2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
50 DEFINE_IDA(blk_queue_ida);
53 * For the allocated request tables
55 struct kmem_cache *request_cachep;
58 * For queue allocation
60 struct kmem_cache *blk_requestq_cachep;
63 * Controlling structure to kblockd
65 static struct workqueue_struct *kblockd_workqueue;
67 static void blk_clear_congested(struct request_list *rl, int sync)
69 #ifdef CONFIG_CGROUP_WRITEBACK
70 clear_wb_congested(rl->blkg->wb_congested, sync);
73 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
74 * flip its congestion state for events on other blkcgs.
76 if (rl == &rl->q->root_rl)
77 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
81 static void blk_set_congested(struct request_list *rl, int sync)
83 #ifdef CONFIG_CGROUP_WRITEBACK
84 set_wb_congested(rl->blkg->wb_congested, sync);
86 /* see blk_clear_congested() */
87 if (rl == &rl->q->root_rl)
88 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
92 void blk_queue_congestion_threshold(struct request_queue *q)
96 nr = q->nr_requests - (q->nr_requests / 8) + 1;
97 if (nr > q->nr_requests)
99 q->nr_congestion_on = nr;
101 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 q->nr_congestion_off = nr;
108 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111 * Locates the passed device's request queue and returns the address of its
112 * backing_dev_info. This function can only be called if @bdev is opened
113 * and the return value is never NULL.
115 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117 struct request_queue *q = bdev_get_queue(bdev);
119 return &q->backing_dev_info;
121 EXPORT_SYMBOL(blk_get_backing_dev_info);
123 void blk_rq_init(struct request_queue *q, struct request *rq)
125 memset(rq, 0, sizeof(*rq));
127 INIT_LIST_HEAD(&rq->queuelist);
128 INIT_LIST_HEAD(&rq->timeout_list);
131 rq->__sector = (sector_t) -1;
132 INIT_HLIST_NODE(&rq->hash);
133 RB_CLEAR_NODE(&rq->rb_node);
135 rq->cmd_len = BLK_MAX_CDB;
137 rq->start_time = jiffies;
138 set_start_time_ns(rq);
141 EXPORT_SYMBOL(blk_rq_init);
143 static void req_bio_endio(struct request *rq, struct bio *bio,
144 unsigned int nbytes, int error)
147 bio->bi_error = error;
149 if (unlikely(rq->rq_flags & RQF_QUIET))
150 bio_set_flag(bio, BIO_QUIET);
152 bio_advance(bio, nbytes);
154 /* don't actually finish bio if it's part of flush sequence */
155 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
159 void blk_dump_rq_flags(struct request *rq, char *msg)
163 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
164 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
165 (unsigned long long) rq->cmd_flags);
167 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
168 (unsigned long long)blk_rq_pos(rq),
169 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
170 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
171 rq->bio, rq->biotail, blk_rq_bytes(rq));
173 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
174 printk(KERN_INFO " cdb: ");
175 for (bit = 0; bit < BLK_MAX_CDB; bit++)
176 printk("%02x ", rq->cmd[bit]);
180 EXPORT_SYMBOL(blk_dump_rq_flags);
182 static void blk_delay_work(struct work_struct *work)
184 struct request_queue *q;
186 q = container_of(work, struct request_queue, delay_work.work);
187 spin_lock_irq(q->queue_lock);
189 spin_unlock_irq(q->queue_lock);
193 * blk_delay_queue - restart queueing after defined interval
194 * @q: The &struct request_queue in question
195 * @msecs: Delay in msecs
198 * Sometimes queueing needs to be postponed for a little while, to allow
199 * resources to come back. This function will make sure that queueing is
200 * restarted around the specified time. Queue lock must be held.
202 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
204 if (likely(!blk_queue_dead(q)))
205 queue_delayed_work(kblockd_workqueue, &q->delay_work,
206 msecs_to_jiffies(msecs));
208 EXPORT_SYMBOL(blk_delay_queue);
211 * blk_start_queue_async - asynchronously restart a previously stopped queue
212 * @q: The &struct request_queue in question
215 * blk_start_queue_async() will clear the stop flag on the queue, and
216 * ensure that the request_fn for the queue is run from an async
219 void blk_start_queue_async(struct request_queue *q)
221 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
222 blk_run_queue_async(q);
224 EXPORT_SYMBOL(blk_start_queue_async);
227 * blk_start_queue - restart a previously stopped queue
228 * @q: The &struct request_queue in question
231 * blk_start_queue() will clear the stop flag on the queue, and call
232 * the request_fn for the queue if it was in a stopped state when
233 * entered. Also see blk_stop_queue(). Queue lock must be held.
235 void blk_start_queue(struct request_queue *q)
237 WARN_ON(!irqs_disabled());
239 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
242 EXPORT_SYMBOL(blk_start_queue);
245 * blk_stop_queue - stop a queue
246 * @q: The &struct request_queue in question
249 * The Linux block layer assumes that a block driver will consume all
250 * entries on the request queue when the request_fn strategy is called.
251 * Often this will not happen, because of hardware limitations (queue
252 * depth settings). If a device driver gets a 'queue full' response,
253 * or if it simply chooses not to queue more I/O at one point, it can
254 * call this function to prevent the request_fn from being called until
255 * the driver has signalled it's ready to go again. This happens by calling
256 * blk_start_queue() to restart queue operations. Queue lock must be held.
258 void blk_stop_queue(struct request_queue *q)
260 cancel_delayed_work(&q->delay_work);
261 queue_flag_set(QUEUE_FLAG_STOPPED, q);
263 EXPORT_SYMBOL(blk_stop_queue);
266 * blk_sync_queue - cancel any pending callbacks on a queue
270 * The block layer may perform asynchronous callback activity
271 * on a queue, such as calling the unplug function after a timeout.
272 * A block device may call blk_sync_queue to ensure that any
273 * such activity is cancelled, thus allowing it to release resources
274 * that the callbacks might use. The caller must already have made sure
275 * that its ->make_request_fn will not re-add plugging prior to calling
278 * This function does not cancel any asynchronous activity arising
279 * out of elevator or throttling code. That would require elevator_exit()
280 * and blkcg_exit_queue() to be called with queue lock initialized.
283 void blk_sync_queue(struct request_queue *q)
285 del_timer_sync(&q->timeout);
288 struct blk_mq_hw_ctx *hctx;
291 queue_for_each_hw_ctx(q, hctx, i) {
292 cancel_work_sync(&hctx->run_work);
293 cancel_delayed_work_sync(&hctx->delay_work);
296 cancel_delayed_work_sync(&q->delay_work);
299 EXPORT_SYMBOL(blk_sync_queue);
302 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
303 * @q: The queue to run
306 * Invoke request handling on a queue if there are any pending requests.
307 * May be used to restart request handling after a request has completed.
308 * This variant runs the queue whether or not the queue has been
309 * stopped. Must be called with the queue lock held and interrupts
310 * disabled. See also @blk_run_queue.
312 inline void __blk_run_queue_uncond(struct request_queue *q)
314 if (unlikely(blk_queue_dead(q)))
318 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
319 * the queue lock internally. As a result multiple threads may be
320 * running such a request function concurrently. Keep track of the
321 * number of active request_fn invocations such that blk_drain_queue()
322 * can wait until all these request_fn calls have finished.
324 q->request_fn_active++;
326 q->request_fn_active--;
328 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
331 * __blk_run_queue - run a single device queue
332 * @q: The queue to run
335 * See @blk_run_queue. This variant must be called with the queue lock
336 * held and interrupts disabled.
338 void __blk_run_queue(struct request_queue *q)
340 if (unlikely(blk_queue_stopped(q)))
343 __blk_run_queue_uncond(q);
345 EXPORT_SYMBOL(__blk_run_queue);
348 * blk_run_queue_async - run a single device queue in workqueue context
349 * @q: The queue to run
352 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
353 * of us. The caller must hold the queue lock.
355 void blk_run_queue_async(struct request_queue *q)
357 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
358 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
360 EXPORT_SYMBOL(blk_run_queue_async);
363 * blk_run_queue - run a single device queue
364 * @q: The queue to run
367 * Invoke request handling on this queue, if it has pending work to do.
368 * May be used to restart queueing when a request has completed.
370 void blk_run_queue(struct request_queue *q)
374 spin_lock_irqsave(q->queue_lock, flags);
376 spin_unlock_irqrestore(q->queue_lock, flags);
378 EXPORT_SYMBOL(blk_run_queue);
380 void blk_put_queue(struct request_queue *q)
382 kobject_put(&q->kobj);
384 EXPORT_SYMBOL(blk_put_queue);
387 * __blk_drain_queue - drain requests from request_queue
389 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
391 * Drain requests from @q. If @drain_all is set, all requests are drained.
392 * If not, only ELVPRIV requests are drained. The caller is responsible
393 * for ensuring that no new requests which need to be drained are queued.
395 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
396 __releases(q->queue_lock)
397 __acquires(q->queue_lock)
401 lockdep_assert_held(q->queue_lock);
407 * The caller might be trying to drain @q before its
408 * elevator is initialized.
411 elv_drain_elevator(q);
413 blkcg_drain_queue(q);
416 * This function might be called on a queue which failed
417 * driver init after queue creation or is not yet fully
418 * active yet. Some drivers (e.g. fd and loop) get unhappy
419 * in such cases. Kick queue iff dispatch queue has
420 * something on it and @q has request_fn set.
422 if (!list_empty(&q->queue_head) && q->request_fn)
425 drain |= q->nr_rqs_elvpriv;
426 drain |= q->request_fn_active;
429 * Unfortunately, requests are queued at and tracked from
430 * multiple places and there's no single counter which can
431 * be drained. Check all the queues and counters.
434 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
435 drain |= !list_empty(&q->queue_head);
436 for (i = 0; i < 2; i++) {
437 drain |= q->nr_rqs[i];
438 drain |= q->in_flight[i];
440 drain |= !list_empty(&fq->flush_queue[i]);
447 spin_unlock_irq(q->queue_lock);
451 spin_lock_irq(q->queue_lock);
455 * With queue marked dead, any woken up waiter will fail the
456 * allocation path, so the wakeup chaining is lost and we're
457 * left with hung waiters. We need to wake up those waiters.
