1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
88 #include <asm/unaligned.h>
89 #include <linux/capability.h>
90 #include <linux/errno.h>
91 #include <linux/errqueue.h>
92 #include <linux/types.h>
93 #include <linux/socket.h>
95 #include <linux/kernel.h>
96 #include <linux/module.h>
97 #include <linux/proc_fs.h>
98 #include <linux/seq_file.h>
99 #include <linux/sched.h>
100 #include <linux/sched/mm.h>
101 #include <linux/timer.h>
102 #include <linux/string.h>
103 #include <linux/sockios.h>
104 #include <linux/net.h>
105 #include <linux/mm.h>
106 #include <linux/slab.h>
107 #include <linux/interrupt.h>
108 #include <linux/poll.h>
109 #include <linux/tcp.h>
110 #include <linux/init.h>
111 #include <linux/highmem.h>
112 #include <linux/user_namespace.h>
113 #include <linux/static_key.h>
114 #include <linux/memcontrol.h>
115 #include <linux/prefetch.h>
117 #include <linux/uaccess.h>
119 #include <linux/netdevice.h>
120 #include <net/protocol.h>
121 #include <linux/skbuff.h>
122 #include <net/net_namespace.h>
123 #include <net/request_sock.h>
124 #include <net/sock.h>
125 #include <linux/net_tstamp.h>
126 #include <net/xfrm.h>
127 #include <linux/ipsec.h>
128 #include <net/cls_cgroup.h>
129 #include <net/netprio_cgroup.h>
130 #include <linux/sock_diag.h>
132 #include <linux/filter.h>
133 #include <net/sock_reuseport.h>
134 #include <net/bpf_sk_storage.h>
136 #include <trace/events/sock.h>
139 #include <net/busy_poll.h>
141 static DEFINE_MUTEX(proto_list_mutex);
142 static LIST_HEAD(proto_list);
144 static void sock_inuse_add(struct net *net, int val);
147 * sk_ns_capable - General socket capability test
148 * @sk: Socket to use a capability on or through
149 * @user_ns: The user namespace of the capability to use
150 * @cap: The capability to use
152 * Test to see if the opener of the socket had when the socket was
153 * created and the current process has the capability @cap in the user
154 * namespace @user_ns.
156 bool sk_ns_capable(const struct sock *sk,
157 struct user_namespace *user_ns, int cap)
159 return file_ns_capable(sk->sk_socket->file, user_ns, cap) &&
160 ns_capable(user_ns, cap);
162 EXPORT_SYMBOL(sk_ns_capable);
165 * sk_capable - Socket global capability test
166 * @sk: Socket to use a capability on or through
167 * @cap: The global capability to use
169 * Test to see if the opener of the socket had when the socket was
170 * created and the current process has the capability @cap in all user
173 bool sk_capable(const struct sock *sk, int cap)
175 return sk_ns_capable(sk, &init_user_ns, cap);
177 EXPORT_SYMBOL(sk_capable);
180 * sk_net_capable - Network namespace socket capability test
181 * @sk: Socket to use a capability on or through
182 * @cap: The capability to use
184 * Test to see if the opener of the socket had when the socket was created
185 * and the current process has the capability @cap over the network namespace
186 * the socket is a member of.
188 bool sk_net_capable(const struct sock *sk, int cap)
190 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
192 EXPORT_SYMBOL(sk_net_capable);
195 * Each address family might have different locking rules, so we have
196 * one slock key per address family and separate keys for internal and
199 static struct lock_class_key af_family_keys[AF_MAX];
200 static struct lock_class_key af_family_kern_keys[AF_MAX];
201 static struct lock_class_key af_family_slock_keys[AF_MAX];
202 static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
205 * Make lock validator output more readable. (we pre-construct these
206 * strings build-time, so that runtime initialization of socket
210 #define _sock_locks(x) \
211 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
212 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
213 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
214 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
215 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
216 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
217 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
218 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
219 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
220 x "27" , x "28" , x "AF_CAN" , \
221 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
222 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
223 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
224 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
225 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
228 static const char *const af_family_key_strings[AF_MAX+1] = {
229 _sock_locks("sk_lock-")
231 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
232 _sock_locks("slock-")
234 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
235 _sock_locks("clock-")
238 static const char *const af_family_kern_key_strings[AF_MAX+1] = {
239 _sock_locks("k-sk_lock-")
241 static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
242 _sock_locks("k-slock-")
244 static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
245 _sock_locks("k-clock-")
247 static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
248 _sock_locks("rlock-")
250 static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
251 _sock_locks("wlock-")
253 static const char *const af_family_elock_key_strings[AF_MAX+1] = {
254 _sock_locks("elock-")
258 * sk_callback_lock and sk queues locking rules are per-address-family,
259 * so split the lock classes by using a per-AF key:
261 static struct lock_class_key af_callback_keys[AF_MAX];
262 static struct lock_class_key af_rlock_keys[AF_MAX];
263 static struct lock_class_key af_wlock_keys[AF_MAX];
264 static struct lock_class_key af_elock_keys[AF_MAX];
265 static struct lock_class_key af_kern_callback_keys[AF_MAX];
267 /* Run time adjustable parameters. */
268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
269 EXPORT_SYMBOL(sysctl_wmem_max);
270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
271 EXPORT_SYMBOL(sysctl_rmem_max);
272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275 /* Maximal space eaten by iovec or ancillary data plus some space */
276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
277 EXPORT_SYMBOL(sysctl_optmem_max);
279 int sysctl_tstamp_allow_data __read_mostly = 1;
281 DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
282 EXPORT_SYMBOL_GPL(memalloc_socks_key);
285 * sk_set_memalloc - sets %SOCK_MEMALLOC
286 * @sk: socket to set it on
288 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
289 * It's the responsibility of the admin to adjust min_free_kbytes
290 * to meet the requirements
292 void sk_set_memalloc(struct sock *sk)
294 sock_set_flag(sk, SOCK_MEMALLOC);
295 sk->sk_allocation |= __GFP_MEMALLOC;
296 static_branch_inc(&memalloc_socks_key);
298 EXPORT_SYMBOL_GPL(sk_set_memalloc);
300 void sk_clear_memalloc(struct sock *sk)
302 sock_reset_flag(sk, SOCK_MEMALLOC);
303 sk->sk_allocation &= ~__GFP_MEMALLOC;
304 static_branch_dec(&memalloc_socks_key);
307 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
308 * progress of swapping. SOCK_MEMALLOC may be cleared while
309 * it has rmem allocations due to the last swapfile being deactivated
310 * but there is a risk that the socket is unusable due to exceeding
311 * the rmem limits. Reclaim the reserves and obey rmem limits again.
315 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
317 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
320 unsigned int noreclaim_flag;
322 /* these should have been dropped before queueing */
323 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
325 noreclaim_flag = memalloc_noreclaim_save();
326 ret = sk->sk_backlog_rcv(sk, skb);
327 memalloc_noreclaim_restore(noreclaim_flag);
331 EXPORT_SYMBOL(__sk_backlog_rcv);
333 static int sock_get_timeout(long timeo, void *optval, bool old_timeval)
335 struct __kernel_sock_timeval tv;
337 if (timeo == MAX_SCHEDULE_TIMEOUT) {
341 tv.tv_sec = timeo / HZ;
342 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
345 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
346 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
347 *(struct old_timeval32 *)optval = tv32;
352 struct __kernel_old_timeval old_tv;
353 old_tv.tv_sec = tv.tv_sec;
354 old_tv.tv_usec = tv.tv_usec;
355 *(struct __kernel_old_timeval *)optval = old_tv;
356 return sizeof(old_tv);
359 *(struct __kernel_sock_timeval *)optval = tv;
363 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen, bool old_timeval)
365 struct __kernel_sock_timeval tv;
367 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
368 struct old_timeval32 tv32;
370 if (optlen < sizeof(tv32))
373 if (copy_from_user(&tv32, optval, sizeof(tv32)))
375 tv.tv_sec = tv32.tv_sec;
376 tv.tv_usec = tv32.tv_usec;
377 } else if (old_timeval) {
378 struct __kernel_old_timeval old_tv;
380 if (optlen < sizeof(old_tv))
382 if (copy_from_user(&old_tv, optval, sizeof(old_tv)))
384 tv.tv_sec = old_tv.tv_sec;
385 tv.tv_usec = old_tv.tv_usec;
387 if (optlen < sizeof(tv))
389 if (copy_from_user(&tv, optval, sizeof(tv)))
392 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
396 static int warned __read_mostly;
399 if (warned < 10 && net_ratelimit()) {
401 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
402 __func__, current->comm, task_pid_nr(current));
406 *timeo_p = MAX_SCHEDULE_TIMEOUT;
407 if (tv.tv_sec == 0 && tv.tv_usec == 0)
409 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1))
