1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
19 #include <linux/kvm_host.h>
24 #include "kvm_cache_regs.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
57 #include <trace/events/kvm.h>
59 #include <asm/debugreg.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <asm/emulate_prefix.h>
72 #include <clocksource/hyperv_timer.h>
74 #define CREATE_TRACE_POINTS
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
82 #define emul_to_vcpu(ctxt) \
83 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
86 * - enable syscall per default because its emulated by KVM
87 * - enable LME and LMA per default on 64 bit KVM
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
96 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
97 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
99 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
100 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
102 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
103 static void process_nmi(struct kvm_vcpu *vcpu);
104 static void enter_smm(struct kvm_vcpu *vcpu);
105 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
106 static void store_regs(struct kvm_vcpu *vcpu);
107 static int sync_regs(struct kvm_vcpu *vcpu);
109 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
110 EXPORT_SYMBOL_GPL(kvm_x86_ops);
112 static bool __read_mostly ignore_msrs = 0;
113 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
115 static bool __read_mostly report_ignored_msrs = true;
116 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
118 unsigned int min_timer_period_us = 200;
119 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
121 static bool __read_mostly kvmclock_periodic_sync = true;
122 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
124 bool __read_mostly kvm_has_tsc_control;
125 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
126 u32 __read_mostly kvm_max_guest_tsc_khz;
127 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
128 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
129 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
130 u64 __read_mostly kvm_max_tsc_scaling_ratio;
131 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
132 u64 __read_mostly kvm_default_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
135 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
136 static u32 __read_mostly tsc_tolerance_ppm = 250;
137 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
140 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
141 * adaptive tuning starting from default advancment of 1000ns. '0' disables
142 * advancement entirely. Any other value is used as-is and disables adaptive
143 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
145 static int __read_mostly lapic_timer_advance_ns = -1;
146 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
148 static bool __read_mostly vector_hashing = true;
149 module_param(vector_hashing, bool, S_IRUGO);
151 bool __read_mostly enable_vmware_backdoor = false;
152 module_param(enable_vmware_backdoor, bool, S_IRUGO);
153 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
155 static bool __read_mostly force_emulation_prefix = false;
156 module_param(force_emulation_prefix, bool, S_IRUGO);
158 int __read_mostly pi_inject_timer = -1;
159 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
161 #define KVM_NR_SHARED_MSRS 16
163 struct kvm_shared_msrs_global {
165 u32 msrs[KVM_NR_SHARED_MSRS];
168 struct kvm_shared_msrs {
169 struct user_return_notifier urn;
171 struct kvm_shared_msr_values {
174 } values[KVM_NR_SHARED_MSRS];
177 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
178 static struct kvm_shared_msrs __percpu *shared_msrs;
180 static u64 __read_mostly host_xss;
182 struct kvm_stats_debugfs_item debugfs_entries[] = {
183 { "pf_fixed", VCPU_STAT(pf_fixed) },
184 { "pf_guest", VCPU_STAT(pf_guest) },
185 { "tlb_flush", VCPU_STAT(tlb_flush) },
186 { "invlpg", VCPU_STAT(invlpg) },
187 { "exits", VCPU_STAT(exits) },
188 { "io_exits", VCPU_STAT(io_exits) },
189 { "mmio_exits", VCPU_STAT(mmio_exits) },
190 { "signal_exits", VCPU_STAT(signal_exits) },
191 { "irq_window", VCPU_STAT(irq_window_exits) },
192 { "nmi_window", VCPU_STAT(nmi_window_exits) },
193 { "halt_exits", VCPU_STAT(halt_exits) },
194 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
195 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
196 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
197 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
198 { "hypercalls", VCPU_STAT(hypercalls) },
199 { "request_irq", VCPU_STAT(request_irq_exits) },
200 { "irq_exits", VCPU_STAT(irq_exits) },
201 { "host_state_reload", VCPU_STAT(host_state_reload) },
202 { "fpu_reload", VCPU_STAT(fpu_reload) },
203 { "insn_emulation", VCPU_STAT(insn_emulation) },
204 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
205 { "irq_injections", VCPU_STAT(irq_injections) },
206 { "nmi_injections", VCPU_STAT(nmi_injections) },
207 { "req_event", VCPU_STAT(req_event) },
208 { "l1d_flush", VCPU_STAT(l1d_flush) },
209 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
210 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
211 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
212 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
213 { "mmu_flooded", VM_STAT(mmu_flooded) },
214 { "mmu_recycled", VM_STAT(mmu_recycled) },
215 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
216 { "mmu_unsync", VM_STAT(mmu_unsync) },
217 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
218 { "largepages", VM_STAT(lpages, .mode = 0444) },
219 { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
220 { "max_mmu_page_hash_collisions",
221 VM_STAT(max_mmu_page_hash_collisions) },
225 u64 __read_mostly host_xcr0;
227 struct kmem_cache *x86_fpu_cache;
228 EXPORT_SYMBOL_GPL(x86_fpu_cache);
230 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
232 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
235 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
236 vcpu->arch.apf.gfns[i] = ~0;
239 static void kvm_on_user_return(struct user_return_notifier *urn)
242 struct kvm_shared_msrs *locals
243 = container_of(urn, struct kvm_shared_msrs, urn);
244 struct kvm_shared_msr_values *values;
248 * Disabling irqs at this point since the following code could be
249 * interrupted and executed through kvm_arch_hardware_disable()
251 local_irq_save(flags);
252 if (locals->registered) {
253 locals->registered = false;
254 user_return_notifier_unregister(urn);
256 local_irq_restore(flags);
257 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
258 values = &locals->values[slot];
259 if (values->host != values->curr) {
260 wrmsrl(shared_msrs_global.msrs[slot], values->host);
261 values->curr = values->host;
266 void kvm_define_shared_msr(unsigned slot, u32 msr)
268 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
269 shared_msrs_global.msrs[slot] = msr;
270 if (slot >= shared_msrs_global.nr)
271 shared_msrs_global.nr = slot + 1;
273 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
275 static void kvm_shared_msr_cpu_online(void)
277 unsigned int cpu = smp_processor_id();
278 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
282 for (i = 0; i < shared_msrs_global.nr; ++i) {
283 rdmsrl_safe(shared_msrs_global.msrs[i], &value);
284 smsr->values[i].host = value;
285 smsr->values[i].curr = value;
289 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
291 unsigned int cpu = smp_processor_id();
292 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
295 value = (value & mask) | (smsr->values[slot].host & ~mask);
296 if (value == smsr->values[slot].curr)
298 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
302 smsr->values[slot].curr = value;
303 if (!smsr->registered) {
304 smsr->urn.on_user_return = kvm_on_user_return;
305 user_return_notifier_register(&smsr->urn);
306 smsr->registered = true;
310 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
312 static void drop_user_return_notifiers(void)
314 unsigned int cpu = smp_processor_id();
315 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
317 if (smsr->registered)
318 kvm_on_user_return(&smsr->urn);
321 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
323 return vcpu->arch.apic_base;
325 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
327 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
329 return kvm_apic_mode(kvm_get_apic_base(vcpu));
331 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
333 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
335 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
336 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
337 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
338 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
340 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
342 if (!msr_info->host_initiated) {
343 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
345 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
349 kvm_lapic_set_base(vcpu, msr_info->data);
352 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
354 asmlinkage __visible void kvm_spurious_fault(void)
356 /* Fault while not rebooting. We want the trace. */
357 BUG_ON(!kvm_rebooting);
359 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
361 #define EXCPT_BENIGN 0
362 #define EXCPT_CONTRIBUTORY 1
365 static int exception_class(int vector)
375 return EXCPT_CONTRIBUTORY;
382 #define EXCPT_FAULT 0
384 #define EXCPT_ABORT 2
385 #define EXCPT_INTERRUPT 3
387 static int exception_type(int vector)
391 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
392 return EXCPT_INTERRUPT;
396 /* #DB is trap, as instruction watchpoints are handled elsewhere */
397 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
400 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
403 /* Reserved exceptions will result in fault */
407 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
409 unsigned nr = vcpu->arch.exception.nr;
410 bool has_payload = vcpu->arch.exception.has_payload;
411 unsigned long payload = vcpu->arch.exception.payload;
419 * "Certain debug exceptions may clear bit 0-3. The
420 * remaining contents of the DR6 register are never
421 * cleared by the processor".
423 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
425 * DR6.RTM is set by all #DB exceptions that don't clear it.
427 vcpu->arch.dr6 |= DR6_RTM;
428 vcpu->arch.dr6 |= payload;
430 * Bit 16 should be set in the payload whenever the #DB
431 * exception should clear DR6.RTM. This makes the payload
432 * compatible with the pending debug exceptions under VMX.
433 * Though not currently documented in the SDM, this also
434 * makes the payload compatible with the exit qualification
435 * for #DB exceptions under VMX.
437 vcpu->arch.dr6 ^= payload & DR6_RTM;
440 vcpu->arch.cr2 = payload;
444 vcpu->arch.exception.has_payload = false;
445 vcpu->arch.exception.payload = 0;
447 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
449 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
450 unsigned nr, bool has_error, u32 error_code,
451 bool has_payload, unsigned long payload, bool reinject)
456 kvm_make_request(KVM_REQ_EVENT, vcpu);
458 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
460 if (has_error && !is_protmode(vcpu))
464 * On vmentry, vcpu->arch.exception.pending is only
465 * true if an event injection was blocked by
466 * nested_run_pending. In that case, however,
467 * vcpu_enter_guest requests an immediate exit,
468 * and the guest shouldn't proceed far enough to
471 WARN_ON_ONCE(vcpu->arch.exception.pending);
472 vcpu->arch.exception.injected = true;
473 if (WARN_ON_ONCE(has_payload)) {
475 * A reinjected event has already
476 * delivered its payload.
482 vcpu->arch.exception.pending = true;
483 vcpu->arch.exception.injected = false;
485 vcpu->arch.exception.has_error_code = has_error;
486 vcpu->arch.exception.nr = nr;
487 vcpu->arch.exception.error_code = error_code;
488 vcpu->arch.exception.has_payload = has_payload;
489 vcpu->arch.exception.payload = payload;
491 * In guest mode, payload delivery should be deferred,
492 * so that the L1 hypervisor can intercept #PF before
493 * CR2 is modified (or intercept #DB before DR6 is
494 * modified under nVMX). However, for ABI
495 * compatibility with KVM_GET_VCPU_EVENTS and
496 * KVM_SET_VCPU_EVENTS, we can't delay payload
497 * delivery unless userspace has enabled this
498 * functionality via the per-VM capability,
499 * KVM_CAP_EXCEPTION_PAYLOAD.
501 if (!vcpu->kvm->arch.exception_payload_enabled ||
502 !is_guest_mode(vcpu))
503 kvm_deliver_exception_payload(vcpu);
507 /* to check exception */
508 prev_nr = vcpu->arch.exception.nr;
509 if (prev_nr == DF_VECTOR) {
510 /* triple fault -> shutdown */
511 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
514 class1 = exception_class(prev_nr);
515 class2 = exception_class(nr);
516 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
517 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
519 * Generate double fault per SDM Table 5-5. Set
520 * exception.pending = true so that the double fault
521 * can trigger a nested vmexit.
523 vcpu->arch.exception.pending = true;
524 vcpu->arch.exception.injected = false;
525 vcpu->arch.exception.has_error_code = true;
526 vcpu->arch.exception.nr = DF_VECTOR;
527 vcpu->arch.exception.error_code = 0;
528 vcpu->arch.exception.has_payload = false;
529 vcpu->arch.exception.payload = 0;
531 /* replace previous exception with a new one in a hope
532 that instruction re-execution will regenerate lost
537 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
539 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
541 EXPORT_SYMBOL_GPL(kvm_queue_exception);
543 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
545 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
547 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
549 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
550 unsigned long payload)
552 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
555 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
556 u32 error_code, unsigned long payload)
558 kvm_multiple_exception(vcpu, nr, true, error_code,
559 true, payload, false);
562 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
565 kvm_inject_gp(vcpu, 0);
567 return kvm_skip_emulated_instruction(vcpu);
571 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
573 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
575 ++vcpu->stat.pf_guest;
576 vcpu->arch.exception.nested_apf =
577 is_guest_mode(vcpu) && fault->async_page_fault;
578 if (vcpu->arch.exception.nested_apf) {
579 vcpu->arch.apf.nested_apf_token = fault->address;
580 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
582 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
586 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
588 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
590 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
591 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
593 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
595 return fault->nested_page_fault;
598 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
600 atomic_inc(&vcpu->arch.nmi_queued);
601 kvm_make_request(KVM_REQ_NMI, vcpu);
603 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
605 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
607 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
609 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
611 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
613 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
615 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
618 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
619 * a #GP and return false.
621 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
623 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
625 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
628 EXPORT_SYMBOL_GPL(kvm_require_cpl);
630 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
632 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
635 kvm_queue_exception(vcpu, UD_VECTOR);
638 EXPORT_SYMBOL_GPL(kvm_require_dr);
641 * This function will be used to read from the physical memory of the currently
642 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
643 * can read from guest physical or from the guest's guest physical memory.
645 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
646 gfn_t ngfn, void *data, int offset, int len,
649 struct x86_exception exception;
653 ngpa = gfn_to_gpa(ngfn);
654 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
655 if (real_gfn == UNMAPPED_GVA)
658 real_gfn = gpa_to_gfn(real_gfn);
660 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
662 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
664 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
665 void *data, int offset, int len, u32 access)
667 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
668 data, offset, len, access);
671 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
673 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
678 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
680 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
682 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
683 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
686 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
688 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
689 offset * sizeof(u64), sizeof(pdpte),
690 PFERR_USER_MASK|PFERR_WRITE_MASK);
695 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
696 if ((pdpte[i] & PT_PRESENT_MASK) &&
697 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
704 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
705 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
711 EXPORT_SYMBOL_GPL(load_pdptrs);
713 bool pdptrs_changed(struct kvm_vcpu *vcpu)
715 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
720 if (!is_pae_paging(vcpu))
723 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
726 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
727 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
728 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
729 PFERR_USER_MASK | PFERR_WRITE_MASK);
733 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
735 EXPORT_SYMBOL_GPL(pdptrs_changed);
737 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
739 unsigned long old_cr0 = kvm_read_cr0(vcpu);
740 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
745 if (cr0 & 0xffffffff00000000UL)
749 cr0 &= ~CR0_RESERVED_BITS;
751 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
754 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
757 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
759 if ((vcpu->arch.efer & EFER_LME)) {
764 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
769 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
774 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
777 kvm_x86_ops->set_cr0(vcpu, cr0);
779 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
780 kvm_clear_async_pf_completion_queue(vcpu);
781 kvm_async_pf_hash_reset(vcpu);
784 if ((cr0 ^ old_cr0) & update_bits)
785 kvm_mmu_reset_context(vcpu);
787 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
788 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
789 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
790 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
794 EXPORT_SYMBOL_GPL(kvm_set_cr0);
796 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
798 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
800 EXPORT_SYMBOL_GPL(kvm_lmsw);
802 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
804 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
806 if (vcpu->arch.xcr0 != host_xcr0)
807 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
809 if (vcpu->arch.xsaves_enabled &&
810 vcpu->arch.ia32_xss != host_xss)
811 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
814 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
816 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
818 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
820 if (vcpu->arch.xcr0 != host_xcr0)
821 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
823 if (vcpu->arch.xsaves_enabled &&
824 vcpu->arch.ia32_xss != host_xss)
825 wrmsrl(MSR_IA32_XSS, host_xss);
829 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
831 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
834 u64 old_xcr0 = vcpu->arch.xcr0;
837 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
838 if (index != XCR_XFEATURE_ENABLED_MASK)
840 if (!(xcr0 & XFEATURE_MASK_FP))
842 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
846 * Do not allow the guest to set bits that we do not support
847 * saving. However, xcr0 bit 0 is always set, even if the
848 * emulated CPU does not support XSAVE (see fx_init).
