2 FUSE: Filesystem in Userspace
5 This program can be distributed under the terms of the GNU GPL.
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/module.h>
16 #include <linux/compat.h>
18 static const struct file_operations fuse_direct_io_file_operations;
20 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
21 int opcode, struct fuse_open_out *outargp)
23 struct fuse_open_in inarg;
27 req = fuse_get_req(fc);
31 memset(&inarg, 0, sizeof(inarg));
32 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
33 if (!fc->atomic_o_trunc)
34 inarg.flags &= ~O_TRUNC;
35 req->in.h.opcode = opcode;
36 req->in.h.nodeid = nodeid;
38 req->in.args[0].size = sizeof(inarg);
39 req->in.args[0].value = &inarg;
41 req->out.args[0].size = sizeof(*outargp);
42 req->out.args[0].value = outargp;
43 fuse_request_send(fc, req);
44 err = req->out.h.error;
45 fuse_put_request(fc, req);
50 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
54 ff = kmalloc(sizeof(struct fuse_file), GFP_KERNEL);
59 ff->reserved_req = fuse_request_alloc();
60 if (unlikely(!ff->reserved_req)) {
65 INIT_LIST_HEAD(&ff->write_entry);
66 atomic_set(&ff->count, 0);
67 RB_CLEAR_NODE(&ff->polled_node);
68 init_waitqueue_head(&ff->poll_wait);
72 spin_unlock(&fc->lock);
77 void fuse_file_free(struct fuse_file *ff)
79 fuse_request_free(ff->reserved_req);
83 struct fuse_file *fuse_file_get(struct fuse_file *ff)
85 atomic_inc(&ff->count);
89 static void fuse_release_async(struct work_struct *work)
95 req = container_of(work, struct fuse_req, misc.release.work);
96 path = req->misc.release.path;
97 fc = get_fuse_conn(path.dentry->d_inode);
99 fuse_put_request(fc, req);
103 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
105 if (fc->destroy_req) {
107 * If this is a fuseblk mount, then it's possible that
108 * releasing the path will result in releasing the
109 * super block and sending the DESTROY request. If
110 * the server is single threaded, this would hang.
111 * For this reason do the path_put() in a separate
114 atomic_inc(&req->count);
115 INIT_WORK(&req->misc.release.work, fuse_release_async);
116 schedule_work(&req->misc.release.work);
118 path_put(&req->misc.release.path);
122 static void fuse_file_put(struct fuse_file *ff, bool sync)
124 if (atomic_dec_and_test(&ff->count)) {
125 struct fuse_req *req = ff->reserved_req;
128 fuse_request_send(ff->fc, req);
129 path_put(&req->misc.release.path);
130 fuse_put_request(ff->fc, req);
132 req->end = fuse_release_end;
133 fuse_request_send_background(ff->fc, req);
139 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
142 struct fuse_open_out outarg;
143 struct fuse_file *ff;
145 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
147 ff = fuse_file_alloc(fc);
151 err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
158 outarg.open_flags &= ~FOPEN_DIRECT_IO;
162 ff->open_flags = outarg.open_flags;
163 file->private_data = fuse_file_get(ff);
167 EXPORT_SYMBOL_GPL(fuse_do_open);
169 void fuse_finish_open(struct inode *inode, struct file *file)
171 struct fuse_file *ff = file->private_data;
172 struct fuse_conn *fc = get_fuse_conn(inode);
174 if (ff->open_flags & FOPEN_DIRECT_IO)
175 file->f_op = &fuse_direct_io_file_operations;
176 if (!(ff->open_flags & FOPEN_KEEP_CACHE))
177 invalidate_inode_pages2(inode->i_mapping);
178 if (ff->open_flags & FOPEN_NONSEEKABLE)
179 nonseekable_open(inode, file);
180 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
181 struct fuse_inode *fi = get_fuse_inode(inode);
183 spin_lock(&fc->lock);
184 fi->attr_version = ++fc->attr_version;
185 i_size_write(inode, 0);
186 spin_unlock(&fc->lock);
187 fuse_invalidate_attr(inode);
191 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
193 struct fuse_conn *fc = get_fuse_conn(inode);
196 /* VFS checks this, but only _after_ ->open() */
197 if (file->f_flags & O_DIRECT)
200 err = generic_file_open(inode, file);
204 err = fuse_do_open(fc, get_node_id(inode), file, isdir);
208 fuse_finish_open(inode, file);
213 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode)
215 struct fuse_conn *fc = ff->fc;
216 struct fuse_req *req = ff->reserved_req;
217 struct fuse_release_in *inarg = &req->misc.release.in;
219 spin_lock(&fc->lock);
220 list_del(&ff->write_entry);
221 if (!RB_EMPTY_NODE(&ff->polled_node))
222 rb_erase(&ff->polled_node, &fc->polled_files);
223 spin_unlock(&fc->lock);
225 wake_up_interruptible_all(&ff->poll_wait);
228 inarg->flags = flags;
229 req->in.h.opcode = opcode;
230 req->in.h.nodeid = ff->nodeid;
232 req->in.args[0].size = sizeof(struct fuse_release_in);
233 req->in.args[0].value = inarg;
236 void fuse_release_common(struct file *file, int opcode)
238 struct fuse_file *ff;
239 struct fuse_req *req;
241 ff = file->private_data;
245 req = ff->reserved_req;
246 fuse_prepare_release(ff, file->f_flags, opcode);
248 /* Hold vfsmount and dentry until release is finished */
249 path_get(&file->f_path);
250 req->misc.release.path = file->f_path;
253 * Normally this will send the RELEASE request, however if
254 * some asynchronous READ or WRITE requests are outstanding,
255 * the sending will be delayed.
257 * Make the release synchronous if this is a fuseblk mount,
258 * synchronous RELEASE is allowed (and desirable) in this case
259 * because the server can be trusted not to screw up.
261 fuse_file_put(ff, ff->fc->destroy_req != NULL);
264 static int fuse_open(struct inode *inode, struct file *file)
266 return fuse_open_common(inode, file, false);
269 static int fuse_release(struct inode *inode, struct file *file)
271 fuse_release_common(file, FUSE_RELEASE);
273 /* return value is ignored by VFS */
277 void fuse_sync_release(struct fuse_file *ff, int flags)
279 WARN_ON(atomic_read(&ff->count) > 1);
280 fuse_prepare_release(ff, flags, FUSE_RELEASE);
281 ff->reserved_req->force = 1;
282 fuse_request_send(ff->fc, ff->reserved_req);
283 fuse_put_request(ff->fc, ff->reserved_req);
286 EXPORT_SYMBOL_GPL(fuse_sync_release);
289 * Scramble the ID space with XTEA, so that the value of the files_struct
290 * pointer is not exposed to userspace.