410 *timeo_p = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec, USEC_PER_SEC / HZ);
414 static void sock_warn_obsolete_bsdism(const char *name)
417 static char warncomm[TASK_COMM_LEN];
418 if (strcmp(warncomm, current->comm) && warned < 5) {
419 strcpy(warncomm, current->comm);
420 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
426 static bool sock_needs_netstamp(const struct sock *sk)
428 switch (sk->sk_family) {
437 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
439 if (sk->sk_flags & flags) {
440 sk->sk_flags &= ~flags;
441 if (sock_needs_netstamp(sk) &&
442 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
443 net_disable_timestamp();
448 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
451 struct sk_buff_head *list = &sk->sk_receive_queue;
453 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
454 atomic_inc(&sk->sk_drops);
455 trace_sock_rcvqueue_full(sk, skb);
459 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
460 atomic_inc(&sk->sk_drops);
465 skb_set_owner_r(skb, sk);
467 /* we escape from rcu protected region, make sure we dont leak
472 spin_lock_irqsave(&list->lock, flags);
473 sock_skb_set_dropcount(sk, skb);
474 __skb_queue_tail(list, skb);
475 spin_unlock_irqrestore(&list->lock, flags);
477 if (!sock_flag(sk, SOCK_DEAD))
478 sk->sk_data_ready(sk);
481 EXPORT_SYMBOL(__sock_queue_rcv_skb);
483 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
487 err = sk_filter(sk, skb);
491 return __sock_queue_rcv_skb(sk, skb);
493 EXPORT_SYMBOL(sock_queue_rcv_skb);
495 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
496 const int nested, unsigned int trim_cap, bool refcounted)
498 int rc = NET_RX_SUCCESS;
500 if (sk_filter_trim_cap(sk, skb, trim_cap))
501 goto discard_and_relse;
505 if (sk_rcvqueues_full(sk, sk->sk_rcvbuf)) {
506 atomic_inc(&sk->sk_drops);
507 goto discard_and_relse;
510 bh_lock_sock_nested(sk);
513 if (!sock_owned_by_user(sk)) {
515 * trylock + unlock semantics:
517 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
519 rc = sk_backlog_rcv(sk, skb);
521 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
522 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
524 atomic_inc(&sk->sk_drops);
525 goto discard_and_relse;
537 EXPORT_SYMBOL(__sk_receive_skb);
539 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
541 struct dst_entry *dst = __sk_dst_get(sk);
543 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
544 sk_tx_queue_clear(sk);
545 sk->sk_dst_pending_confirm = 0;
546 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
553 EXPORT_SYMBOL(__sk_dst_check);
555 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
557 struct dst_entry *dst = sk_dst_get(sk);
559 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
567 EXPORT_SYMBOL(sk_dst_check);
569 static int sock_setbindtodevice_locked(struct sock *sk, int ifindex)
571 int ret = -ENOPROTOOPT;
572 #ifdef CONFIG_NETDEVICES
573 struct net *net = sock_net(sk);
577 if (sk->sk_bound_dev_if && !ns_capable(net->user_ns, CAP_NET_RAW))
584 sk->sk_bound_dev_if = ifindex;
585 if (sk->sk_prot->rehash)
586 sk->sk_prot->rehash(sk);
597 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
600 int ret = -ENOPROTOOPT;
601 #ifdef CONFIG_NETDEVICES
602 struct net *net = sock_net(sk);
603 char devname[IFNAMSIZ];
610 /* Bind this socket to a particular device like "eth0",
611 * as specified in the passed interface name. If the
612 * name is "" or the option length is zero the socket
615 if (optlen > IFNAMSIZ - 1)
616 optlen = IFNAMSIZ - 1;
617 memset(devname, 0, sizeof(devname));
620 if (copy_from_user(devname, optval, optlen))
624 if (devname[0] != '\0') {
625 struct net_device *dev;
628 dev = dev_get_by_name_rcu(net, devname);
630 index = dev->ifindex;
638 ret = sock_setbindtodevice_locked(sk, index);
647 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
648 int __user *optlen, int len)
650 int ret = -ENOPROTOOPT;
651 #ifdef CONFIG_NETDEVICES
652 struct net *net = sock_net(sk);
653 char devname[IFNAMSIZ];
655 if (sk->sk_bound_dev_if == 0) {
664 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
668 len = strlen(devname) + 1;
671 if (copy_to_user(optval, devname, len))
676 if (put_user(len, optlen))
687 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
691 sock_set_flag(sk, bit);
693 sock_reset_flag(sk, bit);
696 bool sk_mc_loop(struct sock *sk)
698 if (dev_recursion_level())
702 switch (sk->sk_family) {
704 return inet_sk(sk)->mc_loop;
705 #if IS_ENABLED(CONFIG_IPV6)
707 return inet6_sk(sk)->mc_loop;
713 EXPORT_SYMBOL(sk_mc_loop);
716 * This is meant for all protocols to use and covers goings on
717 * at the socket level. Everything here is generic.
720 int sock_setsockopt(struct socket *sock, int level, int optname,
721 char __user *optval, unsigned int optlen)
723 struct sock_txtime sk_txtime;
724 struct sock *sk = sock->sk;
731 * Options without arguments
734 if (optname == SO_BINDTODEVICE)
735 return sock_setbindtodevice(sk, optval, optlen);
737 if (optlen < sizeof(int))
740 if (get_user(val, (int __user *)optval))
743 valbool = val ? 1 : 0;
749 if (val && !capable(CAP_NET_ADMIN))
752 sock_valbool_flag(sk, SOCK_DBG, valbool);
755 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
758 sk->sk_reuseport = valbool;
767 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
771 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
774 /* Don't error on this BSD doesn't and if you think
775 * about it this is right. Otherwise apps have to
776 * play 'guess the biggest size' games. RCVBUF/SNDBUF
777 * are treated in BSD as hints
779 val = min_t(u32, val, sysctl_wmem_max);
781 /* Ensure val * 2 fits into an int, to prevent max_t()
782 * from treating it as a negative value.
784 val = min_t(int, val, INT_MAX / 2);
785 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
786 WRITE_ONCE(sk->sk_sndbuf,
787 max_t(int, val * 2, SOCK_MIN_SNDBUF));
788 /* Wake up sending tasks if we upped the value. */
789 sk->sk_write_space(sk);
793 if (!capable(CAP_NET_ADMIN)) {
798 /* No negative values (to prevent underflow, as val will be
806 /* Don't error on this BSD doesn't and if you think
807 * about it this is right. Otherwise apps have to
808 * play 'guess the biggest size' games. RCVBUF/SNDBUF
809 * are treated in BSD as hints
811 val = min_t(u32, val, sysctl_rmem_max);
813 /* Ensure val * 2 fits into an int, to prevent max_t()
814 * from treating it as a negative value.
816 val = min_t(int, val, INT_MAX / 2);
817 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
819 * We double it on the way in to account for
820 * "struct sk_buff" etc. overhead. Applications
821 * assume that the SO_RCVBUF setting they make will
822 * allow that much actual data to be received on that
825 * Applications are unaware that "struct sk_buff" and
826 * other overheads allocate from the receive buffer
827 * during socket buffer allocation.
829 * And after considering the possible alternatives,
830 * returning the value we actually used in getsockopt
831 * is the most desirable behavior.
833 WRITE_ONCE(sk->sk_rcvbuf,
834 max_t(int, val * 2, SOCK_MIN_RCVBUF));
838 if (!capable(CAP_NET_ADMIN)) {
843 /* No negative values (to prevent underflow, as val will be
851 if (sk->sk_prot->keepalive)
852 sk->sk_prot->keepalive(sk, valbool);
853 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
857 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
861 sk->sk_no_check_tx = valbool;
865 if ((val >= 0 && val <= 6) ||
866 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
867 sk->sk_priority = val;
873 if (optlen < sizeof(ling)) {
874 ret = -EINVAL; /* 1003.1g */
877 if (copy_from_user(&ling, optval, sizeof(ling))) {
882 sock_reset_flag(sk, SOCK_LINGER);
884 #if (BITS_PER_LONG == 32)
885 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
886 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
889 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
890 sock_set_flag(sk, SOCK_LINGER);
895 sock_warn_obsolete_bsdism("setsockopt");
900 set_bit(SOCK_PASSCRED, &sock->flags);
902 clear_bit(SOCK_PASSCRED, &sock->flags);
905 case SO_TIMESTAMP_OLD:
906 case SO_TIMESTAMP_NEW:
907 case SO_TIMESTAMPNS_OLD:
908 case SO_TIMESTAMPNS_NEW:
910 if (optname == SO_TIMESTAMP_NEW || optname == SO_TIMESTAMPNS_NEW)
911 sock_set_flag(sk, SOCK_TSTAMP_NEW);
913 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
915 if (optname == SO_TIMESTAMP_OLD || optname == SO_TIMESTAMP_NEW)
916 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
918 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
919 sock_set_flag(sk, SOCK_RCVTSTAMP);
920 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
922 sock_reset_flag(sk, SOCK_RCVTSTAMP);
923 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
924 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
928 case SO_TIMESTAMPING_NEW:
929 sock_set_flag(sk, SOCK_TSTAMP_NEW);
931 case SO_TIMESTAMPING_OLD:
932 if (val & ~SOF_TIMESTAMPING_MASK) {
937 if (val & SOF_TIMESTAMPING_OPT_ID &&
938 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
939 if (sk->sk_protocol == IPPROTO_TCP &&
940 sk->sk_type == SOCK_STREAM) {
941 if ((1 << sk->sk_state) &
942 (TCPF_CLOSE | TCPF_LISTEN)) {
946 sk->sk_tskey = tcp_sk(sk)->snd_una;
952 if (val & SOF_TIMESTAMPING_OPT_STATS &&
953 !(val & SOF_TIMESTAMPING_OPT_TSONLY)) {
958 sk->sk_tsflags = val;
959 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
