->flags */
109 WARN_ON_ONCE(PageIsolated(page));
110 __SetPageIsolated(page);
123 static void putback_movable_page(struct page *page)
125 struct address_space *mapping;
127 mapping = page_mapping(page);
128 mapping->a_ops->putback_page(page);
129 __ClearPageIsolated(page);
133 * Put previously isolated pages back onto the appropriate lists
134 * from where they were once taken off for compaction/migration.
136 * This function shall be used whenever the isolated pageset has been
137 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
138 * and isolate_huge_page().
140 void putback_movable_pages(struct list_head *l)
145 list_for_each_entry_safe(page, page2, l, lru) {
146 if (unlikely(PageHuge(page))) {
147 putback_active_hugepage(page);
150 list_del(&page->lru);
152 * We isolated non-lru movable page so here we can use
153 * __PageMovable because LRU page's mapping cannot have
154 * PAGE_MAPPING_MOVABLE.
156 if (unlikely(__PageMovable(page))) {
157 VM_BUG_ON_PAGE(!PageIsolated(page), page);
159 if (PageMovable(page))
160 putback_movable_page(page);
162 __ClearPageIsolated(page);
166 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
167 page_is_file_lru(page), -thp_nr_pages(page));
168 putback_lru_page(page);
174 * Restore a potential migration pte to a working pte entry
176 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
177 unsigned long addr, void *old)
179 struct page_vma_mapped_walk pvmw = {
183 .flags = PVMW_SYNC | PVMW_MIGRATION,
189 VM_BUG_ON_PAGE(PageTail(page), page);
190 while (page_vma_mapped_walk(&pvmw)) {
194 new = page - pvmw.page->index +
195 linear_page_index(vma, pvmw.address);
197 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
198 /* PMD-mapped THP migration entry */
200 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
201 remove_migration_pmd(&pvmw, new);
207 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
208 if (pte_swp_soft_dirty(*pvmw.pte))
209 pte = pte_mksoft_dirty(pte);
212 * Recheck VMA as permissions can change since migration started
214 entry = pte_to_swp_entry(*pvmw.pte);
215 if (is_writable_migration_entry(entry))
216 pte = maybe_mkwrite(pte, vma);
217 else if (pte_swp_uffd_wp(*pvmw.pte))
218 pte = pte_mkuffd_wp(pte);
220 if (unlikely(is_device_private_page(new))) {
222 entry = make_writable_device_private_entry(
225 entry = make_readable_device_private_entry(
227 pte = swp_entry_to_pte(entry);
228 if (pte_swp_soft_dirty(*pvmw.pte))
229 pte = pte_swp_mksoft_dirty(pte);
230 if (pte_swp_uffd_wp(*pvmw.pte))
231 pte = pte_swp_mkuffd_wp(pte);
234 #ifdef CONFIG_HUGETLB_PAGE
236 unsigned int shift = huge_page_shift(hstate_vma(vma));
238 pte = pte_mkhuge(pte);
239 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
241 hugepage_add_anon_rmap(new, vma, pvmw.address);
243 page_dup_rmap(new, true);
244 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
249 page_add_anon_rmap(new, vma, pvmw.address, false);
251 page_add_file_rmap(new, vma, false);
252 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
255 /* No need to invalidate - it was non-present before */
256 update_mmu_cache(vma, pvmw.address, pvmw.pte);
263 * Get rid of all migration entries and replace them by
264 * references to the indicated page.
266 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
268 struct rmap_walk_control rwc = {
269 .rmap_one = remove_migration_pte,
274 rmap_walk_locked(new, &rwc);
276 rmap_walk(new, &rwc);
280 * Something used the pte of a page under migration. We need to
281 * get to the page and wait until migration is finished.
282 * When we return from this function the fault will be retried.
284 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
292 if (!is_swap_pte(pte))
295 entry = pte_to_swp_entry(pte);
296 if (!is_migration_entry(entry))
299 migration_entry_wait_on_locked(entry, ptep, ptl);
302 pte_unmap_unlock(ptep, ptl);
305 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
306 unsigned long address)
308 spinlock_t *ptl = pte_lockptr(mm, pmd);
309 pte_t *ptep = pte_offset_map(pmd, address);
310 __migration_entry_wait(mm, ptep, ptl);
313 void migration_entry_wait_huge(struct vm_area_struct *vma,
314 struct mm_struct *mm, pte_t *pte)
316 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
317 __migration_entry_wait(mm, pte, ptl);
320 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
321 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
325 ptl = pmd_lock(mm, pmd);
326 if (!is_pmd_migration_entry(*pmd))
328 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
335 static int expected_page_refs(struct address_space *mapping, struct page *page)
337 int expected_count = 1;
340 * Device private pages have an extra refcount as they are
343 expected_count += is_device_private_page(page);
345 expected_count += compound_nr(page) + page_has_private(page);
347 return expected_count;
351 * Replace the page in the mapping.
353 * The number of remaining references must be:
354 * 1 for anonymous pages without a mapping
355 * 2 for pages with a mapping
356 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
358 int folio_migrate_mapping(struct address_space *mapping,
359 struct folio *newfolio, struct folio *folio, int extra_count)
361 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
362 struct zone *oldzone, *newzone;
364 int expected_count = expected_page_refs(mapping, &folio->page) + extra_count;
365 long nr = folio_nr_pages(folio);
368 /* Anonymous page without mapping */
369 if (folio_ref_count(folio) != expected_count)
372 /* No turning back from here */
373 newfolio->index = folio->index;
374 newfolio->mapping = folio->mapping;
375 if (folio_test_swapbacked(folio))
376 __folio_set_swapbacked(newfolio);
378 return MIGRATEPAGE_SUCCESS;
381 oldzone = folio_zone(folio);
382 newzone = folio_zone(newfolio);
385 if (!folio_ref_freeze(folio, expected_count)) {
386 xas_unlock_irq(&xas);
391 * Now we know that no one else is looking at the folio:
392 * no turning back from here.
394 newfolio->index = folio->index;
395 newfolio->mapping = folio->mapping;
396 folio_ref_add(newfolio, nr); /* add cache reference */
397 if (folio_test_swapbacked(folio)) {
398 __folio_set_swapbacked(newfolio);
399 if (folio_test_swapcache(folio)) {
400 folio_set_swapcache(newfolio);
401 newfolio->private = folio_get_private(folio);
404 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
407 /* Move dirty while page refs frozen and newpage not yet exposed */
408 dirty = folio_test_dirty(folio);
410 folio_clear_dirty(folio);
411 folio_set_dirty(newfolio);
414 xas_store(&xas, newfolio);
417 * Drop cache reference from old page by unfreezing
418 * to one less reference.
419 * We know this isn't the last reference.
421 folio_ref_unfreeze(folio, expected_count - nr);
424 /* Leave irq disabled to prevent preemption while updating stats */
427 * If moved to a different zone then also account
428 * the page for that zone. Other VM counters will be
429 * taken care of when we establish references to the
430 * new page and drop references to the old page.
432 * Note that anonymous pages are accounted for
433 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
434 * are mapped to swap space.
436 if (newzone != oldzone) {
437 struct lruvec *old_lruvec, *new_lruvec;
438 struct mem_cgroup *memcg;
440 memcg = folio_memcg(folio);
441 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
442 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
444 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
445 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
446 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
447 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
448 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
451 if (folio_test_swapcache(folio)) {
452 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
453 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
456 if (dirty && mapping_can_writeback(mapping)) {
457 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
458 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
459 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
460 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
465 return MIGRATEPAGE_SUCCESS;
467 EXPORT_SYMBOL(folio_migrate_mapping);
470 * The expected number of remaining references is the same as that
471 * of folio_migrate_mapping().
473 int migrate_huge_page_move_mapping(struct address_space *mapping,
474 struct page *newpage, struct page *page)
476 XA_STATE(xas, &mapping->i_pages, page_index(page));
480 expected_count = 2 + page_has_private(page);
481 if (page_count(page) != expected_count || xas_load(&xas) != page) {
482 xas_unlock_irq(&xas);
486 if (!page_ref_freeze(page, expected_count)) {
487 xas_unlock_irq(&xas);
491 newpage->index = page->index;
492 newpage->mapping = page->mapping;
496 xas_store(&xas, newpage);
498 page_ref_unfreeze(page, expected_count - 1);
500 xas_unlock_irq(&xas);
502 return MIGRATEPAGE_SUCCESS;
506 * Copy the flags and some other ancillary information
508 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
512 if (folio_test_error(folio))
513 folio_set_error(newfolio);
514 if (folio_test_referenced(folio))
515 folio_set_referenced(newfolio);
516 if (folio_test_uptodate(folio))
517 folio_mark_uptodate(newfolio);
518 if (folio_test_clear_active(folio)) {
519 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
520 folio_set_active(newfolio);
521 } else if (folio_test_clear_unevictable(folio))
522 folio_set_unevictable(newfolio);
523 if (folio_test_workingset(folio))
524 folio_set_workingset(newfolio);
525 if (folio_test_checked(folio))
526 folio_set_checked(newfolio);
527 if (folio_test_mappedtodisk(folio))
528 folio_set_mappedtodisk(newfolio);
530 /* Move dirty on pages not done by folio_migrate_mapping() */
531 if (folio_test_dirty(folio))
532 folio_set_dirty(newfolio);
534 if (folio_test_young(folio))
535 folio_set_young(newfolio);
536 if (folio_test_idle(folio))
537 folio_set_idle(newfolio);
540 * Copy NUMA information to the new page, to prevent over-eager
541 * future migrations of this same page.