850 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
851 if (xcr0 & ~valid_bits)
854 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
855 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
858 if (xcr0 & XFEATURE_MASK_AVX512) {
859 if (!(xcr0 & XFEATURE_MASK_YMM))
861 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
864 vcpu->arch.xcr0 = xcr0;
866 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
867 kvm_update_cpuid(vcpu);
871 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
873 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
874 __kvm_set_xcr(vcpu, index, xcr)) {
875 kvm_inject_gp(vcpu, 0);
880 EXPORT_SYMBOL_GPL(kvm_set_xcr);
882 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
884 if (cr4 & CR4_RESERVED_BITS)
887 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE))
890 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP))
893 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP))
896 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE))
899 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE))
902 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57))
905 if (!guest_cpuid_has(vcpu, X86_FEATURE_UMIP) && (cr4 & X86_CR4_UMIP))
911 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
913 unsigned long old_cr4 = kvm_read_cr4(vcpu);
914 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
915 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
917 if (kvm_valid_cr4(vcpu, cr4))
920 if (is_long_mode(vcpu)) {
921 if (!(cr4 & X86_CR4_PAE))
923 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
924 && ((cr4 ^ old_cr4) & pdptr_bits)
925 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
929 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
930 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
933 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
934 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
938 if (kvm_x86_ops->set_cr4(vcpu, cr4))
941 if (((cr4 ^ old_cr4) & pdptr_bits) ||
942 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
943 kvm_mmu_reset_context(vcpu);
945 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
946 kvm_update_cpuid(vcpu);
950 EXPORT_SYMBOL_GPL(kvm_set_cr4);
952 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
954 bool skip_tlb_flush = false;
956 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
959 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
960 cr3 &= ~X86_CR3_PCID_NOFLUSH;
964 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
965 if (!skip_tlb_flush) {
966 kvm_mmu_sync_roots(vcpu);
967 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
972 if (is_long_mode(vcpu) &&
973 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
975 else if (is_pae_paging(vcpu) &&
976 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
979 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
980 vcpu->arch.cr3 = cr3;
981 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
985 EXPORT_SYMBOL_GPL(kvm_set_cr3);
987 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
989 if (cr8 & CR8_RESERVED_BITS)
991 if (lapic_in_kernel(vcpu))
992 kvm_lapic_set_tpr(vcpu, cr8);
994 vcpu->arch.cr8 = cr8;
997 EXPORT_SYMBOL_GPL(kvm_set_cr8);
999 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1001 if (lapic_in_kernel(vcpu))
1002 return kvm_lapic_get_cr8(vcpu);
1004 return vcpu->arch.cr8;
1006 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1008 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1012 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1013 for (i = 0; i < KVM_NR_DB_REGS; i++)
1014 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1015 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1019 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1021 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1022 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1025 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1029 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1030 dr7 = vcpu->arch.guest_debug_dr7;
1032 dr7 = vcpu->arch.dr7;
1033 kvm_x86_ops->set_dr7(vcpu, dr7);
1034 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1035 if (dr7 & DR7_BP_EN_MASK)
1036 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1039 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1041 u64 fixed = DR6_FIXED_1;
1043 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1048 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1052 vcpu->arch.db[dr] = val;
1053 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1054 vcpu->arch.eff_db[dr] = val;
1059 if (val & 0xffffffff00000000ULL)
1060 return -1; /* #GP */
1061 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1062 kvm_update_dr6(vcpu);
1067 if (val & 0xffffffff00000000ULL)
1068 return -1; /* #GP */
1069 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1070 kvm_update_dr7(vcpu);
1077 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1079 if (__kvm_set_dr(vcpu, dr, val)) {
1080 kvm_inject_gp(vcpu, 0);
1085 EXPORT_SYMBOL_GPL(kvm_set_dr);
1087 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1091 *val = vcpu->arch.db[dr];
1096 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1097 *val = vcpu->arch.dr6;
1099 *val = kvm_x86_ops->get_dr6(vcpu);
1104 *val = vcpu->arch.dr7;
1109 EXPORT_SYMBOL_GPL(kvm_get_dr);
1111 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1113 u32 ecx = kvm_rcx_read(vcpu);
1117 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1120 kvm_rax_write(vcpu, (u32)data);
1121 kvm_rdx_write(vcpu, data >> 32);
1124 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1127 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1128 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1130 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1131 * extract the supported MSRs from the related const lists.
1132 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1133 * capabilities of the host cpu. This capabilities test skips MSRs that are
1134 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1135 * may depend on host virtualization features rather than host cpu features.
1138 static const u32 msrs_to_save_all[] = {
1139 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1141 #ifdef CONFIG_X86_64
1142 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1144 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1145 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1147 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1148 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1149 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1150 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1151 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1152 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1153 MSR_IA32_UMWAIT_CONTROL,
1155 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1156 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1157 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1158 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1159 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1160 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1161 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1162 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1163 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1164 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1165 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1166 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1167 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1168 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1169 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1170 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1171 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1172 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1173 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1174 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1175 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1176 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1179 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1180 static unsigned num_msrs_to_save;
1182 static const u32 emulated_msrs_all[] = {
1183 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1184 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1185 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1186 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1187 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1188 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1189 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1191 HV_X64_MSR_VP_INDEX,
1192 HV_X64_MSR_VP_RUNTIME,
1193 HV_X64_MSR_SCONTROL,
1194 HV_X64_MSR_STIMER0_CONFIG,
1195 HV_X64_MSR_VP_ASSIST_PAGE,
1196 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1197 HV_X64_MSR_TSC_EMULATION_STATUS,
1199 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1202 MSR_IA32_TSC_ADJUST,
1203 MSR_IA32_TSCDEADLINE,
1204 MSR_IA32_ARCH_CAPABILITIES,
1205 MSR_IA32_MISC_ENABLE,
1206 MSR_IA32_MCG_STATUS,
1208 MSR_IA32_MCG_EXT_CTL,
1212 MSR_MISC_FEATURES_ENABLES,
1213 MSR_AMD64_VIRT_SPEC_CTRL,
1217 * The following list leaves out MSRs whose values are determined
1218 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1219 * We always support the "true" VMX control MSRs, even if the host
1220 * processor does not, so I am putting these registers here rather
1221 * than in msrs_to_save_all.
1224 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1225 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1226 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1227 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1229 MSR_IA32_VMX_CR0_FIXED0,
1230 MSR_IA32_VMX_CR4_FIXED0,
1231 MSR_IA32_VMX_VMCS_ENUM,
1232 MSR_IA32_VMX_PROCBASED_CTLS2,
1233 MSR_IA32_VMX_EPT_VPID_CAP,
1234 MSR_IA32_VMX_VMFUNC,
1237 MSR_KVM_POLL_CONTROL,
1240 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1241 static unsigned num_emulated_msrs;
1244 * List of msr numbers which are used to expose MSR-based features that
1245 * can be used by a hypervisor to validate requested CPU features.
1247 static const u32 msr_based_features_all[] = {
1249 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1250 MSR_IA32_VMX_PINBASED_CTLS,
1251 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1252 MSR_IA32_VMX_PROCBASED_CTLS,
1253 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1254 MSR_IA32_VMX_EXIT_CTLS,
1255 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1256 MSR_IA32_VMX_ENTRY_CTLS,
1258 MSR_IA32_VMX_CR0_FIXED0,
1259 MSR_IA32_VMX_CR0_FIXED1,
1260 MSR_IA32_VMX_CR4_FIXED0,
1261 MSR_IA32_VMX_CR4_FIXED1,
1262 MSR_IA32_VMX_VMCS_ENUM,
1263 MSR_IA32_VMX_PROCBASED_CTLS2,
1264 MSR_IA32_VMX_EPT_VPID_CAP,
1265 MSR_IA32_VMX_VMFUNC,
1269 MSR_IA32_ARCH_CAPABILITIES,
1272 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1273 static unsigned int num_msr_based_features;
1275 static u64 kvm_get_arch_capabilities(void)
1279 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1280 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1283 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1284 * the nested hypervisor runs with NX huge pages. If it is not,
1285 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1286 * L1 guests, so it need not worry about its own (L2) guests.
1288 data |= ARCH_CAP_PSCHANGE_MC_NO;
1291 * If we're doing cache flushes (either "always" or "cond")
1292 * we will do one whenever the guest does a vmlaunch/vmresume.
1293 * If an outer hypervisor is doing the cache flush for us
1294 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1295 * capability to the guest too, and if EPT is disabled we're not
1296 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1297 * require a nested hypervisor to do a flush of its own.
1299 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1300 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1302 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1303 data |= ARCH_CAP_RDCL_NO;
1304 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1305 data |= ARCH_CAP_SSB_NO;
1306 if (!boot_cpu_has_bug(X86_BUG_MDS))
1307 data |= ARCH_CAP_MDS_NO;
1310 * On TAA affected systems:
1311 * - nothing to do if TSX is disabled on the host.
1312 * - we emulate TSX_CTRL if present on the host.
1313 * This lets the guest use VERW to clear CPU buffers.
1315 if (!boot_cpu_has(X86_FEATURE_RTM))
1316 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1317 else if (!boot_cpu_has_bug(X86_BUG_TAA))
1318 data |= ARCH_CAP_TAA_NO;
1323 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1325 switch (msr->index) {
1326 case MSR_IA32_ARCH_CAPABILITIES:
1327 msr->data = kvm_get_arch_capabilities();
1329 case MSR_IA32_UCODE_REV:
1330 rdmsrl_safe(msr->index, &msr->data);
1333 if (kvm_x86_ops->get_msr_feature(msr))
1339 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1341 struct kvm_msr_entry msr;
1345 r = kvm_get_msr_feature(&msr);
1354 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1356 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1359 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1362 if (efer & (EFER_LME | EFER_LMA) &&
1363 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1366 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1372 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1374 if (efer & efer_reserved_bits)
1377 return __kvm_valid_efer(vcpu, efer);
1379 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1381 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1383 u64 old_efer = vcpu->arch.efer;
1384 u64 efer = msr_info->data;
1386 if (efer & efer_reserved_bits)
1389 if (!msr_info->host_initiated) {
1390 if (!__kvm_valid_efer(vcpu, efer))
1393 if (is_paging(vcpu) &&
1394 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1399 efer |= vcpu->arch.efer & EFER_LMA;
1401 kvm_x86_ops->set_efer(vcpu, efer);
1403 /* Update reserved bits */
1404 if ((efer ^ old_efer) & EFER_NX)
1405 kvm_mmu_reset_context(vcpu);
1410 void kvm_enable_efer_bits(u64 mask)
1412 efer_reserved_bits &= ~mask;
1414 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1417 * Write @data into the MSR specified by @index. Select MSR specific fault
1418 * checks are bypassed if @host_initiated is %true.
1419 * Returns 0 on success, non-0 otherwise.
1420 * Assumes vcpu_load() was already called.
1422 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1423 bool host_initiated)
1425 struct msr_data msr;
1430 case MSR_KERNEL_GS_BASE:
1433 if (is_noncanonical_address(data, vcpu))
1436 case MSR_IA32_SYSENTER_EIP:
1437 case MSR_IA32_SYSENTER_ESP:
1439 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1440 * non-canonical address is written on Intel but not on
1441 * AMD (which ignores the top 32-bits, because it does
1442 * not implement 64-bit SYSENTER).
1444 * 64-bit code should hence be able to write a non-canonical
1445 * value on AMD. Making the address canonical ensures that
1446 * vmentry does not fail on Intel after writing a non-canonical
1447 * value, and that something deterministic happens if the guest
1448 * invokes 64-bit SYSENTER.
1450 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1455 msr.host_initiated = host_initiated;
1457 return kvm_x86_ops->set_msr(vcpu, &msr);
1461 * Read the MSR specified by @index into @data. Select MSR specific fault
1462 * checks are bypassed if @host_initiated is %true.
1463 * Returns 0 on success, non-0 otherwise.
1464 * Assumes vcpu_load() was already called.
1466 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1467 bool host_initiated)
1469 struct msr_data msr;
1473 msr.host_initiated = host_initiated;
1475 ret = kvm_x86_ops->get_msr(vcpu, &msr);
1481 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1483 return __kvm_get_msr(vcpu, index, data, false);
1485 EXPORT_SYMBOL_GPL(kvm_get_msr);
1487 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1489 return __kvm_set_msr(vcpu, index, data, false);
1491 EXPORT_SYMBOL_GPL(kvm_set_msr);
1493 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1495 u32 ecx = kvm_rcx_read(vcpu);
1498 if (kvm_get_msr(vcpu, ecx, &data)) {
1499 trace_kvm_msr_read_ex(ecx);
1500 kvm_inject_gp(vcpu, 0);
1504 trace_kvm_msr_read(ecx, data);
1506 kvm_rax_write(vcpu, data & -1u);
1507 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1508 return kvm_skip_emulated_instruction(vcpu);
1510 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1512 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1514 u32 ecx = kvm_rcx_read(vcpu);
1515 u64 data = kvm_read_edx_eax(vcpu);
1517 if (kvm_set_msr(vcpu, ecx, data)) {
1518 trace_kvm_msr_write_ex(ecx, data);
1519 kvm_inject_gp(vcpu, 0);
1523 trace_kvm_msr_write(ecx, data);
1524 return kvm_skip_emulated_instruction(vcpu);
1526 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1529 * Adapt set_msr() to msr_io()'s calling convention
1531 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1533 return __kvm_get_msr(vcpu, index, data, true);
1536 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1538 return __kvm_set_msr(vcpu, index, *data, true);
1541 #ifdef CONFIG_X86_64
1542 struct pvclock_clock {
1550 struct pvclock_gtod_data {
1553 struct pvclock_clock clock; /* extract of a clocksource struct */
1554 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1560 u64 monotonic_raw_nsec;
1563 static struct pvclock_gtod_data pvclock_gtod_data;
1565 static void update_pvclock_gtod(struct timekeeper *tk)
1567 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1568 u64 boot_ns, boot_ns_raw;
1570 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1571 boot_ns_raw = ktime_to_ns(ktime_add(tk->tkr_raw.base, tk->offs_boot));
1573 write_seqcount_begin(&vdata->seq);
1575 /* copy pvclock gtod data */
1576 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1577 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1578 vdata->clock.mask = tk->tkr_mono.mask;
1579 vdata->clock.mult = tk->tkr_mono.mult;
1580 vdata->clock.shift = tk->tkr_mono.shift;
1582 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->archdata.vclock_mode;
1583 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
1584 vdata->raw_clock.mask = tk->tkr_raw.mask;
1585 vdata->raw_clock.mult = tk->tkr_raw.mult;
1586 vdata->raw_clock.shift = tk->tkr_raw.shift;
1588 vdata->boot_ns = boot_ns;
1589 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1591 vdata->wall_time_sec = tk->xtime_sec;
1593 vdata->boot_ns_raw = boot_ns_raw;
1594 vdata->monotonic_raw_nsec = tk->tkr_raw.xtime_nsec;
1596 write_seqcount_end(&vdata->seq);
1600 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1602 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1603 kvm_vcpu_kick(vcpu);
1606 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1610 struct pvclock_wall_clock wc;
1611 struct timespec64 boot;
1616 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1621 ++version; /* first time write, random junk */
1625 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1629 * The guest calculates current wall clock time by adding
1630 * system time (updated by kvm_guest_time_update below) to the
1631 * wall clock specified here. guest system time equals host
1632 * system time for us, thus we must fill in host boot time here.
1634 getboottime64(&boot);
1636 if (kvm->arch.kvmclock_offset) {
1637 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1638 boot = timespec64_sub(boot, ts);
1640 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1641 wc.nsec = boot.tv_nsec;
1642 wc.version = version;
1644 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1647 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1650 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1652 do_shl32_div32(dividend, divisor);
1656 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1657 s8 *pshift, u32 *pmultiplier)
1665 scaled64 = scaled_hz;
1666 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1671 tps32 = (uint32_t)tps64;
1672 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1673 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1681 *pmultiplier = div_frac(scaled64, tps32);
1684 #ifdef CONFIG_X86_64
1685 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1688 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1689 static unsigned long max_tsc_khz;
1691 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1693 u64 v = (u64)khz * (1000000 + ppm);
1698 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1702 /* Guest TSC same frequency as host TSC? */
1704 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1708 /* TSC scaling supported? */
1709 if (!kvm_has_tsc_control) {
1710 if (user_tsc_khz > tsc_khz) {
1711 vcpu->arch.tsc_catchup = 1;
1712 vcpu->arch.tsc_always_catchup = 1;
1715 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1720 /* TSC scaling required - calculate ratio */
1721 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1722 user_tsc_khz, tsc_khz);
1724 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1725 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1730 vcpu->arch.tsc_scaling_ratio = ratio;
1734 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1736 u32 thresh_lo, thresh_hi;
1737 int use_scaling = 0;
1739 /* tsc_khz can be zero if TSC calibration fails */
1740 if (user_tsc_khz == 0) {
1741 /* set tsc_scaling_ratio to a safe value */
1742 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1746 /* Compute a scale to convert nanoseconds in TSC cycles */
1747 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1748 &vcpu->arch.virtual_tsc_shift,
1749 &vcpu->arch.virtual_tsc_mult);
1750 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1753 * Compute the variation in TSC rate which is acceptable
1754 * within the range of tolerance and decide if the
1755 * rate being applied is within that bounds of the hardware
1756 * rate. If so, no scaling or compensation need be done.