960 sock_enable_timestamp(sk,
961 SOCK_TIMESTAMPING_RX_SOFTWARE);
963 if (optname == SO_TIMESTAMPING_NEW)
964 sock_reset_flag(sk, SOCK_TSTAMP_NEW);
966 sock_disable_timestamp(sk,
967 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
974 if (sock->ops->set_rcvlowat)
975 ret = sock->ops->set_rcvlowat(sk, val);
977 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
980 case SO_RCVTIMEO_OLD:
981 case SO_RCVTIMEO_NEW:
982 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen, optname == SO_RCVTIMEO_OLD);
985 case SO_SNDTIMEO_OLD:
986 case SO_SNDTIMEO_NEW:
987 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen, optname == SO_SNDTIMEO_OLD);
990 case SO_ATTACH_FILTER:
992 if (optlen == sizeof(struct sock_fprog)) {
993 struct sock_fprog fprog;
996 if (copy_from_user(&fprog, optval, sizeof(fprog)))
999 ret = sk_attach_filter(&fprog, sk);
1005 if (optlen == sizeof(u32)) {
1009 if (copy_from_user(&ufd, optval, sizeof(ufd)))
1012 ret = sk_attach_bpf(ufd, sk);
1016 case SO_ATTACH_REUSEPORT_CBPF:
1018 if (optlen == sizeof(struct sock_fprog)) {
1019 struct sock_fprog fprog;
1022 if (copy_from_user(&fprog, optval, sizeof(fprog)))
1025 ret = sk_reuseport_attach_filter(&fprog, sk);
1029 case SO_ATTACH_REUSEPORT_EBPF:
1031 if (optlen == sizeof(u32)) {
1035 if (copy_from_user(&ufd, optval, sizeof(ufd)))
1038 ret = sk_reuseport_attach_bpf(ufd, sk);
1042 case SO_DETACH_REUSEPORT_BPF:
1043 ret = reuseport_detach_prog(sk);
1046 case SO_DETACH_FILTER:
1047 ret = sk_detach_filter(sk);
1050 case SO_LOCK_FILTER:
1051 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
1054 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
1059 set_bit(SOCK_PASSSEC, &sock->flags);
1061 clear_bit(SOCK_PASSSEC, &sock->flags);
1064 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1066 } else if (val != sk->sk_mark) {
1073 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
1076 case SO_WIFI_STATUS:
1077 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
1081 if (sock->ops->set_peek_off)
1082 ret = sock->ops->set_peek_off(sk, val);
1088 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
1091 case SO_SELECT_ERR_QUEUE:
1092 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
1095 #ifdef CONFIG_NET_RX_BUSY_POLL
1097 /* allow unprivileged users to decrease the value */
1098 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
1104 sk->sk_ll_usec = val;
1109 case SO_MAX_PACING_RATE:
1111 unsigned long ulval = (val == ~0U) ? ~0UL : val;
1113 if (sizeof(ulval) != sizeof(val) &&
1114 optlen >= sizeof(ulval) &&
1115 get_user(ulval, (unsigned long __user *)optval)) {
1120 cmpxchg(&sk->sk_pacing_status,
1123 sk->sk_max_pacing_rate = ulval;
1124 sk->sk_pacing_rate = min(sk->sk_pacing_rate, ulval);
1127 case SO_INCOMING_CPU:
1128 WRITE_ONCE(sk->sk_incoming_cpu, val);
1133 dst_negative_advice(sk);
1137 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1138 if (!((sk->sk_type == SOCK_STREAM &&
1139 sk->sk_protocol == IPPROTO_TCP) ||
1140 (sk->sk_type == SOCK_DGRAM &&
1141 sk->sk_protocol == IPPROTO_UDP)))
1143 } else if (sk->sk_family != PF_RDS) {
1147 if (val < 0 || val > 1)
1150 sock_valbool_flag(sk, SOCK_ZEROCOPY, valbool);
1155 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1157 } else if (optlen != sizeof(struct sock_txtime)) {
1159 } else if (copy_from_user(&sk_txtime, optval,
1160 sizeof(struct sock_txtime))) {
1162 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1165 sock_valbool_flag(sk, SOCK_TXTIME, true);
1166 sk->sk_clockid = sk_txtime.clockid;
1167 sk->sk_txtime_deadline_mode =
1168 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1169 sk->sk_txtime_report_errors =
1170 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1174 case SO_BINDTOIFINDEX:
1175 ret = sock_setbindtodevice_locked(sk, val);
1185 EXPORT_SYMBOL(sock_setsockopt);
1188 static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1189 struct ucred *ucred)
1191 ucred->pid = pid_vnr(pid);
1192 ucred->uid = ucred->gid = -1;
1194 struct user_namespace *current_ns = current_user_ns();
1196 ucred->uid = from_kuid_munged(current_ns, cred->euid);
1197 ucred->gid = from_kgid_munged(current_ns, cred->egid);
1201 static int groups_to_user(gid_t __user *dst, const struct group_info *src)
1203 struct user_namespace *user_ns = current_user_ns();
1206 for (i = 0; i < src->ngroups; i++)
1207 if (put_user(from_kgid_munged(user_ns, src->gid[i]), dst + i))
1213 int sock_getsockopt(struct socket *sock, int level, int optname,
1214 char __user *optval, int __user *optlen)
1216 struct sock *sk = sock->sk;
1221 unsigned long ulval;
1223 struct old_timeval32 tm32;
1224 struct __kernel_old_timeval tm;
1225 struct __kernel_sock_timeval stm;
1226 struct sock_txtime txtime;
1229 int lv = sizeof(int);
1232 if (get_user(len, optlen))
1237 memset(&v, 0, sizeof(v));
1241 v.val = sock_flag(sk, SOCK_DBG);
1245 v.val = sock_flag(sk, SOCK_LOCALROUTE);
1249 v.val = sock_flag(sk, SOCK_BROADCAST);
1253 v.val = sk->sk_sndbuf;
1257 v.val = sk->sk_rcvbuf;
1261 v.val = sk->sk_reuse;
1265 v.val = sk->sk_reuseport;
1269 v.val = sock_flag(sk, SOCK_KEEPOPEN);
1273 v.val = sk->sk_type;
1277 v.val = sk->sk_protocol;
1281 v.val = sk->sk_family;
1285 v.val = -sock_error(sk);
1287 v.val = xchg(&sk->sk_err_soft, 0);
1291 v.val = sock_flag(sk, SOCK_URGINLINE);
1295 v.val = sk->sk_no_check_tx;
1299 v.val = sk->sk_priority;
1303 lv = sizeof(v.ling);
1304 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1305 v.ling.l_linger = sk->sk_lingertime / HZ;
1309 sock_warn_obsolete_bsdism("getsockopt");
1312 case SO_TIMESTAMP_OLD:
1313 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1314 !sock_flag(sk, SOCK_TSTAMP_NEW) &&
1315 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1318 case SO_TIMESTAMPNS_OLD:
1319 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && !sock_flag(sk, SOCK_TSTAMP_NEW);
1322 case SO_TIMESTAMP_NEW:
1323 v.val = sock_flag(sk, SOCK_RCVTSTAMP) && sock_flag(sk, SOCK_TSTAMP_NEW);
1326 case SO_TIMESTAMPNS_NEW:
1327 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS) && sock_flag(sk, SOCK_TSTAMP_NEW);
1330 case SO_TIMESTAMPING_OLD:
1331 v.val = sk->sk_tsflags;
1334 case SO_RCVTIMEO_OLD:
1335 case SO_RCVTIMEO_NEW:
1336 lv = sock_get_timeout(sk->sk_rcvtimeo, &v, SO_RCVTIMEO_OLD == optname);
1339 case SO_SNDTIMEO_OLD:
1340 case SO_SNDTIMEO_NEW:
1341 lv = sock_get_timeout(sk->sk_sndtimeo, &v, SO_SNDTIMEO_OLD == optname);
1345 v.val = sk->sk_rcvlowat;
1353 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1358 struct ucred peercred;
1359 if (len > sizeof(peercred))
1360 len = sizeof(peercred);
1361 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1362 if (copy_to_user(optval, &peercred, len))
1371 if (!sk->sk_peer_cred)
1374 n = sk->sk_peer_cred->group_info->ngroups;
1375 if (len < n * sizeof(gid_t)) {
1376 len = n * sizeof(gid_t);
1377 return put_user(len, optlen) ? -EFAULT : -ERANGE;
1379 len = n * sizeof(gid_t);
1381 ret = groups_to_user((gid_t __user *)optval,
1382 sk->sk_peer_cred->group_info);
1392 lv = sock->ops->getname(sock, (struct sockaddr *)address, 2);
1397 if (copy_to_user(optval, address, len))
1402 /* Dubious BSD thing... Probably nobody even uses it, but
1403 * the UNIX standard wants it for whatever reason... -DaveM
1406 v.val = sk->sk_state == TCP_LISTEN;
1410 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1414 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1417 v.val = sk->sk_mark;
1421 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1424 case SO_WIFI_STATUS:
1425 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1429 if (!sock->ops->set_peek_off)
1432 v.val = sk->sk_peek_off;
1435 v.val = sock_flag(sk, SOCK_NOFCS);
1438 case SO_BINDTODEVICE:
1439 return sock_getbindtodevice(sk, optval, optlen, len);
1442 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1448 case SO_LOCK_FILTER:
1449 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1452 case SO_BPF_EXTENSIONS:
1453 v.val = bpf_tell_extensions();
1456 case SO_SELECT_ERR_QUEUE:
1457 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1460 #ifdef CONFIG_NET_RX_BUSY_POLL
1462 v.val = sk->sk_ll_usec;
1466 case SO_MAX_PACING_RATE:
1467 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1468 lv = sizeof(v.ulval);
1469 v.ulval = sk->sk_max_pacing_rate;
1472 v.val = min_t(unsigned long, sk->sk_max_pacing_rate, ~0U);
1476 case SO_INCOMING_CPU:
1477 v.val = READ_ONCE(sk->sk_incoming_cpu);
1482 u32 meminfo[SK_MEMINFO_VARS];
1484 sk_get_meminfo(sk, meminfo);
1486 len = min_t(unsigned int, len, sizeof(meminfo));
1487 if (copy_to_user(optval, &meminfo, len))
1493 #ifdef CONFIG_NET_RX_BUSY_POLL
1494 case SO_INCOMING_NAPI_ID:
1495 v.val = READ_ONCE(sk->sk_napi_id);
1497 /* aggregate non-NAPI IDs down to 0 */
1498 if (v.val < MIN_NAPI_ID)
1508 v.val64 = sock_gen_cookie(sk);
1512 v.val = sock_flag(sk, SOCK_ZEROCOPY);
1516 lv = sizeof(v.txtime);
1517 v.txtime.clockid = sk->sk_clockid;
1518 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1519 SOF_TXTIME_DEADLINE_MODE : 0;
1520 v.txtime.flags |= sk->sk_txtime_report_errors ?
1521 SOF_TXTIME_REPORT_ERRORS : 0;
1524 case SO_BINDTOIFINDEX:
1525 v.val = sk->sk_bound_dev_if;
1529 /* We implement the SO_SNDLOWAT etc to not be settable
1532 return -ENOPROTOOPT;
1537 if (copy_to_user(optval, &v, len))
1540 if (put_user(len, optlen))
1546 * Initialize an sk_lock.
1548 * (We also register the sk_lock with the lock validator.)