543 cpupid = page_cpupid_xchg_last(&folio->page, -1);
544 page_cpupid_xchg_last(&newfolio->page, cpupid);
546 folio_migrate_ksm(newfolio, folio);
548 * Please do not reorder this without considering how mm/ksm.c's
549 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
551 if (folio_test_swapcache(folio))
552 folio_clear_swapcache(folio);
553 folio_clear_private(folio);
555 /* page->private contains hugetlb specific flags */
556 if (!folio_test_hugetlb(folio))
557 folio->private = NULL;
560 * If any waiters have accumulated on the new page then
563 if (folio_test_writeback(newfolio))
564 folio_end_writeback(newfolio);
567 * PG_readahead shares the same bit with PG_reclaim. The above
568 * end_page_writeback() may clear PG_readahead mistakenly, so set the
571 if (folio_test_readahead(folio))
572 folio_set_readahead(newfolio);
574 folio_copy_owner(newfolio, folio);
576 if (!folio_test_hugetlb(folio))
577 mem_cgroup_migrate(folio, newfolio);
579 EXPORT_SYMBOL(folio_migrate_flags);
581 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
583 folio_copy(newfolio, folio);
584 folio_migrate_flags(newfolio, folio);
586 EXPORT_SYMBOL(folio_migrate_copy);
588 /************************************************************
589 * Migration functions
590 ***********************************************************/
593 * Common logic to directly migrate a single LRU page suitable for
594 * pages that do not use PagePrivate/PagePrivate2.
596 * Pages are locked upon entry and exit.
598 int migrate_page(struct address_space *mapping,
599 struct page *newpage, struct page *page,
600 enum migrate_mode mode)
602 struct folio *newfolio = page_folio(newpage);
603 struct folio *folio = page_folio(page);
606 BUG_ON(folio_test_writeback(folio)); /* Writeback must be complete */
608 rc = folio_migrate_mapping(mapping, newfolio, folio, 0);
610 if (rc != MIGRATEPAGE_SUCCESS)
613 if (mode != MIGRATE_SYNC_NO_COPY)
614 folio_migrate_copy(newfolio, folio);
616 folio_migrate_flags(newfolio, folio);
617 return MIGRATEPAGE_SUCCESS;
619 EXPORT_SYMBOL(migrate_page);
622 /* Returns true if all buffers are successfully locked */
623 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
624 enum migrate_mode mode)
626 struct buffer_head *bh = head;
628 /* Simple case, sync compaction */
629 if (mode != MIGRATE_ASYNC) {
632 bh = bh->b_this_page;
634 } while (bh != head);
639 /* async case, we cannot block on lock_buffer so use trylock_buffer */
641 if (!trylock_buffer(bh)) {
643 * We failed to lock the buffer and cannot stall in
644 * async migration. Release the taken locks
646 struct buffer_head *failed_bh = bh;
648 while (bh != failed_bh) {
650 bh = bh->b_this_page;
655 bh = bh->b_this_page;
656 } while (bh != head);
660 static int __buffer_migrate_page(struct address_space *mapping,
661 struct page *newpage, struct page *page, enum migrate_mode mode,
664 struct buffer_head *bh, *head;
668 if (!page_has_buffers(page))
669 return migrate_page(mapping, newpage, page, mode);
671 /* Check whether page does not have extra refs before we do more work */
672 expected_count = expected_page_refs(mapping, page);
673 if (page_count(page) != expected_count)
676 head = page_buffers(page);
677 if (!buffer_migrate_lock_buffers(head, mode))
682 bool invalidated = false;
686 spin_lock(&mapping->private_lock);
689 if (atomic_read(&bh->b_count)) {
693 bh = bh->b_this_page;
694 } while (bh != head);
700 spin_unlock(&mapping->private_lock);
701 invalidate_bh_lrus();
703 goto recheck_buffers;
707 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
708 if (rc != MIGRATEPAGE_SUCCESS)
711 attach_page_private(newpage, detach_page_private(page));
715 set_bh_page(bh, newpage, bh_offset(bh));
716 bh = bh->b_this_page;
718 } while (bh != head);
720 if (mode != MIGRATE_SYNC_NO_COPY)
721 migrate_page_copy(newpage, page);
723 migrate_page_states(newpage, page);
725 rc = MIGRATEPAGE_SUCCESS;
728 spin_unlock(&mapping->private_lock);
732 bh = bh->b_this_page;
734 } while (bh != head);
740 * Migration function for pages with buffers. This function can only be used
741 * if the underlying filesystem guarantees that no other references to "page"
742 * exist. For example attached buffer heads are accessed only under page lock.
744 int buffer_migrate_page(struct address_space *mapping,
745 struct page *newpage, struct page *page, enum migrate_mode mode)
747 return __buffer_migrate_page(mapping, newpage, page, mode, false);
749 EXPORT_SYMBOL(buffer_migrate_page);
752 * Same as above except that this variant is more careful and checks that there
753 * are also no buffer head references. This function is the right one for
754 * mappings where buffer heads are directly looked up and referenced (such as
755 * block device mappings).
757 int buffer_migrate_page_norefs(struct address_space *mapping,
758 struct page *newpage, struct page *page, enum migrate_mode mode)
760 return __buffer_migrate_page(mapping, newpage, page, mode, true);
765 * Writeback a page to clean the dirty state
767 static int writeout(struct address_space *mapping, struct page *page)
769 struct writeback_control wbc = {
770 .sync_mode = WB_SYNC_NONE,
773 .range_end = LLONG_MAX,
778 if (!mapping->a_ops->writepage)
779 /* No write method for the address space */
782 if (!clear_page_dirty_for_io(page))
783 /* Someone else already triggered a write */
787 * A dirty page may imply that the underlying filesystem has
788 * the page on some queue. So the page must be clean for
789 * migration. Writeout may mean we loose the lock and the
790 * page state is no longer what we checked for earlier.
791 * At this point we know that the migration attempt cannot
794 remove_migration_ptes(page, page, false);
796 rc = mapping->a_ops->writepage(page, &wbc);
798 if (rc != AOP_WRITEPAGE_ACTIVATE)
799 /* unlocked. Relock */
802 return (rc < 0) ? -EIO : -EAGAIN;
806 * Default handling if a filesystem does not provide a migration function.
808 static int fallback_migrate_page(struct address_space *mapping,
809 struct page *newpage, struct page *page, enum migrate_mode mode)
811 if (PageDirty(page)) {
812 /* Only writeback pages in full synchronous migration */
815 case MIGRATE_SYNC_NO_COPY:
820 return writeout(mapping, page);
824 * Buffers may be managed in a filesystem specific way.
825 * We must have no buffers or drop them.
827 if (page_has_private(page) &&
828 !try_to_release_page(page, GFP_KERNEL))
829 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
831 return migrate_page(mapping, newpage, page, mode);
835 * Move a page to a newly allocated page
836 * The page is locked and all ptes have been successfully removed.
838 * The new page will have replaced the old page if this function
843 * MIGRATEPAGE_SUCCESS - success
845 static int move_to_new_page(struct page *newpage, struct page *page,
846 enum migrate_mode mode)
848 struct address_space *mapping;
850 bool is_lru = !__PageMovable(page);
852 VM_BUG_ON_PAGE(!PageLocked(page), page);
853 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
855 mapping = page_mapping(page);
857 if (likely(is_lru)) {
859 rc = migrate_page(mapping, newpage, page, mode);
860 else if (mapping->a_ops->migratepage)
862 * Most pages have a mapping and most filesystems
863 * provide a migratepage callback. Anonymous pages
864 * are part of swap space which also has its own
865 * migratepage callback. This is the most common path
866 * for page migration.
868 rc = mapping->a_ops->migratepage(mapping, newpage,
871 rc = fallback_migrate_page(mapping, newpage,
875 * In case of non-lru page, it could be released after
876 * isolation step. In that case, we shouldn't try migration.
878 VM_BUG_ON_PAGE(!PageIsolated(page), page);
879 if (!PageMovable(page)) {
880 rc = MIGRATEPAGE_SUCCESS;
881 __ClearPageIsolated(page);
885 rc = mapping->a_ops->migratepage(mapping, newpage,
887 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
888 !PageIsolated(page));
892 * When successful, old pagecache page->mapping must be cleared before
893 * page is freed; but stats require that PageAnon be left as PageAnon.
895 if (rc == MIGRATEPAGE_SUCCESS) {
896 if (__PageMovable(page)) {
897 VM_BUG_ON_PAGE(!PageIsolated(page), page);
900 * We clear PG_movable under page_lock so any compactor
901 * cannot try to migrate this page.
903 __ClearPageIsolated(page);
907 * Anonymous and movable page->mapping will be cleared by
908 * free_pages_prepare so don't reset it here for keeping
909 * the type to work PageAnon, for example.