460 struct request_list *rl;
462 blk_queue_for_each_rl(rl, q)
463 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
464 wake_up_all(&rl->wait[i]);
469 * blk_queue_bypass_start - enter queue bypass mode
470 * @q: queue of interest
472 * In bypass mode, only the dispatch FIFO queue of @q is used. This
473 * function makes @q enter bypass mode and drains all requests which were
474 * throttled or issued before. On return, it's guaranteed that no request
475 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
476 * inside queue or RCU read lock.
478 void blk_queue_bypass_start(struct request_queue *q)
480 spin_lock_irq(q->queue_lock);
482 queue_flag_set(QUEUE_FLAG_BYPASS, q);
483 spin_unlock_irq(q->queue_lock);
486 * Queues start drained. Skip actual draining till init is
487 * complete. This avoids lenghty delays during queue init which
488 * can happen many times during boot.
490 if (blk_queue_init_done(q)) {
491 spin_lock_irq(q->queue_lock);
492 __blk_drain_queue(q, false);
493 spin_unlock_irq(q->queue_lock);
495 /* ensure blk_queue_bypass() is %true inside RCU read lock */
499 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
502 * blk_queue_bypass_end - leave queue bypass mode
503 * @q: queue of interest
505 * Leave bypass mode and restore the normal queueing behavior.
507 void blk_queue_bypass_end(struct request_queue *q)
509 spin_lock_irq(q->queue_lock);
510 if (!--q->bypass_depth)
511 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
512 WARN_ON_ONCE(q->bypass_depth < 0);
513 spin_unlock_irq(q->queue_lock);
515 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
517 void blk_set_queue_dying(struct request_queue *q)
519 spin_lock_irq(q->queue_lock);
520 queue_flag_set(QUEUE_FLAG_DYING, q);
521 spin_unlock_irq(q->queue_lock);
524 blk_mq_wake_waiters(q);
526 struct request_list *rl;
528 blk_queue_for_each_rl(rl, q) {
530 wake_up(&rl->wait[BLK_RW_SYNC]);
531 wake_up(&rl->wait[BLK_RW_ASYNC]);
536 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
539 * blk_cleanup_queue - shutdown a request queue
540 * @q: request queue to shutdown
542 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
543 * put it. All future requests will be failed immediately with -ENODEV.
545 void blk_cleanup_queue(struct request_queue *q)
547 spinlock_t *lock = q->queue_lock;
549 /* mark @q DYING, no new request or merges will be allowed afterwards */
550 mutex_lock(&q->sysfs_lock);
551 blk_set_queue_dying(q);
555 * A dying queue is permanently in bypass mode till released. Note
556 * that, unlike blk_queue_bypass_start(), we aren't performing
557 * synchronize_rcu() after entering bypass mode to avoid the delay
558 * as some drivers create and destroy a lot of queues while
559 * probing. This is still safe because blk_release_queue() will be
560 * called only after the queue refcnt drops to zero and nothing,
561 * RCU or not, would be traversing the queue by then.
564 queue_flag_set(QUEUE_FLAG_BYPASS, q);
566 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
567 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
568 queue_flag_set(QUEUE_FLAG_DYING, q);
569 spin_unlock_irq(lock);
570 mutex_unlock(&q->sysfs_lock);
573 * Drain all requests queued before DYING marking. Set DEAD flag to
574 * prevent that q->request_fn() gets invoked after draining finished.
579 __blk_drain_queue(q, true);
580 queue_flag_set(QUEUE_FLAG_DEAD, q);
581 spin_unlock_irq(lock);
583 /* for synchronous bio-based driver finish in-flight integrity i/o */
584 blk_flush_integrity();
586 /* @q won't process any more request, flush async actions */
587 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
591 blk_mq_free_queue(q);
592 percpu_ref_exit(&q->q_usage_counter);
595 if (q->queue_lock != &q->__queue_lock)
596 q->queue_lock = &q->__queue_lock;
597 spin_unlock_irq(lock);
599 bdi_unregister(&q->backing_dev_info);
601 /* @q is and will stay empty, shutdown and put */
604 EXPORT_SYMBOL(blk_cleanup_queue);
606 /* Allocate memory local to the request queue */
607 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
609 int nid = (int)(long)data;
610 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
613 static void free_request_struct(void *element, void *unused)
615 kmem_cache_free(request_cachep, element);
618 int blk_init_rl(struct request_list *rl, struct request_queue *q,
621 if (unlikely(rl->rq_pool))
625 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
626 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
627 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
628 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
630 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
632 (void *)(long)q->node, gfp_mask,
640 void blk_exit_rl(struct request_list *rl)
643 mempool_destroy(rl->rq_pool);
646 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
648 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
650 EXPORT_SYMBOL(blk_alloc_queue);
652 int blk_queue_enter(struct request_queue *q, bool nowait)
657 if (percpu_ref_tryget_live(&q->q_usage_counter))
663 ret = wait_event_interruptible(q->mq_freeze_wq,
664 !atomic_read(&q->mq_freeze_depth) ||
666 if (blk_queue_dying(q))
673 void blk_queue_exit(struct request_queue *q)
675 percpu_ref_put(&q->q_usage_counter);
678 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
680 struct request_queue *q =
681 container_of(ref, struct request_queue, q_usage_counter);
683 wake_up_all(&q->mq_freeze_wq);
686 static void blk_rq_timed_out_timer(unsigned long data)
688 struct request_queue *q = (struct request_queue *)data;
690 kblockd_schedule_work(&q->timeout_work);
693 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
695 struct request_queue *q;
698 q = kmem_cache_alloc_node(blk_requestq_cachep,
699 gfp_mask | __GFP_ZERO, node_id);
703 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
707 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
711 q->backing_dev_info.ra_pages =
712 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
713 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
714 q->backing_dev_info.name = "block";
717 err = bdi_init(&q->backing_dev_info);
721 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
722 laptop_mode_timer_fn, (unsigned long) q);
723 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
724 INIT_LIST_HEAD(&q->queue_head);
725 INIT_LIST_HEAD(&q->timeout_list);
726 INIT_LIST_HEAD(&q->icq_list);
727 #ifdef CONFIG_BLK_CGROUP
728 INIT_LIST_HEAD(&q->blkg_list);
730 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
732 kobject_init(&q->kobj, &blk_queue_ktype);
734 mutex_init(&q->sysfs_lock);
735 spin_lock_init(&q->__queue_lock);
738 * By default initialize queue_lock to internal lock and driver can
739 * override it later if need be.
741 q->queue_lock = &q->__queue_lock;
744 * A queue starts its life with bypass turned on to avoid
745 * unnecessary bypass on/off overhead and nasty surprises during
746 * init. The initial bypass will be finished when the queue is
747 * registered by blk_register_queue().
750 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
752 init_waitqueue_head(&q->mq_freeze_wq);
755 * Init percpu_ref in atomic mode so that it's faster to shutdown.
756 * See blk_register_queue() for details.
758 if (percpu_ref_init(&q->q_usage_counter,
759 blk_queue_usage_counter_release,
760 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
763 if (blkcg_init_queue(q))
769 percpu_ref_exit(&q->q_usage_counter);
771 bdi_destroy(&q->backing_dev_info);
773 bioset_free(q->bio_split);
775 ida_simple_remove(&blk_queue_ida, q->id);
777 kmem_cache_free(blk_requestq_cachep, q);
780 EXPORT_SYMBOL(blk_alloc_queue_node);
783 * blk_init_queue - prepare a request queue for use with a block device
784 * @rfn: The function to be called to process requests that have been
785 * placed on the queue.
786 * @lock: Request queue spin lock
789 * If a block device wishes to use the standard request handling procedures,
790 * which sorts requests and coalesces adjacent requests, then it must
791 * call blk_init_queue(). The function @rfn will be called when there
792 * are requests on the queue that need to be processed. If the device
793 * supports plugging, then @rfn may not be called immediately when requests
794 * are available on the queue, but may be called at some time later instead.
795 * Plugged queues are generally unplugged when a buffer belonging to one
796 * of the requests on the queue is needed, or due to memory pressure.
798 * @rfn is not required, or even expected, to remove all requests off the
799 * queue, but only as many as it can handle at a time. If it does leave
800 * requests on the queue, it is responsible for arranging that the requests
801 * get dealt with eventually.
803 * The queue spin lock must be held while manipulating the requests on the
804 * request queue; this lock will be taken also from interrupt context, so irq
805 * disabling is needed for it.
807 * Function returns a pointer to the initialized request queue, or %NULL if
811 * blk_init_queue() must be paired with a blk_cleanup_queue() call
812 * when the block device is deactivated (such as at module unload).
815 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
817 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
819 EXPORT_SYMBOL(blk_init_queue);
821 struct request_queue *
822 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
824 struct request_queue *uninit_q, *q;
826 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
830 q = blk_init_allocated_queue(uninit_q, rfn, lock);
832 blk_cleanup_queue(uninit_q);
836 EXPORT_SYMBOL(blk_init_queue_node);
838 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
840 struct request_queue *
841 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
847 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
851 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
854 INIT_WORK(&q->timeout_work, blk_timeout_work);
856 q->prep_rq_fn = NULL;
857 q->unprep_rq_fn = NULL;
858 q->queue_flags |= QUEUE_FLAG_DEFAULT;
860 /* Override internal queue lock with supplied lock pointer */
862 q->queue_lock = lock;
865 * This also sets hw/phys segments, boundary and size
867 blk_queue_make_request(q, blk_queue_bio);
869 q->sg_reserved_size = INT_MAX;
871 /* Protect q->elevator from elevator_change */
872 mutex_lock(&q->sysfs_lock);
875 if (elevator_init(q, NULL)) {
876 mutex_unlock(&q->sysfs_lock);
880 mutex_unlock(&q->sysfs_lock);
885 blk_free_flush_queue(q->fq);
889 EXPORT_SYMBOL(blk_init_allocated_queue);
891 bool blk_get_queue(struct request_queue *q)
893 if (likely(!blk_queue_dying(q))) {
900 EXPORT_SYMBOL(blk_get_queue);
902 static inline void blk_free_request(struct request_list *rl, struct request *rq)
904 if (rq->rq_flags & RQF_ELVPRIV) {
905 elv_put_request(rl->q, rq);
907 put_io_context(rq->elv.icq->ioc);
910 mempool_free(rq, rl->rq_pool);
914 * ioc_batching returns true if the ioc is a valid batching request and
915 * should be given priority access to a request.