1550 static inline void sock_lock_init(struct sock *sk)
1552 if (sk->sk_kern_sock)
1553 sock_lock_init_class_and_name(
1555 af_family_kern_slock_key_strings[sk->sk_family],
1556 af_family_kern_slock_keys + sk->sk_family,
1557 af_family_kern_key_strings[sk->sk_family],
1558 af_family_kern_keys + sk->sk_family);
1560 sock_lock_init_class_and_name(
1562 af_family_slock_key_strings[sk->sk_family],
1563 af_family_slock_keys + sk->sk_family,
1564 af_family_key_strings[sk->sk_family],
1565 af_family_keys + sk->sk_family);
1569 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1570 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1571 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1573 static void sock_copy(struct sock *nsk, const struct sock *osk)
1575 const struct proto *prot = READ_ONCE(osk->sk_prot);
1576 #ifdef CONFIG_SECURITY_NETWORK
1577 void *sptr = nsk->sk_security;
1579 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1581 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1582 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1584 #ifdef CONFIG_SECURITY_NETWORK
1585 nsk->sk_security = sptr;
1586 security_sk_clone(osk, nsk);
1590 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1594 struct kmem_cache *slab;
1598 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1601 if (want_init_on_alloc(priority))
1602 sk_prot_clear_nulls(sk, prot->obj_size);
1604 sk = kmalloc(prot->obj_size, priority);
1607 if (security_sk_alloc(sk, family, priority))
1610 if (!try_module_get(prot->owner))
1612 sk_tx_queue_clear(sk);
1618 security_sk_free(sk);
1621 kmem_cache_free(slab, sk);
1627 static void sk_prot_free(struct proto *prot, struct sock *sk)
1629 struct kmem_cache *slab;
1630 struct module *owner;
1632 owner = prot->owner;
1635 cgroup_sk_free(&sk->sk_cgrp_data);
1636 mem_cgroup_sk_free(sk);
1637 security_sk_free(sk);
1639 kmem_cache_free(slab, sk);
1646 * sk_alloc - All socket objects are allocated here
1647 * @net: the applicable net namespace
1648 * @family: protocol family
1649 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1650 * @prot: struct proto associated with this new sock instance
1651 * @kern: is this to be a kernel socket?
1653 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1654 struct proto *prot, int kern)
1658 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1660 sk->sk_family = family;
1662 * See comment in struct sock definition to understand
1663 * why we need sk_prot_creator -acme
1665 sk->sk_prot = sk->sk_prot_creator = prot;
1666 sk->sk_kern_sock = kern;
1668 sk->sk_net_refcnt = kern ? 0 : 1;
1669 if (likely(sk->sk_net_refcnt)) {
1671 sock_inuse_add(net, 1);
1674 sock_net_set(sk, net);
1675 refcount_set(&sk->sk_wmem_alloc, 1);
1677 mem_cgroup_sk_alloc(sk);
1678 cgroup_sk_alloc(&sk->sk_cgrp_data);
1679 sock_update_classid(&sk->sk_cgrp_data);
1680 sock_update_netprioidx(&sk->sk_cgrp_data);
1685 EXPORT_SYMBOL(sk_alloc);
1687 /* Sockets having SOCK_RCU_FREE will call this function after one RCU
1688 * grace period. This is the case for UDP sockets and TCP listeners.
1690 static void __sk_destruct(struct rcu_head *head)
1692 struct sock *sk = container_of(head, struct sock, sk_rcu);
1693 struct sk_filter *filter;
1695 if (sk->sk_destruct)
1696 sk->sk_destruct(sk);
1698 filter = rcu_dereference_check(sk->sk_filter,
1699 refcount_read(&sk->sk_wmem_alloc) == 0);
1701 sk_filter_uncharge(sk, filter);
1702 RCU_INIT_POINTER(sk->sk_filter, NULL);
1705 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1707 #ifdef CONFIG_BPF_SYSCALL
1708 bpf_sk_storage_free(sk);
1711 if (atomic_read(&sk->sk_omem_alloc))
1712 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1713 __func__, atomic_read(&sk->sk_omem_alloc));
1715 if (sk->sk_frag.page) {
1716 put_page(sk->sk_frag.page);
1717 sk->sk_frag.page = NULL;
1720 if (sk->sk_peer_cred)
1721 put_cred(sk->sk_peer_cred);
1722 put_pid(sk->sk_peer_pid);
1723 if (likely(sk->sk_net_refcnt))
1724 put_net(sock_net(sk));
1725 sk_prot_free(sk->sk_prot_creator, sk);
1728 void sk_destruct(struct sock *sk)
1730 bool use_call_rcu = sock_flag(sk, SOCK_RCU_FREE);
1732 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
1733 reuseport_detach_sock(sk);
1734 use_call_rcu = true;
1738 call_rcu(&sk->sk_rcu, __sk_destruct);
1740 __sk_destruct(&sk->sk_rcu);
1743 static void __sk_free(struct sock *sk)
1745 if (likely(sk->sk_net_refcnt))
1746 sock_inuse_add(sock_net(sk), -1);
1748 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
1749 sock_diag_broadcast_destroy(sk);
1754 void sk_free(struct sock *sk)
1757 * We subtract one from sk_wmem_alloc and can know if
1758 * some packets are still in some tx queue.
1759 * If not null, sock_wfree() will call __sk_free(sk) later
1761 if (refcount_dec_and_test(&sk->sk_wmem_alloc))
1764 EXPORT_SYMBOL(sk_free);
1766 static void sk_init_common(struct sock *sk)
1768 skb_queue_head_init(&sk->sk_receive_queue);
1769 skb_queue_head_init(&sk->sk_write_queue);
1770 skb_queue_head_init(&sk->sk_error_queue);
1772 rwlock_init(&sk->sk_callback_lock);
1773 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
1774 af_rlock_keys + sk->sk_family,
1775 af_family_rlock_key_strings[sk->sk_family]);
1776 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
1777 af_wlock_keys + sk->sk_family,
1778 af_family_wlock_key_strings[sk->sk_family]);
1779 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
1780 af_elock_keys + sk->sk_family,
1781 af_family_elock_key_strings[sk->sk_family]);
1782 lockdep_set_class_and_name(&sk->sk_callback_lock,
1783 af_callback_keys + sk->sk_family,
1784 af_family_clock_key_strings[sk->sk_family]);
1788 * sk_clone_lock - clone a socket, and lock its clone
1789 * @sk: the socket to clone
1790 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1792 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1794 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1796 struct proto *prot = READ_ONCE(sk->sk_prot);
1798 bool is_charged = true;
1800 newsk = sk_prot_alloc(prot, priority, sk->sk_family);
1801 if (newsk != NULL) {
1802 struct sk_filter *filter;
1804 sock_copy(newsk, sk);
1806 newsk->sk_prot_creator = prot;
1809 if (likely(newsk->sk_net_refcnt))
1810 get_net(sock_net(newsk));
1811 sk_node_init(&newsk->sk_node);
1812 sock_lock_init(newsk);
1813 bh_lock_sock(newsk);
1814 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1815 newsk->sk_backlog.len = 0;
1817 atomic_set(&newsk->sk_rmem_alloc, 0);
1819 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1821 refcount_set(&newsk->sk_wmem_alloc, 1);
1822 atomic_set(&newsk->sk_omem_alloc, 0);
1823 sk_init_common(newsk);
1825 newsk->sk_dst_cache = NULL;
1826 newsk->sk_dst_pending_confirm = 0;
1827 newsk->sk_wmem_queued = 0;
1828 newsk->sk_forward_alloc = 0;
1829 atomic_set(&newsk->sk_drops, 0);
1830 newsk->sk_send_head = NULL;
1831 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1832 atomic_set(&newsk->sk_zckey, 0);
1834 sock_reset_flag(newsk, SOCK_DONE);
1836 /* sk->sk_memcg will be populated at accept() time */
1837 newsk->sk_memcg = NULL;
1839 cgroup_sk_alloc(&newsk->sk_cgrp_data);
1842 filter = rcu_dereference(sk->sk_filter);
1844 /* though it's an empty new sock, the charging may fail
1845 * if sysctl_optmem_max was changed between creation of
1846 * original socket and cloning
1848 is_charged = sk_filter_charge(newsk, filter);
1849 RCU_INIT_POINTER(newsk->sk_filter, filter);
1852 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
1853 /* We need to make sure that we don't uncharge the new
1854 * socket if we couldn't charge it in the first place
1855 * as otherwise we uncharge the parent's filter.
1858 RCU_INIT_POINTER(newsk->sk_filter, NULL);
1859 sk_free_unlock_clone(newsk);
1863 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
1865 if (bpf_sk_storage_clone(sk, newsk)) {
1866 sk_free_unlock_clone(newsk);
1871 /* Clear sk_user_data if parent had the pointer tagged
1872 * as not suitable for copying when cloning.
1874 if (sk_user_data_is_nocopy(newsk))
1875 newsk->sk_user_data = NULL;
1878 newsk->sk_err_soft = 0;
1879 newsk->sk_priority = 0;
1880 newsk->sk_incoming_cpu = raw_smp_processor_id();
1881 if (likely(newsk->sk_net_refcnt))
1882 sock_inuse_add(sock_net(newsk), 1);
1885 * Before updating sk_refcnt, we must commit prior changes to memory
1886 * (Documentation/RCU/rculist_nulls.txt for details)
1889 refcount_set(&newsk->sk_refcnt, 2);
1892 * Increment the counter in the same struct proto as the master
1893 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1894 * is the same as sk->sk_prot->socks, as this field was copied
1897 * This _changes_ the previous behaviour, where
1898 * tcp_create_openreq_child always was incrementing the
1899 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1900 * to be taken into account in all callers. -acme
1902 sk_refcnt_debug_inc(newsk);
1903 sk_set_socket(newsk, NULL);
1904 RCU_INIT_POINTER(newsk->sk_wq, NULL);
1906 if (newsk->sk_prot->sockets_allocated)
1907 sk_sockets_allocated_inc(newsk);
1909 if (sock_needs_netstamp(sk) &&
1910 newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1911 net_enable_timestamp();
1916 EXPORT_SYMBOL_GPL(sk_clone_lock);
1918 void sk_free_unlock_clone(struct sock *sk)
1920 /* It is still raw copy of parent, so invalidate
1921 * destructor and make plain sk_free() */
1922 sk->sk_destruct = NULL;
1926 EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
1928 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1932 sk_dst_set(sk, dst);
1933 sk->sk_route_caps = dst->dev->features | sk->sk_route_forced_caps;
1934 if (sk->sk_route_caps & NETIF_F_GSO)
1935 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1936 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1937 if (sk_can_gso(sk)) {
1938 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
1939 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1941 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1942 sk->sk_gso_max_size = dst->dev->gso_max_size;
1943 max_segs = max_t(u32, dst->dev->gso_max_segs, 1);
1946 sk->sk_gso_max_segs = max_segs;
1948 EXPORT_SYMBOL_GPL(sk_setup_caps);
1951 * Simple resource managers for sockets.