292 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
294 u32 *k = fc->scramble_key;
295 u64 v = (unsigned long) id;
301 for (i = 0; i < 32; i++) {
302 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
304 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
307 return (u64) v0 + ((u64) v1 << 32);
311 * Check if page is under writeback
313 * This is currently done by walking the list of writepage requests
314 * for the inode, which can be pretty inefficient.
316 static bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
318 struct fuse_conn *fc = get_fuse_conn(inode);
319 struct fuse_inode *fi = get_fuse_inode(inode);
320 struct fuse_req *req;
323 spin_lock(&fc->lock);
324 list_for_each_entry(req, &fi->writepages, writepages_entry) {
327 BUG_ON(req->inode != inode);
328 curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
329 if (curr_index == index) {
334 spin_unlock(&fc->lock);
340 * Wait for page writeback to be completed.
342 * Since fuse doesn't rely on the VM writeback tracking, this has to
343 * use some other means.
345 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
347 struct fuse_inode *fi = get_fuse_inode(inode);
349 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
353 static int fuse_flush(struct file *file, fl_owner_t id)
355 struct inode *inode = file->f_path.dentry->d_inode;
356 struct fuse_conn *fc = get_fuse_conn(inode);
357 struct fuse_file *ff = file->private_data;
358 struct fuse_req *req;
359 struct fuse_flush_in inarg;
362 if (is_bad_inode(inode))
368 req = fuse_get_req_nofail(fc, file);
369 memset(&inarg, 0, sizeof(inarg));
371 inarg.lock_owner = fuse_lock_owner_id(fc, id);
372 req->in.h.opcode = FUSE_FLUSH;
373 req->in.h.nodeid = get_node_id(inode);
375 req->in.args[0].size = sizeof(inarg);
376 req->in.args[0].value = &inarg;
378 fuse_request_send(fc, req);
379 err = req->out.h.error;
380 fuse_put_request(fc, req);
381 if (err == -ENOSYS) {
389 * Wait for all pending writepages on the inode to finish.
391 * This is currently done by blocking further writes with FUSE_NOWRITE
392 * and waiting for all sent writes to complete.
394 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
395 * could conflict with truncation.
397 static void fuse_sync_writes(struct inode *inode)
399 fuse_set_nowrite(inode);
400 fuse_release_nowrite(inode);
403 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
404 int datasync, int isdir)
406 struct inode *inode = file->f_mapping->host;
407 struct fuse_conn *fc = get_fuse_conn(inode);
408 struct fuse_file *ff = file->private_data;
409 struct fuse_req *req;
410 struct fuse_fsync_in inarg;
413 if (is_bad_inode(inode))
416 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
420 if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir))
423 mutex_lock(&inode->i_mutex);
426 * Start writeback against all dirty pages of the inode, then
427 * wait for all outstanding writes, before sending the FSYNC
430 err = write_inode_now(inode, 0);
434 fuse_sync_writes(inode);
436 req = fuse_get_req(fc);
442 memset(&inarg, 0, sizeof(inarg));
444 inarg.fsync_flags = datasync ? 1 : 0;
445 req->in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC;
446 req->in.h.nodeid = get_node_id(inode);
448 req->in.args[0].size = sizeof(inarg);
449 req->in.args[0].value = &inarg;
450 fuse_request_send(fc, req);
451 err = req->out.h.error;
452 fuse_put_request(fc, req);
453 if (err == -ENOSYS) {
461 mutex_unlock(&inode->i_mutex);
465 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
468 return fuse_fsync_common(file, start, end, datasync, 0);
471 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
472 size_t count, int opcode)
474 struct fuse_read_in *inarg = &req->misc.read.in;
475 struct fuse_file *ff = file->private_data;
480 inarg->flags = file->f_flags;
481 req->in.h.opcode = opcode;
482 req->in.h.nodeid = ff->nodeid;
484 req->in.args[0].size = sizeof(struct fuse_read_in);
485 req->in.args[0].value = inarg;
487 req->out.numargs = 1;
488 req->out.args[0].size = count;
491 static size_t fuse_send_read(struct fuse_req *req, struct file *file,
492 loff_t pos, size_t count, fl_owner_t owner)
494 struct fuse_file *ff = file->private_data;
495 struct fuse_conn *fc = ff->fc;
497 fuse_read_fill(req, file, pos, count, FUSE_READ);
499 struct fuse_read_in *inarg = &req->misc.read.in;
501 inarg->read_flags |= FUSE_READ_LOCKOWNER;
502 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
504 fuse_request_send(fc, req);
505 return req->out.args[0].size;
508 static void fuse_read_update_size(struct inode *inode, loff_t size,
511 struct fuse_conn *fc = get_fuse_conn(inode);
512 struct fuse_inode *fi = get_fuse_inode(inode);
514 spin_lock(&fc->lock);
515 if (attr_ver == fi->attr_version && size < inode->i_size) {
516 fi->attr_version = ++fc->attr_version;
517 i_size_write(inode, size);
519 spin_unlock(&fc->lock);
522 static int fuse_readpage(struct file *file, struct page *page)
524 struct inode *inode = page->mapping->host;
525 struct fuse_conn *fc = get_fuse_conn(inode);
526 struct fuse_req *req;
528 loff_t pos = page_offset(page);
529 size_t count = PAGE_CACHE_SIZE;
534 if (is_bad_inode(inode))
538 * Page writeback can extend beyond the lifetime of the
539 * page-cache page, so make sure we read a properly synced
542 fuse_wait_on_page_writeback(inode, page->index);
544 req = fuse_get_req(fc);
549 attr_ver = fuse_get_attr_version(fc);
551 req->out.page_zeroing = 1;
552 req->out.argpages = 1;
554 req->pages[0] = page;
555 num_read = fuse_send_read(req, file, pos, count, NULL);
556 err = req->out.h.error;
557 fuse_put_request(fc, req);
561 * Short read means EOF. If file size is larger, truncate it
563 if (num_read < count)