911 if (!PageMappingFlags(page))
912 page->mapping = NULL;
914 if (likely(!is_zone_device_page(newpage)))
915 flush_dcache_page(newpage);
922 static int __unmap_and_move(struct page *page, struct page *newpage,
923 int force, enum migrate_mode mode)
926 bool page_was_mapped = false;
927 struct anon_vma *anon_vma = NULL;
928 bool is_lru = !__PageMovable(page);
930 if (!trylock_page(page)) {
931 if (!force || mode == MIGRATE_ASYNC)
935 * It's not safe for direct compaction to call lock_page.
936 * For example, during page readahead pages are added locked
937 * to the LRU. Later, when the IO completes the pages are
938 * marked uptodate and unlocked. However, the queueing
939 * could be merging multiple pages for one bio (e.g.
940 * mpage_readahead). If an allocation happens for the
941 * second or third page, the process can end up locking
942 * the same page twice and deadlocking. Rather than
943 * trying to be clever about what pages can be locked,
944 * avoid the use of lock_page for direct compaction
947 if (current->flags & PF_MEMALLOC)
953 if (PageWriteback(page)) {
955 * Only in the case of a full synchronous migration is it
956 * necessary to wait for PageWriteback. In the async case,
957 * the retry loop is too short and in the sync-light case,
958 * the overhead of stalling is too much
962 case MIGRATE_SYNC_NO_COPY:
970 wait_on_page_writeback(page);
974 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
975 * we cannot notice that anon_vma is freed while we migrates a page.
976 * This get_anon_vma() delays freeing anon_vma pointer until the end
977 * of migration. File cache pages are no problem because of page_lock()
978 * File Caches may use write_page() or lock_page() in migration, then,
979 * just care Anon page here.
981 * Only page_get_anon_vma() understands the subtleties of
982 * getting a hold on an anon_vma from outside one of its mms.
983 * But if we cannot get anon_vma, then we won't need it anyway,
984 * because that implies that the anon page is no longer mapped
985 * (and cannot be remapped so long as we hold the page lock).
987 if (PageAnon(page) && !PageKsm(page))
988 anon_vma = page_get_anon_vma(page);
991 * Block others from accessing the new page when we get around to
992 * establishing additional references. We are usually the only one
993 * holding a reference to newpage at this point. We used to have a BUG
994 * here if trylock_page(newpage) fails, but would like to allow for
995 * cases where there might be a race with the previous use of newpage.
996 * This is much like races on refcount of oldpage: just don't BUG().
998 if (unlikely(!trylock_page(newpage)))
1001 if (unlikely(!is_lru)) {
1002 rc = move_to_new_page(newpage, page, mode);
1003 goto out_unlock_both;
1007 * Corner case handling:
1008 * 1. When a new swap-cache page is read into, it is added to the LRU
1009 * and treated as swapcache but it has no rmap yet.
1010 * Calling try_to_unmap() against a page->mapping==NULL page will
1011 * trigger a BUG. So handle it here.
1012 * 2. An orphaned page (see truncate_cleanup_page) might have
1013 * fs-private metadata. The page can be picked up due to memory
1014 * offlining. Everywhere else except page reclaim, the page is
1015 * invisible to the vm, so the page can not be migrated. So try to
1016 * free the metadata, so the page can be freed.
1018 if (!page->mapping) {
1019 VM_BUG_ON_PAGE(PageAnon(page), page);
1020 if (page_has_private(page)) {
1021 try_to_free_buffers(page);
1022 goto out_unlock_both;
1024 } else if (page_mapped(page)) {
1025 /* Establish migration ptes */
1026 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1028 try_to_migrate(page, 0);
1029 page_was_mapped = true;
1032 if (!page_mapped(page))
1033 rc = move_to_new_page(newpage, page, mode);
1036 * When successful, push newpage to LRU immediately: so that if it
1037 * turns out to be an mlocked page, remove_migration_ptes() will
1038 * automatically build up the correct newpage->mlock_count for it.
1040 * We would like to do something similar for the old page, when
1041 * unsuccessful, and other cases when a page has been temporarily
1042 * isolated from the unevictable LRU: but this case is the easiest.
1044 if (rc == MIGRATEPAGE_SUCCESS) {
1045 lru_cache_add(newpage);
1046 if (page_was_mapped)
1050 if (page_was_mapped)
1051 remove_migration_ptes(page,
1052 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1055 unlock_page(newpage);
1057 /* Drop an anon_vma reference if we took one */
1059 put_anon_vma(anon_vma);
1063 * If migration is successful, decrease refcount of the newpage,
1064 * which will not free the page because new page owner increased
1067 if (rc == MIGRATEPAGE_SUCCESS)
1074 * Obtain the lock on page, remove all ptes and migrate the page
1075 * to the newly allocated page in newpage.
1077 static int unmap_and_move(new_page_t get_new_page,
1078 free_page_t put_new_page,
1079 unsigned long private, struct page *page,
1080 int force, enum migrate_mode mode,
1081 enum migrate_reason reason,
1082 struct list_head *ret)
1084 int rc = MIGRATEPAGE_SUCCESS;
1085 struct page *newpage = NULL;
1087 if (!thp_migration_supported() && PageTransHuge(page))
1090 if (page_count(page) == 1) {
1091 /* page was freed from under us. So we are done. */
1092 ClearPageActive(page);
1093 ClearPageUnevictable(page);
1094 if (unlikely(__PageMovable(page))) {
1096 if (!PageMovable(page))
1097 __ClearPageIsolated(page);
1103 newpage = get_new_page(page, private);
1107 rc = __unmap_and_move(page, newpage, force, mode);
1108 if (rc == MIGRATEPAGE_SUCCESS)
1109 set_page_owner_migrate_reason(newpage, reason);
1112 if (rc != -EAGAIN) {
1114 * A page that has been migrated has all references
1115 * removed and will be freed. A page that has not been
1116 * migrated will have kept its references and be restored.
1118 list_del(&page->lru);
1122 * If migration is successful, releases reference grabbed during
1123 * isolation. Otherwise, restore the page to right list unless
1126 if (rc == MIGRATEPAGE_SUCCESS) {
1128 * Compaction can migrate also non-LRU pages which are
1129 * not accounted to NR_ISOLATED_*. They can be recognized
1132 if (likely(!__PageMovable(page)))
1133 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1134 page_is_file_lru(page), -thp_nr_pages(page));
1136 if (reason != MR_MEMORY_FAILURE)
1138 * We release the page in page_handle_poison.
1143 list_add_tail(&page->lru, ret);
1146 put_new_page(newpage, private);
1155 * Counterpart of unmap_and_move_page() for hugepage migration.
1157 * This function doesn't wait the completion of hugepage I/O
1158 * because there is no race between I/O and migration for hugepage.
1159 * Note that currently hugepage I/O occurs only in direct I/O
1160 * where no lock is held and PG_writeback is irrelevant,
1161 * and writeback status of all subpages are counted in the reference
1162 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1163 * under direct I/O, the reference of the head page is 512 and a bit more.)
1164 * This means that when we try to migrate hugepage whose subpages are
1165 * doing direct I/O, some references remain after try_to_unmap() and
1166 * hugepage migration fails without data corruption.
1168 * There is also no race when direct I/O is issued on the page under migration,
1169 * because then pte is replaced with migration swap entry and direct I/O code
1170 * will wait in the page fault for migration to complete.
1172 static int unmap_and_move_huge_page(new_page_t get_new_page,
1173 free_page_t put_new_page, unsigned long private,
1174 struct page *hpage, int force,
1175 enum migrate_mode mode, int reason,
1176 struct list_head *ret)
1179 int page_was_mapped = 0;
1180 struct page *new_hpage;
1181 struct anon_vma *anon_vma = NULL;
1182 struct address_space *mapping = NULL;
1185 * Migratability of hugepages depends on architectures and their size.
1186 * This check is necessary because some callers of hugepage migration
1187 * like soft offline and memory hotremove don't walk through page
1188 * tables or check whether the hugepage is pmd-based or not before
1189 * kicking migration.
1191 if (!hugepage_migration_supported(page_hstate(hpage))) {
1192 list_move_tail(&hpage->lru, ret);
1196 if (page_count(hpage) == 1) {
1197 /* page was freed from under us. So we are done. */
1198 putback_active_hugepage(hpage);
1199 return MIGRATEPAGE_SUCCESS;
1202 new_hpage = get_new_page(hpage, private);
1206 if (!trylock_page(hpage)) {
1211 case MIGRATE_SYNC_NO_COPY:
1220 * Check for pages which are in the process of being freed. Without
1221 * page_mapping() set, hugetlbfs specific move page routine will not
1222 * be called and we could leak usage counts for subpools.
1224 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1229 if (PageAnon(hpage))
1230 anon_vma = page_get_anon_vma(hpage);
1232 if (unlikely(!trylock_page(new_hpage)))
1235 if (page_mapped(hpage)) {
1236 bool mapping_locked = false;
1237 enum ttu_flags ttu = 0;
1239 if (!PageAnon(hpage)) {
1241 * In shared mappings, try_to_unmap could potentially
1242 * call huge_pmd_unshare. Because of this, take
1243 * semaphore in write mode here and set TTU_RMAP_LOCKED
1244 * to let lower levels know we have taken the lock.