1956 * Write buffer destructor automatically called from kfree_skb.
1958 void sock_wfree(struct sk_buff *skb)
1960 struct sock *sk = skb->sk;
1961 unsigned int len = skb->truesize;
1963 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1965 * Keep a reference on sk_wmem_alloc, this will be released
1966 * after sk_write_space() call
1968 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
1969 sk->sk_write_space(sk);
1973 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1974 * could not do because of in-flight packets
1976 if (refcount_sub_and_test(len, &sk->sk_wmem_alloc))
1979 EXPORT_SYMBOL(sock_wfree);
1981 /* This variant of sock_wfree() is used by TCP,
1982 * since it sets SOCK_USE_WRITE_QUEUE.
1984 void __sock_wfree(struct sk_buff *skb)
1986 struct sock *sk = skb->sk;
1988 if (refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc))
1992 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1997 if (unlikely(!sk_fullsock(sk))) {
1998 skb->destructor = sock_edemux;
2003 skb->destructor = sock_wfree;
2004 skb_set_hash_from_sk(skb, sk);
2006 * We used to take a refcount on sk, but following operation
2007 * is enough to guarantee sk_free() wont free this sock until
2008 * all in-flight packets are completed
2010 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2012 EXPORT_SYMBOL(skb_set_owner_w);
2014 static bool can_skb_orphan_partial(const struct sk_buff *skb)
2016 #ifdef CONFIG_TLS_DEVICE
2017 /* Drivers depend on in-order delivery for crypto offload,
2018 * partial orphan breaks out-of-order-OK logic.
2023 return (skb->destructor == sock_wfree ||
2024 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2027 /* This helper is used by netem, as it can hold packets in its
2028 * delay queue. We want to allow the owner socket to send more
2029 * packets, as if they were already TX completed by a typical driver.
2030 * But we also want to keep skb->sk set because some packet schedulers
2031 * rely on it (sch_fq for example).
2033 void skb_orphan_partial(struct sk_buff *skb)
2035 if (skb_is_tcp_pure_ack(skb))
2038 if (can_skb_orphan_partial(skb)) {
2039 struct sock *sk = skb->sk;
2041 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
2042 WARN_ON(refcount_sub_and_test(skb->truesize, &sk->sk_wmem_alloc));
2043 skb->destructor = sock_efree;
2049 EXPORT_SYMBOL(skb_orphan_partial);
2052 * Read buffer destructor automatically called from kfree_skb.
2054 void sock_rfree(struct sk_buff *skb)
2056 struct sock *sk = skb->sk;
2057 unsigned int len = skb->truesize;
2059 atomic_sub(len, &sk->sk_rmem_alloc);
2060 sk_mem_uncharge(sk, len);
2062 EXPORT_SYMBOL(sock_rfree);
2065 * Buffer destructor for skbs that are not used directly in read or write
2066 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2068 void sock_efree(struct sk_buff *skb)
2072 EXPORT_SYMBOL(sock_efree);
2074 /* Buffer destructor for prefetch/receive path where reference count may
2075 * not be held, e.g. for listen sockets.
2078 void sock_pfree(struct sk_buff *skb)
2080 if (sk_is_refcounted(skb->sk))
2081 sock_gen_put(skb->sk);
2083 EXPORT_SYMBOL(sock_pfree);
2084 #endif /* CONFIG_INET */
2086 kuid_t sock_i_uid(struct sock *sk)
2090 read_lock_bh(&sk->sk_callback_lock);
2091 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2092 read_unlock_bh(&sk->sk_callback_lock);
2095 EXPORT_SYMBOL(sock_i_uid);
2097 unsigned long sock_i_ino(struct sock *sk)
2101 read_lock_bh(&sk->sk_callback_lock);
2102 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
2103 read_unlock_bh(&sk->sk_callback_lock);
2106 EXPORT_SYMBOL(sock_i_ino);
2109 * Allocate a skb from the socket's send buffer.
2111 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2115 refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2116 struct sk_buff *skb = alloc_skb(size, priority);
2119 skb_set_owner_w(skb, sk);
2125 EXPORT_SYMBOL(sock_wmalloc);
2127 static void sock_ofree(struct sk_buff *skb)
2129 struct sock *sk = skb->sk;
2131 atomic_sub(skb->truesize, &sk->sk_omem_alloc);
2134 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2137 struct sk_buff *skb;
2139 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2140 if (atomic_read(&sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2144 skb = alloc_skb(size, priority);
2148 atomic_add(skb->truesize, &sk->sk_omem_alloc);
2150 skb->destructor = sock_ofree;
2155 * Allocate a memory block from the socket's option memory buffer.
2157 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2159 if ((unsigned int)size <= sysctl_optmem_max &&
2160 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
2162 /* First do the add, to avoid the race if kmalloc
2165 atomic_add(size, &sk->sk_omem_alloc);
2166 mem = kmalloc(size, priority);
2169 atomic_sub(size, &sk->sk_omem_alloc);
2173 EXPORT_SYMBOL(sock_kmalloc);
2175 /* Free an option memory block. Note, we actually want the inline
2176 * here as this allows gcc to detect the nullify and fold away the
2177 * condition entirely.
2179 static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2182 if (WARN_ON_ONCE(!mem))
2188 atomic_sub(size, &sk->sk_omem_alloc);
2191 void sock_kfree_s(struct sock *sk, void *mem, int size)
2193 __sock_kfree_s(sk, mem, size, false);
2195 EXPORT_SYMBOL(sock_kfree_s);
2197 void sock_kzfree_s(struct sock *sk, void *mem, int size)
2199 __sock_kfree_s(sk, mem, size, true);
2201 EXPORT_SYMBOL(sock_kzfree_s);
2203 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2204 I think, these locks should be removed for datagram sockets.
2206 static long sock_wait_for_wmem(struct sock *sk, long timeo)
2210 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2214 if (signal_pending(current))
2216 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2217 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2218 if (refcount_read(&sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2220 if (sk->sk_shutdown & SEND_SHUTDOWN)
2224 timeo = schedule_timeout(timeo);
2226 finish_wait(sk_sleep(sk), &wait);
2232 * Generic send/receive buffer handlers
2235 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2236 unsigned long data_len, int noblock,
2237 int *errcode, int max_page_order)
2239 struct sk_buff *skb;
2243 timeo = sock_sndtimeo(sk, noblock);
2245 err = sock_error(sk);
2250 if (sk->sk_shutdown & SEND_SHUTDOWN)
2253 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2256 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2257 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
2261 if (signal_pending(current))
2263 timeo = sock_wait_for_wmem(sk, timeo);
2265 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2266 errcode, sk->sk_allocation);
2268 skb_set_owner_w(skb, sk);
2272 err = sock_intr_errno(timeo);
2277 EXPORT_SYMBOL(sock_alloc_send_pskb);
2279 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
2280 int noblock, int *errcode)
2282 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
2284 EXPORT_SYMBOL(sock_alloc_send_skb);
2286 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
2287 struct sockcm_cookie *sockc)
2291 switch (cmsg->cmsg_type) {
2293 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
2295 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2297 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2299 case SO_TIMESTAMPING_OLD:
2300 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2303 tsflags = *(u32 *)CMSG_DATA(cmsg);
2304 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2307 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2308 sockc->tsflags |= tsflags;
2311 if (!sock_flag(sk, SOCK_TXTIME))
2313 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2315 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2317 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2319 case SCM_CREDENTIALS:
2326 EXPORT_SYMBOL(__sock_cmsg_send);
2328 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2329 struct sockcm_cookie *sockc)
2331 struct cmsghdr *cmsg;
2334 for_each_cmsghdr(cmsg, msg) {
2335 if (!CMSG_OK(msg, cmsg))
2337 if (cmsg->cmsg_level != SOL_SOCKET)
2339 ret = __sock_cmsg_send(sk, msg, cmsg, sockc);
2345 EXPORT_SYMBOL(sock_cmsg_send);
2347 static void sk_enter_memory_pressure(struct sock *sk)
2349 if (!sk->sk_prot->enter_memory_pressure)
2352 sk->sk_prot->enter_memory_pressure(sk);
2355 static void sk_leave_memory_pressure(struct sock *sk)
2357 if (sk->sk_prot->leave_memory_pressure) {
2358 sk->sk_prot->leave_memory_pressure(sk);
2360 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2362 if (memory_pressure && READ_ONCE(*memory_pressure))
2363 WRITE_ONCE(*memory_pressure, 0);
2367 /* On 32bit arches, an skb frag is limited to 2^15 */
2368 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2369 DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2372 * skb_page_frag_refill - check that a page_frag contains enough room
2373 * @sz: minimum size of the fragment we want to get
2374 * @pfrag: pointer to page_frag
2375 * @gfp: priority for memory allocation
2377 * Note: While this allocator tries to use high order pages, there is
2378 * no guarantee that allocations succeed. Therefore, @sz MUST be
2379 * less or equal than PAGE_SIZE.