1758 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1759 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1760 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1761 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1764 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1767 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1769 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1770 vcpu->arch.virtual_tsc_mult,
1771 vcpu->arch.virtual_tsc_shift);
1772 tsc += vcpu->arch.this_tsc_write;
1776 static inline int gtod_is_based_on_tsc(int mode)
1778 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1781 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1783 #ifdef CONFIG_X86_64
1785 struct kvm_arch *ka = &vcpu->kvm->arch;
1786 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1788 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1789 atomic_read(&vcpu->kvm->online_vcpus));
1792 * Once the masterclock is enabled, always perform request in
1793 * order to update it.
1795 * In order to enable masterclock, the host clocksource must be TSC
1796 * and the vcpus need to have matched TSCs. When that happens,
1797 * perform request to enable masterclock.
1799 if (ka->use_master_clock ||
1800 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1801 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1803 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1804 atomic_read(&vcpu->kvm->online_vcpus),
1805 ka->use_master_clock, gtod->clock.vclock_mode);
1809 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1811 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1812 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1816 * Multiply tsc by a fixed point number represented by ratio.
1818 * The most significant 64-N bits (mult) of ratio represent the
1819 * integral part of the fixed point number; the remaining N bits
1820 * (frac) represent the fractional part, ie. ratio represents a fixed
1821 * point number (mult + frac * 2^(-N)).
1823 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1825 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1827 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1830 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1833 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1835 if (ratio != kvm_default_tsc_scaling_ratio)
1836 _tsc = __scale_tsc(ratio, tsc);
1840 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1842 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1846 tsc = kvm_scale_tsc(vcpu, rdtsc());
1848 return target_tsc - tsc;
1851 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1853 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1855 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1857 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1859 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1861 vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1864 static inline bool kvm_check_tsc_unstable(void)
1866 #ifdef CONFIG_X86_64
1868 * TSC is marked unstable when we're running on Hyper-V,
1869 * 'TSC page' clocksource is good.
1871 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1874 return check_tsc_unstable();
1877 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1879 struct kvm *kvm = vcpu->kvm;
1880 u64 offset, ns, elapsed;
1881 unsigned long flags;
1883 bool already_matched;
1884 u64 data = msr->data;
1885 bool synchronizing = false;
1887 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1888 offset = kvm_compute_tsc_offset(vcpu, data);
1889 ns = ktime_get_boottime_ns();
1890 elapsed = ns - kvm->arch.last_tsc_nsec;
1892 if (vcpu->arch.virtual_tsc_khz) {
1893 if (data == 0 && msr->host_initiated) {
1895 * detection of vcpu initialization -- need to sync
1896 * with other vCPUs. This particularly helps to keep
1897 * kvm_clock stable after CPU hotplug
1899 synchronizing = true;
1901 u64 tsc_exp = kvm->arch.last_tsc_write +
1902 nsec_to_cycles(vcpu, elapsed);
1903 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1905 * Special case: TSC write with a small delta (1 second)
1906 * of virtual cycle time against real time is
1907 * interpreted as an attempt to synchronize the CPU.
1909 synchronizing = data < tsc_exp + tsc_hz &&
1910 data + tsc_hz > tsc_exp;
1915 * For a reliable TSC, we can match TSC offsets, and for an unstable
1916 * TSC, we add elapsed time in this computation. We could let the
1917 * compensation code attempt to catch up if we fall behind, but
1918 * it's better to try to match offsets from the beginning.
1920 if (synchronizing &&
1921 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1922 if (!kvm_check_tsc_unstable()) {
1923 offset = kvm->arch.cur_tsc_offset;
1925 u64 delta = nsec_to_cycles(vcpu, elapsed);
1927 offset = kvm_compute_tsc_offset(vcpu, data);
1930 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1933 * We split periods of matched TSC writes into generations.
1934 * For each generation, we track the original measured
1935 * nanosecond time, offset, and write, so if TSCs are in
1936 * sync, we can match exact offset, and if not, we can match
1937 * exact software computation in compute_guest_tsc()
1939 * These values are tracked in kvm->arch.cur_xxx variables.
1941 kvm->arch.cur_tsc_generation++;
1942 kvm->arch.cur_tsc_nsec = ns;
1943 kvm->arch.cur_tsc_write = data;
1944 kvm->arch.cur_tsc_offset = offset;
1949 * We also track th most recent recorded KHZ, write and time to
1950 * allow the matching interval to be extended at each write.
1952 kvm->arch.last_tsc_nsec = ns;
1953 kvm->arch.last_tsc_write = data;
1954 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1956 vcpu->arch.last_guest_tsc = data;
1958 /* Keep track of which generation this VCPU has synchronized to */
1959 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1960 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1961 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1963 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
1964 update_ia32_tsc_adjust_msr(vcpu, offset);
1966 kvm_vcpu_write_tsc_offset(vcpu, offset);
1967 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1969 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1971 kvm->arch.nr_vcpus_matched_tsc = 0;
1972 } else if (!already_matched) {
1973 kvm->arch.nr_vcpus_matched_tsc++;
1976 kvm_track_tsc_matching(vcpu);
1977 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1980 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1982 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1985 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1986 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
1989 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1991 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1992 WARN_ON(adjustment < 0);
1993 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1994 adjust_tsc_offset_guest(vcpu, adjustment);
1997 #ifdef CONFIG_X86_64
1999 static u64 read_tsc(void)
2001 u64 ret = (u64)rdtsc_ordered();
2002 u64 last = pvclock_gtod_data.clock.cycle_last;
2004 if (likely(ret >= last))
2008 * GCC likes to generate cmov here, but this branch is extremely
2009 * predictable (it's just a function of time and the likely is
2010 * very likely) and there's a data dependence, so force GCC
2011 * to generate a branch instead. I don't barrier() because
2012 * we don't actually need a barrier, and if this function
2013 * ever gets inlined it will generate worse code.
2019 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2025 switch (clock->vclock_mode) {
2026 case VCLOCK_HVCLOCK:
2027 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2029 if (tsc_pg_val != U64_MAX) {
2030 /* TSC page valid */
2031 *mode = VCLOCK_HVCLOCK;
2032 v = (tsc_pg_val - clock->cycle_last) &
2035 /* TSC page invalid */
2036 *mode = VCLOCK_NONE;
2041 *tsc_timestamp = read_tsc();
2042 v = (*tsc_timestamp - clock->cycle_last) &
2046 *mode = VCLOCK_NONE;
2049 if (*mode == VCLOCK_NONE)
2050 *tsc_timestamp = v = 0;
2052 return v * clock->mult;
2055 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2057 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2063 seq = read_seqcount_begin(>od->seq);
2064 ns = gtod->monotonic_raw_nsec;
2065 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2066 ns >>= gtod->clock.shift;
2067 ns += gtod->boot_ns_raw;
2068 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2074 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2076 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2082 seq = read_seqcount_begin(>od->seq);
2083 ts->tv_sec = gtod->wall_time_sec;
2084 ns = gtod->nsec_base;
2085 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2086 ns >>= gtod->clock.shift;
2087 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2089 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2095 /* returns true if host is using TSC based clocksource */
2096 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2098 /* checked again under seqlock below */
2099 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2102 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2106 /* returns true if host is using TSC based clocksource */
2107 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2110 /* checked again under seqlock below */
2111 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2114 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2120 * Assuming a stable TSC across physical CPUS, and a stable TSC
2121 * across virtual CPUs, the following condition is possible.
2122 * Each numbered line represents an event visible to both
2123 * CPUs at the next numbered event.
2125 * "timespecX" represents host monotonic time. "tscX" represents
2128 * VCPU0 on CPU0 | VCPU1 on CPU1
2130 * 1. read timespec0,tsc0
2131 * 2. | timespec1 = timespec0 + N
2133 * 3. transition to guest | transition to guest
2134 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2135 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2136 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2138 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2141 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2143 * - 0 < N - M => M < N
2145 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2146 * always the case (the difference between two distinct xtime instances
2147 * might be smaller then the difference between corresponding TSC reads,
2148 * when updating guest vcpus pvclock areas).
2150 * To avoid that problem, do not allow visibility of distinct
2151 * system_timestamp/tsc_timestamp values simultaneously: use a master
2152 * copy of host monotonic time values. Update that master copy
2155 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2159 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2161 #ifdef CONFIG_X86_64
2162 struct kvm_arch *ka = &kvm->arch;
2164 bool host_tsc_clocksource, vcpus_matched;
2166 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2167 atomic_read(&kvm->online_vcpus));
2170 * If the host uses TSC clock, then passthrough TSC as stable
2173 host_tsc_clocksource = kvm_get_time_and_clockread(
2174 &ka->master_kernel_ns,
2175 &ka->master_cycle_now);
2177 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2178 && !ka->backwards_tsc_observed
2179 && !ka->boot_vcpu_runs_old_kvmclock;
2181 if (ka->use_master_clock)
2182 atomic_set(&kvm_guest_has_master_clock, 1);
2184 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2185 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2190 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2192 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2195 static void kvm_gen_update_masterclock(struct kvm *kvm)
2197 #ifdef CONFIG_X86_64
2199 struct kvm_vcpu *vcpu;
2200 struct kvm_arch *ka = &kvm->arch;
2202 spin_lock(&ka->pvclock_gtod_sync_lock);
2203 kvm_make_mclock_inprogress_request(kvm);
2204 /* no guest entries from this point */
2205 pvclock_update_vm_gtod_copy(kvm);
2207 kvm_for_each_vcpu(i, vcpu, kvm)
2208 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2210 /* guest entries allowed */
2211 kvm_for_each_vcpu(i, vcpu, kvm)
2212 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2214 spin_unlock(&ka->pvclock_gtod_sync_lock);
2218 u64 get_kvmclock_ns(struct kvm *kvm)
2220 struct kvm_arch *ka = &kvm->arch;
2221 struct pvclock_vcpu_time_info hv_clock;
2224 spin_lock(&ka->pvclock_gtod_sync_lock);
2225 if (!ka->use_master_clock) {
2226 spin_unlock(&ka->pvclock_gtod_sync_lock);
2227 return ktime_get_boottime_ns() + ka->kvmclock_offset;
2230 hv_clock.tsc_timestamp = ka->master_cycle_now;
2231 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2232 spin_unlock(&ka->pvclock_gtod_sync_lock);
2234 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2237 if (__this_cpu_read(cpu_tsc_khz)) {
2238 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2239 &hv_clock.tsc_shift,
2240 &hv_clock.tsc_to_system_mul);
2241 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2243 ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2250 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2252 struct kvm_vcpu_arch *vcpu = &v->arch;
2253 struct pvclock_vcpu_time_info guest_hv_clock;
2255 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2256 &guest_hv_clock, sizeof(guest_hv_clock))))
2259 /* This VCPU is paused, but it's legal for a guest to read another
2260 * VCPU's kvmclock, so we really have to follow the specification where
2261 * it says that version is odd if data is being modified, and even after
2264 * Version field updates must be kept separate. This is because
2265 * kvm_write_guest_cached might use a "rep movs" instruction, and
2266 * writes within a string instruction are weakly ordered. So there
2267 * are three writes overall.
2269 * As a small optimization, only write the version field in the first
2270 * and third write. The vcpu->pv_time cache is still valid, because the
2271 * version field is the first in the struct.
2273 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2275 if (guest_hv_clock.version & 1)
2276 ++guest_hv_clock.version; /* first time write, random junk */
2278 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2279 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2281 sizeof(vcpu->hv_clock.version));
2285 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2286 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2288 if (vcpu->pvclock_set_guest_stopped_request) {
2289 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2290 vcpu->pvclock_set_guest_stopped_request = false;
2293 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2295 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2297 sizeof(vcpu->hv_clock));
2301 vcpu->hv_clock.version++;
2302 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2304 sizeof(vcpu->hv_clock.version));
2307 static int kvm_guest_time_update(struct kvm_vcpu *v)
2309 unsigned long flags, tgt_tsc_khz;
2310 struct kvm_vcpu_arch *vcpu = &v->arch;
2311 struct kvm_arch *ka = &v->kvm->arch;
2313 u64 tsc_timestamp, host_tsc;
2315 bool use_master_clock;
2321 * If the host uses TSC clock, then passthrough TSC as stable
2324 spin_lock(&ka->pvclock_gtod_sync_lock);
2325 use_master_clock = ka->use_master_clock;
2326 if (use_master_clock) {
2327 host_tsc = ka->master_cycle_now;
2328 kernel_ns = ka->master_kernel_ns;
2330 spin_unlock(&ka->pvclock_gtod_sync_lock);
2332 /* Keep irq disabled to prevent changes to the clock */
2333 local_irq_save(flags);
2334 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2335 if (unlikely(tgt_tsc_khz == 0)) {
2336 local_irq_restore(flags);
2337 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2340 if (!use_master_clock) {
2342 kernel_ns = ktime_get_boottime_ns();
2345 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2348 * We may have to catch up the TSC to match elapsed wall clock
2349 * time for two reasons, even if kvmclock is used.
2350 * 1) CPU could have been running below the maximum TSC rate
2351 * 2) Broken TSC compensation resets the base at each VCPU
2352 * entry to avoid unknown leaps of TSC even when running
2353 * again on the same CPU. This may cause apparent elapsed
2354 * time to disappear, and the guest to stand still or run
2357 if (vcpu->tsc_catchup) {
2358 u64 tsc = compute_guest_tsc(v, kernel_ns);
2359 if (tsc > tsc_timestamp) {
2360 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2361 tsc_timestamp = tsc;
2365 local_irq_restore(flags);
2367 /* With all the info we got, fill in the values */
2369 if (kvm_has_tsc_control)
2370 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2372 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2373 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2374 &vcpu->hv_clock.tsc_shift,
2375 &vcpu->hv_clock.tsc_to_system_mul);
2376 vcpu->hw_tsc_khz = tgt_tsc_khz;
2379 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2380 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2381 vcpu->last_guest_tsc = tsc_timestamp;
2383 /* If the host uses TSC clocksource, then it is stable */
2385 if (use_master_clock)
2386 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2388 vcpu->hv_clock.flags = pvclock_flags;
2390 if (vcpu->pv_time_enabled)
2391 kvm_setup_pvclock_page(v);
2392 if (v == kvm_get_vcpu(v->kvm, 0))
2393 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2398 * kvmclock updates which are isolated to a given vcpu, such as
2399 * vcpu->cpu migration, should not allow system_timestamp from
2400 * the rest of the vcpus to remain static. Otherwise ntp frequency
2401 * correction applies to one vcpu's system_timestamp but not
2404 * So in those cases, request a kvmclock update for all vcpus.
2405 * We need to rate-limit these requests though, as they can
2406 * considerably slow guests that have a large number of vcpus.
2407 * The time for a remote vcpu to update its kvmclock is bound
2408 * by the delay we use to rate-limit the updates.