564 fuse_read_update_size(inode, pos + num_read, attr_ver);
566 SetPageUptodate(page);
569 fuse_invalidate_attr(inode); /* atime changed */
575 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
578 size_t count = req->misc.read.in.size;
579 size_t num_read = req->out.args[0].size;
580 struct address_space *mapping = NULL;
582 for (i = 0; mapping == NULL && i < req->num_pages; i++)
583 mapping = req->pages[i]->mapping;
586 struct inode *inode = mapping->host;
589 * Short read means EOF. If file size is larger, truncate it
591 if (!req->out.h.error && num_read < count) {
594 pos = page_offset(req->pages[0]) + num_read;
595 fuse_read_update_size(inode, pos,
596 req->misc.read.attr_ver);
598 fuse_invalidate_attr(inode); /* atime changed */
601 for (i = 0; i < req->num_pages; i++) {
602 struct page *page = req->pages[i];
603 if (!req->out.h.error)
604 SetPageUptodate(page);
608 page_cache_release(page);
611 fuse_file_put(req->ff, false);
614 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
616 struct fuse_file *ff = file->private_data;
617 struct fuse_conn *fc = ff->fc;
618 loff_t pos = page_offset(req->pages[0]);
619 size_t count = req->num_pages << PAGE_CACHE_SHIFT;
621 req->out.argpages = 1;
622 req->out.page_zeroing = 1;
623 req->out.page_replace = 1;
624 fuse_read_fill(req, file, pos, count, FUSE_READ);
625 req->misc.read.attr_ver = fuse_get_attr_version(fc);
626 if (fc->async_read) {
627 req->ff = fuse_file_get(ff);
628 req->end = fuse_readpages_end;
629 fuse_request_send_background(fc, req);
631 fuse_request_send(fc, req);
632 fuse_readpages_end(fc, req);
633 fuse_put_request(fc, req);
637 struct fuse_fill_data {
638 struct fuse_req *req;
643 static int fuse_readpages_fill(void *_data, struct page *page)
645 struct fuse_fill_data *data = _data;
646 struct fuse_req *req = data->req;
647 struct inode *inode = data->inode;
648 struct fuse_conn *fc = get_fuse_conn(inode);
650 fuse_wait_on_page_writeback(inode, page->index);
652 if (req->num_pages &&
653 (req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
654 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read ||
655 req->pages[req->num_pages - 1]->index + 1 != page->index)) {
656 fuse_send_readpages(req, data->file);
657 data->req = req = fuse_get_req(fc);
663 page_cache_get(page);
664 req->pages[req->num_pages] = page;
669 static int fuse_readpages(struct file *file, struct address_space *mapping,
670 struct list_head *pages, unsigned nr_pages)
672 struct inode *inode = mapping->host;
673 struct fuse_conn *fc = get_fuse_conn(inode);
674 struct fuse_fill_data data;
678 if (is_bad_inode(inode))
683 data.req = fuse_get_req(fc);
684 err = PTR_ERR(data.req);
685 if (IS_ERR(data.req))
688 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
690 if (data.req->num_pages)
691 fuse_send_readpages(data.req, file);
693 fuse_put_request(fc, data.req);
699 static ssize_t fuse_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
700 unsigned long nr_segs, loff_t pos)
702 struct inode *inode = iocb->ki_filp->f_mapping->host;
704 if (pos + iov_length(iov, nr_segs) > i_size_read(inode)) {
707 * If trying to read past EOF, make sure the i_size
708 * attribute is up-to-date.
710 err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL);
715 return generic_file_aio_read(iocb, iov, nr_segs, pos);
718 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
719 loff_t pos, size_t count)
721 struct fuse_write_in *inarg = &req->misc.write.in;
722 struct fuse_write_out *outarg = &req->misc.write.out;
727 req->in.h.opcode = FUSE_WRITE;
728 req->in.h.nodeid = ff->nodeid;
730 if (ff->fc->minor < 9)
731 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
733 req->in.args[0].size = sizeof(struct fuse_write_in);
734 req->in.args[0].value = inarg;
735 req->in.args[1].size = count;
736 req->out.numargs = 1;
737 req->out.args[0].size = sizeof(struct fuse_write_out);
738 req->out.args[0].value = outarg;
741 static size_t fuse_send_write(struct fuse_req *req, struct file *file,
742 loff_t pos, size_t count, fl_owner_t owner)
744 struct fuse_file *ff = file->private_data;
745 struct fuse_conn *fc = ff->fc;
746 struct fuse_write_in *inarg = &req->misc.write.in;
748 fuse_write_fill(req, ff, pos, count);
749 inarg->flags = file->f_flags;
751 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
752 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
754 fuse_request_send(fc, req);
755 return req->misc.write.out.size;
758 static int fuse_write_begin(struct file *file, struct address_space *mapping,
759 loff_t pos, unsigned len, unsigned flags,
760 struct page **pagep, void **fsdata)
762 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
764 *pagep = grab_cache_page_write_begin(mapping, index, flags);
770 void fuse_write_update_size(struct inode *inode, loff_t pos)
772 struct fuse_conn *fc = get_fuse_conn(inode);
773 struct fuse_inode *fi = get_fuse_inode(inode);
775 spin_lock(&fc->lock);
776 fi->attr_version = ++fc->attr_version;
777 if (pos > inode->i_size)
778 i_size_write(inode, pos);
779 spin_unlock(&fc->lock);
782 static int fuse_buffered_write(struct file *file, struct inode *inode,
783 loff_t pos, unsigned count, struct page *page)
787 struct fuse_conn *fc = get_fuse_conn(inode);
788 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
789 struct fuse_req *req;
791 if (is_bad_inode(inode))
795 * Make sure writepages on the same page are not mixed up with
798 fuse_wait_on_page_writeback(inode, page->index);
800 req = fuse_get_req(fc);
804 req->in.argpages = 1;
806 req->pages[0] = page;
807 req->page_offset = offset;
808 nres = fuse_send_write(req, file, pos, count, NULL);
809 err = req->out.h.error;
810 fuse_put_request(fc, req);