1246 mapping = hugetlb_page_mapping_lock_write(hpage);
1247 if (unlikely(!mapping))
1248 goto unlock_put_anon;
1250 mapping_locked = true;
1251 ttu |= TTU_RMAP_LOCKED;
1254 try_to_migrate(hpage, ttu);
1255 page_was_mapped = 1;
1258 i_mmap_unlock_write(mapping);
1261 if (!page_mapped(hpage))
1262 rc = move_to_new_page(new_hpage, hpage, mode);
1264 if (page_was_mapped)
1265 remove_migration_ptes(hpage,
1266 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1269 unlock_page(new_hpage);
1273 put_anon_vma(anon_vma);
1275 if (rc == MIGRATEPAGE_SUCCESS) {
1276 move_hugetlb_state(hpage, new_hpage, reason);
1277 put_new_page = NULL;
1283 if (rc == MIGRATEPAGE_SUCCESS)
1284 putback_active_hugepage(hpage);
1285 else if (rc != -EAGAIN)
1286 list_move_tail(&hpage->lru, ret);
1289 * If migration was not successful and there's a freeing callback, use
1290 * it. Otherwise, put_page() will drop the reference grabbed during
1294 put_new_page(new_hpage, private);
1296 putback_active_hugepage(new_hpage);
1301 static inline int try_split_thp(struct page *page, struct page **page2,
1302 struct list_head *from)
1307 rc = split_huge_page_to_list(page, from);
1310 list_safe_reset_next(page, *page2, lru);
1316 * migrate_pages - migrate the pages specified in a list, to the free pages
1317 * supplied as the target for the page migration
1319 * @from: The list of pages to be migrated.
1320 * @get_new_page: The function used to allocate free pages to be used
1321 * as the target of the page migration.
1322 * @put_new_page: The function used to free target pages if migration
1323 * fails, or NULL if no special handling is necessary.
1324 * @private: Private data to be passed on to get_new_page()
1325 * @mode: The migration mode that specifies the constraints for
1326 * page migration, if any.
1327 * @reason: The reason for page migration.
1328 * @ret_succeeded: Set to the number of normal pages migrated successfully if
1329 * the caller passes a non-NULL pointer.
1331 * The function returns after 10 attempts or if no pages are movable any more
1332 * because the list has become empty or no retryable pages exist any more.
1333 * It is caller's responsibility to call putback_movable_pages() to return pages
1334 * to the LRU or free list only if ret != 0.
1336 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1337 * an error code. The number of THP splits will be considered as the number of
1338 * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1340 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1341 free_page_t put_new_page, unsigned long private,
1342 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1347 int nr_failed_pages = 0;
1348 int nr_succeeded = 0;
1349 int nr_thp_succeeded = 0;
1350 int nr_thp_failed = 0;
1351 int nr_thp_split = 0;
1353 bool is_thp = false;
1356 int swapwrite = current->flags & PF_SWAPWRITE;
1357 int rc, nr_subpages;
1358 LIST_HEAD(ret_pages);
1359 LIST_HEAD(thp_split_pages);
1360 bool nosplit = (reason == MR_NUMA_MISPLACED);
1361 bool no_subpage_counting = false;
1363 trace_mm_migrate_pages_start(mode, reason);
1366 current->flags |= PF_SWAPWRITE;
1368 thp_subpage_migration:
1369 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1373 list_for_each_entry_safe(page, page2, from, lru) {
1376 * THP statistics is based on the source huge page.
1377 * Capture required information that might get lost
1380 is_thp = PageTransHuge(page) && !PageHuge(page);
1381 nr_subpages = compound_nr(page);
1385 rc = unmap_and_move_huge_page(get_new_page,
1386 put_new_page, private, page,
1387 pass > 2, mode, reason,
1390 rc = unmap_and_move(get_new_page, put_new_page,
1391 private, page, pass > 2, mode,
1392 reason, &ret_pages);
1395 * Success: non hugetlb page will be freed, hugetlb
1396 * page will be put back
1397 * -EAGAIN: stay on the from list
1398 * -ENOMEM: stay on the from list
1399 * Other errno: put on ret_pages list then splice to
1404 * THP migration might be unsupported or the
1405 * allocation could've failed so we should
1406 * retry on the same page with the THP split
1409 * Head page is retried immediately and tail
1410 * pages are added to the tail of the list so
1411 * we encounter them after the rest of the list
1415 /* THP migration is unsupported */
1418 if (!try_split_thp(page, &page2, &thp_split_pages)) {
1423 nr_failed_pages += nr_subpages;
1427 /* Hugetlb migration is unsupported */
1428 if (!no_subpage_counting)
1430 nr_failed_pages += nr_subpages;
1434 * When memory is low, don't bother to try to migrate
1435 * other pages, just exit.
1436 * THP NUMA faulting doesn't split THP to retry.
1438 if (is_thp && !nosplit) {
1440 if (!try_split_thp(page, &page2, &thp_split_pages)) {
1445 nr_failed_pages += nr_subpages;
1449 if (!no_subpage_counting)
1451 nr_failed_pages += nr_subpages;
1460 case MIGRATEPAGE_SUCCESS:
1461 nr_succeeded += nr_subpages;
1469 * Permanent failure (-EBUSY, etc.):
1470 * unlike -EAGAIN case, the failed page is
1471 * removed from migration page list and not
1472 * retried in the next outer loop.
1476 nr_failed_pages += nr_subpages;
1480 if (!no_subpage_counting)
1482 nr_failed_pages += nr_subpages;
1488 nr_thp_failed += thp_retry;
1490 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1491 * counting in this round, since all subpages of a THP is counted
1492 * as 1 failure in the first round.
1494 if (!list_empty(&thp_split_pages)) {
1496 * Move non-migrated pages (after 10 retries) to ret_pages
1497 * to avoid migrating them again.
1499 list_splice_init(from, &ret_pages);
1500 list_splice_init(&thp_split_pages, from);
1501 no_subpage_counting = true;
1503 goto thp_subpage_migration;
1506 rc = nr_failed + nr_thp_failed;
1509 * Put the permanent failure page back to migration list, they
1510 * will be put back to the right list by the caller.
1512 list_splice(&ret_pages, from);
1514 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1515 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1516 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1517 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1518 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1519 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1520 nr_thp_failed, nr_thp_split, mode, reason);
1523 current->flags &= ~PF_SWAPWRITE;
1526 *ret_succeeded = nr_succeeded;
1531 struct page *alloc_migration_target(struct page *page, unsigned long private)
1533 struct migration_target_control *mtc;
1535 unsigned int order = 0;
1536 struct page *new_page = NULL;
1540 mtc = (struct migration_target_control *)private;
1541 gfp_mask = mtc->gfp_mask;
1543 if (nid == NUMA_NO_NODE)
1544 nid = page_to_nid(page);
1546 if (PageHuge(page)) {
1547 struct hstate *h = page_hstate(compound_head(page));
1549 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1550 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1553 if (PageTransHuge(page)) {
1555 * clear __GFP_RECLAIM to make the migration callback
1556 * consistent with regular THP allocations.
1558 gfp_mask &= ~__GFP_RECLAIM;
1559 gfp_mask |= GFP_TRANSHUGE;
1560 order = HPAGE_PMD_ORDER;
1562 zidx = zone_idx(page_zone(page));
1563 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1564 gfp_mask |= __GFP_HIGHMEM;
1566 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1568 if (new_page && PageTransHuge(new_page))
1569 prep_transhuge_page(new_page);
1576 static int store_status(int __user *status, int start, int value, int nr)
1579 if (put_user(value, status + start))
1587 static int do_move_pages_to_node(struct mm_struct *mm,
1588 struct list_head *pagelist, int node)
1591 struct migration_target_control mtc = {
1593 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1596 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1597 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1599 putback_movable_pages(pagelist);
1604 * Resolves the given address to a struct page, isolates it from the LRU and
1605 * puts it to the given pagelist.
1607 * errno - if the page cannot be found/isolated
1608 * 0 - when it doesn't have to be migrated because it is already on the
1610 * 1 - when it has been queued
1612 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1613 int node, struct list_head *pagelist, bool migrate_all)
1615 struct vm_area_struct *vma;
1617 unsigned int follflags;
1622 vma = find_vma(mm, addr);
1623 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1626 /* FOLL_DUMP to ignore special (like zero) pages */
1627 follflags = FOLL_GET | FOLL_DUMP;
1628 page = follow_page(vma, addr, follflags);
1630 err = PTR_ERR(page);
1639 if (page_to_nid(page) == node)
1643 if (page_mapcount(page) > 1 && !migrate_all)
1646 if (PageHuge(page)) {
1647 if (PageHead(page)) {
1648 isolate_huge_page(page, pagelist);
1654 head = compound_head(page);
1655 err = isolate_lru_page(head);
1660 list_add_tail(&head->lru, pagelist);
1661 mod_node_page_state(page_pgdat(head),
1662 NR_ISOLATED_ANON + page_is_file_lru(head),
1663 thp_nr_pages(head));
1667 * Either remove the duplicate refcount from
1668 * isolate_lru_page() or drop the page ref if it was
1673 mmap_read_unlock(mm);
1677 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1678 struct list_head *pagelist, int __user *status,
1679 int start, int i, unsigned long nr_pages)
1683 if (list_empty(pagelist))
1686 err = do_move_pages_to_node(mm, pagelist, node);
1689 * Positive err means the number of failed
1690 * pages to migrate. Since we are going to
1691 * abort and return the number of non-migrated
1692 * pages, so need to include the rest of the
1693 * nr_pages that have not been attempted as
1697 err += nr_pages - i - 1;
1700 return store_status(status, start, node, i - start);
1704 * Migrate an array of page address onto an array of nodes and fill
1705 * the corresponding array of status.