2411 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2413 static void kvmclock_update_fn(struct work_struct *work)
2416 struct delayed_work *dwork = to_delayed_work(work);
2417 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2418 kvmclock_update_work);
2419 struct kvm *kvm = container_of(ka, struct kvm, arch);
2420 struct kvm_vcpu *vcpu;
2422 kvm_for_each_vcpu(i, vcpu, kvm) {
2423 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2424 kvm_vcpu_kick(vcpu);
2428 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2430 struct kvm *kvm = v->kvm;
2432 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2433 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2434 KVMCLOCK_UPDATE_DELAY);
2437 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2439 static void kvmclock_sync_fn(struct work_struct *work)
2441 struct delayed_work *dwork = to_delayed_work(work);
2442 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2443 kvmclock_sync_work);
2444 struct kvm *kvm = container_of(ka, struct kvm, arch);
2446 if (!kvmclock_periodic_sync)
2449 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2450 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2451 KVMCLOCK_SYNC_PERIOD);
2455 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2457 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2459 /* McStatusWrEn enabled? */
2460 if (guest_cpuid_is_amd(vcpu))
2461 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2466 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2468 u64 mcg_cap = vcpu->arch.mcg_cap;
2469 unsigned bank_num = mcg_cap & 0xff;
2470 u32 msr = msr_info->index;
2471 u64 data = msr_info->data;
2474 case MSR_IA32_MCG_STATUS:
2475 vcpu->arch.mcg_status = data;
2477 case MSR_IA32_MCG_CTL:
2478 if (!(mcg_cap & MCG_CTL_P) &&
2479 (data || !msr_info->host_initiated))
2481 if (data != 0 && data != ~(u64)0)
2483 vcpu->arch.mcg_ctl = data;
2486 if (msr >= MSR_IA32_MC0_CTL &&
2487 msr < MSR_IA32_MCx_CTL(bank_num)) {
2488 u32 offset = msr - MSR_IA32_MC0_CTL;
2489 /* only 0 or all 1s can be written to IA32_MCi_CTL
2490 * some Linux kernels though clear bit 10 in bank 4 to
2491 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2492 * this to avoid an uncatched #GP in the guest
2494 if ((offset & 0x3) == 0 &&
2495 data != 0 && (data | (1 << 10)) != ~(u64)0)
2499 if (!msr_info->host_initiated &&
2500 (offset & 0x3) == 1 && data != 0) {
2501 if (!can_set_mci_status(vcpu))
2505 vcpu->arch.mce_banks[offset] = data;
2513 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2515 struct kvm *kvm = vcpu->kvm;
2516 int lm = is_long_mode(vcpu);
2517 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2518 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2519 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2520 : kvm->arch.xen_hvm_config.blob_size_32;
2521 u32 page_num = data & ~PAGE_MASK;
2522 u64 page_addr = data & PAGE_MASK;
2527 if (page_num >= blob_size)
2530 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2535 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2544 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2546 gpa_t gpa = data & ~0x3f;
2548 /* Bits 3:5 are reserved, Should be zero */
2552 vcpu->arch.apf.msr_val = data;
2554 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2555 kvm_clear_async_pf_completion_queue(vcpu);
2556 kvm_async_pf_hash_reset(vcpu);
2560 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2564 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2565 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2566 kvm_async_pf_wakeup_all(vcpu);
2570 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2572 vcpu->arch.pv_time_enabled = false;
2573 vcpu->arch.time = 0;
2576 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2578 ++vcpu->stat.tlb_flush;
2579 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2582 static void record_steal_time(struct kvm_vcpu *vcpu)
2584 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2587 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2588 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2592 * Doing a TLB flush here, on the guest's behalf, can avoid
2595 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2596 vcpu->arch.st.steal.preempted & KVM_VCPU_FLUSH_TLB);
2597 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2598 kvm_vcpu_flush_tlb(vcpu, false);
2600 if (vcpu->arch.st.steal.version & 1)
2601 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2603 vcpu->arch.st.steal.version += 1;
2605 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2606 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2610 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2611 vcpu->arch.st.last_steal;
2612 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2614 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2615 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2619 vcpu->arch.st.steal.version += 1;
2621 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2622 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2625 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2628 u32 msr = msr_info->index;
2629 u64 data = msr_info->data;
2632 case MSR_AMD64_NB_CFG:
2633 case MSR_IA32_UCODE_WRITE:
2634 case MSR_VM_HSAVE_PA:
2635 case MSR_AMD64_PATCH_LOADER:
2636 case MSR_AMD64_BU_CFG2:
2637 case MSR_AMD64_DC_CFG:
2638 case MSR_F15H_EX_CFG:
2641 case MSR_IA32_UCODE_REV:
2642 if (msr_info->host_initiated)
2643 vcpu->arch.microcode_version = data;
2645 case MSR_IA32_ARCH_CAPABILITIES:
2646 if (!msr_info->host_initiated)
2648 vcpu->arch.arch_capabilities = data;
2651 return set_efer(vcpu, msr_info);
2653 data &= ~(u64)0x40; /* ignore flush filter disable */
2654 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2655 data &= ~(u64)0x8; /* ignore TLB cache disable */
2657 /* Handle McStatusWrEn */
2658 if (data == BIT_ULL(18)) {
2659 vcpu->arch.msr_hwcr = data;
2660 } else if (data != 0) {
2661 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2666 case MSR_FAM10H_MMIO_CONF_BASE:
2668 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2673 case MSR_IA32_DEBUGCTLMSR:
2675 /* We support the non-activated case already */
2677 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2678 /* Values other than LBR and BTF are vendor-specific,
2679 thus reserved and should throw a #GP */
2682 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2685 case 0x200 ... 0x2ff:
2686 return kvm_mtrr_set_msr(vcpu, msr, data);
2687 case MSR_IA32_APICBASE:
2688 return kvm_set_apic_base(vcpu, msr_info);
2689 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2690 return kvm_x2apic_msr_write(vcpu, msr, data);
2691 case MSR_IA32_TSCDEADLINE:
2692 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2694 case MSR_IA32_TSC_ADJUST:
2695 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2696 if (!msr_info->host_initiated) {
2697 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2698 adjust_tsc_offset_guest(vcpu, adj);
2700 vcpu->arch.ia32_tsc_adjust_msr = data;
2703 case MSR_IA32_MISC_ENABLE:
2704 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2705 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2706 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2708 vcpu->arch.ia32_misc_enable_msr = data;
2709 kvm_update_cpuid(vcpu);
2711 vcpu->arch.ia32_misc_enable_msr = data;
2714 case MSR_IA32_SMBASE:
2715 if (!msr_info->host_initiated)
2717 vcpu->arch.smbase = data;
2719 case MSR_IA32_POWER_CTL:
2720 vcpu->arch.msr_ia32_power_ctl = data;
2723 kvm_write_tsc(vcpu, msr_info);
2726 if (!msr_info->host_initiated &&
2727 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2730 * We do support PT if kvm_x86_ops->pt_supported(), but we do
2731 * not support IA32_XSS[bit 8]. Guests will have to use
2732 * RDMSR/WRMSR rather than XSAVES/XRSTORS to save/restore PT
2737 vcpu->arch.ia32_xss = data;
2740 if (!msr_info->host_initiated)
2742 vcpu->arch.smi_count = data;
2744 case MSR_KVM_WALL_CLOCK_NEW:
2745 case MSR_KVM_WALL_CLOCK:
2746 vcpu->kvm->arch.wall_clock = data;
2747 kvm_write_wall_clock(vcpu->kvm, data);
2749 case MSR_KVM_SYSTEM_TIME_NEW:
2750 case MSR_KVM_SYSTEM_TIME: {
2751 struct kvm_arch *ka = &vcpu->kvm->arch;
2753 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2754 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2756 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2757 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2759 ka->boot_vcpu_runs_old_kvmclock = tmp;
2762 vcpu->arch.time = data;
2763 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2765 /* we verify if the enable bit is set... */
2766 vcpu->arch.pv_time_enabled = false;
2770 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2771 &vcpu->arch.pv_time, data & ~1ULL,
2772 sizeof(struct pvclock_vcpu_time_info)))
2773 vcpu->arch.pv_time_enabled = true;
2777 case MSR_KVM_ASYNC_PF_EN:
2778 if (kvm_pv_enable_async_pf(vcpu, data))
2781 case MSR_KVM_STEAL_TIME:
2783 if (unlikely(!sched_info_on()))
2786 if (data & KVM_STEAL_RESERVED_MASK)
2789 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2790 data & KVM_STEAL_VALID_BITS,
2791 sizeof(struct kvm_steal_time)))
2794 vcpu->arch.st.msr_val = data;
2796 if (!(data & KVM_MSR_ENABLED))
2799 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2802 case MSR_KVM_PV_EOI_EN:
2803 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2807 case MSR_KVM_POLL_CONTROL:
2808 /* only enable bit supported */
2809 if (data & (-1ULL << 1))
2812 vcpu->arch.msr_kvm_poll_control = data;
2815 case MSR_IA32_MCG_CTL:
2816 case MSR_IA32_MCG_STATUS:
2817 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2818 return set_msr_mce(vcpu, msr_info);
2820 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2821 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2822 pr = true; /* fall through */
2823 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2824 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2825 if (kvm_pmu_is_valid_msr(vcpu, msr))
2826 return kvm_pmu_set_msr(vcpu, msr_info);
2828 if (pr || data != 0)
2829 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2830 "0x%x data 0x%llx\n", msr, data);
2832 case MSR_K7_CLK_CTL:
2834 * Ignore all writes to this no longer documented MSR.
2835 * Writes are only relevant for old K7 processors,
2836 * all pre-dating SVM, but a recommended workaround from
2837 * AMD for these chips. It is possible to specify the
2838 * affected processor models on the command line, hence
2839 * the need to ignore the workaround.
2842 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2843 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2844 case HV_X64_MSR_CRASH_CTL:
2845 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2846 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2847 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2848 case HV_X64_MSR_TSC_EMULATION_STATUS:
2849 return kvm_hv_set_msr_common(vcpu, msr, data,
2850 msr_info->host_initiated);
2851 case MSR_IA32_BBL_CR_CTL3:
2852 /* Drop writes to this legacy MSR -- see rdmsr
2853 * counterpart for further detail.
2855 if (report_ignored_msrs)
2856 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2859 case MSR_AMD64_OSVW_ID_LENGTH:
2860 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2862 vcpu->arch.osvw.length = data;
2864 case MSR_AMD64_OSVW_STATUS:
2865 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2867 vcpu->arch.osvw.status = data;
2869 case MSR_PLATFORM_INFO:
2870 if (!msr_info->host_initiated ||
2871 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2872 cpuid_fault_enabled(vcpu)))
2874 vcpu->arch.msr_platform_info = data;
2876 case MSR_MISC_FEATURES_ENABLES:
2877 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2878 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2879 !supports_cpuid_fault(vcpu)))
2881 vcpu->arch.msr_misc_features_enables = data;
2884 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2885 return xen_hvm_config(vcpu, data);
2886 if (kvm_pmu_is_valid_msr(vcpu, msr))
2887 return kvm_pmu_set_msr(vcpu, msr_info);
2889 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2893 if (report_ignored_msrs)
2895 "ignored wrmsr: 0x%x data 0x%llx\n",
2902 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2904 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2907 u64 mcg_cap = vcpu->arch.mcg_cap;
2908 unsigned bank_num = mcg_cap & 0xff;
2911 case MSR_IA32_P5_MC_ADDR:
2912 case MSR_IA32_P5_MC_TYPE:
2915 case MSR_IA32_MCG_CAP:
2916 data = vcpu->arch.mcg_cap;
2918 case MSR_IA32_MCG_CTL:
2919 if (!(mcg_cap & MCG_CTL_P) && !host)
2921 data = vcpu->arch.mcg_ctl;
2923 case MSR_IA32_MCG_STATUS:
2924 data = vcpu->arch.mcg_status;
2927 if (msr >= MSR_IA32_MC0_CTL &&
2928 msr < MSR_IA32_MCx_CTL(bank_num)) {
2929 u32 offset = msr - MSR_IA32_MC0_CTL;
2930 data = vcpu->arch.mce_banks[offset];
2939 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2941 switch (msr_info->index) {
2942 case MSR_IA32_PLATFORM_ID:
2943 case MSR_IA32_EBL_CR_POWERON:
2944 case MSR_IA32_DEBUGCTLMSR:
2945 case MSR_IA32_LASTBRANCHFROMIP:
2946 case MSR_IA32_LASTBRANCHTOIP:
2947 case MSR_IA32_LASTINTFROMIP:
2948 case MSR_IA32_LASTINTTOIP:
2950 case MSR_K8_TSEG_ADDR:
2951 case MSR_K8_TSEG_MASK:
2952 case MSR_VM_HSAVE_PA:
2953 case MSR_K8_INT_PENDING_MSG:
2954 case MSR_AMD64_NB_CFG:
2955 case MSR_FAM10H_MMIO_CONF_BASE:
2956 case MSR_AMD64_BU_CFG2:
2957 case MSR_IA32_PERF_CTL:
2958 case MSR_AMD64_DC_CFG:
2959 case MSR_F15H_EX_CFG:
2962 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
2963 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2964 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2965 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2966 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2967 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2968 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2971 case MSR_IA32_UCODE_REV:
2972 msr_info->data = vcpu->arch.microcode_version;
2974 case MSR_IA32_ARCH_CAPABILITIES:
2975 if (!msr_info->host_initiated &&
2976 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
2978 msr_info->data = vcpu->arch.arch_capabilities;
2980 case MSR_IA32_POWER_CTL:
2981 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
2984 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
2987 case 0x200 ... 0x2ff:
2988 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2989 case 0xcd: /* fsb frequency */
2993 * MSR_EBC_FREQUENCY_ID
2994 * Conservative value valid for even the basic CPU models.
2995 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2996 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2997 * and 266MHz for model 3, or 4. Set Core Clock
2998 * Frequency to System Bus Frequency Ratio to 1 (bits
2999 * 31:24) even though these are only valid for CPU
3000 * models > 2, however guests may end up dividing or
3001 * multiplying by zero otherwise.
3003 case MSR_EBC_FREQUENCY_ID:
3004 msr_info->data = 1 << 24;
3006 case MSR_IA32_APICBASE:
3007 msr_info->data = kvm_get_apic_base(vcpu);
3009 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3010 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3012 case MSR_IA32_TSCDEADLINE:
3013 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3015 case MSR_IA32_TSC_ADJUST:
3016 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3018 case MSR_IA32_MISC_ENABLE:
3019 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3021 case MSR_IA32_SMBASE:
3022 if (!msr_info->host_initiated)
3024 msr_info->data = vcpu->arch.smbase;
3027 msr_info->data = vcpu->arch.smi_count;
3029 case MSR_IA32_PERF_STATUS:
3030 /* TSC increment by tick */
3031 msr_info->data = 1000ULL;
3032 /* CPU multiplier */
3033 msr_info->data |= (((uint64_t)4ULL) << 40);
3036 msr_info->data = vcpu->arch.efer;
3038 case MSR_KVM_WALL_CLOCK:
3039 case MSR_KVM_WALL_CLOCK_NEW:
3040 msr_info->data = vcpu->kvm->arch.wall_clock;
3042 case MSR_KVM_SYSTEM_TIME:
3043 case MSR_KVM_SYSTEM_TIME_NEW:
3044 msr_info->data = vcpu->arch.time;
3046 case MSR_KVM_ASYNC_PF_EN:
3047 msr_info->data = vcpu->arch.apf.msr_val;
3049 case MSR_KVM_STEAL_TIME:
3050 msr_info->data = vcpu->arch.st.msr_val;
3052 case MSR_KVM_PV_EOI_EN:
3053 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3055 case MSR_KVM_POLL_CONTROL:
3056 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3058 case MSR_IA32_P5_MC_ADDR:
3059 case MSR_IA32_P5_MC_TYPE:
3060 case MSR_IA32_MCG_CAP:
3061 case MSR_IA32_MCG_CTL:
3062 case MSR_IA32_MCG_STATUS:
3063 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3064 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3065 msr_info->host_initiated);
3067 if (!msr_info->host_initiated &&
3068 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3070 msr_info->data = vcpu->arch.ia32_xss;
3072 case MSR_K7_CLK_CTL:
3074 * Provide expected ramp-up count for K7. All other
3075 * are set to zero, indicating minimum divisors for
3078 * This prevents guest kernels on AMD host with CPU
3079 * type 6, model 8 and higher from exploding due to
3080 * the rdmsr failing.
3082 msr_info->data = 0x20000000;
3084 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3085 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3086 case HV_X64_MSR_CRASH_CTL:
3087 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3088 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3089 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3090 case HV_X64_MSR_TSC_EMULATION_STATUS:
3091 return kvm_hv_get_msr_common(vcpu,
3092 msr_info->index, &msr_info->data,
3093 msr_info->host_initiated);
3095 case MSR_IA32_BBL_CR_CTL3:
3096 /* This legacy MSR exists but isn't fully documented in current
3097 * silicon. It is however accessed by winxp in very narrow
3098 * scenarios where it sets bit #19, itself documented as
3099 * a "reserved" bit. Best effort attempt to source coherent
3100 * read data here should the balance of the register be
3101 * interpreted by the guest:
3103 * L2 cache control register 3: 64GB range, 256KB size,
3104 * enabled, latency 0x1, configured
3106 msr_info->data = 0xbe702111;
3108 case MSR_AMD64_OSVW_ID_LENGTH:
3109 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3111 msr_info->data = vcpu->arch.osvw.length;
3113 case MSR_AMD64_OSVW_STATUS:
3114 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3116 msr_info->data = vcpu->arch.osvw.status;
3118 case MSR_PLATFORM_INFO:
3119 if (!msr_info->host_initiated &&
3120 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3122 msr_info->data = vcpu->arch.msr_platform_info;
3124 case MSR_MISC_FEATURES_ENABLES:
3125 msr_info->data = vcpu->arch.msr_misc_features_enables;
3128 msr_info->data = vcpu->arch.msr_hwcr;
3131 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3132 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3134 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3138 if (report_ignored_msrs)
3139 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3147 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3150 * Read or write a bunch of msrs. All parameters are kernel addresses.