815 fuse_write_update_size(inode, pos);
816 if (count == PAGE_CACHE_SIZE)
817 SetPageUptodate(page);
819 fuse_invalidate_attr(inode);
820 return err ? err : nres;
823 static int fuse_write_end(struct file *file, struct address_space *mapping,
824 loff_t pos, unsigned len, unsigned copied,
825 struct page *page, void *fsdata)
827 struct inode *inode = mapping->host;
831 res = fuse_buffered_write(file, inode, pos, copied, page);
834 page_cache_release(page);
838 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file,
839 struct inode *inode, loff_t pos,
846 for (i = 0; i < req->num_pages; i++)
847 fuse_wait_on_page_writeback(inode, req->pages[i]->index);
849 res = fuse_send_write(req, file, pos, count, NULL);
851 offset = req->page_offset;
853 for (i = 0; i < req->num_pages; i++) {
854 struct page *page = req->pages[i];
856 if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE)
857 SetPageUptodate(page);
859 if (count > PAGE_CACHE_SIZE - offset)
860 count -= PAGE_CACHE_SIZE - offset;
866 page_cache_release(page);
872 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
873 struct address_space *mapping,
874 struct iov_iter *ii, loff_t pos)
876 struct fuse_conn *fc = get_fuse_conn(mapping->host);
877 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
881 req->in.argpages = 1;
882 req->page_offset = offset;
887 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
888 size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset,
891 bytes = min_t(size_t, bytes, fc->max_write - count);
895 if (iov_iter_fault_in_readable(ii, bytes))
899 page = grab_cache_page_write_begin(mapping, index, 0);
903 if (mapping_writably_mapped(mapping))
904 flush_dcache_page(page);
907 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
909 flush_dcache_page(page);
913 page_cache_release(page);
914 bytes = min(bytes, iov_iter_single_seg_count(ii));
919 req->pages[req->num_pages] = page;
922 iov_iter_advance(ii, tmp);
926 if (offset == PAGE_CACHE_SIZE)
931 } while (iov_iter_count(ii) && count < fc->max_write &&
932 req->num_pages < FUSE_MAX_PAGES_PER_REQ && offset == 0);
934 return count > 0 ? count : err;
937 static ssize_t fuse_perform_write(struct file *file,
938 struct address_space *mapping,
939 struct iov_iter *ii, loff_t pos)
941 struct inode *inode = mapping->host;
942 struct fuse_conn *fc = get_fuse_conn(inode);
946 if (is_bad_inode(inode))
950 struct fuse_req *req;
953 req = fuse_get_req(fc);
959 count = fuse_fill_write_pages(req, mapping, ii, pos);
965 num_written = fuse_send_write_pages(req, file, inode,
967 err = req->out.h.error;
972 /* break out of the loop on short write */
973 if (num_written != count)
977 fuse_put_request(fc, req);
978 } while (!err && iov_iter_count(ii));
981 fuse_write_update_size(inode, pos);
983 fuse_invalidate_attr(inode);
985 return res > 0 ? res : err;
988 static ssize_t fuse_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
989 unsigned long nr_segs, loff_t pos)
991 struct file *file = iocb->ki_filp;
992 struct address_space *mapping = file->f_mapping;
995 struct inode *inode = mapping->host;
999 WARN_ON(iocb->ki_pos != pos);
1001 err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
1005 mutex_lock(&inode->i_mutex);
1006 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1008 /* We can write back this queue in page reclaim */
1009 current->backing_dev_info = mapping->backing_dev_info;
1011 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1018 err = file_remove_suid(file);
1022 file_update_time(file);
1024 iov_iter_init(&i, iov, nr_segs, count, 0);
1025 written = fuse_perform_write(file, mapping, &i, pos);
1027 iocb->ki_pos = pos + written;
1030 current->backing_dev_info = NULL;
1031 mutex_unlock(&inode->i_mutex);
1033 return written ? written : err;
1036 static void fuse_release_user_pages(struct fuse_req *req, int write)
1040 for (i = 0; i < req->num_pages; i++) {
1041 struct page *page = req->pages[i];
1043 set_page_dirty_lock(page);
1048 static int fuse_get_user_pages(struct fuse_req *req, const char __user *buf,
1049 size_t *nbytesp, int write)
1051 size_t nbytes = *nbytesp;
1052 unsigned long user_addr = (unsigned long) buf;
1053 unsigned offset = user_addr & ~PAGE_MASK;
1056 /* Special case for kernel I/O: can copy directly into the buffer */
1057 if (segment_eq(get_fs(), KERNEL_DS)) {
1059 req->in.args[1].value = (void *) user_addr;
1061 req->out.args[0].value = (void *) user_addr;
1066 nbytes = min_t(size_t, nbytes, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT);
1067 npages = (nbytes + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
1068 npages = clamp(npages, 1, FUSE_MAX_PAGES_PER_REQ);
1069 npages = get_user_pages_fast(user_addr, npages, !write, req->pages);
1073 req->num_pages = npages;
1074 req->page_offset = offset;
1077 req->in.argpages = 1;
1079 req->out.argpages = 1;
1081 nbytes = (req->num_pages << PAGE_SHIFT) - req->page_offset;
1082 *nbytesp = min(*nbytesp, nbytes);
1087 ssize_t fuse_direct_io(struct file *file, const char __user *buf,
1088 size_t count, loff_t *ppos, int write)
1090 struct fuse_file *ff = file->private_data;
1091 struct fuse_conn *fc = ff->fc;
1092 size_t nmax = write ? fc->max_write : fc->max_read;
1095 struct fuse_req *req;
1097 req = fuse_get_req(fc);
1099 return PTR_ERR(req);
1103 fl_owner_t owner = current->files;
1104 size_t nbytes = min(count, nmax);
1105 int err = fuse_get_user_pages(req, buf, &nbytes, write);
1112 nres = fuse_send_write(req, file, pos, nbytes, owner);
1114 nres = fuse_send_read(req, file, pos, nbytes, owner);
1116 fuse_release_user_pages(req, !write);
1117 if (req->out.h.error) {
1119 res = req->out.h.error;
1121 } else if (nres > nbytes) {