1707 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1708 unsigned long nr_pages,
1709 const void __user * __user *pages,
1710 const int __user *nodes,
1711 int __user *status, int flags)
1713 int current_node = NUMA_NO_NODE;
1714 LIST_HEAD(pagelist);
1718 lru_cache_disable();
1720 for (i = start = 0; i < nr_pages; i++) {
1721 const void __user *p;
1726 if (get_user(p, pages + i))
1728 if (get_user(node, nodes + i))
1730 addr = (unsigned long)untagged_addr(p);
1733 if (node < 0 || node >= MAX_NUMNODES)
1735 if (!node_state(node, N_MEMORY))
1739 if (!node_isset(node, task_nodes))
1742 if (current_node == NUMA_NO_NODE) {
1743 current_node = node;
1745 } else if (node != current_node) {
1746 err = move_pages_and_store_status(mm, current_node,
1747 &pagelist, status, start, i, nr_pages);
1751 current_node = node;
1755 * Errors in the page lookup or isolation are not fatal and we simply
1756 * report them via status
1758 err = add_page_for_migration(mm, addr, current_node,
1759 &pagelist, flags & MPOL_MF_MOVE_ALL);
1762 /* The page is successfully queued for migration */
1767 * If the page is already on the target node (!err), store the
1768 * node, otherwise, store the err.
1770 err = store_status(status, i, err ? : current_node, 1);
1774 err = move_pages_and_store_status(mm, current_node, &pagelist,
1775 status, start, i, nr_pages);
1778 current_node = NUMA_NO_NODE;
1781 /* Make sure we do not overwrite the existing error */
1782 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1783 status, start, i, nr_pages);
1792 * Determine the nodes of an array of pages and store it in an array of status.
1794 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1795 const void __user **pages, int *status)
1801 for (i = 0; i < nr_pages; i++) {
1802 unsigned long addr = (unsigned long)(*pages);
1803 struct vm_area_struct *vma;
1807 vma = vma_lookup(mm, addr);
1811 /* FOLL_DUMP to ignore special (like zero) pages */
1812 page = follow_page(vma, addr, FOLL_DUMP);
1814 err = PTR_ERR(page);
1818 err = page ? page_to_nid(page) : -ENOENT;
1826 mmap_read_unlock(mm);
1829 static int get_compat_pages_array(const void __user *chunk_pages[],
1830 const void __user * __user *pages,
1831 unsigned long chunk_nr)
1833 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1837 for (i = 0; i < chunk_nr; i++) {
1838 if (get_user(p, pages32 + i))
1840 chunk_pages[i] = compat_ptr(p);
1847 * Determine the nodes of a user array of pages and store it in
1848 * a user array of status.
1850 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1851 const void __user * __user *pages,
1854 #define DO_PAGES_STAT_CHUNK_NR 16
1855 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1856 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1859 unsigned long chunk_nr;
1861 chunk_nr = nr_pages;
1862 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1863 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1865 if (in_compat_syscall()) {
1866 if (get_compat_pages_array(chunk_pages, pages,
1870 if (copy_from_user(chunk_pages, pages,
1871 chunk_nr * sizeof(*chunk_pages)))
1875 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1877 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1882 nr_pages -= chunk_nr;
1884 return nr_pages ? -EFAULT : 0;
1887 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1889 struct task_struct *task;
1890 struct mm_struct *mm;
1893 * There is no need to check if current process has the right to modify
1894 * the specified process when they are same.
1898 *mem_nodes = cpuset_mems_allowed(current);
1902 /* Find the mm_struct */
1904 task = find_task_by_vpid(pid);
1907 return ERR_PTR(-ESRCH);
1909 get_task_struct(task);
1912 * Check if this process has the right to modify the specified
1913 * process. Use the regular "ptrace_may_access()" checks.
1915 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1917 mm = ERR_PTR(-EPERM);
1922 mm = ERR_PTR(security_task_movememory(task));
1925 *mem_nodes = cpuset_mems_allowed(task);
1926 mm = get_task_mm(task);
1928 put_task_struct(task);
1930 mm = ERR_PTR(-EINVAL);
1935 * Move a list of pages in the address space of the currently executing
1938 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1939 const void __user * __user *pages,
1940 const int __user *nodes,
1941 int __user *status, int flags)
1943 struct mm_struct *mm;
1945 nodemask_t task_nodes;
1948 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1951 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1954 mm = find_mm_struct(pid, &task_nodes);
1959 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1960 nodes, status, flags);
1962 err = do_pages_stat(mm, nr_pages, pages, status);
1968 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1969 const void __user * __user *, pages,
1970 const int __user *, nodes,
1971 int __user *, status, int, flags)
1973 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1976 #ifdef CONFIG_NUMA_BALANCING
1978 * Returns true if this is a safe migration target node for misplaced NUMA
1979 * pages. Currently it only checks the watermarks which crude
1981 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1982 unsigned long nr_migrate_pages)
1986 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1987 struct zone *zone = pgdat->node_zones + z;
1989 if (!populated_zone(zone))
1992 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1993 if (!zone_watermark_ok(zone, 0,
1994 high_wmark_pages(zone) +
2003 static struct page *alloc_misplaced_dst_page(struct page *page,
2006 int nid = (int) data;
2007 struct page *newpage;
2009 newpage = __alloc_pages_node(nid,
2010 (GFP_HIGHUSER_MOVABLE |
2011 __GFP_THISNODE | __GFP_NOMEMALLOC |
2012 __GFP_NORETRY | __GFP_NOWARN) &
2018 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2021 int nid = (int) data;
2022 struct page *newpage;
2024 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2029 prep_transhuge_page(newpage);
2035 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2038 int nr_pages = thp_nr_pages(page);
2040 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2042 /* Do not migrate THP mapped by multiple processes */
2043 if (PageTransHuge(page) && total_mapcount(page) > 1)
2046 /* Avoid migrating to a node that is nearly full */
2047 if (!migrate_balanced_pgdat(pgdat, nr_pages))
2050 if (isolate_lru_page(page))
2053 page_lru = page_is_file_lru(page);
2054 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2058 * Isolating the page has taken another reference, so the
2059 * caller's reference can be safely dropped without the page
2060 * disappearing underneath us during migration.
2067 * Attempt to migrate a misplaced page to the specified destination
2068 * node. Caller is expected to have an elevated reference count on
2069 * the page that will be dropped by this function before returning.
2071 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2074 pg_data_t *pgdat = NODE_DATA(node);
2077 LIST_HEAD(migratepages);
2080 int nr_pages = thp_nr_pages(page);
2083 * PTE mapped THP or HugeTLB page can't reach here so the page could
2084 * be either base page or THP. And it must be head page if it is
2087 compound = PageTransHuge(page);
2090 new = alloc_misplaced_dst_page_thp;
2092 new = alloc_misplaced_dst_page;
2095 * Don't migrate file pages that are mapped in multiple processes
2096 * with execute permissions as they are probably shared libraries.
2098 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2099 (vma->vm_flags & VM_EXEC))
2103 * Also do not migrate dirty pages as not all filesystems can move
2104 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2106 if (page_is_file_lru(page) && PageDirty(page))
2109 isolated = numamigrate_isolate_page(pgdat, page);
2113 list_add(&page->lru, &migratepages);
2114 nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2115 MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL);
2117 if (!list_empty(&migratepages)) {
2118 list_del(&page->lru);
2119 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2120 page_is_file_lru(page), -nr_pages);
2121 putback_lru_page(page);
2125 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2126 BUG_ON(!list_empty(&migratepages));
2133 #endif /* CONFIG_NUMA_BALANCING */
2134 #endif /* CONFIG_NUMA */
2136 #ifdef CONFIG_DEVICE_PRIVATE
2137 static int migrate_vma_collect_skip(unsigned long start,
2139 struct mm_walk *walk)
2141 struct migrate_vma *migrate = walk->private;
2144 for (addr = start; addr < end; addr += PAGE_SIZE) {
2145 migrate->dst[migrate->npages] = 0;
2146 migrate->src[migrate->npages++] = 0;
2152 static int migrate_vma_collect_hole(unsigned long start,
2154 __always_unused int depth,
2155 struct mm_walk *walk)
2157 struct migrate_vma *migrate = walk->private;
2160 /* Only allow populating anonymous memory. */
2161 if (!vma_is_anonymous(walk->vma))
2162 return migrate_vma_collect_skip(start, end, walk);
2164 for (addr = start; addr < end; addr += PAGE_SIZE) {
2165 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2166 migrate->dst[migrate->npages] = 0;
2174 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2175 unsigned long start,
2177 struct mm_walk *walk)
2179 struct migrate_vma *migrate = walk->private;
2180 struct vm_area_struct *vma = walk->vma;
2181 struct mm_struct *mm = vma->vm_mm;
2182 unsigned long addr = start, unmapped = 0;
2187 if (pmd_none(*pmdp))
2188 return migrate_vma_collect_hole(start, end, -1, walk);
2190 if (pmd_trans_huge(*pmdp)) {
2193 ptl = pmd_lock(mm, pmdp);
2194 if (unlikely(!pmd_trans_huge(*pmdp))) {
2199 page = pmd_page(*pmdp);
2200 if (is_huge_zero_page(page)) {
2202 split_huge_pmd(vma, pmdp, addr);
2203 if (pmd_trans_unstable(pmdp))
2204 return migrate_vma_collect_skip(start, end,
2211 if (unlikely(!trylock_page(page)))
2212 return migrate_vma_collect_skip(start, end,
2214 ret = split_huge_page(page);
2218 return migrate_vma_collect_skip(start, end,
2220 if (pmd_none(*pmdp))
2221 return migrate_vma_collect_hole(start, end, -1,
2226 if (unlikely(pmd_bad(*pmdp)))
2227 return migrate_vma_collect_skip(start, end, walk);
2229 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2230 arch_enter_lazy_mmu_mode();
2232 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2233 unsigned long mpfn = 0, pfn;
2240 if (pte_none(pte)) {
2241 if (vma_is_anonymous(vma)) {
2242 mpfn = MIGRATE_PFN_MIGRATE;
2248 if (!pte_present(pte)) {
2250 * Only care about unaddressable device page special
2251 * page table entry. Other special swap entries are not
2252 * migratable, and we ignore regular swapped page.