3152 * @return number of msrs set successfully.
3154 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3155 struct kvm_msr_entry *entries,
3156 int (*do_msr)(struct kvm_vcpu *vcpu,
3157 unsigned index, u64 *data))
3161 for (i = 0; i < msrs->nmsrs; ++i)
3162 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3169 * Read or write a bunch of msrs. Parameters are user addresses.
3171 * @return number of msrs set successfully.
3173 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3174 int (*do_msr)(struct kvm_vcpu *vcpu,
3175 unsigned index, u64 *data),
3178 struct kvm_msrs msrs;
3179 struct kvm_msr_entry *entries;
3184 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3188 if (msrs.nmsrs >= MAX_IO_MSRS)
3191 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3192 entries = memdup_user(user_msrs->entries, size);
3193 if (IS_ERR(entries)) {
3194 r = PTR_ERR(entries);
3198 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3203 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3214 static inline bool kvm_can_mwait_in_guest(void)
3216 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3217 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3218 boot_cpu_has(X86_FEATURE_ARAT);
3221 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3226 case KVM_CAP_IRQCHIP:
3228 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3229 case KVM_CAP_SET_TSS_ADDR:
3230 case KVM_CAP_EXT_CPUID:
3231 case KVM_CAP_EXT_EMUL_CPUID:
3232 case KVM_CAP_CLOCKSOURCE:
3234 case KVM_CAP_NOP_IO_DELAY:
3235 case KVM_CAP_MP_STATE:
3236 case KVM_CAP_SYNC_MMU:
3237 case KVM_CAP_USER_NMI:
3238 case KVM_CAP_REINJECT_CONTROL:
3239 case KVM_CAP_IRQ_INJECT_STATUS:
3240 case KVM_CAP_IOEVENTFD:
3241 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3243 case KVM_CAP_PIT_STATE2:
3244 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3245 case KVM_CAP_XEN_HVM:
3246 case KVM_CAP_VCPU_EVENTS:
3247 case KVM_CAP_HYPERV:
3248 case KVM_CAP_HYPERV_VAPIC:
3249 case KVM_CAP_HYPERV_SPIN:
3250 case KVM_CAP_HYPERV_SYNIC:
3251 case KVM_CAP_HYPERV_SYNIC2:
3252 case KVM_CAP_HYPERV_VP_INDEX:
3253 case KVM_CAP_HYPERV_EVENTFD:
3254 case KVM_CAP_HYPERV_TLBFLUSH:
3255 case KVM_CAP_HYPERV_SEND_IPI:
3256 case KVM_CAP_HYPERV_CPUID:
3257 case KVM_CAP_PCI_SEGMENT:
3258 case KVM_CAP_DEBUGREGS:
3259 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3261 case KVM_CAP_ASYNC_PF:
3262 case KVM_CAP_GET_TSC_KHZ:
3263 case KVM_CAP_KVMCLOCK_CTRL:
3264 case KVM_CAP_READONLY_MEM:
3265 case KVM_CAP_HYPERV_TIME:
3266 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3267 case KVM_CAP_TSC_DEADLINE_TIMER:
3268 case KVM_CAP_DISABLE_QUIRKS:
3269 case KVM_CAP_SET_BOOT_CPU_ID:
3270 case KVM_CAP_SPLIT_IRQCHIP:
3271 case KVM_CAP_IMMEDIATE_EXIT:
3272 case KVM_CAP_PMU_EVENT_FILTER:
3273 case KVM_CAP_GET_MSR_FEATURES:
3274 case KVM_CAP_MSR_PLATFORM_INFO:
3275 case KVM_CAP_EXCEPTION_PAYLOAD:
3278 case KVM_CAP_SYNC_REGS:
3279 r = KVM_SYNC_X86_VALID_FIELDS;
3281 case KVM_CAP_ADJUST_CLOCK:
3282 r = KVM_CLOCK_TSC_STABLE;
3284 case KVM_CAP_X86_DISABLE_EXITS:
3285 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3286 KVM_X86_DISABLE_EXITS_CSTATE;
3287 if(kvm_can_mwait_in_guest())
3288 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3290 case KVM_CAP_X86_SMM:
3291 /* SMBASE is usually relocated above 1M on modern chipsets,
3292 * and SMM handlers might indeed rely on 4G segment limits,
3293 * so do not report SMM to be available if real mode is
3294 * emulated via vm86 mode. Still, do not go to great lengths
3295 * to avoid userspace's usage of the feature, because it is a
3296 * fringe case that is not enabled except via specific settings
3297 * of the module parameters.
3299 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3302 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3304 case KVM_CAP_NR_VCPUS:
3305 r = KVM_SOFT_MAX_VCPUS;
3307 case KVM_CAP_MAX_VCPUS:
3310 case KVM_CAP_MAX_VCPU_ID:
3311 r = KVM_MAX_VCPU_ID;
3313 case KVM_CAP_PV_MMU: /* obsolete */
3317 r = KVM_MAX_MCE_BANKS;
3320 r = boot_cpu_has(X86_FEATURE_XSAVE);
3322 case KVM_CAP_TSC_CONTROL:
3323 r = kvm_has_tsc_control;
3325 case KVM_CAP_X2APIC_API:
3326 r = KVM_X2APIC_API_VALID_FLAGS;
3328 case KVM_CAP_NESTED_STATE:
3329 r = kvm_x86_ops->get_nested_state ?
3330 kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3332 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3333 r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3335 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3336 r = kvm_x86_ops->nested_enable_evmcs != NULL;
3345 long kvm_arch_dev_ioctl(struct file *filp,
3346 unsigned int ioctl, unsigned long arg)
3348 void __user *argp = (void __user *)arg;
3352 case KVM_GET_MSR_INDEX_LIST: {
3353 struct kvm_msr_list __user *user_msr_list = argp;
3354 struct kvm_msr_list msr_list;
3358 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3361 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3362 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3365 if (n < msr_list.nmsrs)
3368 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3369 num_msrs_to_save * sizeof(u32)))
3371 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3373 num_emulated_msrs * sizeof(u32)))
3378 case KVM_GET_SUPPORTED_CPUID:
3379 case KVM_GET_EMULATED_CPUID: {
3380 struct kvm_cpuid2 __user *cpuid_arg = argp;
3381 struct kvm_cpuid2 cpuid;
3384 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3387 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3393 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3398 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3400 if (copy_to_user(argp, &kvm_mce_cap_supported,
3401 sizeof(kvm_mce_cap_supported)))
3405 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3406 struct kvm_msr_list __user *user_msr_list = argp;
3407 struct kvm_msr_list msr_list;
3411 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3414 msr_list.nmsrs = num_msr_based_features;
3415 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3418 if (n < msr_list.nmsrs)
3421 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3422 num_msr_based_features * sizeof(u32)))
3428 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3438 static void wbinvd_ipi(void *garbage)
3443 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3445 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3448 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3450 /* Address WBINVD may be executed by guest */
3451 if (need_emulate_wbinvd(vcpu)) {
3452 if (kvm_x86_ops->has_wbinvd_exit())
3453 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3454 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3455 smp_call_function_single(vcpu->cpu,
3456 wbinvd_ipi, NULL, 1);
3459 kvm_x86_ops->vcpu_load(vcpu, cpu);
3461 fpregs_assert_state_consistent();
3462 if (test_thread_flag(TIF_NEED_FPU_LOAD))
3463 switch_fpu_return();
3465 /* Apply any externally detected TSC adjustments (due to suspend) */
3466 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3467 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3468 vcpu->arch.tsc_offset_adjustment = 0;
3469 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3472 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3473 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3474 rdtsc() - vcpu->arch.last_host_tsc;
3476 mark_tsc_unstable("KVM discovered backwards TSC");
3478 if (kvm_check_tsc_unstable()) {
3479 u64 offset = kvm_compute_tsc_offset(vcpu,
3480 vcpu->arch.last_guest_tsc);
3481 kvm_vcpu_write_tsc_offset(vcpu, offset);
3482 vcpu->arch.tsc_catchup = 1;
3485 if (kvm_lapic_hv_timer_in_use(vcpu))
3486 kvm_lapic_restart_hv_timer(vcpu);
3489 * On a host with synchronized TSC, there is no need to update
3490 * kvmclock on vcpu->cpu migration
3492 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3493 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3494 if (vcpu->cpu != cpu)
3495 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3499 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3502 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3504 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3507 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3509 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3510 &vcpu->arch.st.steal.preempted,
3511 offsetof(struct kvm_steal_time, preempted),
3512 sizeof(vcpu->arch.st.steal.preempted));
3515 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3519 if (vcpu->preempted)
3520 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3523 * Disable page faults because we're in atomic context here.
3524 * kvm_write_guest_offset_cached() would call might_fault()
3525 * that relies on pagefault_disable() to tell if there's a
3526 * bug. NOTE: the write to guest memory may not go through if
3527 * during postcopy live migration or if there's heavy guest
3530 pagefault_disable();
3532 * kvm_memslots() will be called by
3533 * kvm_write_guest_offset_cached() so take the srcu lock.
3535 idx = srcu_read_lock(&vcpu->kvm->srcu);
3536 kvm_steal_time_set_preempted(vcpu);
3537 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3539 kvm_x86_ops->vcpu_put(vcpu);
3540 vcpu->arch.last_host_tsc = rdtsc();
3542 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3543 * on every vmexit, but if not, we might have a stale dr6 from the
3544 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3549 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3550 struct kvm_lapic_state *s)
3552 if (vcpu->arch.apicv_active)
3553 kvm_x86_ops->sync_pir_to_irr(vcpu);
3555 return kvm_apic_get_state(vcpu, s);
3558 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3559 struct kvm_lapic_state *s)
3563 r = kvm_apic_set_state(vcpu, s);
3566 update_cr8_intercept(vcpu);
3571 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3573 return (!lapic_in_kernel(vcpu) ||
3574 kvm_apic_accept_pic_intr(vcpu));
3578 * if userspace requested an interrupt window, check that the
3579 * interrupt window is open.
3581 * No need to exit to userspace if we already have an interrupt queued.
3583 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3585 return kvm_arch_interrupt_allowed(vcpu) &&
3586 !kvm_cpu_has_interrupt(vcpu) &&
3587 !kvm_event_needs_reinjection(vcpu) &&
3588 kvm_cpu_accept_dm_intr(vcpu);
3591 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3592 struct kvm_interrupt *irq)
3594 if (irq->irq >= KVM_NR_INTERRUPTS)
3597 if (!irqchip_in_kernel(vcpu->kvm)) {
3598 kvm_queue_interrupt(vcpu, irq->irq, false);
3599 kvm_make_request(KVM_REQ_EVENT, vcpu);
3604 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3605 * fail for in-kernel 8259.
3607 if (pic_in_kernel(vcpu->kvm))
3610 if (vcpu->arch.pending_external_vector != -1)
3613 vcpu->arch.pending_external_vector = irq->irq;
3614 kvm_make_request(KVM_REQ_EVENT, vcpu);
3618 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3620 kvm_inject_nmi(vcpu);
3625 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3627 kvm_make_request(KVM_REQ_SMI, vcpu);
3632 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3633 struct kvm_tpr_access_ctl *tac)
3637 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3641 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3645 unsigned bank_num = mcg_cap & 0xff, bank;
3648 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3650 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3653 vcpu->arch.mcg_cap = mcg_cap;
3654 /* Init IA32_MCG_CTL to all 1s */
3655 if (mcg_cap & MCG_CTL_P)
3656 vcpu->arch.mcg_ctl = ~(u64)0;
3657 /* Init IA32_MCi_CTL to all 1s */
3658 for (bank = 0; bank < bank_num; bank++)
3659 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3661 kvm_x86_ops->setup_mce(vcpu);
3666 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3667 struct kvm_x86_mce *mce)
3669 u64 mcg_cap = vcpu->arch.mcg_cap;
3670 unsigned bank_num = mcg_cap & 0xff;
3671 u64 *banks = vcpu->arch.mce_banks;
3673 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3676 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3677 * reporting is disabled
3679 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3680 vcpu->arch.mcg_ctl != ~(u64)0)
3682 banks += 4 * mce->bank;
3684 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3685 * reporting is disabled for the bank
3687 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3689 if (mce->status & MCI_STATUS_UC) {
3690 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3691 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3692 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3695 if (banks[1] & MCI_STATUS_VAL)
3696 mce->status |= MCI_STATUS_OVER;
3697 banks[2] = mce->addr;
3698 banks[3] = mce->misc;
3699 vcpu->arch.mcg_status = mce->mcg_status;
3700 banks[1] = mce->status;
3701 kvm_queue_exception(vcpu, MC_VECTOR);
3702 } else if (!(banks[1] & MCI_STATUS_VAL)
3703 || !(banks[1] & MCI_STATUS_UC)) {
3704 if (banks[1] & MCI_STATUS_VAL)
3705 mce->status |= MCI_STATUS_OVER;
3706 banks[2] = mce->addr;
3707 banks[3] = mce->misc;
3708 banks[1] = mce->status;
3710 banks[1] |= MCI_STATUS_OVER;
3714 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3715 struct kvm_vcpu_events *events)
3720 * The API doesn't provide the instruction length for software
3721 * exceptions, so don't report them. As long as the guest RIP
3722 * isn't advanced, we should expect to encounter the exception
3725 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3726 events->exception.injected = 0;
3727 events->exception.pending = 0;
3729 events->exception.injected = vcpu->arch.exception.injected;
3730 events->exception.pending = vcpu->arch.exception.pending;
3732 * For ABI compatibility, deliberately conflate
3733 * pending and injected exceptions when
3734 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3736 if (!vcpu->kvm->arch.exception_payload_enabled)
3737 events->exception.injected |=
3738 vcpu->arch.exception.pending;
3740 events->exception.nr = vcpu->arch.exception.nr;
3741 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3742 events->exception.error_code = vcpu->arch.exception.error_code;
3743 events->exception_has_payload = vcpu->arch.exception.has_payload;
3744 events->exception_payload = vcpu->arch.exception.payload;
3746 events->interrupt.injected =
3747 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3748 events->interrupt.nr = vcpu->arch.interrupt.nr;
3749 events->interrupt.soft = 0;
3750 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3752 events->nmi.injected = vcpu->arch.nmi_injected;
3753 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3754 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3755 events->nmi.pad = 0;
3757 events->sipi_vector = 0; /* never valid when reporting to user space */
3759 events->smi.smm = is_smm(vcpu);
3760 events->smi.pending = vcpu->arch.smi_pending;
3761 events->smi.smm_inside_nmi =
3762 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3763 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3765 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3766 | KVM_VCPUEVENT_VALID_SHADOW
3767 | KVM_VCPUEVENT_VALID_SMM);
3768 if (vcpu->kvm->arch.exception_payload_enabled)
3769 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3771 memset(&events->reserved, 0, sizeof(events->reserved));
3774 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3776 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3777 struct kvm_vcpu_events *events)
3779 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3780 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3781 | KVM_VCPUEVENT_VALID_SHADOW
3782 | KVM_VCPUEVENT_VALID_SMM
3783 | KVM_VCPUEVENT_VALID_PAYLOAD))
3786 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3787 if (!vcpu->kvm->arch.exception_payload_enabled)
3789 if (events->exception.pending)
3790 events->exception.injected = 0;
3792 events->exception_has_payload = 0;
3794 events->exception.pending = 0;
3795 events->exception_has_payload = 0;
3798 if ((events->exception.injected || events->exception.pending) &&
3799 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3802 /* INITs are latched while in SMM */
3803 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3804 (events->smi.smm || events->smi.pending) &&
3805 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3809 vcpu->arch.exception.injected = events->exception.injected;
3810 vcpu->arch.exception.pending = events->exception.pending;
3811 vcpu->arch.exception.nr = events->exception.nr;
3812 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3813 vcpu->arch.exception.error_code = events->exception.error_code;
3814 vcpu->arch.exception.has_payload = events->exception_has_payload;
3815 vcpu->arch.exception.payload = events->exception_payload;
3817 vcpu->arch.interrupt.injected = events->interrupt.injected;
3818 vcpu->arch.interrupt.nr = events->interrupt.nr;
3819 vcpu->arch.interrupt.soft = events->interrupt.soft;
3820 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3821 kvm_x86_ops->set_interrupt_shadow(vcpu,
3822 events->interrupt.shadow);
3824 vcpu->arch.nmi_injected = events->nmi.injected;
3825 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3826 vcpu->arch.nmi_pending = events->nmi.pending;
3827 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3829 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3830 lapic_in_kernel(vcpu))
3831 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3833 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3834 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3835 if (events->smi.smm)
3836 vcpu->arch.hflags |= HF_SMM_MASK;
3838 vcpu->arch.hflags &= ~HF_SMM_MASK;
3839 kvm_smm_changed(vcpu);
3842 vcpu->arch.smi_pending = events->smi.pending;
3844 if (events->smi.smm) {
3845 if (events->smi.smm_inside_nmi)
3846 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3848 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3851 if (lapic_in_kernel(vcpu)) {
3852 if (events->smi.latched_init)
3853 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3855 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3859 kvm_make_request(KVM_REQ_EVENT, vcpu);
3864 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3865 struct kvm_debugregs *dbgregs)
3869 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3870 kvm_get_dr(vcpu, 6, &val);
3872 dbgregs->dr7 = vcpu->arch.dr7;
3874 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3877 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3878 struct kvm_debugregs *dbgregs)
3883 if (dbgregs->dr6 & ~0xffffffffull)
3885 if (dbgregs->dr7 & ~0xffffffffull)
3888 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3889 kvm_update_dr0123(vcpu);
3890 vcpu->arch.dr6 = dbgregs->dr6;
3891 kvm_update_dr6(vcpu);
3892 vcpu->arch.dr7 = dbgregs->dr7;
3893 kvm_update_dr7(vcpu);
3898 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3900 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3902 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3903 u64 xstate_bv = xsave->header.xfeatures;
3907 * Copy legacy XSAVE area, to avoid complications with CPUID
3908 * leaves 0 and 1 in the loop below.