1132 fuse_put_request(fc, req);
1133 req = fuse_get_req(fc);
1139 fuse_put_request(fc, req);
1145 EXPORT_SYMBOL_GPL(fuse_direct_io);
1147 static ssize_t fuse_direct_read(struct file *file, char __user *buf,
1148 size_t count, loff_t *ppos)
1151 struct inode *inode = file->f_path.dentry->d_inode;
1153 if (is_bad_inode(inode))
1156 res = fuse_direct_io(file, buf, count, ppos, 0);
1158 fuse_invalidate_attr(inode);
1163 static ssize_t fuse_direct_write(struct file *file, const char __user *buf,
1164 size_t count, loff_t *ppos)
1166 struct inode *inode = file->f_path.dentry->d_inode;
1169 if (is_bad_inode(inode))
1172 /* Don't allow parallel writes to the same file */
1173 mutex_lock(&inode->i_mutex);
1174 res = generic_write_checks(file, ppos, &count, 0);
1176 res = fuse_direct_io(file, buf, count, ppos, 1);
1178 fuse_write_update_size(inode, *ppos);
1180 mutex_unlock(&inode->i_mutex);
1182 fuse_invalidate_attr(inode);
1187 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1189 __free_page(req->pages[0]);
1190 fuse_file_put(req->ff, false);
1193 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1195 struct inode *inode = req->inode;
1196 struct fuse_inode *fi = get_fuse_inode(inode);
1197 struct backing_dev_info *bdi = inode->i_mapping->backing_dev_info;
1199 list_del(&req->writepages_entry);
1200 dec_bdi_stat(bdi, BDI_WRITEBACK);
1201 dec_zone_page_state(req->pages[0], NR_WRITEBACK_TEMP);
1202 bdi_writeout_inc(bdi);
1203 wake_up(&fi->page_waitq);
1206 /* Called under fc->lock, may release and reacquire it */
1207 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req)
1208 __releases(fc->lock)
1209 __acquires(fc->lock)
1211 struct fuse_inode *fi = get_fuse_inode(req->inode);
1212 loff_t size = i_size_read(req->inode);
1213 struct fuse_write_in *inarg = &req->misc.write.in;
1218 if (inarg->offset + PAGE_CACHE_SIZE <= size) {
1219 inarg->size = PAGE_CACHE_SIZE;
1220 } else if (inarg->offset < size) {
1221 inarg->size = size & (PAGE_CACHE_SIZE - 1);
1223 /* Got truncated off completely */
1227 req->in.args[1].size = inarg->size;
1229 fuse_request_send_background_locked(fc, req);
1233 fuse_writepage_finish(fc, req);
1234 spin_unlock(&fc->lock);
1235 fuse_writepage_free(fc, req);
1236 fuse_put_request(fc, req);
1237 spin_lock(&fc->lock);
1241 * If fi->writectr is positive (no truncate or fsync going on) send
1242 * all queued writepage requests.
1244 * Called with fc->lock
1246 void fuse_flush_writepages(struct inode *inode)
1247 __releases(fc->lock)
1248 __acquires(fc->lock)
1250 struct fuse_conn *fc = get_fuse_conn(inode);
1251 struct fuse_inode *fi = get_fuse_inode(inode);
1252 struct fuse_req *req;
1254 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1255 req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1256 list_del_init(&req->list);
1257 fuse_send_writepage(fc, req);
1261 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1263 struct inode *inode = req->inode;
1264 struct fuse_inode *fi = get_fuse_inode(inode);
1266 mapping_set_error(inode->i_mapping, req->out.h.error);
1267 spin_lock(&fc->lock);
1269 fuse_writepage_finish(fc, req);
1270 spin_unlock(&fc->lock);
1271 fuse_writepage_free(fc, req);
1274 static int fuse_writepage_locked(struct page *page)
1276 struct address_space *mapping = page->mapping;
1277 struct inode *inode = mapping->host;
1278 struct fuse_conn *fc = get_fuse_conn(inode);
1279 struct fuse_inode *fi = get_fuse_inode(inode);
1280 struct fuse_req *req;
1281 struct fuse_file *ff;
1282 struct page *tmp_page;
1284 set_page_writeback(page);
1286 req = fuse_request_alloc_nofs();
1290 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1294 spin_lock(&fc->lock);
1295 BUG_ON(list_empty(&fi->write_files));
1296 ff = list_entry(fi->write_files.next, struct fuse_file, write_entry);
1297 req->ff = fuse_file_get(ff);
1298 spin_unlock(&fc->lock);
1300 fuse_write_fill(req, ff, page_offset(page), 0);
1302 copy_highpage(tmp_page, page);
1303 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1304 req->in.argpages = 1;
1306 req->pages[0] = tmp_page;
1307 req->page_offset = 0;
1308 req->end = fuse_writepage_end;
1311 inc_bdi_stat(mapping->backing_dev_info, BDI_WRITEBACK);
1312 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1313 end_page_writeback(page);
1315 spin_lock(&fc->lock);
1316 list_add(&req->writepages_entry, &fi->writepages);
1317 list_add_tail(&req->list, &fi->queued_writes);
1318 fuse_flush_writepages(inode);
1319 spin_unlock(&fc->lock);
1324 fuse_request_free(req);
1326 end_page_writeback(page);
1330 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1334 err = fuse_writepage_locked(page);
1340 static int fuse_launder_page(struct page *page)
1343 if (clear_page_dirty_for_io(page)) {
1344 struct inode *inode = page->mapping->host;
1345 err = fuse_writepage_locked(page);
1347 fuse_wait_on_page_writeback(inode, page->index);
1353 * Write back dirty pages now, because there may not be any suitable
1356 static void fuse_vma_close(struct vm_area_struct *vma)
1358 filemap_write_and_wait(vma->vm_file->f_mapping);
1362 * Wait for writeback against this page to complete before allowing it
1363 * to be marked dirty again, and hence written back again, possibly
1364 * before the previous writepage completed.
1366 * Block here, instead of in ->writepage(), so that the userspace fs
1367 * can only block processes actually operating on the filesystem.
1369 * Otherwise unprivileged userspace fs would be able to block
1374 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
1376 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1378 struct page *page = vmf->page;
1380 * Don't use page->mapping as it may become NULL from a
1381 * concurrent truncate.