2254 entry = pte_to_swp_entry(pte);
2255 if (!is_device_private_entry(entry))
2258 page = pfn_swap_entry_to_page(entry);
2259 if (!(migrate->flags &
2260 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2261 page->pgmap->owner != migrate->pgmap_owner)
2264 mpfn = migrate_pfn(page_to_pfn(page)) |
2265 MIGRATE_PFN_MIGRATE;
2266 if (is_writable_device_private_entry(entry))
2267 mpfn |= MIGRATE_PFN_WRITE;
2269 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2272 if (is_zero_pfn(pfn)) {
2273 mpfn = MIGRATE_PFN_MIGRATE;
2277 page = vm_normal_page(migrate->vma, addr, pte);
2278 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2279 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2282 /* FIXME support THP */
2283 if (!page || !page->mapping || PageTransCompound(page)) {
2289 * By getting a reference on the page we pin it and that blocks
2290 * any kind of migration. Side effect is that it "freezes" the
2293 * We drop this reference after isolating the page from the lru
2294 * for non device page (device page are not on the lru and thus
2295 * can't be dropped from it).
2300 * Optimize for the common case where page is only mapped once
2301 * in one process. If we can lock the page, then we can safely
2302 * set up a special migration page table entry now.
2304 if (trylock_page(page)) {
2308 ptep_get_and_clear(mm, addr, ptep);
2310 /* Setup special migration page table entry */
2311 if (mpfn & MIGRATE_PFN_WRITE)
2312 entry = make_writable_migration_entry(
2315 entry = make_readable_migration_entry(
2317 swp_pte = swp_entry_to_pte(entry);
2318 if (pte_present(pte)) {
2319 if (pte_soft_dirty(pte))
2320 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2321 if (pte_uffd_wp(pte))
2322 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2324 if (pte_swp_soft_dirty(pte))
2325 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2326 if (pte_swp_uffd_wp(pte))
2327 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2329 set_pte_at(mm, addr, ptep, swp_pte);
2332 * This is like regular unmap: we remove the rmap and
2333 * drop page refcount. Page won't be freed, as we took
2334 * a reference just above.
2336 page_remove_rmap(page, vma, false);
2339 if (pte_present(pte))
2347 migrate->dst[migrate->npages] = 0;
2348 migrate->src[migrate->npages++] = mpfn;
2350 arch_leave_lazy_mmu_mode();
2351 pte_unmap_unlock(ptep - 1, ptl);
2353 /* Only flush the TLB if we actually modified any entries */
2355 flush_tlb_range(walk->vma, start, end);
2360 static const struct mm_walk_ops migrate_vma_walk_ops = {
2361 .pmd_entry = migrate_vma_collect_pmd,
2362 .pte_hole = migrate_vma_collect_hole,
2366 * migrate_vma_collect() - collect pages over a range of virtual addresses
2367 * @migrate: migrate struct containing all migration information
2369 * This will walk the CPU page table. For each virtual address backed by a
2370 * valid page, it updates the src array and takes a reference on the page, in
2371 * order to pin the page until we lock it and unmap it.
2373 static void migrate_vma_collect(struct migrate_vma *migrate)
2375 struct mmu_notifier_range range;
2378 * Note that the pgmap_owner is passed to the mmu notifier callback so
2379 * that the registered device driver can skip invalidating device
2380 * private page mappings that won't be migrated.
2382 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2383 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2384 migrate->pgmap_owner);
2385 mmu_notifier_invalidate_range_start(&range);
2387 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2388 &migrate_vma_walk_ops, migrate);
2390 mmu_notifier_invalidate_range_end(&range);
2391 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2395 * migrate_vma_check_page() - check if page is pinned or not
2396 * @page: struct page to check
2398 * Pinned pages cannot be migrated. This is the same test as in
2399 * folio_migrate_mapping(), except that here we allow migration of a
2402 static bool migrate_vma_check_page(struct page *page)
2405 * One extra ref because caller holds an extra reference, either from
2406 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2412 * FIXME support THP (transparent huge page), it is bit more complex to
2413 * check them than regular pages, because they can be mapped with a pmd
2414 * or with a pte (split pte mapping).
2416 if (PageCompound(page))
2419 /* Page from ZONE_DEVICE have one extra reference */
2420 if (is_zone_device_page(page))
2423 /* For file back page */
2424 if (page_mapping(page))
2425 extra += 1 + page_has_private(page);
2427 if ((page_count(page) - extra) > page_mapcount(page))
2434 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2435 * @migrate: migrate struct containing all migration information
2437 * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
2438 * special migration pte entry and check if it has been pinned. Pinned pages are
2439 * restored because we cannot migrate them.
2441 * This is the last step before we call the device driver callback to allocate
2442 * destination memory and copy contents of original page over to new page.
2444 static void migrate_vma_unmap(struct migrate_vma *migrate)
2446 const unsigned long npages = migrate->npages;
2447 unsigned long i, restore = 0;
2448 bool allow_drain = true;
2452 for (i = 0; i < npages; i++) {
2453 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2458 /* ZONE_DEVICE pages are not on LRU */
2459 if (!is_zone_device_page(page)) {
2460 if (!PageLRU(page) && allow_drain) {
2461 /* Drain CPU's pagevec */
2462 lru_add_drain_all();
2463 allow_drain = false;
2466 if (isolate_lru_page(page)) {
2467 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2473 /* Drop the reference we took in collect */
2477 if (page_mapped(page))
2478 try_to_migrate(page, 0);
2480 if (page_mapped(page) || !migrate_vma_check_page(page)) {
2481 if (!is_zone_device_page(page)) {
2483 putback_lru_page(page);
2486 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2493 for (i = 0; i < npages && restore; i++) {
2494 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2496 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2499 remove_migration_ptes(page, page, false);
2501 migrate->src[i] = 0;
2509 * migrate_vma_setup() - prepare to migrate a range of memory
2510 * @args: contains the vma, start, and pfns arrays for the migration
2512 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2515 * Prepare to migrate a range of memory virtual address range by collecting all
2516 * the pages backing each virtual address in the range, saving them inside the
2517 * src array. Then lock those pages and unmap them. Once the pages are locked
2518 * and unmapped, check whether each page is pinned or not. Pages that aren't
2519 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2520 * corresponding src array entry. Then restores any pages that are pinned, by
2521 * remapping and unlocking those pages.
2523 * The caller should then allocate destination memory and copy source memory to
2524 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2525 * flag set). Once these are allocated and copied, the caller must update each
2526 * corresponding entry in the dst array with the pfn value of the destination
2527 * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
2530 * Note that the caller does not have to migrate all the pages that are marked
2531 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2532 * device memory to system memory. If the caller cannot migrate a device page
2533 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2534 * consequences for the userspace process, so it must be avoided if at all
2537 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2538 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2539 * allowing the caller to allocate device memory for those unbacked virtual
2540 * addresses. For this the caller simply has to allocate device memory and
2541 * properly set the destination entry like for regular migration. Note that
2542 * this can still fail, and thus inside the device driver you must check if the
2543 * migration was successful for those entries after calling migrate_vma_pages(),
2544 * just like for regular migration.
2546 * After that, the callers must call migrate_vma_pages() to go over each entry
2547 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2548 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2549 * then migrate_vma_pages() to migrate struct page information from the source
2550 * struct page to the destination struct page. If it fails to migrate the
2551 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2554 * At this point all successfully migrated pages have an entry in the src
2555 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2556 * array entry with MIGRATE_PFN_VALID flag set.
2558 * Once migrate_vma_pages() returns the caller may inspect which pages were
2559 * successfully migrated, and which were not. Successfully migrated pages will
2560 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2562 * It is safe to update device page table after migrate_vma_pages() because
2563 * both destination and source page are still locked, and the mmap_lock is held
2564 * in read mode (hence no one can unmap the range being migrated).