3910 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3913 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3914 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3917 * Copy each region from the possibly compacted offset to the
3918 * non-compacted offset.
3920 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3922 u64 xfeature_mask = valid & -valid;
3923 int xfeature_nr = fls64(xfeature_mask) - 1;
3924 void *src = get_xsave_addr(xsave, xfeature_nr);
3927 u32 size, offset, ecx, edx;
3928 cpuid_count(XSTATE_CPUID, xfeature_nr,
3929 &size, &offset, &ecx, &edx);
3930 if (xfeature_nr == XFEATURE_PKRU)
3931 memcpy(dest + offset, &vcpu->arch.pkru,
3932 sizeof(vcpu->arch.pkru));
3934 memcpy(dest + offset, src, size);
3938 valid -= xfeature_mask;
3942 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3944 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3945 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3949 * Copy legacy XSAVE area, to avoid complications with CPUID
3950 * leaves 0 and 1 in the loop below.
3952 memcpy(xsave, src, XSAVE_HDR_OFFSET);
3954 /* Set XSTATE_BV and possibly XCOMP_BV. */
3955 xsave->header.xfeatures = xstate_bv;
3956 if (boot_cpu_has(X86_FEATURE_XSAVES))
3957 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3960 * Copy each region from the non-compacted offset to the
3961 * possibly compacted offset.
3963 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3965 u64 xfeature_mask = valid & -valid;
3966 int xfeature_nr = fls64(xfeature_mask) - 1;
3967 void *dest = get_xsave_addr(xsave, xfeature_nr);
3970 u32 size, offset, ecx, edx;
3971 cpuid_count(XSTATE_CPUID, xfeature_nr,
3972 &size, &offset, &ecx, &edx);
3973 if (xfeature_nr == XFEATURE_PKRU)
3974 memcpy(&vcpu->arch.pkru, src + offset,
3975 sizeof(vcpu->arch.pkru));
3977 memcpy(dest, src + offset, size);
3980 valid -= xfeature_mask;
3984 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3985 struct kvm_xsave *guest_xsave)
3987 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3988 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3989 fill_xsave((u8 *) guest_xsave->region, vcpu);
3991 memcpy(guest_xsave->region,
3992 &vcpu->arch.guest_fpu->state.fxsave,
3993 sizeof(struct fxregs_state));
3994 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3995 XFEATURE_MASK_FPSSE;
3999 #define XSAVE_MXCSR_OFFSET 24
4001 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4002 struct kvm_xsave *guest_xsave)
4005 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4006 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4008 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4010 * Here we allow setting states that are not present in
4011 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4012 * with old userspace.
4014 if (xstate_bv & ~kvm_supported_xcr0() ||
4015 mxcsr & ~mxcsr_feature_mask)
4017 load_xsave(vcpu, (u8 *)guest_xsave->region);
4019 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4020 mxcsr & ~mxcsr_feature_mask)
4022 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4023 guest_xsave->region, sizeof(struct fxregs_state));
4028 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4029 struct kvm_xcrs *guest_xcrs)
4031 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4032 guest_xcrs->nr_xcrs = 0;
4036 guest_xcrs->nr_xcrs = 1;
4037 guest_xcrs->flags = 0;
4038 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4039 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4042 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4043 struct kvm_xcrs *guest_xcrs)
4047 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4050 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4053 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4054 /* Only support XCR0 currently */
4055 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4056 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4057 guest_xcrs->xcrs[i].value);
4066 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4067 * stopped by the hypervisor. This function will be called from the host only.
4068 * EINVAL is returned when the host attempts to set the flag for a guest that
4069 * does not support pv clocks.
4071 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4073 if (!vcpu->arch.pv_time_enabled)
4075 vcpu->arch.pvclock_set_guest_stopped_request = true;
4076 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4080 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4081 struct kvm_enable_cap *cap)
4084 uint16_t vmcs_version;
4085 void __user *user_ptr;
4091 case KVM_CAP_HYPERV_SYNIC2:
4096 case KVM_CAP_HYPERV_SYNIC:
4097 if (!irqchip_in_kernel(vcpu->kvm))
4099 return kvm_hv_activate_synic(vcpu, cap->cap ==
4100 KVM_CAP_HYPERV_SYNIC2);
4101 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4102 if (!kvm_x86_ops->nested_enable_evmcs)
4104 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4106 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4107 if (copy_to_user(user_ptr, &vmcs_version,
4108 sizeof(vmcs_version)))
4112 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4113 if (!kvm_x86_ops->enable_direct_tlbflush)
4116 return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4123 long kvm_arch_vcpu_ioctl(struct file *filp,
4124 unsigned int ioctl, unsigned long arg)
4126 struct kvm_vcpu *vcpu = filp->private_data;
4127 void __user *argp = (void __user *)arg;
4130 struct kvm_lapic_state *lapic;
4131 struct kvm_xsave *xsave;
4132 struct kvm_xcrs *xcrs;
4140 case KVM_GET_LAPIC: {
4142 if (!lapic_in_kernel(vcpu))
4144 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4145 GFP_KERNEL_ACCOUNT);
4150 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4154 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4159 case KVM_SET_LAPIC: {
4161 if (!lapic_in_kernel(vcpu))
4163 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4164 if (IS_ERR(u.lapic)) {
4165 r = PTR_ERR(u.lapic);
4169 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4172 case KVM_INTERRUPT: {
4173 struct kvm_interrupt irq;
4176 if (copy_from_user(&irq, argp, sizeof(irq)))
4178 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4182 r = kvm_vcpu_ioctl_nmi(vcpu);
4186 r = kvm_vcpu_ioctl_smi(vcpu);
4189 case KVM_SET_CPUID: {
4190 struct kvm_cpuid __user *cpuid_arg = argp;
4191 struct kvm_cpuid cpuid;
4194 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4196 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4199 case KVM_SET_CPUID2: {
4200 struct kvm_cpuid2 __user *cpuid_arg = argp;
4201 struct kvm_cpuid2 cpuid;
4204 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4206 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4207 cpuid_arg->entries);
4210 case KVM_GET_CPUID2: {
4211 struct kvm_cpuid2 __user *cpuid_arg = argp;
4212 struct kvm_cpuid2 cpuid;
4215 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4217 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4218 cpuid_arg->entries);
4222 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4227 case KVM_GET_MSRS: {
4228 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4229 r = msr_io(vcpu, argp, do_get_msr, 1);
4230 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4233 case KVM_SET_MSRS: {
4234 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4235 r = msr_io(vcpu, argp, do_set_msr, 0);
4236 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4239 case KVM_TPR_ACCESS_REPORTING: {
4240 struct kvm_tpr_access_ctl tac;
4243 if (copy_from_user(&tac, argp, sizeof(tac)))
4245 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4249 if (copy_to_user(argp, &tac, sizeof(tac)))
4254 case KVM_SET_VAPIC_ADDR: {
4255 struct kvm_vapic_addr va;
4259 if (!lapic_in_kernel(vcpu))
4262 if (copy_from_user(&va, argp, sizeof(va)))
4264 idx = srcu_read_lock(&vcpu->kvm->srcu);
4265 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4266 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4269 case KVM_X86_SETUP_MCE: {
4273 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4275 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4278 case KVM_X86_SET_MCE: {
4279 struct kvm_x86_mce mce;
4282 if (copy_from_user(&mce, argp, sizeof(mce)))
4284 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4287 case KVM_GET_VCPU_EVENTS: {
4288 struct kvm_vcpu_events events;
4290 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4293 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4298 case KVM_SET_VCPU_EVENTS: {
4299 struct kvm_vcpu_events events;
4302 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4305 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4308 case KVM_GET_DEBUGREGS: {
4309 struct kvm_debugregs dbgregs;
4311 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4314 if (copy_to_user(argp, &dbgregs,
4315 sizeof(struct kvm_debugregs)))
4320 case KVM_SET_DEBUGREGS: {
4321 struct kvm_debugregs dbgregs;
4324 if (copy_from_user(&dbgregs, argp,
4325 sizeof(struct kvm_debugregs)))
4328 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4331 case KVM_GET_XSAVE: {
4332 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4337 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4340 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4345 case KVM_SET_XSAVE: {
4346 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4347 if (IS_ERR(u.xsave)) {
4348 r = PTR_ERR(u.xsave);
4352 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4355 case KVM_GET_XCRS: {
4356 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4361 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4364 if (copy_to_user(argp, u.xcrs,
4365 sizeof(struct kvm_xcrs)))
4370 case KVM_SET_XCRS: {
4371 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4372 if (IS_ERR(u.xcrs)) {
4373 r = PTR_ERR(u.xcrs);
4377 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4380 case KVM_SET_TSC_KHZ: {
4384 user_tsc_khz = (u32)arg;
4386 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4389 if (user_tsc_khz == 0)
4390 user_tsc_khz = tsc_khz;
4392 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4397 case KVM_GET_TSC_KHZ: {
4398 r = vcpu->arch.virtual_tsc_khz;
4401 case KVM_KVMCLOCK_CTRL: {
4402 r = kvm_set_guest_paused(vcpu);
4405 case KVM_ENABLE_CAP: {
4406 struct kvm_enable_cap cap;
4409 if (copy_from_user(&cap, argp, sizeof(cap)))
4411 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4414 case KVM_GET_NESTED_STATE: {
4415 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4419 if (!kvm_x86_ops->get_nested_state)
4422 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4424 if (get_user(user_data_size, &user_kvm_nested_state->size))
4427 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4432 if (r > user_data_size) {
4433 if (put_user(r, &user_kvm_nested_state->size))
4443 case KVM_SET_NESTED_STATE: {
4444 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4445 struct kvm_nested_state kvm_state;
4449 if (!kvm_x86_ops->set_nested_state)
4453 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4457 if (kvm_state.size < sizeof(kvm_state))
4460 if (kvm_state.flags &
4461 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4462 | KVM_STATE_NESTED_EVMCS))
4465 /* nested_run_pending implies guest_mode. */
4466 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4467 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4470 idx = srcu_read_lock(&vcpu->kvm->srcu);
4471 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4472 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4475 case KVM_GET_SUPPORTED_HV_CPUID: {
4476 struct kvm_cpuid2 __user *cpuid_arg = argp;
4477 struct kvm_cpuid2 cpuid;
4480 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4483 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4484 cpuid_arg->entries);
4489 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4504 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4506 return VM_FAULT_SIGBUS;
4509 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4513 if (addr > (unsigned int)(-3 * PAGE_SIZE))
4515 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4519 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4522 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4525 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4526 unsigned long kvm_nr_mmu_pages)
4528 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4531 mutex_lock(&kvm->slots_lock);
4533 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4534 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4536 mutex_unlock(&kvm->slots_lock);
4540 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4542 return kvm->arch.n_max_mmu_pages;
4545 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4547 struct kvm_pic *pic = kvm->arch.vpic;
4551 switch (chip->chip_id) {
4552 case KVM_IRQCHIP_PIC_MASTER:
4553 memcpy(&chip->chip.pic, &pic->pics[0],
4554 sizeof(struct kvm_pic_state));
4556 case KVM_IRQCHIP_PIC_SLAVE:
4557 memcpy(&chip->chip.pic, &pic->pics[1],
4558 sizeof(struct kvm_pic_state));
4560 case KVM_IRQCHIP_IOAPIC:
4561 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4570 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4572 struct kvm_pic *pic = kvm->arch.vpic;
4576 switch (chip->chip_id) {
4577 case KVM_IRQCHIP_PIC_MASTER:
4578 spin_lock(&pic->lock);
4579 memcpy(&pic->pics[0], &chip->chip.pic,
4580 sizeof(struct kvm_pic_state));
4581 spin_unlock(&pic->lock);
4583 case KVM_IRQCHIP_PIC_SLAVE:
4584 spin_lock(&pic->lock);
4585 memcpy(&pic->pics[1], &chip->chip.pic,
4586 sizeof(struct kvm_pic_state));
4587 spin_unlock(&pic->lock);
4589 case KVM_IRQCHIP_IOAPIC:
4590 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4596 kvm_pic_update_irq(pic);
4600 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4602 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4604 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4606 mutex_lock(&kps->lock);
4607 memcpy(ps, &kps->channels, sizeof(*ps));
4608 mutex_unlock(&kps->lock);
4612 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4615 struct kvm_pit *pit = kvm->arch.vpit;
4617 mutex_lock(&pit->pit_state.lock);
4618 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4619 for (i = 0; i < 3; i++)
4620 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4621 mutex_unlock(&pit->pit_state.lock);
4625 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4627 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4628 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4629 sizeof(ps->channels));
4630 ps->flags = kvm->arch.vpit->pit_state.flags;
4631 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4632 memset(&ps->reserved, 0, sizeof(ps->reserved));
4636 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4640 u32 prev_legacy, cur_legacy;
4641 struct kvm_pit *pit = kvm->arch.vpit;
4643 mutex_lock(&pit->pit_state.lock);
4644 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4645 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4646 if (!prev_legacy && cur_legacy)
4648 memcpy(&pit->pit_state.channels, &ps->channels,
4649 sizeof(pit->pit_state.channels));
4650 pit->pit_state.flags = ps->flags;
4651 for (i = 0; i < 3; i++)
4652 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4654 mutex_unlock(&pit->pit_state.lock);
4658 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4659 struct kvm_reinject_control *control)
4661 struct kvm_pit *pit = kvm->arch.vpit;
4666 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4667 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4668 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4670 mutex_lock(&pit->pit_state.lock);
4671 kvm_pit_set_reinject(pit, control->pit_reinject);
4672 mutex_unlock(&pit->pit_state.lock);
4678 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4679 * @kvm: kvm instance
4680 * @log: slot id and address to which we copy the log
4682 * Steps 1-4 below provide general overview of dirty page logging. See
4683 * kvm_get_dirty_log_protect() function description for additional details.
4685 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4686 * always flush the TLB (step 4) even if previous step failed and the dirty
4687 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4688 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4689 * writes will be marked dirty for next log read.
4691 * 1. Take a snapshot of the bit and clear it if needed.
4692 * 2. Write protect the corresponding page.
4693 * 3. Copy the snapshot to the userspace.
4694 * 4. Flush TLB's if needed.
4696 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4701 mutex_lock(&kvm->slots_lock);
4704 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4706 if (kvm_x86_ops->flush_log_dirty)
4707 kvm_x86_ops->flush_log_dirty(kvm);
4709 r = kvm_get_dirty_log_protect(kvm, log, &flush);
4712 * All the TLBs can be flushed out of mmu lock, see the comments in
4713 * kvm_mmu_slot_remove_write_access().
4715 lockdep_assert_held(&kvm->slots_lock);
4717 kvm_flush_remote_tlbs(kvm);
4719 mutex_unlock(&kvm->slots_lock);
4723 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4728 mutex_lock(&kvm->slots_lock);
4731 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4733 if (kvm_x86_ops->flush_log_dirty)
4734 kvm_x86_ops->flush_log_dirty(kvm);
4736 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4739 * All the TLBs can be flushed out of mmu lock, see the comments in
4740 * kvm_mmu_slot_remove_write_access().