2381 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2384 if (page_ref_count(pfrag->page) == 1) {
2388 if (pfrag->offset + sz <= pfrag->size)
2390 put_page(pfrag->page);
2394 if (SKB_FRAG_PAGE_ORDER &&
2395 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2396 /* Avoid direct reclaim but allow kswapd to wake */
2397 pfrag->page = alloc_pages((gfp & ~__GFP_DIRECT_RECLAIM) |
2398 __GFP_COMP | __GFP_NOWARN |
2400 SKB_FRAG_PAGE_ORDER);
2401 if (likely(pfrag->page)) {
2402 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2406 pfrag->page = alloc_page(gfp);
2407 if (likely(pfrag->page)) {
2408 pfrag->size = PAGE_SIZE;
2413 EXPORT_SYMBOL(skb_page_frag_refill);
2415 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2417 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2420 sk_enter_memory_pressure(sk);
2421 sk_stream_moderate_sndbuf(sk);
2424 EXPORT_SYMBOL(sk_page_frag_refill);
2426 static void __lock_sock(struct sock *sk)
2427 __releases(&sk->sk_lock.slock)
2428 __acquires(&sk->sk_lock.slock)
2433 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
2434 TASK_UNINTERRUPTIBLE);
2435 spin_unlock_bh(&sk->sk_lock.slock);
2437 spin_lock_bh(&sk->sk_lock.slock);
2438 if (!sock_owned_by_user(sk))
2441 finish_wait(&sk->sk_lock.wq, &wait);
2444 void __release_sock(struct sock *sk)
2445 __releases(&sk->sk_lock.slock)
2446 __acquires(&sk->sk_lock.slock)
2448 struct sk_buff *skb, *next;
2450 while ((skb = sk->sk_backlog.head) != NULL) {
2451 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2453 spin_unlock_bh(&sk->sk_lock.slock);
2458 WARN_ON_ONCE(skb_dst_is_noref(skb));
2459 skb_mark_not_on_list(skb);
2460 sk_backlog_rcv(sk, skb);
2465 } while (skb != NULL);
2467 spin_lock_bh(&sk->sk_lock.slock);
2471 * Doing the zeroing here guarantee we can not loop forever
2472 * while a wild producer attempts to flood us.
2474 sk->sk_backlog.len = 0;
2477 void __sk_flush_backlog(struct sock *sk)
2479 spin_lock_bh(&sk->sk_lock.slock);
2481 spin_unlock_bh(&sk->sk_lock.slock);
2485 * sk_wait_data - wait for data to arrive at sk_receive_queue
2486 * @sk: sock to wait on
2487 * @timeo: for how long
2488 * @skb: last skb seen on sk_receive_queue
2490 * Now socket state including sk->sk_err is changed only under lock,
2491 * hence we may omit checks after joining wait queue.
2492 * We check receive queue before schedule() only as optimization;
2493 * it is very likely that release_sock() added new data.
2495 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
2497 DEFINE_WAIT_FUNC(wait, woken_wake_function);
2500 add_wait_queue(sk_sleep(sk), &wait);
2501 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2502 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
2503 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2504 remove_wait_queue(sk_sleep(sk), &wait);
2507 EXPORT_SYMBOL(sk_wait_data);
2510 * __sk_mem_raise_allocated - increase memory_allocated
2512 * @size: memory size to allocate
2513 * @amt: pages to allocate
2514 * @kind: allocation type
2516 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc
2518 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
2520 struct proto *prot = sk->sk_prot;
2521 long allocated = sk_memory_allocated_add(sk, amt);
2522 bool charged = true;
2524 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
2525 !(charged = mem_cgroup_charge_skmem(sk->sk_memcg, amt)))
2526 goto suppress_allocation;
2529 if (allocated <= sk_prot_mem_limits(sk, 0)) {
2530 sk_leave_memory_pressure(sk);
2534 /* Under pressure. */
2535 if (allocated > sk_prot_mem_limits(sk, 1))
2536 sk_enter_memory_pressure(sk);
2538 /* Over hard limit. */
2539 if (allocated > sk_prot_mem_limits(sk, 2))
2540 goto suppress_allocation;
2542 /* guarantee minimum buffer size under pressure */
2543 if (kind == SK_MEM_RECV) {
2544 if (atomic_read(&sk->sk_rmem_alloc) < sk_get_rmem0(sk, prot))
2547 } else { /* SK_MEM_SEND */
2548 int wmem0 = sk_get_wmem0(sk, prot);
2550 if (sk->sk_type == SOCK_STREAM) {
2551 if (sk->sk_wmem_queued < wmem0)
2553 } else if (refcount_read(&sk->sk_wmem_alloc) < wmem0) {
2558 if (sk_has_memory_pressure(sk)) {
2561 if (!sk_under_memory_pressure(sk))
2563 alloc = sk_sockets_allocated_read_positive(sk);
2564 if (sk_prot_mem_limits(sk, 2) > alloc *
2565 sk_mem_pages(sk->sk_wmem_queued +
2566 atomic_read(&sk->sk_rmem_alloc) +
2567 sk->sk_forward_alloc))
2571 suppress_allocation:
2573 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2574 sk_stream_moderate_sndbuf(sk);
2576 /* Fail only if socket is _under_ its sndbuf.
2577 * In this case we cannot block, so that we have to fail.
2579 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2583 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
2584 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
2586 sk_memory_allocated_sub(sk, amt);
2588 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2589 mem_cgroup_uncharge_skmem(sk->sk_memcg, amt);
2593 EXPORT_SYMBOL(__sk_mem_raise_allocated);
2596 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2598 * @size: memory size to allocate
2599 * @kind: allocation type
2601 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2602 * rmem allocation. This function assumes that protocols which have
2603 * memory_pressure use sk_wmem_queued as write buffer accounting.
2605 int __sk_mem_schedule(struct sock *sk, int size, int kind)
2607 int ret, amt = sk_mem_pages(size);
2609 sk->sk_forward_alloc += amt << SK_MEM_QUANTUM_SHIFT;
2610 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
2612 sk->sk_forward_alloc -= amt << SK_MEM_QUANTUM_SHIFT;
2615 EXPORT_SYMBOL(__sk_mem_schedule);
2618 * __sk_mem_reduce_allocated - reclaim memory_allocated
2620 * @amount: number of quanta
2622 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
2624 void __sk_mem_reduce_allocated(struct sock *sk, int amount)
2626 sk_memory_allocated_sub(sk, amount);
2628 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2629 mem_cgroup_uncharge_skmem(sk->sk_memcg, amount);
2631 if (sk_under_memory_pressure(sk) &&
2632 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2633 sk_leave_memory_pressure(sk);
2635 EXPORT_SYMBOL(__sk_mem_reduce_allocated);
2638 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
2640 * @amount: number of bytes (rounded down to a SK_MEM_QUANTUM multiple)
2642 void __sk_mem_reclaim(struct sock *sk, int amount)
2644 amount >>= SK_MEM_QUANTUM_SHIFT;
2645 sk->sk_forward_alloc -= amount << SK_MEM_QUANTUM_SHIFT;
2646 __sk_mem_reduce_allocated(sk, amount);
2648 EXPORT_SYMBOL(__sk_mem_reclaim);
2650 int sk_set_peek_off(struct sock *sk, int val)
2652 sk->sk_peek_off = val;
2655 EXPORT_SYMBOL_GPL(sk_set_peek_off);
2658 * Set of default routines for initialising struct proto_ops when
2659 * the protocol does not support a particular function. In certain
2660 * cases where it makes no sense for a protocol to have a "do nothing"
2661 * function, some default processing is provided.