1383 struct inode *inode = vma->vm_file->f_mapping->host;
1385 fuse_wait_on_page_writeback(inode, page->index);
1389 static const struct vm_operations_struct fuse_file_vm_ops = {
1390 .close = fuse_vma_close,
1391 .fault = filemap_fault,
1392 .page_mkwrite = fuse_page_mkwrite,
1395 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
1397 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) {
1398 struct inode *inode = file->f_dentry->d_inode;
1399 struct fuse_conn *fc = get_fuse_conn(inode);
1400 struct fuse_inode *fi = get_fuse_inode(inode);
1401 struct fuse_file *ff = file->private_data;
1403 * file may be written through mmap, so chain it onto the
1404 * inodes's write_file list
1406 spin_lock(&fc->lock);
1407 if (list_empty(&ff->write_entry))
1408 list_add(&ff->write_entry, &fi->write_files);
1409 spin_unlock(&fc->lock);
1411 file_accessed(file);
1412 vma->vm_ops = &fuse_file_vm_ops;
1416 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma)
1418 /* Can't provide the coherency needed for MAP_SHARED */
1419 if (vma->vm_flags & VM_MAYSHARE)
1422 invalidate_inode_pages2(file->f_mapping);
1424 return generic_file_mmap(file, vma);
1427 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl,
1428 struct file_lock *fl)
1430 switch (ffl->type) {
1436 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
1437 ffl->end < ffl->start)
1440 fl->fl_start = ffl->start;
1441 fl->fl_end = ffl->end;
1442 fl->fl_pid = ffl->pid;
1448 fl->fl_type = ffl->type;
1452 static void fuse_lk_fill(struct fuse_req *req, struct file *file,
1453 const struct file_lock *fl, int opcode, pid_t pid,
1456 struct inode *inode = file->f_path.dentry->d_inode;
1457 struct fuse_conn *fc = get_fuse_conn(inode);
1458 struct fuse_file *ff = file->private_data;
1459 struct fuse_lk_in *arg = &req->misc.lk_in;
1462 arg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
1463 arg->lk.start = fl->fl_start;
1464 arg->lk.end = fl->fl_end;
1465 arg->lk.type = fl->fl_type;
1468 arg->lk_flags |= FUSE_LK_FLOCK;
1469 req->in.h.opcode = opcode;
1470 req->in.h.nodeid = get_node_id(inode);
1471 req->in.numargs = 1;
1472 req->in.args[0].size = sizeof(*arg);
1473 req->in.args[0].value = arg;
1476 static int fuse_getlk(struct file *file, struct file_lock *fl)
1478 struct inode *inode = file->f_path.dentry->d_inode;
1479 struct fuse_conn *fc = get_fuse_conn(inode);
1480 struct fuse_req *req;
1481 struct fuse_lk_out outarg;
1484 req = fuse_get_req(fc);
1486 return PTR_ERR(req);
1488 fuse_lk_fill(req, file, fl, FUSE_GETLK, 0, 0);
1489 req->out.numargs = 1;
1490 req->out.args[0].size = sizeof(outarg);
1491 req->out.args[0].value = &outarg;
1492 fuse_request_send(fc, req);
1493 err = req->out.h.error;
1494 fuse_put_request(fc, req);
1496 err = convert_fuse_file_lock(&outarg.lk, fl);
1501 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
1503 struct inode *inode = file->f_path.dentry->d_inode;
1504 struct fuse_conn *fc = get_fuse_conn(inode);
1505 struct fuse_req *req;
1506 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
1507 pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0;
1510 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
1511 /* NLM needs asynchronous locks, which we don't support yet */
1515 /* Unlock on close is handled by the flush method */
1516 if (fl->fl_flags & FL_CLOSE)
1519 req = fuse_get_req(fc);
1521 return PTR_ERR(req);
1523 fuse_lk_fill(req, file, fl, opcode, pid, flock);
1524 fuse_request_send(fc, req);
1525 err = req->out.h.error;
1526 /* locking is restartable */
1529 fuse_put_request(fc, req);
1533 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
1535 struct inode *inode = file->f_path.dentry->d_inode;
1536 struct fuse_conn *fc = get_fuse_conn(inode);
1539 if (cmd == F_CANCELLK) {
1541 } else if (cmd == F_GETLK) {
1543 posix_test_lock(file, fl);
1546 err = fuse_getlk(file, fl);
1549 err = posix_lock_file(file, fl, NULL);
1551 err = fuse_setlk(file, fl, 0);
1556 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
1558 struct inode *inode = file->f_path.dentry->d_inode;
1559 struct fuse_conn *fc = get_fuse_conn(inode);
1563 err = flock_lock_file_wait(file, fl);
1565 /* emulate flock with POSIX locks */
1566 fl->fl_owner = (fl_owner_t) file;
1567 err = fuse_setlk(file, fl, 1);
1573 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
1575 struct inode *inode = mapping->host;
1576 struct fuse_conn *fc = get_fuse_conn(inode);
1577 struct fuse_req *req;
1578 struct fuse_bmap_in inarg;
1579 struct fuse_bmap_out outarg;
1582 if (!inode->i_sb->s_bdev || fc->no_bmap)
1585 req = fuse_get_req(fc);
1589 memset(&inarg, 0, sizeof(inarg));
1590 inarg.block = block;
1591 inarg.blocksize = inode->i_sb->s_blocksize;
1592 req->in.h.opcode = FUSE_BMAP;
1593 req->in.h.nodeid = get_node_id(inode);
1594 req->in.numargs = 1;
1595 req->in.args[0].size = sizeof(inarg);
1596 req->in.args[0].value = &inarg;
1597 req->out.numargs = 1;
1598 req->out.args[0].size = sizeof(outarg);
1599 req->out.args[0].value = &outarg;
1600 fuse_request_send(fc, req);
1601 err = req->out.h.error;
1602 fuse_put_request(fc, req);
1606 return err ? 0 : outarg.block;
1609 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int origin)
1612 struct inode *inode = file->f_path.dentry->d_inode;
1614 mutex_lock(&inode->i_mutex);
1615 if (origin != SEEK_CUR || origin != SEEK_SET) {
1616 retval = fuse_update_attributes(inode, NULL, file, NULL);
1623 offset += i_size_read(inode);
1626 offset += file->f_pos;
1629 if (offset >= i_size_read(inode)) {
1635 if (offset >= i_size_read(inode)) {
1639 offset = i_size_read(inode);
1643 if (offset >= 0 && offset <= inode->i_sb->s_maxbytes) {
1644 if (offset != file->f_pos) {
1645 file->f_pos = offset;
1646 file->f_version = 0;
1651 mutex_unlock(&inode->i_mutex);
1655 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov,
1656 unsigned int nr_segs, size_t bytes, bool to_user)
1664 iov_iter_init(&ii, iov, nr_segs, bytes, 0);
1666 while (iov_iter_count(&ii)) {
1667 struct page *page = pages[page_idx++];
1668 size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii));
1674 char __user *uaddr = ii.iov->iov_base + ii.iov_offset;
1675 size_t iov_len = ii.iov->iov_len - ii.iov_offset;
1676 size_t copy = min(todo, iov_len);
1680 left = copy_from_user(kaddr, uaddr, copy);
1682 left = copy_to_user(uaddr, kaddr, copy);
1687 iov_iter_advance(&ii, copy);
1699 * CUSE servers compiled on 32bit broke on 64bit kernels because the
1700 * ABI was defined to be 'struct iovec' which is different on 32bit
1701 * and 64bit. Fortunately we can determine which structure the server
1702 * used from the size of the reply.