4742 lockdep_assert_held(&kvm->slots_lock);
4744 kvm_flush_remote_tlbs(kvm);
4746 mutex_unlock(&kvm->slots_lock);
4750 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4753 if (!irqchip_in_kernel(kvm))
4756 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4757 irq_event->irq, irq_event->level,
4762 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4763 struct kvm_enable_cap *cap)
4771 case KVM_CAP_DISABLE_QUIRKS:
4772 kvm->arch.disabled_quirks = cap->args[0];
4775 case KVM_CAP_SPLIT_IRQCHIP: {
4776 mutex_lock(&kvm->lock);
4778 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4779 goto split_irqchip_unlock;
4781 if (irqchip_in_kernel(kvm))
4782 goto split_irqchip_unlock;
4783 if (kvm->created_vcpus)
4784 goto split_irqchip_unlock;
4785 r = kvm_setup_empty_irq_routing(kvm);
4787 goto split_irqchip_unlock;
4788 /* Pairs with irqchip_in_kernel. */
4790 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4791 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4793 split_irqchip_unlock:
4794 mutex_unlock(&kvm->lock);
4797 case KVM_CAP_X2APIC_API:
4799 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4802 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4803 kvm->arch.x2apic_format = true;
4804 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4805 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4809 case KVM_CAP_X86_DISABLE_EXITS:
4811 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4814 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4815 kvm_can_mwait_in_guest())
4816 kvm->arch.mwait_in_guest = true;
4817 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4818 kvm->arch.hlt_in_guest = true;
4819 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4820 kvm->arch.pause_in_guest = true;
4821 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4822 kvm->arch.cstate_in_guest = true;
4825 case KVM_CAP_MSR_PLATFORM_INFO:
4826 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4829 case KVM_CAP_EXCEPTION_PAYLOAD:
4830 kvm->arch.exception_payload_enabled = cap->args[0];
4840 long kvm_arch_vm_ioctl(struct file *filp,
4841 unsigned int ioctl, unsigned long arg)
4843 struct kvm *kvm = filp->private_data;
4844 void __user *argp = (void __user *)arg;
4847 * This union makes it completely explicit to gcc-3.x
4848 * that these two variables' stack usage should be
4849 * combined, not added together.
4852 struct kvm_pit_state ps;
4853 struct kvm_pit_state2 ps2;
4854 struct kvm_pit_config pit_config;
4858 case KVM_SET_TSS_ADDR:
4859 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4861 case KVM_SET_IDENTITY_MAP_ADDR: {
4864 mutex_lock(&kvm->lock);
4866 if (kvm->created_vcpus)
4867 goto set_identity_unlock;
4869 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4870 goto set_identity_unlock;
4871 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4872 set_identity_unlock:
4873 mutex_unlock(&kvm->lock);
4876 case KVM_SET_NR_MMU_PAGES:
4877 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4879 case KVM_GET_NR_MMU_PAGES:
4880 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4882 case KVM_CREATE_IRQCHIP: {
4883 mutex_lock(&kvm->lock);
4886 if (irqchip_in_kernel(kvm))
4887 goto create_irqchip_unlock;
4890 if (kvm->created_vcpus)
4891 goto create_irqchip_unlock;
4893 r = kvm_pic_init(kvm);
4895 goto create_irqchip_unlock;
4897 r = kvm_ioapic_init(kvm);
4899 kvm_pic_destroy(kvm);
4900 goto create_irqchip_unlock;
4903 r = kvm_setup_default_irq_routing(kvm);
4905 kvm_ioapic_destroy(kvm);
4906 kvm_pic_destroy(kvm);
4907 goto create_irqchip_unlock;
4909 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4911 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4912 create_irqchip_unlock:
4913 mutex_unlock(&kvm->lock);
4916 case KVM_CREATE_PIT:
4917 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4919 case KVM_CREATE_PIT2:
4921 if (copy_from_user(&u.pit_config, argp,
4922 sizeof(struct kvm_pit_config)))
4925 mutex_lock(&kvm->lock);
4928 goto create_pit_unlock;
4930 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4934 mutex_unlock(&kvm->lock);
4936 case KVM_GET_IRQCHIP: {
4937 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4938 struct kvm_irqchip *chip;
4940 chip = memdup_user(argp, sizeof(*chip));
4947 if (!irqchip_kernel(kvm))
4948 goto get_irqchip_out;
4949 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
4951 goto get_irqchip_out;
4953 if (copy_to_user(argp, chip, sizeof(*chip)))
4954 goto get_irqchip_out;
4960 case KVM_SET_IRQCHIP: {
4961 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4962 struct kvm_irqchip *chip;
4964 chip = memdup_user(argp, sizeof(*chip));
4971 if (!irqchip_kernel(kvm))
4972 goto set_irqchip_out;
4973 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
4980 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
4983 if (!kvm->arch.vpit)
4985 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
4989 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
4996 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
4999 if (!kvm->arch.vpit)
5001 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5004 case KVM_GET_PIT2: {
5006 if (!kvm->arch.vpit)
5008 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5012 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5017 case KVM_SET_PIT2: {
5019 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5022 if (!kvm->arch.vpit)
5024 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5027 case KVM_REINJECT_CONTROL: {
5028 struct kvm_reinject_control control;
5030 if (copy_from_user(&control, argp, sizeof(control)))
5032 r = kvm_vm_ioctl_reinject(kvm, &control);
5035 case KVM_SET_BOOT_CPU_ID:
5037 mutex_lock(&kvm->lock);
5038 if (kvm->created_vcpus)
5041 kvm->arch.bsp_vcpu_id = arg;
5042 mutex_unlock(&kvm->lock);
5044 case KVM_XEN_HVM_CONFIG: {
5045 struct kvm_xen_hvm_config xhc;
5047 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5052 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5056 case KVM_SET_CLOCK: {
5057 struct kvm_clock_data user_ns;
5061 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5070 * TODO: userspace has to take care of races with VCPU_RUN, so
5071 * kvm_gen_update_masterclock() can be cut down to locked
5072 * pvclock_update_vm_gtod_copy().
5074 kvm_gen_update_masterclock(kvm);
5075 now_ns = get_kvmclock_ns(kvm);
5076 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5077 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5080 case KVM_GET_CLOCK: {
5081 struct kvm_clock_data user_ns;
5084 now_ns = get_kvmclock_ns(kvm);
5085 user_ns.clock = now_ns;
5086 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5087 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5090 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5095 case KVM_MEMORY_ENCRYPT_OP: {
5097 if (kvm_x86_ops->mem_enc_op)
5098 r = kvm_x86_ops->mem_enc_op(kvm, argp);
5101 case KVM_MEMORY_ENCRYPT_REG_REGION: {
5102 struct kvm_enc_region region;
5105 if (copy_from_user(®ion, argp, sizeof(region)))
5109 if (kvm_x86_ops->mem_enc_reg_region)
5110 r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion);
5113 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5114 struct kvm_enc_region region;
5117 if (copy_from_user(®ion, argp, sizeof(region)))
5121 if (kvm_x86_ops->mem_enc_unreg_region)
5122 r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion);
5125 case KVM_HYPERV_EVENTFD: {
5126 struct kvm_hyperv_eventfd hvevfd;
5129 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5131 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5134 case KVM_SET_PMU_EVENT_FILTER:
5135 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5144 static void kvm_init_msr_list(void)
5146 struct x86_pmu_capability x86_pmu;
5150 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5151 "Please update the fixed PMCs in msrs_to_saved_all[]");
5153 perf_get_x86_pmu_capability(&x86_pmu);
5155 num_msrs_to_save = 0;
5156 num_emulated_msrs = 0;
5157 num_msr_based_features = 0;
5159 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5160 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5164 * Even MSRs that are valid in the host may not be exposed
5165 * to the guests in some cases.
5167 switch (msrs_to_save_all[i]) {
5168 case MSR_IA32_BNDCFGS:
5169 if (!kvm_mpx_supported())
5173 if (!kvm_x86_ops->rdtscp_supported())
5176 case MSR_IA32_RTIT_CTL:
5177 case MSR_IA32_RTIT_STATUS:
5178 if (!kvm_x86_ops->pt_supported())
5181 case MSR_IA32_RTIT_CR3_MATCH:
5182 if (!kvm_x86_ops->pt_supported() ||
5183 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5186 case MSR_IA32_RTIT_OUTPUT_BASE:
5187 case MSR_IA32_RTIT_OUTPUT_MASK:
5188 if (!kvm_x86_ops->pt_supported() ||
5189 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5190 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5193 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5194 if (!kvm_x86_ops->pt_supported() ||
5195 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5196 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5199 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5200 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5201 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5204 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5205 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5206 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5213 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5216 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5217 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i]))
5220 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5223 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5224 struct kvm_msr_entry msr;
5226 msr.index = msr_based_features_all[i];
5227 if (kvm_get_msr_feature(&msr))
5230 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5234 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5242 if (!(lapic_in_kernel(vcpu) &&
5243 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5244 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5255 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5262 if (!(lapic_in_kernel(vcpu) &&
5263 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5265 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5267 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5277 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5278 struct kvm_segment *var, int seg)
5280 kvm_x86_ops->set_segment(vcpu, var, seg);
5283 void kvm_get_segment(struct kvm_vcpu *vcpu,
5284 struct kvm_segment *var, int seg)
5286 kvm_x86_ops->get_segment(vcpu, var, seg);
5289 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5290 struct x86_exception *exception)
5294 BUG_ON(!mmu_is_nested(vcpu));
5296 /* NPT walks are always user-walks */
5297 access |= PFERR_USER_MASK;
5298 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5303 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5304 struct x86_exception *exception)
5306 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5307 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5310 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5311 struct x86_exception *exception)
5313 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5314 access |= PFERR_FETCH_MASK;
5315 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5318 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5319 struct x86_exception *exception)
5321 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5322 access |= PFERR_WRITE_MASK;
5323 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5326 /* uses this to access any guest's mapped memory without checking CPL */
5327 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5328 struct x86_exception *exception)
5330 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5333 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5334 struct kvm_vcpu *vcpu, u32 access,
5335 struct x86_exception *exception)
5338 int r = X86EMUL_CONTINUE;
5341 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5343 unsigned offset = addr & (PAGE_SIZE-1);
5344 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5347 if (gpa == UNMAPPED_GVA)
5348 return X86EMUL_PROPAGATE_FAULT;
5349 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5352 r = X86EMUL_IO_NEEDED;
5364 /* used for instruction fetching */
5365 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5366 gva_t addr, void *val, unsigned int bytes,
5367 struct x86_exception *exception)
5369 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5370 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5374 /* Inline kvm_read_guest_virt_helper for speed. */
5375 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5377 if (unlikely(gpa == UNMAPPED_GVA))
5378 return X86EMUL_PROPAGATE_FAULT;
5380 offset = addr & (PAGE_SIZE-1);
5381 if (WARN_ON(offset + bytes > PAGE_SIZE))
5382 bytes = (unsigned)PAGE_SIZE - offset;
5383 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5385 if (unlikely(ret < 0))
5386 return X86EMUL_IO_NEEDED;
5388 return X86EMUL_CONTINUE;
5391 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5392 gva_t addr, void *val, unsigned int bytes,
5393 struct x86_exception *exception)
5395 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5398 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5399 * is returned, but our callers are not ready for that and they blindly
5400 * call kvm_inject_page_fault. Ensure that they at least do not leak
5401 * uninitialized kernel stack memory into cr2 and error code.
5403 memset(exception, 0, sizeof(*exception));
5404 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5407 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5409 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5410 gva_t addr, void *val, unsigned int bytes,
5411 struct x86_exception *exception, bool system)
5413 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5416 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5417 access |= PFERR_USER_MASK;
5419 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5422 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5423 unsigned long addr, void *val, unsigned int bytes)
5425 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5426 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5428 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5431 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5432 struct kvm_vcpu *vcpu, u32 access,
5433 struct x86_exception *exception)
5436 int r = X86EMUL_CONTINUE;
5439 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5442 unsigned offset = addr & (PAGE_SIZE-1);
5443 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5446 if (gpa == UNMAPPED_GVA)
5447 return X86EMUL_PROPAGATE_FAULT;
5448 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5450 r = X86EMUL_IO_NEEDED;
5462 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5463 unsigned int bytes, struct x86_exception *exception,
5466 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5467 u32 access = PFERR_WRITE_MASK;
5469 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5470 access |= PFERR_USER_MASK;
5472 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5476 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5477 unsigned int bytes, struct x86_exception *exception)
5479 /* kvm_write_guest_virt_system can pull in tons of pages. */
5480 vcpu->arch.l1tf_flush_l1d = true;
5483 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5484 * is returned, but our callers are not ready for that and they blindly
5485 * call kvm_inject_page_fault. Ensure that they at least do not leak
5486 * uninitialized kernel stack memory into cr2 and error code.
5488 memset(exception, 0, sizeof(*exception));
5489 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5490 PFERR_WRITE_MASK, exception);
5492 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5494 int handle_ud(struct kvm_vcpu *vcpu)
5496 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5497 int emul_type = EMULTYPE_TRAP_UD;
5498 char sig[5]; /* ud2; .ascii "kvm" */
5499 struct x86_exception e;
5501 if (force_emulation_prefix &&
5502 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5503 sig, sizeof(sig), &e) == 0 &&
5504 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5505 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5506 emul_type = EMULTYPE_TRAP_UD_FORCED;
5509 return kvm_emulate_instruction(vcpu, emul_type);
5511 EXPORT_SYMBOL_GPL(handle_ud);
5513 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5514 gpa_t gpa, bool write)
5516 /* For APIC access vmexit */
5517 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5520 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5521 trace_vcpu_match_mmio(gva, gpa, write, true);
5528 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5529 gpa_t *gpa, struct x86_exception *exception,
5532 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5533 | (write ? PFERR_WRITE_MASK : 0);
5536 * currently PKRU is only applied to ept enabled guest so
5537 * there is no pkey in EPT page table for L1 guest or EPT
5538 * shadow page table for L2 guest.
5540 if (vcpu_match_mmio_gva(vcpu, gva)
5541 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5542 vcpu->arch.mmio_access, 0, access)) {
5543 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5544 (gva & (PAGE_SIZE - 1));
5545 trace_vcpu_match_mmio(gva, *gpa, write, false);
5549 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5551 if (*gpa == UNMAPPED_GVA)
5554 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5557 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5558 const void *val, int bytes)
5562 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5565 kvm_page_track_write(vcpu, gpa, val, bytes);
5569 struct read_write_emulator_ops {
5570 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5572 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5573 void *val, int bytes);
5574 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5575 int bytes, void *val);
5576 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5577 void *val, int bytes);
5581 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5583 if (vcpu->mmio_read_completed) {
5584 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5585 vcpu->mmio_fragments[0].gpa, val);
5586 vcpu->mmio_read_completed = 0;
5593 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5594 void *val, int bytes)
5596 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5599 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5600 void *val, int bytes)
5602 return emulator_write_phys(vcpu, gpa, val, bytes);
5605 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5607 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5608 return vcpu_mmio_write(vcpu, gpa, bytes, val);
5611 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5612 void *val, int bytes)
5614 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5615 return X86EMUL_IO_NEEDED;
5618 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5619 void *val, int bytes)
5621 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5623 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5624 return X86EMUL_CONTINUE;
5627 static const struct read_write_emulator_ops read_emultor = {
5628 .read_write_prepare = read_prepare,
5629 .read_write_emulate = read_emulate,
5630 .read_write_mmio = vcpu_mmio_read,
5631 .read_write_exit_mmio = read_exit_mmio,
5634 static const struct read_write_emulator_ops write_emultor = {
5635 .read_write_emulate = write_emulate,
5636 .read_write_mmio = write_mmio,
5637 .read_write_exit_mmio = write_exit_mmio,
5641 static int emulator_read_write_onepage(unsigned long addr, void *val,
5643 struct x86_exception *exception,
5644 struct kvm_vcpu *vcpu,
5645 const struct read_write_emulator_ops *ops)
5649 bool write = ops->write;
5650 struct kvm_mmio_fragment *frag;
5651 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5654 * If the exit was due to a NPF we may already have a GPA.
5655 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5656 * Note, this cannot be used on string operations since string
5657 * operation using rep will only have the initial GPA from the NPF
5660 if (vcpu->arch.gpa_available &&
5661 emulator_can_use_gpa(ctxt) &&
5662 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5663 gpa = vcpu->arch.gpa_val;
5664 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5666 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5668 return X86EMUL_PROPAGATE_FAULT;
5671 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5672 return X86EMUL_CONTINUE;
5675 * Is this MMIO handled locally?