2664 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2668 EXPORT_SYMBOL(sock_no_bind);
2670 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2675 EXPORT_SYMBOL(sock_no_connect);
2677 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2681 EXPORT_SYMBOL(sock_no_socketpair);
2683 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
2688 EXPORT_SYMBOL(sock_no_accept);
2690 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2695 EXPORT_SYMBOL(sock_no_getname);
2697 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2701 EXPORT_SYMBOL(sock_no_ioctl);
2703 int sock_no_listen(struct socket *sock, int backlog)
2707 EXPORT_SYMBOL(sock_no_listen);
2709 int sock_no_shutdown(struct socket *sock, int how)
2713 EXPORT_SYMBOL(sock_no_shutdown);
2715 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2716 char __user *optval, unsigned int optlen)
2720 EXPORT_SYMBOL(sock_no_setsockopt);
2722 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2723 char __user *optval, int __user *optlen)
2727 EXPORT_SYMBOL(sock_no_getsockopt);
2729 int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
2733 EXPORT_SYMBOL(sock_no_sendmsg);
2735 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
2739 EXPORT_SYMBOL(sock_no_sendmsg_locked);
2741 int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
2746 EXPORT_SYMBOL(sock_no_recvmsg);
2748 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2750 /* Mirror missing mmap method error code */
2753 EXPORT_SYMBOL(sock_no_mmap);
2755 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2758 struct msghdr msg = {.msg_flags = flags};
2760 char *kaddr = kmap(page);
2761 iov.iov_base = kaddr + offset;
2763 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2767 EXPORT_SYMBOL(sock_no_sendpage);
2769 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
2770 int offset, size_t size, int flags)
2773 struct msghdr msg = {.msg_flags = flags};
2775 char *kaddr = kmap(page);
2777 iov.iov_base = kaddr + offset;
2779 res = kernel_sendmsg_locked(sk, &msg, &iov, 1, size);
2783 EXPORT_SYMBOL(sock_no_sendpage_locked);
2786 * Default Socket Callbacks
2789 static void sock_def_wakeup(struct sock *sk)
2791 struct socket_wq *wq;
2794 wq = rcu_dereference(sk->sk_wq);
2795 if (skwq_has_sleeper(wq))
2796 wake_up_interruptible_all(&wq->wait);
2800 static void sock_def_error_report(struct sock *sk)
2802 struct socket_wq *wq;
2805 wq = rcu_dereference(sk->sk_wq);
2806 if (skwq_has_sleeper(wq))
2807 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
2808 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2812 void sock_def_readable(struct sock *sk)
2814 struct socket_wq *wq;
2817 wq = rcu_dereference(sk->sk_wq);
2818 if (skwq_has_sleeper(wq))
2819 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
2820 EPOLLRDNORM | EPOLLRDBAND);
2821 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2825 static void sock_def_write_space(struct sock *sk)
2827 struct socket_wq *wq;
2831 /* Do not wake up a writer until he can make "significant"
2834 if ((refcount_read(&sk->sk_wmem_alloc) << 1) <= READ_ONCE(sk->sk_sndbuf)) {
2835 wq = rcu_dereference(sk->sk_wq);
2836 if (skwq_has_sleeper(wq))
2837 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
2838 EPOLLWRNORM | EPOLLWRBAND);
2840 /* Should agree with poll, otherwise some programs break */
2841 if (sock_writeable(sk))
2842 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2848 static void sock_def_destruct(struct sock *sk)
2852 void sk_send_sigurg(struct sock *sk)
2854 if (sk->sk_socket && sk->sk_socket->file)
2855 if (send_sigurg(&sk->sk_socket->file->f_owner))
2856 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2858 EXPORT_SYMBOL(sk_send_sigurg);
2860 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2861 unsigned long expires)
2863 if (!mod_timer(timer, expires))
2866 EXPORT_SYMBOL(sk_reset_timer);
2868 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2870 if (del_timer(timer))
2873 EXPORT_SYMBOL(sk_stop_timer);
2875 void sock_init_data(struct socket *sock, struct sock *sk)
2878 sk->sk_send_head = NULL;
2880 timer_setup(&sk->sk_timer, NULL, 0);
2882 sk->sk_allocation = GFP_KERNEL;
2883 sk->sk_rcvbuf = sysctl_rmem_default;
2884 sk->sk_sndbuf = sysctl_wmem_default;
2885 sk->sk_state = TCP_CLOSE;
2886 sk_set_socket(sk, sock);
2888 sock_set_flag(sk, SOCK_ZAPPED);
2891 sk->sk_type = sock->type;
2892 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
2894 sk->sk_uid = SOCK_INODE(sock)->i_uid;
2896 RCU_INIT_POINTER(sk->sk_wq, NULL);
2897 sk->sk_uid = make_kuid(sock_net(sk)->user_ns, 0);
2900 rwlock_init(&sk->sk_callback_lock);
2901 if (sk->sk_kern_sock)
2902 lockdep_set_class_and_name(
2903 &sk->sk_callback_lock,
2904 af_kern_callback_keys + sk->sk_family,
2905 af_family_kern_clock_key_strings[sk->sk_family]);
2907 lockdep_set_class_and_name(
2908 &sk->sk_callback_lock,
2909 af_callback_keys + sk->sk_family,
2910 af_family_clock_key_strings[sk->sk_family]);
2912 sk->sk_state_change = sock_def_wakeup;
2913 sk->sk_data_ready = sock_def_readable;
2914 sk->sk_write_space = sock_def_write_space;
2915 sk->sk_error_report = sock_def_error_report;
2916 sk->sk_destruct = sock_def_destruct;
2918 sk->sk_frag.page = NULL;
2919 sk->sk_frag.offset = 0;
2920 sk->sk_peek_off = -1;
2922 sk->sk_peer_pid = NULL;
2923 sk->sk_peer_cred = NULL;
2924 sk->sk_write_pending = 0;
2925 sk->sk_rcvlowat = 1;
2926 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2927 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2929 sk->sk_stamp = SK_DEFAULT_STAMP;
2930 #if BITS_PER_LONG==32
2931 seqlock_init(&sk->sk_stamp_seq);
2933 atomic_set(&sk->sk_zckey, 0);
2935 #ifdef CONFIG_NET_RX_BUSY_POLL
2937 sk->sk_ll_usec = sysctl_net_busy_read;
2940 sk->sk_max_pacing_rate = ~0UL;
2941 sk->sk_pacing_rate = ~0UL;
2942 WRITE_ONCE(sk->sk_pacing_shift, 10);
2943 sk->sk_incoming_cpu = -1;
2945 sk_rx_queue_clear(sk);
2947 * Before updating sk_refcnt, we must commit prior changes to memory
2948 * (Documentation/RCU/rculist_nulls.txt for details)
2951 refcount_set(&sk->sk_refcnt, 1);
2952 atomic_set(&sk->sk_drops, 0);
2954 EXPORT_SYMBOL(sock_init_data);
2956 void lock_sock_nested(struct sock *sk, int subclass)
2959 spin_lock_bh(&sk->sk_lock.slock);
2960 if (sk->sk_lock.owned)
2962 sk->sk_lock.owned = 1;
2963 spin_unlock(&sk->sk_lock.slock);
2965 * The sk_lock has mutex_lock() semantics here:
2967 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2970 EXPORT_SYMBOL(lock_sock_nested);
2972 void release_sock(struct sock *sk)
2974 spin_lock_bh(&sk->sk_lock.slock);
2975 if (sk->sk_backlog.tail)
2978 /* Warning : release_cb() might need to release sk ownership,
2979 * ie call sock_release_ownership(sk) before us.
2981 if (sk->sk_prot->release_cb)
2982 sk->sk_prot->release_cb(sk);
2984 sock_release_ownership(sk);
2985 if (waitqueue_active(&sk->sk_lock.wq))
2986 wake_up(&sk->sk_lock.wq);
2987 spin_unlock_bh(&sk->sk_lock.slock);
2989 EXPORT_SYMBOL(release_sock);
2992 * lock_sock_fast - fast version of lock_sock
2995 * This version should be used for very small section, where process wont block
2996 * return false if fast path is taken:
2998 * sk_lock.slock locked, owned = 0, BH disabled
3000 * return true if slow path is taken:
3002 * sk_lock.slock unlocked, owned = 1, BH enabled
3004 bool lock_sock_fast(struct sock *sk)
3007 spin_lock_bh(&sk->sk_lock.slock);
3009 if (!sk->sk_lock.owned)
3011 * Note : We must disable BH
3016 sk->sk_lock.owned = 1;
3017 spin_unlock(&sk->sk_lock.slock);
3019 * The sk_lock has mutex_lock() semantics here:
3021 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
3025 EXPORT_SYMBOL(lock_sock_fast);
3027 int sock_gettstamp(struct socket *sock, void __user *userstamp,
3028 bool timeval, bool time32)
3030 struct sock *sk = sock->sk;
3031 struct timespec64 ts;
3033 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
3034 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3035 if (ts.tv_sec == -1)
3037 if (ts.tv_sec == 0) {
3038 ktime_t kt = ktime_get_real();
3039 sock_write_timestamp(sk, kt);
3040 ts = ktime_to_timespec64(kt);
3046 #ifdef CONFIG_COMPAT_32BIT_TIME
3048 return put_old_timespec32(&ts, userstamp);
3050 #ifdef CONFIG_SPARC64
3051 /* beware of padding in sparc64 timeval */
3052 if (timeval && !in_compat_syscall()) {
3053 struct __kernel_old_timeval __user tv = {
3054 .tv_sec = ts.tv_sec,
3055 .tv_usec = ts.tv_nsec,
3057 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3062 return put_timespec64(&ts, userstamp);
3064 EXPORT_SYMBOL(sock_gettstamp);
3066 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3068 if (!sock_flag(sk, flag)) {
3069 unsigned long previous_flags = sk->sk_flags;
3071 sock_set_flag(sk, flag);
3073 * we just set one of the two flags which require net
3074 * time stamping, but time stamping might have been on
3075 * already because of the other one
3077 if (sock_needs_netstamp(sk) &&
3078 !(previous_flags & SK_FLAGS_TIMESTAMP))
3079 net_enable_timestamp();
3083 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3084 int level, int type)
3086 struct sock_exterr_skb *serr;
3087 struct sk_buff *skb;
3091 skb = sock_dequeue_err_skb(sk);
3097 msg->msg_flags |= MSG_TRUNC;
3100 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3104 sock_recv_timestamp(msg, sk, skb);
3106 serr = SKB_EXT_ERR(skb);
3107 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
3109 msg->msg_flags |= MSG_ERRQUEUE;
3117 EXPORT_SYMBOL(sock_recv_errqueue);
3120 * Get a socket option on an socket.
3122 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3123 * asynchronous errors should be reported by getsockopt. We assume
3124 * this means if you specify SO_ERROR (otherwise whats the point of it).
3126 int sock_common_getsockopt(struct socket *sock, int level, int optname,
3127 char __user *optval, int __user *optlen)
3129 struct sock *sk = sock->sk;
3131 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3133 EXPORT_SYMBOL(sock_common_getsockopt);
3135 #ifdef CONFIG_COMPAT
3136 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
3137 char __user *optval, int __user *optlen)
3139 struct sock *sk = sock->sk;
3141 if (sk->sk_prot->compat_getsockopt != NULL)
3142 return sk->sk_prot->compat_getsockopt(sk, level, optname,
3144 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
3146 EXPORT_SYMBOL(compat_sock_common_getsockopt);
3149 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3152 struct sock *sk = sock->sk;
3156 err = sk->sk_prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
3157 flags & ~MSG_DONTWAIT, &addr_len);
3159 msg->msg_namelen = addr_len;
3162 EXPORT_SYMBOL(sock_common_recvmsg);
3165 * Set socket options on an inet socket.
3167 int sock_common_setsockopt(struct socket *sock, int level, int optname,
3168 char __user *optval, unsigned int optlen)
3170 struct sock *sk = sock->sk;
3172 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3174 EXPORT_SYMBOL(sock_common_setsockopt);
3176 #ifdef CONFIG_COMPAT
3177 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
3178 char __user *optval, unsigned int optlen)
3180 struct sock *sk = sock->sk;
3182 if (sk->sk_prot->compat_setsockopt != NULL)
3183 return sk->sk_prot->compat_setsockopt(sk, level, optname,
3185 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
3187 EXPORT_SYMBOL(compat_sock_common_setsockopt);
3190 void sk_common_release(struct sock *sk)
3192 if (sk->sk_prot->destroy)
3193 sk->sk_prot->destroy(sk);
3196 * Observation: when sock_common_release is called, processes have
3197 * no access to socket. But net still has.