917 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
923 * Make sure the process is able to allocate at least 1 request
924 * even if the batch times out, otherwise we could theoretically
927 return ioc->nr_batch_requests == q->nr_batching ||
928 (ioc->nr_batch_requests > 0
929 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
933 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
934 * will cause the process to be a "batcher" on all queues in the system. This
935 * is the behaviour we want though - once it gets a wakeup it should be given
938 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
940 if (!ioc || ioc_batching(q, ioc))
943 ioc->nr_batch_requests = q->nr_batching;
944 ioc->last_waited = jiffies;
947 static void __freed_request(struct request_list *rl, int sync)
949 struct request_queue *q = rl->q;
951 if (rl->count[sync] < queue_congestion_off_threshold(q))
952 blk_clear_congested(rl, sync);
954 if (rl->count[sync] + 1 <= q->nr_requests) {
955 if (waitqueue_active(&rl->wait[sync]))
956 wake_up(&rl->wait[sync]);
958 blk_clear_rl_full(rl, sync);
963 * A request has just been released. Account for it, update the full and
964 * congestion status, wake up any waiters. Called under q->queue_lock.
966 static void freed_request(struct request_list *rl, bool sync,
967 req_flags_t rq_flags)
969 struct request_queue *q = rl->q;
973 if (rq_flags & RQF_ELVPRIV)
976 __freed_request(rl, sync);
978 if (unlikely(rl->starved[sync ^ 1]))
979 __freed_request(rl, sync ^ 1);
982 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
984 struct request_list *rl;
985 int on_thresh, off_thresh;
987 spin_lock_irq(q->queue_lock);
989 blk_queue_congestion_threshold(q);
990 on_thresh = queue_congestion_on_threshold(q);
991 off_thresh = queue_congestion_off_threshold(q);
993 blk_queue_for_each_rl(rl, q) {
994 if (rl->count[BLK_RW_SYNC] >= on_thresh)
995 blk_set_congested(rl, BLK_RW_SYNC);
996 else if (rl->count[BLK_RW_SYNC] < off_thresh)
997 blk_clear_congested(rl, BLK_RW_SYNC);
999 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1000 blk_set_congested(rl, BLK_RW_ASYNC);
1001 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1002 blk_clear_congested(rl, BLK_RW_ASYNC);
1004 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1005 blk_set_rl_full(rl, BLK_RW_SYNC);
1007 blk_clear_rl_full(rl, BLK_RW_SYNC);
1008 wake_up(&rl->wait[BLK_RW_SYNC]);
1011 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1012 blk_set_rl_full(rl, BLK_RW_ASYNC);
1014 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1015 wake_up(&rl->wait[BLK_RW_ASYNC]);
1019 spin_unlock_irq(q->queue_lock);
1024 * Determine if elevator data should be initialized when allocating the
1025 * request associated with @bio.
1027 static bool blk_rq_should_init_elevator(struct bio *bio)
1033 * Flush requests do not use the elevator so skip initialization.
1034 * This allows a request to share the flush and elevator data.
1036 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
1043 * __get_request - get a free request
1044 * @rl: request list to allocate from
1045 * @op: operation and flags
1046 * @bio: bio to allocate request for (can be %NULL)
1047 * @gfp_mask: allocation mask
1049 * Get a free request from @q. This function may fail under memory
1050 * pressure or if @q is dead.
1052 * Must be called with @q->queue_lock held and,
1053 * Returns ERR_PTR on failure, with @q->queue_lock held.
1054 * Returns request pointer on success, with @q->queue_lock *not held*.
1056 static struct request *__get_request(struct request_list *rl, unsigned int op,
1057 struct bio *bio, gfp_t gfp_mask)
1059 struct request_queue *q = rl->q;
1061 struct elevator_type *et = q->elevator->type;
1062 struct io_context *ioc = rq_ioc(bio);
1063 struct io_cq *icq = NULL;
1064 const bool is_sync = op_is_sync(op);
1066 req_flags_t rq_flags = RQF_ALLOCED;
1068 if (unlikely(blk_queue_dying(q)))
1069 return ERR_PTR(-ENODEV);
1071 may_queue = elv_may_queue(q, op);
1072 if (may_queue == ELV_MQUEUE_NO)
1075 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1076 if (rl->count[is_sync]+1 >= q->nr_requests) {
1078 * The queue will fill after this allocation, so set
1079 * it as full, and mark this process as "batching".
1080 * This process will be allowed to complete a batch of
1081 * requests, others will be blocked.
1083 if (!blk_rl_full(rl, is_sync)) {
1084 ioc_set_batching(q, ioc);
1085 blk_set_rl_full(rl, is_sync);
1087 if (may_queue != ELV_MQUEUE_MUST
1088 && !ioc_batching(q, ioc)) {
1090 * The queue is full and the allocating
1091 * process is not a "batcher", and not
1092 * exempted by the IO scheduler
1094 return ERR_PTR(-ENOMEM);
1098 blk_set_congested(rl, is_sync);
1102 * Only allow batching queuers to allocate up to 50% over the defined
1103 * limit of requests, otherwise we could have thousands of requests
1104 * allocated with any setting of ->nr_requests
1106 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1107 return ERR_PTR(-ENOMEM);
1109 q->nr_rqs[is_sync]++;
1110 rl->count[is_sync]++;
1111 rl->starved[is_sync] = 0;
1114 * Decide whether the new request will be managed by elevator. If
1115 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1116 * prevent the current elevator from being destroyed until the new
1117 * request is freed. This guarantees icq's won't be destroyed and
1118 * makes creating new ones safe.
1120 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1121 * it will be created after releasing queue_lock.
1123 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1124 rq_flags |= RQF_ELVPRIV;
1125 q->nr_rqs_elvpriv++;
1126 if (et->icq_cache && ioc)
1127 icq = ioc_lookup_icq(ioc, q);
1130 if (blk_queue_io_stat(q))
1131 rq_flags |= RQF_IO_STAT;
1132 spin_unlock_irq(q->queue_lock);
1134 /* allocate and init request */
1135 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1140 blk_rq_set_rl(rq, rl);
1141 blk_rq_set_prio(rq, ioc);
1143 rq->rq_flags = rq_flags;
1146 if (rq_flags & RQF_ELVPRIV) {
1147 if (unlikely(et->icq_cache && !icq)) {
1149 icq = ioc_create_icq(ioc, q, gfp_mask);
1155 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1158 /* @rq->elv.icq holds io_context until @rq is freed */
1160 get_io_context(icq->ioc);
1164 * ioc may be NULL here, and ioc_batching will be false. That's
1165 * OK, if the queue is under the request limit then requests need
1166 * not count toward the nr_batch_requests limit. There will always
1167 * be some limit enforced by BLK_BATCH_TIME.
1169 if (ioc_batching(q, ioc))
1170 ioc->nr_batch_requests--;
1172 trace_block_getrq(q, bio, op);
1177 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1178 * and may fail indefinitely under memory pressure and thus
1179 * shouldn't stall IO. Treat this request as !elvpriv. This will
1180 * disturb iosched and blkcg but weird is bettern than dead.
1182 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1183 __func__, dev_name(q->backing_dev_info.dev));
1185 rq->rq_flags &= ~RQF_ELVPRIV;
1188 spin_lock_irq(q->queue_lock);
1189 q->nr_rqs_elvpriv--;
1190 spin_unlock_irq(q->queue_lock);
1195 * Allocation failed presumably due to memory. Undo anything we
1196 * might have messed up.
1198 * Allocating task should really be put onto the front of the wait
1199 * queue, but this is pretty rare.
1201 spin_lock_irq(q->queue_lock);
1202 freed_request(rl, is_sync, rq_flags);
1205 * in the very unlikely event that allocation failed and no
1206 * requests for this direction was pending, mark us starved so that
1207 * freeing of a request in the other direction will notice
1208 * us. another possible fix would be to split the rq mempool into
1212 if (unlikely(rl->count[is_sync] == 0))
1213 rl->starved[is_sync] = 1;
1214 return ERR_PTR(-ENOMEM);
1218 * get_request - get a free request
1219 * @q: request_queue to allocate request from
1220 * @op: operation and flags
1221 * @bio: bio to allocate request for (can be %NULL)
1222 * @gfp_mask: allocation mask
1224 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1225 * this function keeps retrying under memory pressure and fails iff @q is dead.
1227 * Must be called with @q->queue_lock held and,
1228 * Returns ERR_PTR on failure, with @q->queue_lock held.
1229 * Returns request pointer on success, with @q->queue_lock *not held*.
1231 static struct request *get_request(struct request_queue *q, unsigned int op,
1232 struct bio *bio, gfp_t gfp_mask)
1234 const bool is_sync = op_is_sync(op);
1236 struct request_list *rl;
1239 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1241 rq = __get_request(rl, op, bio, gfp_mask);
1245 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1250 /* wait on @rl and retry */
1251 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1252 TASK_UNINTERRUPTIBLE);
1254 trace_block_sleeprq(q, bio, op);
1256 spin_unlock_irq(q->queue_lock);
1260 * After sleeping, we become a "batching" process and will be able
1261 * to allocate at least one request, and up to a big batch of them
1262 * for a small period time. See ioc_batching, ioc_set_batching
1264 ioc_set_batching(q, current->io_context);
1266 spin_lock_irq(q->queue_lock);
1267 finish_wait(&rl->wait[is_sync], &wait);
1272 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1277 BUG_ON(rw != READ && rw != WRITE);
1279 /* create ioc upfront */
1280 create_io_context(gfp_mask, q->node);
1282 spin_lock_irq(q->queue_lock);
1283 rq = get_request(q, rw, NULL, gfp_mask);
1285 spin_unlock_irq(q->queue_lock);
1289 /* q->queue_lock is unlocked at this point */
1291 rq->__sector = (sector_t) -1;
1292 rq->bio = rq->biotail = NULL;
1296 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1299 return blk_mq_alloc_request(q, rw,
1300 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1301 0 : BLK_MQ_REQ_NOWAIT);
1303 return blk_old_get_request(q, rw, gfp_mask);
1305 EXPORT_SYMBOL(blk_get_request);
1308 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1309 * @rq: request to be initialized
1312 void blk_rq_set_block_pc(struct request *rq)
1314 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1315 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1317 EXPORT_SYMBOL(blk_rq_set_block_pc);
1320 * blk_requeue_request - put a request back on queue
1321 * @q: request queue where request should be inserted
1322 * @rq: request to be inserted
1325 * Drivers often keep queueing requests until the hardware cannot accept
1326 * more, when that condition happens we need to put the request back
1327 * on the queue. Must be called with queue lock held.