1704 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
1705 size_t transferred, unsigned count,
1708 #ifdef CONFIG_COMPAT
1709 if (count * sizeof(struct compat_iovec) == transferred) {
1710 struct compat_iovec *ciov = src;
1714 * With this interface a 32bit server cannot support
1715 * non-compat (i.e. ones coming from 64bit apps) ioctl
1721 for (i = 0; i < count; i++) {
1722 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
1723 dst[i].iov_len = ciov[i].iov_len;
1729 if (count * sizeof(struct iovec) != transferred)
1732 memcpy(dst, src, transferred);
1736 /* Make sure iov_length() won't overflow */
1737 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count)
1740 u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT;
1742 for (n = 0; n < count; n++) {
1743 if (iov->iov_len > (size_t) max)
1745 max -= iov->iov_len;
1750 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
1751 void *src, size_t transferred, unsigned count,
1755 struct fuse_ioctl_iovec *fiov = src;
1757 if (fc->minor < 16) {
1758 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
1762 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
1765 for (i = 0; i < count; i++) {
1766 /* Did the server supply an inappropriate value? */
1767 if (fiov[i].base != (unsigned long) fiov[i].base ||
1768 fiov[i].len != (unsigned long) fiov[i].len)
1771 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
1772 dst[i].iov_len = (size_t) fiov[i].len;
1774 #ifdef CONFIG_COMPAT
1776 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
1777 (compat_size_t) dst[i].iov_len != fiov[i].len))
1787 * For ioctls, there is no generic way to determine how much memory
1788 * needs to be read and/or written. Furthermore, ioctls are allowed
1789 * to dereference the passed pointer, so the parameter requires deep
1790 * copying but FUSE has no idea whatsoever about what to copy in or
1793 * This is solved by allowing FUSE server to retry ioctl with
1794 * necessary in/out iovecs. Let's assume the ioctl implementation
1795 * needs to read in the following structure.
1802 * On the first callout to FUSE server, inarg->in_size and
1803 * inarg->out_size will be NULL; then, the server completes the ioctl
1804 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
1805 * the actual iov array to
1807 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
1809 * which tells FUSE to copy in the requested area and retry the ioctl.
1810 * On the second round, the server has access to the structure and
1811 * from that it can tell what to look for next, so on the invocation,
1812 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
1814 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
1815 * { .iov_base = a.buf, .iov_len = a.buflen } }
1817 * FUSE will copy both struct a and the pointed buffer from the
1818 * process doing the ioctl and retry ioctl with both struct a and the
1821 * This time, FUSE server has everything it needs and completes ioctl
1822 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
1824 * Copying data out works the same way.
1826 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
1827 * automatically initializes in and out iovs by decoding @cmd with
1828 * _IOC_* macros and the server is not allowed to request RETRY. This
1829 * limits ioctl data transfers to well-formed ioctls and is the forced
1830 * behavior for all FUSE servers.
1832 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
1835 struct fuse_file *ff = file->private_data;
1836 struct fuse_conn *fc = ff->fc;
1837 struct fuse_ioctl_in inarg = {
1843 struct fuse_ioctl_out outarg;
1844 struct fuse_req *req = NULL;
1845 struct page **pages = NULL;
1846 struct iovec *iov_page = NULL;
1847 struct iovec *in_iov = NULL, *out_iov = NULL;
1848 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
1849 size_t in_size, out_size, transferred;
1852 #if BITS_PER_LONG == 32
1853 inarg.flags |= FUSE_IOCTL_32BIT;
1855 if (flags & FUSE_IOCTL_COMPAT)
1856 inarg.flags |= FUSE_IOCTL_32BIT;
1859 /* assume all the iovs returned by client always fits in a page */
1860 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
1863 pages = kzalloc(sizeof(pages[0]) * FUSE_MAX_PAGES_PER_REQ, GFP_KERNEL);
1864 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
1865 if (!pages || !iov_page)
1869 * If restricted, initialize IO parameters as encoded in @cmd.
1870 * RETRY from server is not allowed.
1872 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
1873 struct iovec *iov = iov_page;
1875 iov->iov_base = (void __user *)arg;
1876 iov->iov_len = _IOC_SIZE(cmd);
1878 if (_IOC_DIR(cmd) & _IOC_WRITE) {
1883 if (_IOC_DIR(cmd) & _IOC_READ) {
1890 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
1891 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
1894 * Out data can be used either for actual out data or iovs,
1895 * make sure there always is at least one page.
1897 out_size = max_t(size_t, out_size, PAGE_SIZE);
1898 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
1900 /* make sure there are enough buffer pages and init request with them */
1902 if (max_pages > FUSE_MAX_PAGES_PER_REQ)
1904 while (num_pages < max_pages) {
1905 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
1906 if (!pages[num_pages])
1911 req = fuse_get_req(fc);
1917 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
1918 req->num_pages = num_pages;
1920 /* okay, let's send it to the client */
1921 req->in.h.opcode = FUSE_IOCTL;
1922 req->in.h.nodeid = ff->nodeid;
1923 req->in.numargs = 1;
1924 req->in.args[0].size = sizeof(inarg);
1925 req->in.args[0].value = &inarg;
1928 req->in.args[1].size = in_size;
1929 req->in.argpages = 1;
1931 err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size,
1937 req->out.numargs = 2;
1938 req->out.args[0].size = sizeof(outarg);
1939 req->out.args[0].value = &outarg;
1940 req->out.args[1].size = out_size;
1941 req->out.argpages = 1;
1942 req->out.argvar = 1;
1944 fuse_request_send(fc, req);
1945 err = req->out.h.error;
1946 transferred = req->out.args[1].size;
1947 fuse_put_request(fc, req);
1952 /* did it ask for retry? */
1953 if (outarg.flags & FUSE_IOCTL_RETRY) {
1956 /* no retry if in restricted mode */
1958 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
1961 in_iovs = outarg.in_iovs;
1962 out_iovs = outarg.out_iovs;
1965 * Make sure things are in boundary, separate checks
1966 * are to protect against overflow.