3198 * Step one, detach it from networking:
3200 * A. Remove from hash tables.
3203 sk->sk_prot->unhash(sk);
3206 * In this point socket cannot receive new packets, but it is possible
3207 * that some packets are in flight because some CPU runs receiver and
3208 * did hash table lookup before we unhashed socket. They will achieve
3209 * receive queue and will be purged by socket destructor.
3211 * Also we still have packets pending on receive queue and probably,
3212 * our own packets waiting in device queues. sock_destroy will drain
3213 * receive queue, but transmitted packets will delay socket destruction
3214 * until the last reference will be released.
3219 xfrm_sk_free_policy(sk);
3221 sk_refcnt_debug_release(sk);
3225 EXPORT_SYMBOL(sk_common_release);
3227 void sk_get_meminfo(const struct sock *sk, u32 *mem)
3229 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3231 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3232 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3233 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3234 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3235 mem[SK_MEMINFO_FWD_ALLOC] = sk->sk_forward_alloc;
3236 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3237 mem[SK_MEMINFO_OPTMEM] = atomic_read(&sk->sk_omem_alloc);
3238 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3239 mem[SK_MEMINFO_DROPS] = atomic_read(&sk->sk_drops);
3242 #ifdef CONFIG_PROC_FS
3243 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
3245 int val[PROTO_INUSE_NR];
3248 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3250 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
3252 __this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
3254 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
3256 int sock_prot_inuse_get(struct net *net, struct proto *prot)
3258 int cpu, idx = prot->inuse_idx;
3261 for_each_possible_cpu(cpu)
3262 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3264 return res >= 0 ? res : 0;
3266 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3268 static void sock_inuse_add(struct net *net, int val)
3270 this_cpu_add(*net->core.sock_inuse, val);
3273 int sock_inuse_get(struct net *net)
3277 for_each_possible_cpu(cpu)
3278 res += *per_cpu_ptr(net->core.sock_inuse, cpu);
3283 EXPORT_SYMBOL_GPL(sock_inuse_get);
3285 static int __net_init sock_inuse_init_net(struct net *net)
3287 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3288 if (net->core.prot_inuse == NULL)
3291 net->core.sock_inuse = alloc_percpu(int);
3292 if (net->core.sock_inuse == NULL)
3298 free_percpu(net->core.prot_inuse);
3302 static void __net_exit sock_inuse_exit_net(struct net *net)
3304 free_percpu(net->core.prot_inuse);
3305 free_percpu(net->core.sock_inuse);
3308 static struct pernet_operations net_inuse_ops = {
3309 .init = sock_inuse_init_net,
3310 .exit = sock_inuse_exit_net,
3313 static __init int net_inuse_init(void)
3315 if (register_pernet_subsys(&net_inuse_ops))
3316 panic("Cannot initialize net inuse counters");
3321 core_initcall(net_inuse_init);
3323 static int assign_proto_idx(struct proto *prot)
3325 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
3327 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3328 pr_err("PROTO_INUSE_NR exhausted\n");
3332 set_bit(prot->inuse_idx, proto_inuse_idx);
3336 static void release_proto_idx(struct proto *prot)
3338 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3339 clear_bit(prot->inuse_idx, proto_inuse_idx);
3342 static inline int assign_proto_idx(struct proto *prot)
3347 static inline void release_proto_idx(struct proto *prot)
3351 static void sock_inuse_add(struct net *net, int val)
3356 static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3360 kfree(rsk_prot->slab_name);
3361 rsk_prot->slab_name = NULL;
3362 kmem_cache_destroy(rsk_prot->slab);
3363 rsk_prot->slab = NULL;
3366 static int req_prot_init(const struct proto *prot)
3368 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3373 rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s",
3375 if (!rsk_prot->slab_name)
3378 rsk_prot->slab = kmem_cache_create(rsk_prot->slab_name,
3379 rsk_prot->obj_size, 0,
3380 SLAB_ACCOUNT | prot->slab_flags,
3383 if (!rsk_prot->slab) {
3384 pr_crit("%s: Can't create request sock SLAB cache!\n",
3391 int proto_register(struct proto *prot, int alloc_slab)
3396 prot->slab = kmem_cache_create_usercopy(prot->name,
3398 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3400 prot->useroffset, prot->usersize,
3403 if (prot->slab == NULL) {
3404 pr_crit("%s: Can't create sock SLAB cache!\n",
3409 if (req_prot_init(prot))
3410 goto out_free_request_sock_slab;
3412 if (prot->twsk_prot != NULL) {
3413 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
3415 if (prot->twsk_prot->twsk_slab_name == NULL)
3416 goto out_free_request_sock_slab;
3418 prot->twsk_prot->twsk_slab =
3419 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
3420 prot->twsk_prot->twsk_obj_size,
3425 if (prot->twsk_prot->twsk_slab == NULL)
3426 goto out_free_timewait_sock_slab_name;
3430 mutex_lock(&proto_list_mutex);
3431 ret = assign_proto_idx(prot);
3433 mutex_unlock(&proto_list_mutex);
3434 goto out_free_timewait_sock_slab_name;
3436 list_add(&prot->node, &proto_list);
3437 mutex_unlock(&proto_list_mutex);
3440 out_free_timewait_sock_slab_name:
3441 if (alloc_slab && prot->twsk_prot)
3442 kfree(prot->twsk_prot->twsk_slab_name);
3443 out_free_request_sock_slab:
3445 req_prot_cleanup(prot->rsk_prot);
3447 kmem_cache_destroy(prot->slab);
3453 EXPORT_SYMBOL(proto_register);
3455 void proto_unregister(struct proto *prot)
3457 mutex_lock(&proto_list_mutex);
3458 release_proto_idx(prot);
3459 list_del(&prot->node);
3460 mutex_unlock(&proto_list_mutex);
3462 kmem_cache_destroy(prot->slab);
3465 req_prot_cleanup(prot->rsk_prot);
3467 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
3468 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
3469 kfree(prot->twsk_prot->twsk_slab_name);
3470 prot->twsk_prot->twsk_slab = NULL;
3473 EXPORT_SYMBOL(proto_unregister);
3475 int sock_load_diag_module(int family, int protocol)
3478 if (!sock_is_registered(family))
3481 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
3482 NETLINK_SOCK_DIAG, family);
3486 if (family == AF_INET &&
3487 protocol != IPPROTO_RAW &&
3488 !rcu_access_pointer(inet_protos[protocol]))
3492 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
3493 NETLINK_SOCK_DIAG, family, protocol);
3495 EXPORT_SYMBOL(sock_load_diag_module);
3497 #ifdef CONFIG_PROC_FS
3498 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
3499 __acquires(proto_list_mutex)
3501 mutex_lock(&proto_list_mutex);
3502 return seq_list_start_head(&proto_list, *pos);
3505 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3507 return seq_list_next(v, &proto_list, pos);
3510 static void proto_seq_stop(struct seq_file *seq, void *v)
3511 __releases(proto_list_mutex)
3513 mutex_unlock(&proto_list_mutex);
3516 static char proto_method_implemented(const void *method)
3518 return method == NULL ? 'n' : 'y';
3520 static long sock_prot_memory_allocated(struct proto *proto)
3522 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
3525 static const char *sock_prot_memory_pressure(struct proto *proto)
3527 return proto->memory_pressure != NULL ?
3528 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
3531 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
3534 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
3535 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
3538 sock_prot_inuse_get(seq_file_net(seq), proto),
3539 sock_prot_memory_allocated(proto),
3540 sock_prot_memory_pressure(proto),
3542 proto->slab == NULL ? "no" : "yes",
3543 module_name(proto->owner),
3544 proto_method_implemented(proto->close),
3545 proto_method_implemented(proto->connect),
3546 proto_method_implemented(proto->disconnect),
3547 proto_method_implemented(proto->accept),
3548 proto_method_implemented(proto->ioctl),
3549 proto_method_implemented(proto->init),
3550 proto_method_implemented(proto->destroy),
3551 proto_method_implemented(proto->shutdown),
3552 proto_method_implemented(proto->setsockopt),
3553 proto_method_implemented(proto->getsockopt),
3554 proto_method_implemented(proto->sendmsg),
3555 proto_method_implemented(proto->recvmsg),
3556 proto_method_implemented(proto->sendpage),
3557 proto_method_implemented(proto->bind),
3558 proto_method_implemented(proto->backlog_rcv),
3559 proto_method_implemented(proto->hash),
3560 proto_method_implemented(proto->unhash),
3561 proto_method_implemented(proto->get_port),
3562 proto_method_implemented(proto->enter_memory_pressure));
3565 static int proto_seq_show(struct seq_file *seq, void *v)
3567 if (v == &proto_list)
3568 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
3577 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
3579 proto_seq_printf(seq, list_entry(v, struct proto, node));
3583 static const struct seq_operations proto_seq_ops = {
3584 .start = proto_seq_start,
3585 .next = proto_seq_next,
3586 .stop = proto_seq_stop,
3587 .show = proto_seq_show,
3590 static __net_init int proto_init_net(struct net *net)
3592 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
3593 sizeof(struct seq_net_private)))
3599 static __net_exit void proto_exit_net(struct net *net)
3601 remove_proc_entry("protocols", net->proc_net);
3605 static __net_initdata struct pernet_operations proto_net_ops = {
3606 .init = proto_init_net,
3607 .exit = proto_exit_net,
3610 static int __init proto_init(void)
3612 return register_pernet_subsys(&proto_net_ops);
3615 subsys_initcall(proto_init);
3617 #endif /* PROC_FS */
3619 #ifdef CONFIG_NET_RX_BUSY_POLL
3620 bool sk_busy_loop_end(void *p, unsigned long start_time)
3622 struct sock *sk = p;
3624 return !skb_queue_empty_lockless(&sk->sk_receive_queue) ||
3625 sk_busy_loop_timeout(sk, start_time);
3627 EXPORT_SYMBOL(sk_busy_loop_end);
3628 #endif /* CONFIG_NET_RX_BUSY_POLL */