1329 void blk_requeue_request(struct request_queue *q, struct request *rq)
1331 blk_delete_timer(rq);
1332 blk_clear_rq_complete(rq);
1333 trace_block_rq_requeue(q, rq);
1334 wbt_requeue(q->rq_wb, &rq->issue_stat);
1336 if (rq->rq_flags & RQF_QUEUED)
1337 blk_queue_end_tag(q, rq);
1339 BUG_ON(blk_queued_rq(rq));
1341 elv_requeue_request(q, rq);
1343 EXPORT_SYMBOL(blk_requeue_request);
1345 static void add_acct_request(struct request_queue *q, struct request *rq,
1348 blk_account_io_start(rq, true);
1349 __elv_add_request(q, rq, where);
1352 static void part_round_stats_single(int cpu, struct hd_struct *part,
1357 if (now == part->stamp)
1360 inflight = part_in_flight(part);
1362 __part_stat_add(cpu, part, time_in_queue,
1363 inflight * (now - part->stamp));
1364 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1370 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1371 * @cpu: cpu number for stats access
1372 * @part: target partition
1374 * The average IO queue length and utilisation statistics are maintained
1375 * by observing the current state of the queue length and the amount of
1376 * time it has been in this state for.
1378 * Normally, that accounting is done on IO completion, but that can result
1379 * in more than a second's worth of IO being accounted for within any one
1380 * second, leading to >100% utilisation. To deal with that, we call this
1381 * function to do a round-off before returning the results when reading
1382 * /proc/diskstats. This accounts immediately for all queue usage up to
1383 * the current jiffies and restarts the counters again.
1385 void part_round_stats(int cpu, struct hd_struct *part)
1387 unsigned long now = jiffies;
1390 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1391 part_round_stats_single(cpu, part, now);
1393 EXPORT_SYMBOL_GPL(part_round_stats);
1396 static void blk_pm_put_request(struct request *rq)
1398 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1399 pm_runtime_mark_last_busy(rq->q->dev);
1402 static inline void blk_pm_put_request(struct request *rq) {}
1406 * queue lock must be held
1408 void __blk_put_request(struct request_queue *q, struct request *req)
1410 req_flags_t rq_flags = req->rq_flags;
1416 blk_mq_free_request(req);
1420 blk_pm_put_request(req);
1422 elv_completed_request(q, req);
1424 /* this is a bio leak */
1425 WARN_ON(req->bio != NULL);
1427 wbt_done(q->rq_wb, &req->issue_stat);
1430 * Request may not have originated from ll_rw_blk. if not,
1431 * it didn't come out of our reserved rq pools
1433 if (rq_flags & RQF_ALLOCED) {
1434 struct request_list *rl = blk_rq_rl(req);
1435 bool sync = op_is_sync(req->cmd_flags);
1437 BUG_ON(!list_empty(&req->queuelist));
1438 BUG_ON(ELV_ON_HASH(req));
1440 blk_free_request(rl, req);
1441 freed_request(rl, sync, rq_flags);
1445 EXPORT_SYMBOL_GPL(__blk_put_request);
1447 void blk_put_request(struct request *req)
1449 struct request_queue *q = req->q;
1452 blk_mq_free_request(req);
1454 unsigned long flags;
1456 spin_lock_irqsave(q->queue_lock, flags);
1457 __blk_put_request(q, req);
1458 spin_unlock_irqrestore(q->queue_lock, flags);
1461 EXPORT_SYMBOL(blk_put_request);
1463 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1466 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1468 if (!ll_back_merge_fn(q, req, bio))
1471 trace_block_bio_backmerge(q, req, bio);
1473 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1474 blk_rq_set_mixed_merge(req);
1476 req->biotail->bi_next = bio;
1478 req->__data_len += bio->bi_iter.bi_size;
1479 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1481 blk_account_io_start(req, false);
1485 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1488 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1490 if (!ll_front_merge_fn(q, req, bio))
1493 trace_block_bio_frontmerge(q, req, bio);
1495 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1496 blk_rq_set_mixed_merge(req);
1498 bio->bi_next = req->bio;
1501 req->__sector = bio->bi_iter.bi_sector;
1502 req->__data_len += bio->bi_iter.bi_size;
1503 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1505 blk_account_io_start(req, false);
1510 * blk_attempt_plug_merge - try to merge with %current's plugged list
1511 * @q: request_queue new bio is being queued at
1512 * @bio: new bio being queued
1513 * @request_count: out parameter for number of traversed plugged requests
1514 * @same_queue_rq: pointer to &struct request that gets filled in when
1515 * another request associated with @q is found on the plug list
1516 * (optional, may be %NULL)
1518 * Determine whether @bio being queued on @q can be merged with a request
1519 * on %current's plugged list. Returns %true if merge was successful,
1522 * Plugging coalesces IOs from the same issuer for the same purpose without
1523 * going through @q->queue_lock. As such it's more of an issuing mechanism
1524 * than scheduling, and the request, while may have elvpriv data, is not
1525 * added on the elevator at this point. In addition, we don't have
1526 * reliable access to the elevator outside queue lock. Only check basic
1527 * merging parameters without querying the elevator.
1529 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1531 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1532 unsigned int *request_count,
1533 struct request **same_queue_rq)
1535 struct blk_plug *plug;
1538 struct list_head *plug_list;
1540 plug = current->plug;
1546 plug_list = &plug->mq_list;
1548 plug_list = &plug->list;
1550 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1556 * Only blk-mq multiple hardware queues case checks the
1557 * rq in the same queue, there should be only one such
1561 *same_queue_rq = rq;
1564 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1567 el_ret = blk_try_merge(rq, bio);
1568 if (el_ret == ELEVATOR_BACK_MERGE) {
1569 ret = bio_attempt_back_merge(q, rq, bio);
1572 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1573 ret = bio_attempt_front_merge(q, rq, bio);
1582 unsigned int blk_plug_queued_count(struct request_queue *q)
1584 struct blk_plug *plug;
1586 struct list_head *plug_list;
1587 unsigned int ret = 0;
1589 plug = current->plug;
1594 plug_list = &plug->mq_list;
1596 plug_list = &plug->list;
1598 list_for_each_entry(rq, plug_list, queuelist) {
1606 void init_request_from_bio(struct request *req, struct bio *bio)
1608 req->cmd_type = REQ_TYPE_FS;
1609 if (bio->bi_opf & REQ_RAHEAD)
1610 req->cmd_flags |= REQ_FAILFAST_MASK;
1613 req->__sector = bio->bi_iter.bi_sector;
1614 if (ioprio_valid(bio_prio(bio)))
1615 req->ioprio = bio_prio(bio);
1616 blk_rq_bio_prep(req->q, req, bio);
1619 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1621 struct blk_plug *plug;
1622 int el_ret, where = ELEVATOR_INSERT_SORT;
1623 struct request *req;
1624 unsigned int request_count = 0;
1625 unsigned int wb_acct;
1628 * low level driver can indicate that it wants pages above a
1629 * certain limit bounced to low memory (ie for highmem, or even
1630 * ISA dma in theory)
1632 blk_queue_bounce(q, &bio);
1634 blk_queue_split(q, &bio, q->bio_split);
1636 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1637 bio->bi_error = -EIO;
1639 return BLK_QC_T_NONE;
1642 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
1643 spin_lock_irq(q->queue_lock);
1644 where = ELEVATOR_INSERT_FLUSH;
1649 * Check if we can merge with the plugged list before grabbing
1652 if (!blk_queue_nomerges(q)) {
1653 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1654 return BLK_QC_T_NONE;
1656 request_count = blk_plug_queued_count(q);
1658 spin_lock_irq(q->queue_lock);
1660 el_ret = elv_merge(q, &req, bio);
1661 if (el_ret == ELEVATOR_BACK_MERGE) {
1662 if (bio_attempt_back_merge(q, req, bio)) {
1663 elv_bio_merged(q, req, bio);
1664 if (!attempt_back_merge(q, req))
1665 elv_merged_request(q, req, el_ret);
1668 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1669 if (bio_attempt_front_merge(q, req, bio)) {
1670 elv_bio_merged(q, req, bio);
1671 if (!attempt_front_merge(q, req))
1672 elv_merged_request(q, req, el_ret);
1678 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1681 * Grab a free request. This is might sleep but can not fail.
1682 * Returns with the queue unlocked.
1684 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1686 __wbt_done(q->rq_wb, wb_acct);
1687 bio->bi_error = PTR_ERR(req);
1692 wbt_track(&req->issue_stat, wb_acct);
1695 * After dropping the lock and possibly sleeping here, our request
1696 * may now be mergeable after it had proven unmergeable (above).
1697 * We don't worry about that case for efficiency. It won't happen
1698 * often, and the elevators are able to handle it.
1700 init_request_from_bio(req, bio);
1702 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1703 req->cpu = raw_smp_processor_id();
1705 plug = current->plug;
1708 * If this is the first request added after a plug, fire
1711 * @request_count may become stale because of schedule
1712 * out, so check plug list again.
1714 if (!request_count || list_empty(&plug->list))
1715 trace_block_plug(q);
1717 struct request *last = list_entry_rq(plug->list.prev);
1718 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1719 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1720 blk_flush_plug_list(plug, false);
1721 trace_block_plug(q);
1724 list_add_tail(&req->queuelist, &plug->list);
1725 blk_account_io_start(req, true);
1727 spin_lock_irq(q->queue_lock);
1728 add_acct_request(q, req, where);
1731 spin_unlock_irq(q->queue_lock);
1734 return BLK_QC_T_NONE;
1738 * If bio->bi_dev is a partition, remap the location
1740 static inline void blk_partition_remap(struct bio *bio)
1742 struct block_device *bdev = bio->bi_bdev;
1745 * Zone reset does not include bi_size so bio_sectors() is always 0.