1969 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
1970 out_iovs > FUSE_IOCTL_MAX_IOV ||
1971 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
1974 vaddr = kmap_atomic(pages[0], KM_USER0);
1975 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
1976 transferred, in_iovs + out_iovs,
1977 (flags & FUSE_IOCTL_COMPAT) != 0);
1978 kunmap_atomic(vaddr, KM_USER0);
1983 out_iov = in_iov + in_iovs;
1985 err = fuse_verify_ioctl_iov(in_iov, in_iovs);
1989 err = fuse_verify_ioctl_iov(out_iov, out_iovs);
1997 if (transferred > inarg.out_size)
2000 err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true);
2003 fuse_put_request(fc, req);
2004 free_page((unsigned long) iov_page);
2006 __free_page(pages[--num_pages]);
2009 return err ? err : outarg.result;
2011 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2013 static long fuse_file_ioctl_common(struct file *file, unsigned int cmd,
2014 unsigned long arg, unsigned int flags)
2016 struct inode *inode = file->f_dentry->d_inode;
2017 struct fuse_conn *fc = get_fuse_conn(inode);
2019 if (!fuse_allow_task(fc, current))
2022 if (is_bad_inode(inode))
2025 return fuse_do_ioctl(file, cmd, arg, flags);
2028 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2031 return fuse_file_ioctl_common(file, cmd, arg, 0);
2034 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2037 return fuse_file_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2041 * All files which have been polled are linked to RB tree
2042 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2043 * find the matching one.
2045 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2046 struct rb_node **parent_out)
2048 struct rb_node **link = &fc->polled_files.rb_node;
2049 struct rb_node *last = NULL;
2052 struct fuse_file *ff;
2055 ff = rb_entry(last, struct fuse_file, polled_node);
2058 link = &last->rb_left;
2059 else if (kh > ff->kh)
2060 link = &last->rb_right;
2071 * The file is about to be polled. Make sure it's on the polled_files
2072 * RB tree. Note that files once added to the polled_files tree are
2073 * not removed before the file is released. This is because a file
2074 * polled once is likely to be polled again.
2076 static void fuse_register_polled_file(struct fuse_conn *fc,
2077 struct fuse_file *ff)
2079 spin_lock(&fc->lock);
2080 if (RB_EMPTY_NODE(&ff->polled_node)) {
2081 struct rb_node **link, *parent;
2083 link = fuse_find_polled_node(fc, ff->kh, &parent);
2085 rb_link_node(&ff->polled_node, parent, link);
2086 rb_insert_color(&ff->polled_node, &fc->polled_files);
2088 spin_unlock(&fc->lock);
2091 unsigned fuse_file_poll(struct file *file, poll_table *wait)
2093 struct fuse_file *ff = file->private_data;
2094 struct fuse_conn *fc = ff->fc;
2095 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2096 struct fuse_poll_out outarg;
2097 struct fuse_req *req;
2101 return DEFAULT_POLLMASK;
2103 poll_wait(file, &ff->poll_wait, wait);
2106 * Ask for notification iff there's someone waiting for it.
2107 * The client may ignore the flag and always notify.
2109 if (waitqueue_active(&ff->poll_wait)) {
2110 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2111 fuse_register_polled_file(fc, ff);
2114 req = fuse_get_req(fc);
2118 req->in.h.opcode = FUSE_POLL;
2119 req->in.h.nodeid = ff->nodeid;
2120 req->in.numargs = 1;
2121 req->in.args[0].size = sizeof(inarg);
2122 req->in.args[0].value = &inarg;
2123 req->out.numargs = 1;
2124 req->out.args[0].size = sizeof(outarg);
2125 req->out.args[0].value = &outarg;
2126 fuse_request_send(fc, req);
2127 err = req->out.h.error;
2128 fuse_put_request(fc, req);
2131 return outarg.revents;
2132 if (err == -ENOSYS) {
2134 return DEFAULT_POLLMASK;
2138 EXPORT_SYMBOL_GPL(fuse_file_poll);
2141 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2142 * wakes up the poll waiters.
2144 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2145 struct fuse_notify_poll_wakeup_out *outarg)
2147 u64 kh = outarg->kh;
2148 struct rb_node **link;
2150 spin_lock(&fc->lock);
2152 link = fuse_find_polled_node(fc, kh, NULL);
2154 struct fuse_file *ff;
2156 ff = rb_entry(*link, struct fuse_file, polled_node);
2157 wake_up_interruptible_sync(&ff->poll_wait);
2160 spin_unlock(&fc->lock);
2164 static const struct file_operations fuse_file_operations = {
2165 .llseek = fuse_file_llseek,
2166 .read = do_sync_read,
2167 .aio_read = fuse_file_aio_read,
2168 .write = do_sync_write,
2169 .aio_write = fuse_file_aio_write,
2170 .mmap = fuse_file_mmap,
2172 .flush = fuse_flush,
2173 .release = fuse_release,
2174 .fsync = fuse_fsync,
2175 .lock = fuse_file_lock,
2176 .flock = fuse_file_flock,
2177 .splice_read = generic_file_splice_read,
2178 .unlocked_ioctl = fuse_file_ioctl,
2179 .compat_ioctl = fuse_file_compat_ioctl,
2180 .poll = fuse_file_poll,
2183 static const struct file_operations fuse_direct_io_file_operations = {
2184 .llseek = fuse_file_llseek,
2185 .read = fuse_direct_read,
2186 .write = fuse_direct_write,
2187 .mmap = fuse_direct_mmap,
2189 .flush = fuse_flush,
2190 .release = fuse_release,
2191 .fsync = fuse_fsync,
2192 .lock = fuse_file_lock,
2193 .flock = fuse_file_flock,
2194 .unlocked_ioctl = fuse_file_ioctl,
2195 .compat_ioctl = fuse_file_compat_ioctl,
2196 .poll = fuse_file_poll,
2197 /* no splice_read */
2200 static const struct address_space_operations fuse_file_aops = {
2201 .readpage = fuse_readpage,
2202 .writepage = fuse_writepage,
2203 .launder_page = fuse_launder_page,
2204 .write_begin = fuse_write_begin,
2205 .write_end = fuse_write_end,
2206 .readpages = fuse_readpages,
2207 .set_page_dirty = __set_page_dirty_nobuffers,
2211 void fuse_init_file_inode(struct inode *inode)
2213 inode->i_fop = &fuse_file_operations;
2214 inode->i_data.a_ops = &fuse_file_aops;