2566 * Once the caller is done cleaning up things and updating its page table (if it
2567 * chose to do so, this is not an obligation) it finally calls
2568 * migrate_vma_finalize() to update the CPU page table to point to new pages
2569 * for successfully migrated pages or otherwise restore the CPU page table to
2570 * point to the original source pages.
2572 int migrate_vma_setup(struct migrate_vma *args)
2574 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2576 args->start &= PAGE_MASK;
2577 args->end &= PAGE_MASK;
2578 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2579 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2583 if (args->start < args->vma->vm_start ||
2584 args->start >= args->vma->vm_end)
2586 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2588 if (!args->src || !args->dst)
2591 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2595 migrate_vma_collect(args);
2598 migrate_vma_unmap(args);
2601 * At this point pages are locked and unmapped, and thus they have
2602 * stable content and can safely be copied to destination memory that
2603 * is allocated by the drivers.
2608 EXPORT_SYMBOL(migrate_vma_setup);
2611 * This code closely matches the code in:
2612 * __handle_mm_fault()
2613 * handle_pte_fault()
2614 * do_anonymous_page()
2615 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2618 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2623 struct vm_area_struct *vma = migrate->vma;
2624 struct mm_struct *mm = vma->vm_mm;
2634 /* Only allow populating anonymous memory */
2635 if (!vma_is_anonymous(vma))
2638 pgdp = pgd_offset(mm, addr);
2639 p4dp = p4d_alloc(mm, pgdp, addr);
2642 pudp = pud_alloc(mm, p4dp, addr);
2645 pmdp = pmd_alloc(mm, pudp, addr);
2649 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2653 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2654 * pte_offset_map() on pmds where a huge pmd might be created
2655 * from a different thread.
2657 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2658 * parallel threads are excluded by other means.
2660 * Here we only have mmap_read_lock(mm).
2662 if (pte_alloc(mm, pmdp))
2665 /* See the comment in pte_alloc_one_map() */
2666 if (unlikely(pmd_trans_unstable(pmdp)))
2669 if (unlikely(anon_vma_prepare(vma)))
2671 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
2675 * The memory barrier inside __SetPageUptodate makes sure that
2676 * preceding stores to the page contents become visible before
2677 * the set_pte_at() write.
2679 __SetPageUptodate(page);
2681 if (is_zone_device_page(page)) {
2682 if (is_device_private_page(page)) {
2683 swp_entry_t swp_entry;
2685 if (vma->vm_flags & VM_WRITE)
2686 swp_entry = make_writable_device_private_entry(
2689 swp_entry = make_readable_device_private_entry(
2691 entry = swp_entry_to_pte(swp_entry);
2694 * For now we only support migrating to un-addressable
2697 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2701 entry = mk_pte(page, vma->vm_page_prot);
2702 if (vma->vm_flags & VM_WRITE)
2703 entry = pte_mkwrite(pte_mkdirty(entry));
2706 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2708 if (check_stable_address_space(mm))
2711 if (pte_present(*ptep)) {
2712 unsigned long pfn = pte_pfn(*ptep);
2714 if (!is_zero_pfn(pfn))
2717 } else if (!pte_none(*ptep))
2721 * Check for userfaultfd but do not deliver the fault. Instead,
2724 if (userfaultfd_missing(vma))
2727 inc_mm_counter(mm, MM_ANONPAGES);
2728 page_add_new_anon_rmap(page, vma, addr, false);
2729 if (!is_zone_device_page(page))
2730 lru_cache_add_inactive_or_unevictable(page, vma);
2734 flush_cache_page(vma, addr, pte_pfn(*ptep));
2735 ptep_clear_flush_notify(vma, addr, ptep);
2736 set_pte_at_notify(mm, addr, ptep, entry);
2737 update_mmu_cache(vma, addr, ptep);
2739 /* No need to invalidate - it was non-present before */
2740 set_pte_at(mm, addr, ptep, entry);
2741 update_mmu_cache(vma, addr, ptep);
2744 pte_unmap_unlock(ptep, ptl);
2745 *src = MIGRATE_PFN_MIGRATE;
2749 pte_unmap_unlock(ptep, ptl);
2751 *src &= ~MIGRATE_PFN_MIGRATE;
2755 * migrate_vma_pages() - migrate meta-data from src page to dst page
2756 * @migrate: migrate struct containing all migration information
2758 * This migrates struct page meta-data from source struct page to destination
2759 * struct page. This effectively finishes the migration from source page to the
2762 void migrate_vma_pages(struct migrate_vma *migrate)
2764 const unsigned long npages = migrate->npages;
2765 const unsigned long start = migrate->start;
2766 struct mmu_notifier_range range;
2767 unsigned long addr, i;
2768 bool notified = false;
2770 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2771 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2772 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2773 struct address_space *mapping;
2777 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2782 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2787 mmu_notifier_range_init_owner(&range,
2788 MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2789 migrate->vma->vm_mm, addr, migrate->end,
2790 migrate->pgmap_owner);
2791 mmu_notifier_invalidate_range_start(&range);
2793 migrate_vma_insert_page(migrate, addr, newpage,
2798 mapping = page_mapping(page);
2800 if (is_zone_device_page(newpage)) {
2801 if (is_device_private_page(newpage)) {
2803 * For now only support private anonymous when
2804 * migrating to un-addressable device memory.
2807 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2812 * Other types of ZONE_DEVICE page are not
2815 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2820 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2821 if (r != MIGRATEPAGE_SUCCESS)
2822 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2826 * No need to double call mmu_notifier->invalidate_range() callback as
2827 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2828 * did already call it.
2831 mmu_notifier_invalidate_range_only_end(&range);
2833 EXPORT_SYMBOL(migrate_vma_pages);
2836 * migrate_vma_finalize() - restore CPU page table entry
2837 * @migrate: migrate struct containing all migration information
2839 * This replaces the special migration pte entry with either a mapping to the
2840 * new page if migration was successful for that page, or to the original page
2843 * This also unlocks the pages and puts them back on the lru, or drops the extra
2844 * refcount, for device pages.
2846 void migrate_vma_finalize(struct migrate_vma *migrate)
2848 const unsigned long npages = migrate->npages;
2851 for (i = 0; i < npages; i++) {
2852 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2853 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2857 unlock_page(newpage);
2863 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2865 unlock_page(newpage);
2871 remove_migration_ptes(page, newpage, false);
2874 if (is_zone_device_page(page))
2877 putback_lru_page(page);
2879 if (newpage != page) {
2880 unlock_page(newpage);
2881 if (is_zone_device_page(newpage))
2884 putback_lru_page(newpage);
2888 EXPORT_SYMBOL(migrate_vma_finalize);
2889 #endif /* CONFIG_DEVICE_PRIVATE */
2892 * node_demotion[] example:
2894 * Consider a system with two sockets. Each socket has
2895 * three classes of memory attached: fast, medium and slow.
2896 * Each memory class is placed in its own NUMA node. The
2897 * CPUs are placed in the node with the "fast" memory. The
2898 * 6 NUMA nodes (0-5) might be split among the sockets like
2904 * When Node 0 fills up, its memory should be migrated to
2905 * Node 1. When Node 1 fills up, it should be migrated to
2906 * Node 2. The migration path start on the nodes with the
2907 * processors (since allocations default to this node) and
2908 * fast memory, progress through medium and end with the
2911 * 0 -> 1 -> 2 -> stop
2912 * 3 -> 4 -> 5 -> stop
2914 * This is represented in the node_demotion[] like this:
2916 * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2917 * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2918 * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2919 * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2920 * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2921 * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2923 * Moreover some systems may have multiple slow memory nodes.
2924 * Suppose a system has one socket with 3 memory nodes, node 0
2925 * is fast memory type, and node 1/2 both are slow memory
2926 * type, and the distance between fast memory node and slow
2927 * memory node is same. So the migration path should be:
2931 * This is represented in the node_demotion[] like this:
2932 * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2933 * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2934 * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2938 * Writes to this array occur without locking. Cycles are
2939 * not allowed: Node X demotes to Y which demotes to X...
2941 * If multiple reads are performed, a single rcu_read_lock()
2942 * must be held over all reads to ensure that no cycles are
2945 #define DEFAULT_DEMOTION_TARGET_NODES 15
2947 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2948 #define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1)
2950 #define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES
2953 struct demotion_nodes {
2955 short nodes[DEMOTION_TARGET_NODES];
2958 static struct demotion_nodes *node_demotion __read_mostly;
2961 * next_demotion_node() - Get the next node in the demotion path
2962 * @node: The starting node to lookup the next node
2964 * Return: node id for next memory node in the demotion path hierarchy
2965 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
2966 * @node online or guarantee that it *continues* to be the next demotion
2969 int next_demotion_node(int node)
2971 struct demotion_nodes *nd;
2972 unsigned short target_nr, index;
2976 return NUMA_NO_NODE;
2978 nd = &node_demotion[node];
2981 * node_demotion[] is updated without excluding this
2982 * function from running. RCU doesn't provide any
2983 * compiler barriers, so the READ_ONCE() is required
2984 * to avoid compiler reordering or read merging.
2986 * Make sure to use RCU over entire code blocks if
2987 * node_demotion[] reads need to be consistent.