1746 * Include a test for the reset op code and perform the remap if needed.
1748 if (bdev != bdev->bd_contains &&
1749 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1750 struct hd_struct *p = bdev->bd_part;
1752 bio->bi_iter.bi_sector += p->start_sect;
1753 bio->bi_bdev = bdev->bd_contains;
1755 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1757 bio->bi_iter.bi_sector - p->start_sect);
1761 static void handle_bad_sector(struct bio *bio)
1763 char b[BDEVNAME_SIZE];
1765 printk(KERN_INFO "attempt to access beyond end of device\n");
1766 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1767 bdevname(bio->bi_bdev, b),
1769 (unsigned long long)bio_end_sector(bio),
1770 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1773 #ifdef CONFIG_FAIL_MAKE_REQUEST
1775 static DECLARE_FAULT_ATTR(fail_make_request);
1777 static int __init setup_fail_make_request(char *str)
1779 return setup_fault_attr(&fail_make_request, str);
1781 __setup("fail_make_request=", setup_fail_make_request);
1783 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1785 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1788 static int __init fail_make_request_debugfs(void)
1790 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1791 NULL, &fail_make_request);
1793 return PTR_ERR_OR_ZERO(dir);
1796 late_initcall(fail_make_request_debugfs);
1798 #else /* CONFIG_FAIL_MAKE_REQUEST */
1800 static inline bool should_fail_request(struct hd_struct *part,
1806 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1809 * Check whether this bio extends beyond the end of the device.
1811 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1818 /* Test device or partition size, when known. */
1819 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1821 sector_t sector = bio->bi_iter.bi_sector;
1823 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1825 * This may well happen - the kernel calls bread()
1826 * without checking the size of the device, e.g., when
1827 * mounting a device.
1829 handle_bad_sector(bio);
1837 static noinline_for_stack bool
1838 generic_make_request_checks(struct bio *bio)
1840 struct request_queue *q;
1841 int nr_sectors = bio_sectors(bio);
1843 char b[BDEVNAME_SIZE];
1844 struct hd_struct *part;
1848 if (bio_check_eod(bio, nr_sectors))
1851 q = bdev_get_queue(bio->bi_bdev);
1854 "generic_make_request: Trying to access "
1855 "nonexistent block-device %s (%Lu)\n",
1856 bdevname(bio->bi_bdev, b),
1857 (long long) bio->bi_iter.bi_sector);
1861 part = bio->bi_bdev->bd_part;
1862 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1863 should_fail_request(&part_to_disk(part)->part0,
1864 bio->bi_iter.bi_size))
1868 * If this device has partitions, remap block n
1869 * of partition p to block n+start(p) of the disk.
1871 blk_partition_remap(bio);
1873 if (bio_check_eod(bio, nr_sectors))
1877 * Filter flush bio's early so that make_request based
1878 * drivers without flush support don't have to worry
1881 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1882 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1883 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1890 switch (bio_op(bio)) {
1891 case REQ_OP_DISCARD:
1892 if (!blk_queue_discard(q))
1895 case REQ_OP_SECURE_ERASE:
1896 if (!blk_queue_secure_erase(q))
1899 case REQ_OP_WRITE_SAME:
1900 if (!bdev_write_same(bio->bi_bdev))
1903 case REQ_OP_ZONE_REPORT:
1904 case REQ_OP_ZONE_RESET:
1905 if (!bdev_is_zoned(bio->bi_bdev))
1908 case REQ_OP_WRITE_ZEROES:
1909 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1917 * Various block parts want %current->io_context and lazy ioc
1918 * allocation ends up trading a lot of pain for a small amount of
1919 * memory. Just allocate it upfront. This may fail and block
1920 * layer knows how to live with it.
1922 create_io_context(GFP_ATOMIC, q->node);
1924 if (!blkcg_bio_issue_check(q, bio))
1927 trace_block_bio_queue(q, bio);
1933 bio->bi_error = err;
1939 * generic_make_request - hand a buffer to its device driver for I/O
1940 * @bio: The bio describing the location in memory and on the device.
1942 * generic_make_request() is used to make I/O requests of block
1943 * devices. It is passed a &struct bio, which describes the I/O that needs
1946 * generic_make_request() does not return any status. The
1947 * success/failure status of the request, along with notification of
1948 * completion, is delivered asynchronously through the bio->bi_end_io
1949 * function described (one day) else where.
1951 * The caller of generic_make_request must make sure that bi_io_vec
1952 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1953 * set to describe the device address, and the
1954 * bi_end_io and optionally bi_private are set to describe how
1955 * completion notification should be signaled.
1957 * generic_make_request and the drivers it calls may use bi_next if this
1958 * bio happens to be merged with someone else, and may resubmit the bio to
1959 * a lower device by calling into generic_make_request recursively, which
1960 * means the bio should NOT be touched after the call to ->make_request_fn.
1962 blk_qc_t generic_make_request(struct bio *bio)
1964 struct bio_list bio_list_on_stack;
1965 blk_qc_t ret = BLK_QC_T_NONE;
1967 if (!generic_make_request_checks(bio))
1971 * We only want one ->make_request_fn to be active at a time, else
1972 * stack usage with stacked devices could be a problem. So use
1973 * current->bio_list to keep a list of requests submited by a
1974 * make_request_fn function. current->bio_list is also used as a
1975 * flag to say if generic_make_request is currently active in this
1976 * task or not. If it is NULL, then no make_request is active. If
1977 * it is non-NULL, then a make_request is active, and new requests
1978 * should be added at the tail
1980 if (current->bio_list) {
1981 bio_list_add(current->bio_list, bio);
1985 /* following loop may be a bit non-obvious, and so deserves some
1987 * Before entering the loop, bio->bi_next is NULL (as all callers
1988 * ensure that) so we have a list with a single bio.
1989 * We pretend that we have just taken it off a longer list, so
1990 * we assign bio_list to a pointer to the bio_list_on_stack,
1991 * thus initialising the bio_list of new bios to be
1992 * added. ->make_request() may indeed add some more bios
1993 * through a recursive call to generic_make_request. If it
1994 * did, we find a non-NULL value in bio_list and re-enter the loop
1995 * from the top. In this case we really did just take the bio
1996 * of the top of the list (no pretending) and so remove it from
1997 * bio_list, and call into ->make_request() again.
1999 BUG_ON(bio->bi_next);
2000 bio_list_init(&bio_list_on_stack);
2001 current->bio_list = &bio_list_on_stack;
2003 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2005 if (likely(blk_queue_enter(q, false) == 0)) {
2006 ret = q->make_request_fn(q, bio);
2010 bio = bio_list_pop(current->bio_list);
2012 struct bio *bio_next = bio_list_pop(current->bio_list);
2018 current->bio_list = NULL; /* deactivate */
2023 EXPORT_SYMBOL(generic_make_request);
2026 * submit_bio - submit a bio to the block device layer for I/O
2027 * @bio: The &struct bio which describes the I/O
2029 * submit_bio() is very similar in purpose to generic_make_request(), and
2030 * uses that function to do most of the work. Both are fairly rough
2031 * interfaces; @bio must be presetup and ready for I/O.
2034 blk_qc_t submit_bio(struct bio *bio)
2037 * If it's a regular read/write or a barrier with data attached,
2038 * go through the normal accounting stuff before submission.
2040 if (bio_has_data(bio)) {
2043 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2044 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2046 count = bio_sectors(bio);
2048 if (op_is_write(bio_op(bio))) {
2049 count_vm_events(PGPGOUT, count);
2051 task_io_account_read(bio->bi_iter.bi_size);
2052 count_vm_events(PGPGIN, count);
2055 if (unlikely(block_dump)) {
2056 char b[BDEVNAME_SIZE];
2057 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2058 current->comm, task_pid_nr(current),
2059 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2060 (unsigned long long)bio->bi_iter.bi_sector,
2061 bdevname(bio->bi_bdev, b),
2066 return generic_make_request(bio);
2068 EXPORT_SYMBOL(submit_bio);
2071 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2072 * for new the queue limits
2074 * @rq: the request being checked
2077 * @rq may have been made based on weaker limitations of upper-level queues
2078 * in request stacking drivers, and it may violate the limitation of @q.
2079 * Since the block layer and the underlying device driver trust @rq
2080 * after it is inserted to @q, it should be checked against @q before
2081 * the insertion using this generic function.
2083 * Request stacking drivers like request-based dm may change the queue
2084 * limits when retrying requests on other queues. Those requests need
2085 * to be checked against the new queue limits again during dispatch.
2087 static int blk_cloned_rq_check_limits(struct request_queue *q,
2090 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2091 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2096 * queue's settings related to segment counting like q->bounce_pfn
2097 * may differ from that of other stacking queues.
2098 * Recalculate it to check the request correctly on this queue's
2101 blk_recalc_rq_segments(rq);
2102 if (rq->nr_phys_segments > queue_max_segments(q)) {
2103 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2111 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2112 * @q: the queue to submit the request
2113 * @rq: the request being queued
2115 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2117 unsigned long flags;
2118 int where = ELEVATOR_INSERT_BACK;
2120 if (blk_cloned_rq_check_limits(q, rq))
2124 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2128 if (blk_queue_io_stat(q))
2129 blk_account_io_start(rq, true);
2130 blk_mq_insert_request(rq, false, true, false);
2134 spin_lock_irqsave(q->queue_lock, flags);
2135 if (unlikely(blk_queue_dying(q))) {
2136 spin_unlock_irqrestore(q->queue_lock, flags);
2141 * Submitting request must be dequeued before calling this function
2142 * because it will be linked to another request_queue
2144 BUG_ON(blk_queued_rq(rq));
2146 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2147 where = ELEVATOR_INSERT_FLUSH;
2149 add_acct_request(q, rq, where);
2150 if (where == ELEVATOR_INSERT_FLUSH)
2152 spin_unlock_irqrestore(q->queue_lock, flags);
2156 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2159 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2160 * @rq: request to examine
2163 * A request could be merge of IOs which require different failure
2164 * handling. This function determines the number of bytes which
2165 * can be failed from the beginning of the request without
2166 * crossing into area which need to be retried further.
2169 * The number of bytes to fail.
2172 * queue_lock must be held.
2174 unsigned int blk_rq_err_bytes(const struct request *rq)
2176 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2177 unsigned int bytes = 0;
2180 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2181 return blk_rq_bytes(rq);
2184 * Currently the only 'mixing' which can happen is between
2185 * different fastfail types. We can safely fail portions
2186 * which have all the failfast bits that the first one has -
2187 * the ones which are at least as eager to fail as the first
2190 for (bio = rq->bio; bio; bio = bio->bi_next) {
2191 if ((bio->bi_opf & ff) != ff)
2193 bytes += bio->bi_iter.bi_size;
2196 /* this could lead to infinite loop */
2197 BUG_ON(blk_rq_bytes(rq) && !bytes);
2200 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2202 void blk_account_io_completion(struct request *req, unsigned int bytes)
2204 if (blk_do_io_stat(req)) {
2205 const int rw = rq_data_dir(req);
2206 struct hd_struct *part;
2209 cpu = part_stat_lock();
2211 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2216 void blk_account_io_done(struct request *req)
2219 * Account IO completion. flush_rq isn't accounted as a
2220 * normal IO on queueing nor completion. Accounting the
2221 * containing request is enough.
2223 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2224 unsigned long duration = jiffies - req->start_time;
2225 const int rw = rq_data_dir(req);
2226 struct hd_struct *part;
2229 cpu = part_stat_lock();
2232 part_stat_inc(cpu, part, ios[rw]);
2233 part_stat_add(cpu, part, ticks[rw], duration);
2234 part_round_stats(cpu, part);
2235 part_dec_in_flight(part, rw);
2237 hd_struct_put(part);
2244 * Don't process normal requests when queue is suspended
2245 * or in the process of suspending/resuming
2247 static struct request *blk_pm_peek_request(struct request_queue *q,
2250 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2251 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2257 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2264 void blk_account_io_start(struct request *rq, bool new_io)
2266 struct hd_struct *part;
2267 int rw = rq_data_dir(rq);
2270 if (!blk_do_io_stat(rq))
2273 cpu = part_stat_lock();
2277 part_stat_inc(cpu, part, merges[rw]);
2279 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2280 if (!hd_struct_try_get(part)) {
2282 * The partition is already being removed,
2283 * the request will be accounted on the disk only
2285 * We take a reference on disk->part0 although that
2286 * partition will never be deleted, so we can treat
2287 * it as any other partition.
2289 part = &rq->rq_disk->part0;
2290 hd_struct_get(part);
2292 part_round_stats(cpu, part);
2293 part_inc_in_flight(part, rw);
2301 * blk_peek_request - peek at the top of a request queue
2302 * @q: request queue to peek at
2305 * Return the request at the top of @q. The returned request
2306 * should be started using blk_start_request() before LLD starts
2310 * Pointer to the request at the top of @q if available. Null
2314 * queue_lock must be held.
2316 struct request *blk_peek_request(struct request_queue *q)
2321 while ((rq = __elv_next_request(q)) != NULL) {
2323 rq = blk_pm_peek_request(q, rq);
2327 if (!(rq->rq_flags & RQF_STARTED)) {
2329 * This is the first time the device driver
2330 * sees this request (possibly after
2331 * requeueing). Notify IO scheduler.
2333 if (rq->rq_flags & RQF_SORTED)
2334 elv_activate_rq(q, rq);
2337 * just mark as started even if we don't start
2338 * it, a request that has been delayed should
2339 * not be passed by new incoming requests
2341 rq->rq_flags |= RQF_STARTED;
2342 trace_block_rq_issue(q, rq);
2345 if (!q->boundary_rq || q->boundary_rq == rq) {
2346 q->end_sector = rq_end_sector(rq);
2347 q->boundary_rq = NULL;
2350 if (rq->rq_flags & RQF_DONTPREP)
2353 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2355 * make sure space for the drain appears we
2356 * know we can do this because max_hw_segments
2357 * has been adjusted to be one fewer than the
2360 rq->nr_phys_segments++;
2366 ret = q->prep_rq_fn(q, rq);
2367 if (ret == BLKPREP_OK) {
2369 } else if (ret == BLKPREP_DEFER) {
2371 * the request may have been (partially) prepped.
2372 * we need to keep this request in the front to
2373 * avoid resource deadlock. RQF_STARTED will
2374 * prevent other fs requests from passing this one.
2376 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2377 !(rq->rq_flags & RQF_DONTPREP)) {
2379 * remove the space for the drain we added
2380 * so that we don't add it again
2382 --rq->nr_phys_segments;
2387 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2388 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2390 rq->rq_flags |= RQF_QUIET;
2392 * Mark this request as started so we don't trigger
2393 * any debug logic in the end I/O path.
2395 blk_start_request(rq);
2396 __blk_end_request_all(rq, err);
2398 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2405 EXPORT_SYMBOL(blk_peek_request);
2407 void blk_dequeue_request(struct request *rq)
2409 struct request_queue *q = rq->q;
2411 BUG_ON(list_empty(&rq->queuelist));
2412 BUG_ON(ELV_ON_HASH(rq));
2414 list_del_init(&rq->queuelist);
2417 * the time frame between a request being removed from the lists
2418 * and to it is freed is accounted as io that is in progress at
2421 if (blk_account_rq(rq)) {
2422 q->in_flight[rq_is_sync(rq)]++;
2423 set_io_start_time_ns(rq);
2428 * blk_start_request - start request processing on the driver
2429 * @req: request to dequeue
2432 * Dequeue @req and start timeout timer on it. This hands off the
2433 * request to the driver.
2435 * Block internal functions which don't want to start timer should
2436 * call blk_dequeue_request().
2439 * queue_lock must be held.
2441 void blk_start_request(struct request *req)
2443 blk_dequeue_request(req);
2445 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2446 blk_stat_set_issue_time(&req->issue_stat);
2447 req->rq_flags |= RQF_STATS;
2448 wbt_issue(req->q->rq_wb, &req->issue_stat);
2452 * We are now handing the request to the hardware, initialize
2453 * resid_len to full count and add the timeout handler.
2455 req->resid_len = blk_rq_bytes(req);
2456 if (unlikely(blk_bidi_rq(req)))
2457 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2459 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2462 EXPORT_SYMBOL(blk_start_request);
2465 * blk_fetch_request - fetch a request from a request queue
2466 * @q: request queue to fetch a request from
2469 * Return the request at the top of @q. The request is started on
2470 * return and LLD can start processing it immediately.
2473 * Pointer to the request at the top of @q if available. Null
2477 * queue_lock must be held.
2479 struct request *blk_fetch_request(struct request_queue *q)
2483 rq = blk_peek_request(q);
2485 blk_start_request(rq);
2488 EXPORT_SYMBOL(blk_fetch_request);
2491 * blk_update_request - Special helper function for request stacking drivers
2492 * @req: the request being processed
2493 * @error: %0 for success, < %0 for error
2494 * @nr_bytes: number of bytes to complete @req
2497 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2498 * the request structure even if @req doesn't have leftover.
2499 * If @req has leftover, sets it up for the next range of segments.
2501 * This special helper function is only for request stacking drivers
2502 * (e.g. request-based dm) so that they can handle partial completion.
2503 * Actual device drivers should use blk_end_request instead.
2505 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2506 * %false return from this function.
2509 * %false - this request doesn't have any more data
2510 * %true - this request has more data
2512 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2516 trace_block_rq_complete(req->q, req, nr_bytes);
2522 * For fs requests, rq is just carrier of independent bio's
2523 * and each partial completion should be handled separately.
2524 * Reset per-request error on each partial completion.
2526 * TODO: tj: This is too subtle. It would be better to let
2527 * low level drivers do what they see fit.
2529 if (req->cmd_type == REQ_TYPE_FS)
2532 if (error && req->cmd_type == REQ_TYPE_FS &&
2533 !(req->rq_flags & RQF_QUIET)) {
2538 error_type = "recoverable transport";
2541 error_type = "critical target";
2544 error_type = "critical nexus";
2547 error_type = "timeout";
2550 error_type = "critical space allocation";
2553 error_type = "critical medium";
2560 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2561 __func__, error_type, req->rq_disk ?
2562 req->rq_disk->disk_name : "?",
2563 (unsigned long long)blk_rq_pos(req));
2567 blk_account_io_completion(req, nr_bytes);
2571 struct bio *bio = req->bio;
2572 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2574 if (bio_bytes == bio->bi_iter.bi_size)
2575 req->bio = bio->bi_next;
2577 req_bio_endio(req, bio, bio_bytes, error);
2579 total_bytes += bio_bytes;
2580 nr_bytes -= bio_bytes;
2591 * Reset counters so that the request stacking driver
2592 * can find how many bytes remain in the request
2595 req->__data_len = 0;
2599 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2601 req->__data_len -= total_bytes;
2603 /* update sector only for requests with clear definition of sector */
2604 if (req->cmd_type == REQ_TYPE_FS)
2605 req->__sector += total_bytes >> 9;
2607 /* mixed attributes always follow the first bio */
2608 if (req->rq_flags & RQF_MIXED_MERGE) {
2609 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2610 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2614 * If total number of sectors is less than the first segment
2615 * size, something has gone terribly wrong.
2617 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2618 blk_dump_rq_flags(req, "request botched");
2619 req->__data_len = blk_rq_cur_bytes(req);
2622 /* recalculate the number of segments */
2623 blk_recalc_rq_segments(req);
2627 EXPORT_SYMBOL_GPL(blk_update_request);
2629 static bool blk_update_bidi_request(struct request *rq, int error,
2630 unsigned int nr_bytes,
2631 unsigned int bidi_bytes)
2633 if (blk_update_request(rq, error, nr_bytes))
2636 /* Bidi request must be completed as a whole */
2637 if (unlikely(blk_bidi_rq(rq)) &&
2638 blk_update_request(rq->next_rq, error, bidi_bytes))
2641 if (blk_queue_add_random(rq->q))
2642 add_disk_randomness(rq->rq_disk);
2648 * blk_unprep_request - unprepare a request
2651 * This function makes a request ready for complete resubmission (or
2652 * completion). It happens only after all error handling is complete,
2653 * so represents the appropriate moment to deallocate any resources
2654 * that were allocated to the request in the prep_rq_fn. The queue
2655 * lock is held when calling this.