2990 target_nr = READ_ONCE(nd->nr);
2992 switch (target_nr) {
2994 target = NUMA_NO_NODE;
3001 * If there are multiple target nodes, just select one
3002 * target node randomly.
3004 * In addition, we can also use round-robin to select
3005 * target node, but we should introduce another variable
3006 * for node_demotion[] to record last selected target node,
3007 * that may cause cache ping-pong due to the changing of
3008 * last target node. Or introducing per-cpu data to avoid
3009 * caching issue, which seems more complicated. So selecting
3010 * target node randomly seems better until now.
3012 index = get_random_int() % target_nr;
3016 target = READ_ONCE(nd->nodes[index]);
3023 #if defined(CONFIG_HOTPLUG_CPU)
3024 /* Disable reclaim-based migration. */
3025 static void __disable_all_migrate_targets(void)
3032 for_each_online_node(node) {
3033 node_demotion[node].nr = 0;
3034 for (i = 0; i < DEMOTION_TARGET_NODES; i++)
3035 node_demotion[node].nodes[i] = NUMA_NO_NODE;
3039 static void disable_all_migrate_targets(void)
3041 __disable_all_migrate_targets();
3044 * Ensure that the "disable" is visible across the system.
3045 * Readers will see either a combination of before+disable
3046 * state or disable+after. They will never see before and
3047 * after state together.
3049 * The before+after state together might have cycles and
3050 * could cause readers to do things like loop until this
3051 * function finishes. This ensures they can only see a
3052 * single "bad" read and would, for instance, only loop
3059 * Find an automatic demotion target for 'node'.
3060 * Failing here is OK. It might just indicate
3061 * being at the end of a chain.
3063 static int establish_migrate_target(int node, nodemask_t *used,
3066 int migration_target, index, val;
3067 struct demotion_nodes *nd;
3070 return NUMA_NO_NODE;
3072 nd = &node_demotion[node];
3074 migration_target = find_next_best_node(node, used);
3075 if (migration_target == NUMA_NO_NODE)
3076 return NUMA_NO_NODE;
3079 * If the node has been set a migration target node before,
3080 * which means it's the best distance between them. Still
3081 * check if this node can be demoted to other target nodes
3082 * if they have a same best distance.
3084 if (best_distance != -1) {
3085 val = node_distance(node, migration_target);
3086 if (val > best_distance)
3087 return NUMA_NO_NODE;
3091 if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
3092 "Exceeds maximum demotion target nodes\n"))
3093 return NUMA_NO_NODE;
3095 nd->nodes[index] = migration_target;
3098 return migration_target;
3102 * When memory fills up on a node, memory contents can be
3103 * automatically migrated to another node instead of
3104 * discarded at reclaim.
3106 * Establish a "migration path" which will start at nodes
3107 * with CPUs and will follow the priorities used to build the
3108 * page allocator zonelists.
3110 * The difference here is that cycles must be avoided. If
3111 * node0 migrates to node1, then neither node1, nor anything
3112 * node1 migrates to can migrate to node0. Also one node can
3113 * be migrated to multiple nodes if the target nodes all have
3114 * a same best-distance against the source node.
3116 * This function can run simultaneously with readers of
3117 * node_demotion[]. However, it can not run simultaneously
3118 * with itself. Exclusion is provided by memory hotplug events
3119 * being single-threaded.
3121 static void __set_migration_target_nodes(void)
3123 nodemask_t next_pass = NODE_MASK_NONE;
3124 nodemask_t this_pass = NODE_MASK_NONE;
3125 nodemask_t used_targets = NODE_MASK_NONE;
3126 int node, best_distance;
3129 * Avoid any oddities like cycles that could occur
3130 * from changes in the topology. This will leave
3131 * a momentary gap when migration is disabled.
3133 disable_all_migrate_targets();
3136 * Allocations go close to CPUs, first. Assume that
3137 * the migration path starts at the nodes with CPUs.
3139 next_pass = node_states[N_CPU];
3141 this_pass = next_pass;
3142 next_pass = NODE_MASK_NONE;
3144 * To avoid cycles in the migration "graph", ensure
3145 * that migration sources are not future targets by
3146 * setting them in 'used_targets'. Do this only
3147 * once per pass so that multiple source nodes can
3148 * share a target node.
3150 * 'used_targets' will become unavailable in future
3151 * passes. This limits some opportunities for
3152 * multiple source nodes to share a destination.
3154 nodes_or(used_targets, used_targets, this_pass);
3156 for_each_node_mask(node, this_pass) {
3160 * Try to set up the migration path for the node, and the target
3161 * migration nodes can be multiple, so doing a loop to find all
3162 * the target nodes if they all have a best node distance.
3166 establish_migrate_target(node, &used_targets,
3169 if (target_node == NUMA_NO_NODE)
3172 if (best_distance == -1)
3173 best_distance = node_distance(node, target_node);
3176 * Visit targets from this pass in the next pass.
3177 * Eventually, every node will have been part of
3178 * a pass, and will become set in 'used_targets'.
3180 node_set(target_node, next_pass);
3184 * 'next_pass' contains nodes which became migration
3185 * targets in this pass. Make additional passes until
3186 * no more migrations targets are available.
3188 if (!nodes_empty(next_pass))
3193 * For callers that do not hold get_online_mems() already.
3195 static void set_migration_target_nodes(void)
3198 __set_migration_target_nodes();
3203 * This leaves migrate-on-reclaim transiently disabled between
3204 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs
3205 * whether reclaim-based migration is enabled or not, which
3206 * ensures that the user can turn reclaim-based migration at
3207 * any time without needing to recalculate migration targets.
3209 * These callbacks already hold get_online_mems(). That is why
3210 * __set_migration_target_nodes() can be used as opposed to
3211 * set_migration_target_nodes().
3213 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
3214 unsigned long action, void *_arg)
3216 struct memory_notify *arg = _arg;
3219 * Only update the node migration order when a node is
3220 * changing status, like online->offline. This avoids
3221 * the overhead of synchronize_rcu() in most cases.
3223 if (arg->status_change_nid < 0)
3224 return notifier_from_errno(0);
3227 case MEM_GOING_OFFLINE:
3229 * Make sure there are not transient states where
3230 * an offline node is a migration target. This
3231 * will leave migration disabled until the offline
3232 * completes and the MEM_OFFLINE case below runs.
3234 disable_all_migrate_targets();
3239 * Recalculate the target nodes once the node
3240 * reaches its final state (online or offline).
3242 __set_migration_target_nodes();
3244 case MEM_CANCEL_OFFLINE:
3246 * MEM_GOING_OFFLINE disabled all the migration
3247 * targets. Reenable them.
3249 __set_migration_target_nodes();
3251 case MEM_GOING_ONLINE:
3252 case MEM_CANCEL_ONLINE:
3256 return notifier_from_errno(0);
3260 * React to hotplug events that might affect the migration targets
3261 * like events that online or offline NUMA nodes.
3263 * The ordering is also currently dependent on which nodes have
3264 * CPUs. That means we need CPU on/offline notification too.
3266 static int migration_online_cpu(unsigned int cpu)
3268 set_migration_target_nodes();
3272 static int migration_offline_cpu(unsigned int cpu)
3274 set_migration_target_nodes();
3278 static int __init migrate_on_reclaim_init(void)
3282 node_demotion = kmalloc_array(nr_node_ids,
3283 sizeof(struct demotion_nodes),
3285 WARN_ON(!node_demotion);
3287 ret = cpuhp_setup_state_nocalls(CPUHP_MM_DEMOTION_DEAD, "mm/demotion:offline",
3288 NULL, migration_offline_cpu);
3290 * In the unlikely case that this fails, the automatic
3291 * migration targets may become suboptimal for nodes
3292 * where N_CPU changes. With such a small impact in a
3293 * rare case, do not bother trying to do anything special.
3296 ret = cpuhp_setup_state(CPUHP_AP_MM_DEMOTION_ONLINE, "mm/demotion:online",
3297 migration_online_cpu, NULL);
3300 hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
3303 late_initcall(migrate_on_reclaim_init);
3304 #endif /* CONFIG_HOTPLUG_CPU */
3306 bool numa_demotion_enabled = false;
3309 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
3310 struct kobj_attribute *attr, char *buf)
3312 return sysfs_emit(buf, "%s\n",
3313 numa_demotion_enabled ? "true" : "false");
3316 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
3317 struct kobj_attribute *attr,
3318 const char *buf, size_t count)
3320 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
3321 numa_demotion_enabled = true;
3322 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
3323 numa_demotion_enabled = false;
3330 static struct kobj_attribute numa_demotion_enabled_attr =
3331 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
3332 numa_demotion_enabled_store);
3334 static struct attribute *numa_attrs[] = {
3335 &numa_demotion_enabled_attr.attr,
3339 static const struct attribute_group numa_attr_group = {
3340 .attrs = numa_attrs,
3343 static int __init numa_init_sysfs(void)
3346 struct kobject *numa_kobj;
3348 numa_kobj = kobject_create_and_add("numa", mm_kobj);
3350 pr_err("failed to create numa kobject\n");
3353 err = sysfs_create_group(numa_kobj, &numa_attr_group);
3355 pr_err("failed to register numa group\n");
3361 kobject_put(numa_kobj);
3364 subsys_initcall(numa_init_sysfs);