2657 void blk_unprep_request(struct request *req)
2659 struct request_queue *q = req->q;
2661 req->rq_flags &= ~RQF_DONTPREP;
2662 if (q->unprep_rq_fn)
2663 q->unprep_rq_fn(q, req);
2665 EXPORT_SYMBOL_GPL(blk_unprep_request);
2668 * queue lock must be held
2670 void blk_finish_request(struct request *req, int error)
2672 struct request_queue *q = req->q;
2674 if (req->rq_flags & RQF_STATS)
2675 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2677 if (req->rq_flags & RQF_QUEUED)
2678 blk_queue_end_tag(q, req);
2680 BUG_ON(blk_queued_rq(req));
2682 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2683 laptop_io_completion(&req->q->backing_dev_info);
2685 blk_delete_timer(req);
2687 if (req->rq_flags & RQF_DONTPREP)
2688 blk_unprep_request(req);
2690 blk_account_io_done(req);
2693 wbt_done(req->q->rq_wb, &req->issue_stat);
2694 req->end_io(req, error);
2696 if (blk_bidi_rq(req))
2697 __blk_put_request(req->next_rq->q, req->next_rq);
2699 __blk_put_request(q, req);
2702 EXPORT_SYMBOL(blk_finish_request);
2705 * blk_end_bidi_request - Complete a bidi request
2706 * @rq: the request to complete
2707 * @error: %0 for success, < %0 for error
2708 * @nr_bytes: number of bytes to complete @rq
2709 * @bidi_bytes: number of bytes to complete @rq->next_rq
2712 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2713 * Drivers that supports bidi can safely call this member for any
2714 * type of request, bidi or uni. In the later case @bidi_bytes is
2718 * %false - we are done with this request
2719 * %true - still buffers pending for this request
2721 static bool blk_end_bidi_request(struct request *rq, int error,
2722 unsigned int nr_bytes, unsigned int bidi_bytes)
2724 struct request_queue *q = rq->q;
2725 unsigned long flags;
2727 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2730 spin_lock_irqsave(q->queue_lock, flags);
2731 blk_finish_request(rq, error);
2732 spin_unlock_irqrestore(q->queue_lock, flags);
2738 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2739 * @rq: the request to complete
2740 * @error: %0 for success, < %0 for error
2741 * @nr_bytes: number of bytes to complete @rq
2742 * @bidi_bytes: number of bytes to complete @rq->next_rq
2745 * Identical to blk_end_bidi_request() except that queue lock is
2746 * assumed to be locked on entry and remains so on return.
2749 * %false - we are done with this request
2750 * %true - still buffers pending for this request
2752 bool __blk_end_bidi_request(struct request *rq, int error,
2753 unsigned int nr_bytes, unsigned int bidi_bytes)
2755 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2758 blk_finish_request(rq, error);
2764 * blk_end_request - Helper function for drivers to complete the request.
2765 * @rq: the request being processed
2766 * @error: %0 for success, < %0 for error
2767 * @nr_bytes: number of bytes to complete
2770 * Ends I/O on a number of bytes attached to @rq.
2771 * If @rq has leftover, sets it up for the next range of segments.
2774 * %false - we are done with this request
2775 * %true - still buffers pending for this request
2777 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2779 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2781 EXPORT_SYMBOL(blk_end_request);
2784 * blk_end_request_all - Helper function for drives to finish the request.
2785 * @rq: the request to finish
2786 * @error: %0 for success, < %0 for error
2789 * Completely finish @rq.
2791 void blk_end_request_all(struct request *rq, int error)
2794 unsigned int bidi_bytes = 0;
2796 if (unlikely(blk_bidi_rq(rq)))
2797 bidi_bytes = blk_rq_bytes(rq->next_rq);
2799 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2802 EXPORT_SYMBOL(blk_end_request_all);
2805 * blk_end_request_cur - Helper function to finish the current request chunk.
2806 * @rq: the request to finish the current chunk for
2807 * @error: %0 for success, < %0 for error
2810 * Complete the current consecutively mapped chunk from @rq.
2813 * %false - we are done with this request
2814 * %true - still buffers pending for this request
2816 bool blk_end_request_cur(struct request *rq, int error)
2818 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2820 EXPORT_SYMBOL(blk_end_request_cur);
2823 * blk_end_request_err - Finish a request till the next failure boundary.
2824 * @rq: the request to finish till the next failure boundary for
2825 * @error: must be negative errno
2828 * Complete @rq till the next failure boundary.
2831 * %false - we are done with this request
2832 * %true - still buffers pending for this request
2834 bool blk_end_request_err(struct request *rq, int error)
2836 WARN_ON(error >= 0);
2837 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2839 EXPORT_SYMBOL_GPL(blk_end_request_err);
2842 * __blk_end_request - Helper function for drivers to complete the request.
2843 * @rq: the request being processed
2844 * @error: %0 for success, < %0 for error
2845 * @nr_bytes: number of bytes to complete
2848 * Must be called with queue lock held unlike blk_end_request().
2851 * %false - we are done with this request
2852 * %true - still buffers pending for this request
2854 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2856 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2858 EXPORT_SYMBOL(__blk_end_request);
2861 * __blk_end_request_all - Helper function for drives to finish the request.
2862 * @rq: the request to finish
2863 * @error: %0 for success, < %0 for error
2866 * Completely finish @rq. Must be called with queue lock held.
2868 void __blk_end_request_all(struct request *rq, int error)
2871 unsigned int bidi_bytes = 0;
2873 if (unlikely(blk_bidi_rq(rq)))
2874 bidi_bytes = blk_rq_bytes(rq->next_rq);
2876 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2879 EXPORT_SYMBOL(__blk_end_request_all);
2882 * __blk_end_request_cur - Helper function to finish the current request chunk.
2883 * @rq: the request to finish the current chunk for
2884 * @error: %0 for success, < %0 for error
2887 * Complete the current consecutively mapped chunk from @rq. Must
2888 * be called with queue lock held.
2891 * %false - we are done with this request
2892 * %true - still buffers pending for this request
2894 bool __blk_end_request_cur(struct request *rq, int error)
2896 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2898 EXPORT_SYMBOL(__blk_end_request_cur);
2901 * __blk_end_request_err - Finish a request till the next failure boundary.
2902 * @rq: the request to finish till the next failure boundary for
2903 * @error: must be negative errno
2906 * Complete @rq till the next failure boundary. Must be called
2907 * with queue lock held.
2910 * %false - we are done with this request
2911 * %true - still buffers pending for this request
2913 bool __blk_end_request_err(struct request *rq, int error)
2915 WARN_ON(error >= 0);
2916 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2918 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2920 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2923 if (bio_has_data(bio))
2924 rq->nr_phys_segments = bio_phys_segments(q, bio);
2926 rq->__data_len = bio->bi_iter.bi_size;
2927 rq->bio = rq->biotail = bio;
2930 rq->rq_disk = bio->bi_bdev->bd_disk;
2933 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2935 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2936 * @rq: the request to be flushed
2939 * Flush all pages in @rq.
2941 void rq_flush_dcache_pages(struct request *rq)
2943 struct req_iterator iter;
2944 struct bio_vec bvec;
2946 rq_for_each_segment(bvec, rq, iter)
2947 flush_dcache_page(bvec.bv_page);
2949 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2953 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2954 * @q : the queue of the device being checked
2957 * Check if underlying low-level drivers of a device are busy.
2958 * If the drivers want to export their busy state, they must set own
2959 * exporting function using blk_queue_lld_busy() first.
2961 * Basically, this function is used only by request stacking drivers
2962 * to stop dispatching requests to underlying devices when underlying
2963 * devices are busy. This behavior helps more I/O merging on the queue
2964 * of the request stacking driver and prevents I/O throughput regression
2965 * on burst I/O load.
2968 * 0 - Not busy (The request stacking driver should dispatch request)
2969 * 1 - Busy (The request stacking driver should stop dispatching request)
2971 int blk_lld_busy(struct request_queue *q)
2974 return q->lld_busy_fn(q);
2978 EXPORT_SYMBOL_GPL(blk_lld_busy);
2981 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2982 * @rq: the clone request to be cleaned up
2985 * Free all bios in @rq for a cloned request.
2987 void blk_rq_unprep_clone(struct request *rq)
2991 while ((bio = rq->bio) != NULL) {
2992 rq->bio = bio->bi_next;
2997 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3000 * Copy attributes of the original request to the clone request.
3001 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3003 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3005 dst->cpu = src->cpu;
3006 dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
3007 dst->cmd_type = src->cmd_type;
3008 dst->__sector = blk_rq_pos(src);
3009 dst->__data_len = blk_rq_bytes(src);
3010 dst->nr_phys_segments = src->nr_phys_segments;
3011 dst->ioprio = src->ioprio;
3012 dst->extra_len = src->extra_len;
3016 * blk_rq_prep_clone - Helper function to setup clone request
3017 * @rq: the request to be setup
3018 * @rq_src: original request to be cloned
3019 * @bs: bio_set that bios for clone are allocated from
3020 * @gfp_mask: memory allocation mask for bio
3021 * @bio_ctr: setup function to be called for each clone bio.
3022 * Returns %0 for success, non %0 for failure.
3023 * @data: private data to be passed to @bio_ctr
3026 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3027 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3028 * are not copied, and copying such parts is the caller's responsibility.
3029 * Also, pages which the original bios are pointing to are not copied
3030 * and the cloned bios just point same pages.
3031 * So cloned bios must be completed before original bios, which means
3032 * the caller must complete @rq before @rq_src.
3034 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3035 struct bio_set *bs, gfp_t gfp_mask,
3036 int (*bio_ctr)(struct bio *, struct bio *, void *),
3039 struct bio *bio, *bio_src;
3044 __rq_for_each_bio(bio_src, rq_src) {
3045 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3049 if (bio_ctr && bio_ctr(bio, bio_src, data))
3053 rq->biotail->bi_next = bio;
3056 rq->bio = rq->biotail = bio;
3059 __blk_rq_prep_clone(rq, rq_src);
3066 blk_rq_unprep_clone(rq);
3070 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3072 int kblockd_schedule_work(struct work_struct *work)
3074 return queue_work(kblockd_workqueue, work);
3076 EXPORT_SYMBOL(kblockd_schedule_work);
3078 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3080 return queue_work_on(cpu, kblockd_workqueue, work);
3082 EXPORT_SYMBOL(kblockd_schedule_work_on);
3084 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3085 unsigned long delay)
3087 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3089 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3091 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3092 unsigned long delay)
3094 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3096 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3099 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3100 * @plug: The &struct blk_plug that needs to be initialized
3103 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3104 * pending I/O should the task end up blocking between blk_start_plug() and
3105 * blk_finish_plug(). This is important from a performance perspective, but
3106 * also ensures that we don't deadlock. For instance, if the task is blocking
3107 * for a memory allocation, memory reclaim could end up wanting to free a
3108 * page belonging to that request that is currently residing in our private
3109 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3110 * this kind of deadlock.
3112 void blk_start_plug(struct blk_plug *plug)
3114 struct task_struct *tsk = current;
3117 * If this is a nested plug, don't actually assign it.
3122 INIT_LIST_HEAD(&plug->list);
3123 INIT_LIST_HEAD(&plug->mq_list);
3124 INIT_LIST_HEAD(&plug->cb_list);
3126 * Store ordering should not be needed here, since a potential
3127 * preempt will imply a full memory barrier
3131 EXPORT_SYMBOL(blk_start_plug);
3133 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3135 struct request *rqa = container_of(a, struct request, queuelist);
3136 struct request *rqb = container_of(b, struct request, queuelist);
3138 return !(rqa->q < rqb->q ||
3139 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3143 * If 'from_schedule' is true, then postpone the dispatch of requests
3144 * until a safe kblockd context. We due this to avoid accidental big
3145 * additional stack usage in driver dispatch, in places where the originally
3146 * plugger did not intend it.
3148 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3150 __releases(q->queue_lock)
3152 trace_block_unplug(q, depth, !from_schedule);
3155 blk_run_queue_async(q);
3158 spin_unlock(q->queue_lock);
3161 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3163 LIST_HEAD(callbacks);
3165 while (!list_empty(&plug->cb_list)) {
3166 list_splice_init(&plug->cb_list, &callbacks);
3168 while (!list_empty(&callbacks)) {
3169 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3172 list_del(&cb->list);
3173 cb->callback(cb, from_schedule);
3178 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3181 struct blk_plug *plug = current->plug;
3182 struct blk_plug_cb *cb;
3187 list_for_each_entry(cb, &plug->cb_list, list)
3188 if (cb->callback == unplug && cb->data == data)
3191 /* Not currently on the callback list */
3192 BUG_ON(size < sizeof(*cb));
3193 cb = kzalloc(size, GFP_ATOMIC);
3196 cb->callback = unplug;
3197 list_add(&cb->list, &plug->cb_list);
3201 EXPORT_SYMBOL(blk_check_plugged);
3203 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3205 struct request_queue *q;
3206 unsigned long flags;
3211 flush_plug_callbacks(plug, from_schedule);
3213 if (!list_empty(&plug->mq_list))
3214 blk_mq_flush_plug_list(plug, from_schedule);
3216 if (list_empty(&plug->list))
3219 list_splice_init(&plug->list, &list);
3221 list_sort(NULL, &list, plug_rq_cmp);
3227 * Save and disable interrupts here, to avoid doing it for every
3228 * queue lock we have to take.
3230 local_irq_save(flags);
3231 while (!list_empty(&list)) {
3232 rq = list_entry_rq(list.next);
3233 list_del_init(&rq->queuelist);
3237 * This drops the queue lock
3240 queue_unplugged(q, depth, from_schedule);
3243 spin_lock(q->queue_lock);
3247 * Short-circuit if @q is dead
3249 if (unlikely(blk_queue_dying(q))) {
3250 __blk_end_request_all(rq, -ENODEV);
3255 * rq is already accounted, so use raw insert
3257 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3258 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3260 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3266 * This drops the queue lock
3269 queue_unplugged(q, depth, from_schedule);
3271 local_irq_restore(flags);
3274 void blk_finish_plug(struct blk_plug *plug)
3276 if (plug != current->plug)
3278 blk_flush_plug_list(plug, false);
3280 current->plug = NULL;
3282 EXPORT_SYMBOL(blk_finish_plug);
3286 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3287 * @q: the queue of the device
3288 * @dev: the device the queue belongs to
3291 * Initialize runtime-PM-related fields for @q and start auto suspend for
3292 * @dev. Drivers that want to take advantage of request-based runtime PM
3293 * should call this function after @dev has been initialized, and its
3294 * request queue @q has been allocated, and runtime PM for it can not happen
3295 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3296 * cases, driver should call this function before any I/O has taken place.
3298 * This function takes care of setting up using auto suspend for the device,
3299 * the autosuspend delay is set to -1 to make runtime suspend impossible
3300 * until an updated value is either set by user or by driver. Drivers do
3301 * not need to touch other autosuspend settings.
3303 * The block layer runtime PM is request based, so only works for drivers
3304 * that use request as their IO unit instead of those directly use bio's.
3306 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3309 q->rpm_status = RPM_ACTIVE;
3310 pm_runtime_set_autosuspend_delay(q->dev, -1);
3311 pm_runtime_use_autosuspend(q->dev);
3313 EXPORT_SYMBOL(blk_pm_runtime_init);
3316 * blk_pre_runtime_suspend - Pre runtime suspend check
3317 * @q: the queue of the device
3320 * This function will check if runtime suspend is allowed for the device
3321 * by examining if there are any requests pending in the queue. If there
3322 * are requests pending, the device can not be runtime suspended; otherwise,
3323 * the queue's status will be updated to SUSPENDING and the driver can
3324 * proceed to suspend the device.
3326 * For the not allowed case, we mark last busy for the device so that
3327 * runtime PM core will try to autosuspend it some time later.
3329 * This function should be called near the start of the device's
3330 * runtime_suspend callback.
3333 * 0 - OK to runtime suspend the device
3334 * -EBUSY - Device should not be runtime suspended
3336 int blk_pre_runtime_suspend(struct request_queue *q)
3343 spin_lock_irq(q->queue_lock);
3344 if (q->nr_pending) {
3346 pm_runtime_mark_last_busy(q->dev);
3348 q->rpm_status = RPM_SUSPENDING;
3350 spin_unlock_irq(q->queue_lock);
3353 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3356 * blk_post_runtime_suspend - Post runtime suspend processing
3357 * @q: the queue of the device
3358 * @err: return value of the device's runtime_suspend function
3361 * Update the queue's runtime status according to the return value of the
3362 * device's runtime suspend function and mark last busy for the device so
3363 * that PM core will try to auto suspend the device at a later time.
3365 * This function should be called near the end of the device's
3366 * runtime_suspend callback.
3368 void blk_post_runtime_suspend(struct request_queue *q, int err)
3373 spin_lock_irq(q->queue_lock);
3375 q->rpm_status = RPM_SUSPENDED;
3377 q->rpm_status = RPM_ACTIVE;
3378 pm_runtime_mark_last_busy(q->dev);
3380 spin_unlock_irq(q->queue_lock);
3382 EXPORT_SYMBOL(blk_post_runtime_suspend);
3385 * blk_pre_runtime_resume - Pre runtime resume processing
3386 * @q: the queue of the device
3389 * Update the queue's runtime status to RESUMING in preparation for the
3390 * runtime resume of the device.
3392 * This function should be called near the start of the device's
3393 * runtime_resume callback.
3395 void blk_pre_runtime_resume(struct request_queue *q)
3400 spin_lock_irq(q->queue_lock);
3401 q->rpm_status = RPM_RESUMING;
3402 spin_unlock_irq(q->queue_lock);
3404 EXPORT_SYMBOL(blk_pre_runtime_resume);
3407 * blk_post_runtime_resume - Post runtime resume processing
3408 * @q: the queue of the device
3409 * @err: return value of the device's runtime_resume function
3412 * Update the queue's runtime status according to the return value of the
3413 * device's runtime_resume function. If it is successfully resumed, process
3414 * the requests that are queued into the device's queue when it is resuming
3415 * and then mark last busy and initiate autosuspend for it.
3417 * This function should be called near the end of the device's
3418 * runtime_resume callback.
3420 void blk_post_runtime_resume(struct request_queue *q, int err)
3425 spin_lock_irq(q->queue_lock);
3427 q->rpm_status = RPM_ACTIVE;
3429 pm_runtime_mark_last_busy(q->dev);
3430 pm_request_autosuspend(q->dev);
3432 q->rpm_status = RPM_SUSPENDED;
3434 spin_unlock_irq(q->queue_lock);
3436 EXPORT_SYMBOL(blk_post_runtime_resume);
3439 * blk_set_runtime_active - Force runtime status of the queue to be active
3440 * @q: the queue of the device
3442 * If the device is left runtime suspended during system suspend the resume
3443 * hook typically resumes the device and corrects runtime status
3444 * accordingly. However, that does not affect the queue runtime PM status
3445 * which is still "suspended". This prevents processing requests from the
3448 * This function can be used in driver's resume hook to correct queue
3449 * runtime PM status and re-enable peeking requests from the queue. It
3450 * should be called before first request is added to the queue.
3452 void blk_set_runtime_active(struct request_queue *q)
3454 spin_lock_irq(q->queue_lock);
3455 q->rpm_status = RPM_ACTIVE;
3456 pm_runtime_mark_last_busy(q->dev);
3457 pm_request_autosuspend(q->dev);
3458 spin_unlock_irq(q->queue_lock);
3460 EXPORT_SYMBOL(blk_set_runtime_active);
3463 int __init blk_dev_init(void)
3465 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3466 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3467 FIELD_SIZEOF(struct request, cmd_flags));
3468 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3469 FIELD_SIZEOF(struct bio, bi_opf));
3471 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3472 kblockd_workqueue = alloc_workqueue("kblockd",
3473 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3474 if (!kblockd_workqueue)
3475 panic("Failed to create kblockd\n");
3477 request_cachep = kmem_cache_create("blkdev_requests",
3478 sizeof(struct request), 0, SLAB_PANIC, NULL);
3480 blk_requestq_cachep = kmem_cache_create("request_queue",
3481 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);