5677 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5678 if (handled == bytes)
5679 return X86EMUL_CONTINUE;
5685 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5686 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5690 return X86EMUL_CONTINUE;
5693 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5695 void *val, unsigned int bytes,
5696 struct x86_exception *exception,
5697 const struct read_write_emulator_ops *ops)
5699 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5703 if (ops->read_write_prepare &&
5704 ops->read_write_prepare(vcpu, val, bytes))
5705 return X86EMUL_CONTINUE;
5707 vcpu->mmio_nr_fragments = 0;
5709 /* Crossing a page boundary? */
5710 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5713 now = -addr & ~PAGE_MASK;
5714 rc = emulator_read_write_onepage(addr, val, now, exception,
5717 if (rc != X86EMUL_CONTINUE)
5720 if (ctxt->mode != X86EMUL_MODE_PROT64)
5726 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5728 if (rc != X86EMUL_CONTINUE)
5731 if (!vcpu->mmio_nr_fragments)
5734 gpa = vcpu->mmio_fragments[0].gpa;
5736 vcpu->mmio_needed = 1;
5737 vcpu->mmio_cur_fragment = 0;
5739 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5740 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5741 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5742 vcpu->run->mmio.phys_addr = gpa;
5744 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5747 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5751 struct x86_exception *exception)
5753 return emulator_read_write(ctxt, addr, val, bytes,
5754 exception, &read_emultor);
5757 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5761 struct x86_exception *exception)
5763 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5764 exception, &write_emultor);
5767 #define CMPXCHG_TYPE(t, ptr, old, new) \
5768 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5770 #ifdef CONFIG_X86_64
5771 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5773 # define CMPXCHG64(ptr, old, new) \
5774 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5777 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5782 struct x86_exception *exception)
5784 struct kvm_host_map map;
5785 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5790 /* guests cmpxchg8b have to be emulated atomically */
5791 if (bytes > 8 || (bytes & (bytes - 1)))
5794 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5796 if (gpa == UNMAPPED_GVA ||
5797 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5800 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5803 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5806 kaddr = map.hva + offset_in_page(gpa);
5810 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5813 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5816 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5819 exchanged = CMPXCHG64(kaddr, old, new);
5825 kvm_vcpu_unmap(vcpu, &map, true);
5828 return X86EMUL_CMPXCHG_FAILED;
5830 kvm_page_track_write(vcpu, gpa, new, bytes);
5832 return X86EMUL_CONTINUE;
5835 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5837 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5840 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5844 for (i = 0; i < vcpu->arch.pio.count; i++) {
5845 if (vcpu->arch.pio.in)
5846 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5847 vcpu->arch.pio.size, pd);
5849 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5850 vcpu->arch.pio.port, vcpu->arch.pio.size,
5854 pd += vcpu->arch.pio.size;
5859 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5860 unsigned short port, void *val,
5861 unsigned int count, bool in)
5863 vcpu->arch.pio.port = port;
5864 vcpu->arch.pio.in = in;
5865 vcpu->arch.pio.count = count;
5866 vcpu->arch.pio.size = size;
5868 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5869 vcpu->arch.pio.count = 0;
5873 vcpu->run->exit_reason = KVM_EXIT_IO;
5874 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5875 vcpu->run->io.size = size;
5876 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5877 vcpu->run->io.count = count;
5878 vcpu->run->io.port = port;
5883 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5884 int size, unsigned short port, void *val,
5887 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5890 if (vcpu->arch.pio.count)
5893 memset(vcpu->arch.pio_data, 0, size * count);
5895 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5898 memcpy(val, vcpu->arch.pio_data, size * count);
5899 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5900 vcpu->arch.pio.count = 0;
5907 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5908 int size, unsigned short port,
5909 const void *val, unsigned int count)
5911 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5913 memcpy(vcpu->arch.pio_data, val, size * count);
5914 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5915 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5918 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5920 return kvm_x86_ops->get_segment_base(vcpu, seg);
5923 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5925 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5928 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5930 if (!need_emulate_wbinvd(vcpu))
5931 return X86EMUL_CONTINUE;
5933 if (kvm_x86_ops->has_wbinvd_exit()) {
5934 int cpu = get_cpu();
5936 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5937 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5938 wbinvd_ipi, NULL, 1);
5940 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
5943 return X86EMUL_CONTINUE;
5946 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
5948 kvm_emulate_wbinvd_noskip(vcpu);
5949 return kvm_skip_emulated_instruction(vcpu);
5951 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
5955 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
5957 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
5960 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
5961 unsigned long *dest)
5963 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
5966 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
5967 unsigned long value)
5970 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
5973 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5975 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5978 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
5980 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5981 unsigned long value;
5985 value = kvm_read_cr0(vcpu);
5988 value = vcpu->arch.cr2;
5991 value = kvm_read_cr3(vcpu);
5994 value = kvm_read_cr4(vcpu);
5997 value = kvm_get_cr8(vcpu);
6000 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6007 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6009 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6014 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6017 vcpu->arch.cr2 = val;
6020 res = kvm_set_cr3(vcpu, val);
6023 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6026 res = kvm_set_cr8(vcpu, val);
6029 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6036 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6038 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
6041 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6043 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
6046 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6048 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
6051 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6053 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6056 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6058 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6061 static unsigned long emulator_get_cached_segment_base(
6062 struct x86_emulate_ctxt *ctxt, int seg)
6064 return get_segment_base(emul_to_vcpu(ctxt), seg);
6067 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6068 struct desc_struct *desc, u32 *base3,
6071 struct kvm_segment var;
6073 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6074 *selector = var.selector;
6077 memset(desc, 0, sizeof(*desc));
6085 set_desc_limit(desc, var.limit);
6086 set_desc_base(desc, (unsigned long)var.base);
6087 #ifdef CONFIG_X86_64
6089 *base3 = var.base >> 32;
6091 desc->type = var.type;
6093 desc->dpl = var.dpl;
6094 desc->p = var.present;
6095 desc->avl = var.avl;
6103 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6104 struct desc_struct *desc, u32 base3,
6107 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6108 struct kvm_segment var;
6110 var.selector = selector;
6111 var.base = get_desc_base(desc);
6112 #ifdef CONFIG_X86_64
6113 var.base |= ((u64)base3) << 32;
6115 var.limit = get_desc_limit(desc);
6117 var.limit = (var.limit << 12) | 0xfff;
6118 var.type = desc->type;
6119 var.dpl = desc->dpl;
6124 var.avl = desc->avl;
6125 var.present = desc->p;
6126 var.unusable = !var.present;
6129 kvm_set_segment(vcpu, &var, seg);
6133 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6134 u32 msr_index, u64 *pdata)
6136 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6139 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6140 u32 msr_index, u64 data)
6142 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6145 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6147 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6149 return vcpu->arch.smbase;
6152 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6154 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6156 vcpu->arch.smbase = smbase;
6159 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6162 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6165 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6166 u32 pmc, u64 *pdata)
6168 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6171 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6173 emul_to_vcpu(ctxt)->arch.halt_request = 1;
6176 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6177 struct x86_instruction_info *info,
6178 enum x86_intercept_stage stage)
6180 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6183 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6184 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6186 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6189 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6191 return kvm_register_read(emul_to_vcpu(ctxt), reg);
6194 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6196 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6199 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6201 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6204 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6206 return emul_to_vcpu(ctxt)->arch.hflags;
6209 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6211 emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6214 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6215 const char *smstate)
6217 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6220 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6222 kvm_smm_changed(emul_to_vcpu(ctxt));
6225 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6227 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6230 static const struct x86_emulate_ops emulate_ops = {
6231 .read_gpr = emulator_read_gpr,
6232 .write_gpr = emulator_write_gpr,
6233 .read_std = emulator_read_std,
6234 .write_std = emulator_write_std,
6235 .read_phys = kvm_read_guest_phys_system,
6236 .fetch = kvm_fetch_guest_virt,
6237 .read_emulated = emulator_read_emulated,
6238 .write_emulated = emulator_write_emulated,
6239 .cmpxchg_emulated = emulator_cmpxchg_emulated,
6240 .invlpg = emulator_invlpg,
6241 .pio_in_emulated = emulator_pio_in_emulated,
6242 .pio_out_emulated = emulator_pio_out_emulated,
6243 .get_segment = emulator_get_segment,
6244 .set_segment = emulator_set_segment,
6245 .get_cached_segment_base = emulator_get_cached_segment_base,
6246 .get_gdt = emulator_get_gdt,
6247 .get_idt = emulator_get_idt,
6248 .set_gdt = emulator_set_gdt,
6249 .set_idt = emulator_set_idt,
6250 .get_cr = emulator_get_cr,
6251 .set_cr = emulator_set_cr,
6252 .cpl = emulator_get_cpl,
6253 .get_dr = emulator_get_dr,
6254 .set_dr = emulator_set_dr,
6255 .get_smbase = emulator_get_smbase,
6256 .set_smbase = emulator_set_smbase,
6257 .set_msr = emulator_set_msr,
6258 .get_msr = emulator_get_msr,
6259 .check_pmc = emulator_check_pmc,
6260 .read_pmc = emulator_read_pmc,
6261 .halt = emulator_halt,
6262 .wbinvd = emulator_wbinvd,
6263 .fix_hypercall = emulator_fix_hypercall,
6264 .intercept = emulator_intercept,
6265 .get_cpuid = emulator_get_cpuid,
6266 .set_nmi_mask = emulator_set_nmi_mask,
6267 .get_hflags = emulator_get_hflags,
6268 .set_hflags = emulator_set_hflags,
6269 .pre_leave_smm = emulator_pre_leave_smm,
6270 .post_leave_smm = emulator_post_leave_smm,
6271 .set_xcr = emulator_set_xcr,
6274 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6276 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6278 * an sti; sti; sequence only disable interrupts for the first
6279 * instruction. So, if the last instruction, be it emulated or
6280 * not, left the system with the INT_STI flag enabled, it
6281 * means that the last instruction is an sti. We should not
6282 * leave the flag on in this case. The same goes for mov ss
6284 if (int_shadow & mask)
6286 if (unlikely(int_shadow || mask)) {
6287 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6289 kvm_make_request(KVM_REQ_EVENT, vcpu);
6293 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6295 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6296 if (ctxt->exception.vector == PF_VECTOR)
6297 return kvm_propagate_fault(vcpu, &ctxt->exception);
6299 if (ctxt->exception.error_code_valid)
6300 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6301 ctxt->exception.error_code);
6303 kvm_queue_exception(vcpu, ctxt->exception.vector);
6307 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6309 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6312 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6314 ctxt->eflags = kvm_get_rflags(vcpu);
6315 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6317 ctxt->eip = kvm_rip_read(vcpu);
6318 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
6319 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
6320 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
6321 cs_db ? X86EMUL_MODE_PROT32 :
6322 X86EMUL_MODE_PROT16;
6323 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6324 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6325 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6327 init_decode_cache(ctxt);
6328 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6331 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6333 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6336 init_emulate_ctxt(vcpu);
6340 ctxt->_eip = ctxt->eip + inc_eip;
6341 ret = emulate_int_real(ctxt, irq);
6343 if (ret != X86EMUL_CONTINUE) {
6344 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6346 ctxt->eip = ctxt->_eip;
6347 kvm_rip_write(vcpu, ctxt->eip);
6348 kvm_set_rflags(vcpu, ctxt->eflags);
6351 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6353 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6355 ++vcpu->stat.insn_emulation_fail;
6356 trace_kvm_emulate_insn_failed(vcpu);
6358 if (emulation_type & EMULTYPE_VMWARE_GP) {
6359 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6363 if (emulation_type & EMULTYPE_SKIP) {
6364 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6365 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6366 vcpu->run->internal.ndata = 0;
6370 kvm_queue_exception(vcpu, UD_VECTOR);
6372 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6373 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6374 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6375 vcpu->run->internal.ndata = 0;
6382 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
6383 bool write_fault_to_shadow_pgtable,
6389 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6392 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6395 if (!vcpu->arch.mmu->direct_map) {
6397 * Write permission should be allowed since only
6398 * write access need to be emulated.
6400 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6403 * If the mapping is invalid in guest, let cpu retry
6404 * it to generate fault.
6406 if (gpa == UNMAPPED_GVA)
6411 * Do not retry the unhandleable instruction if it faults on the
6412 * readonly host memory, otherwise it will goto a infinite loop:
6413 * retry instruction -> write #PF -> emulation fail -> retry
6414 * instruction -> ...
6416 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6419 * If the instruction failed on the error pfn, it can not be fixed,
6420 * report the error to userspace.
6422 if (is_error_noslot_pfn(pfn))
6425 kvm_release_pfn_clean(pfn);
6427 /* The instructions are well-emulated on direct mmu. */
6428 if (vcpu->arch.mmu->direct_map) {
6429 unsigned int indirect_shadow_pages;
6431 spin_lock(&vcpu->kvm->mmu_lock);
6432 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6433 spin_unlock(&vcpu->kvm->mmu_lock);
6435 if (indirect_shadow_pages)
6436 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6442 * if emulation was due to access to shadowed page table
6443 * and it failed try to unshadow page and re-enter the
6444 * guest to let CPU execute the instruction.
6446 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6449 * If the access faults on its page table, it can not
6450 * be fixed by unprotecting shadow page and it should
6451 * be reported to userspace.
6453 return !write_fault_to_shadow_pgtable;
6456 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6457 unsigned long cr2, int emulation_type)
6459 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6460 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
6462 last_retry_eip = vcpu->arch.last_retry_eip;
6463 last_retry_addr = vcpu->arch.last_retry_addr;
6466 * If the emulation is caused by #PF and it is non-page_table
6467 * writing instruction, it means the VM-EXIT is caused by shadow
6468 * page protected, we can zap the shadow page and retry this
6469 * instruction directly.
6471 * Note: if the guest uses a non-page-table modifying instruction
6472 * on the PDE that points to the instruction, then we will unmap
6473 * the instruction and go to an infinite loop. So, we cache the
6474 * last retried eip and the last fault address, if we meet the eip
6475 * and the address again, we can break out of the potential infinite
6478 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6480 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6483 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6486 if (x86_page_table_writing_insn(ctxt))
6489 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
6492 vcpu->arch.last_retry_eip = ctxt->eip;
6493 vcpu->arch.last_retry_addr = cr2;
6495 if (!vcpu->arch.mmu->direct_map)
6496 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
6498 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6503 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6504 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6506 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6508 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6509 /* This is a good place to trace that we are exiting SMM. */
6510 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6512 /* Process a latched INIT or SMI, if any. */
6513 kvm_make_request(KVM_REQ_EVENT, vcpu);
6516 kvm_mmu_reset_context(vcpu);
6519 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6528 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6529 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6534 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6536 struct kvm_run *kvm_run = vcpu->run;
6538 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6539 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6540 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6541 kvm_run->debug.arch.exception = DB_VECTOR;
6542 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6545 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6549 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6551 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6554 r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6559 * rflags is the old, "raw" value of the flags. The new value has
6560 * not been saved yet.
6562 * This is correct even for TF set by the guest, because "the
6563 * processor will not generate this exception after the instruction
6564 * that sets the TF flag".
6566 if (unlikely(rflags & X86_EFLAGS_TF))
6567 r = kvm_vcpu_do_singlestep(vcpu);
6570 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6572 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6574 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6575 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6576 struct kvm_run *kvm_run = vcpu->run;
6577 unsigned long eip = kvm_get_linear_rip(vcpu);
6578 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6579 vcpu->arch.guest_debug_dr7,
6583 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6584 kvm_run->debug.arch.pc = eip;
6585 kvm_run->debug.arch.exception = DB_VECTOR;
6586 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6592 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6593 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6594 unsigned long eip = kvm_get_linear_rip(vcpu);
6595 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6600 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6601 vcpu->arch.dr6 |= dr6 | DR6_RTM;
6602 kvm_queue_exception(vcpu, DB_VECTOR);
6611 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6613 switch (ctxt->opcode_len) {
6620 case 0xe6: /* OUT */
6624 case 0x6c: /* INS */
6626 case 0x6e: /* OUTS */
6633 case 0x33: /* RDPMC */
6642 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
6649 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6650 bool writeback = true;
6651 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6653 vcpu->arch.l1tf_flush_l1d = true;
6656 * Clear write_fault_to_shadow_pgtable here to ensure it is
6659 vcpu->arch.write_fault_to_shadow_pgtable = false;
6660 kvm_clear_exception_queue(vcpu);
6662 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6663 init_emulate_ctxt(vcpu);
6666 * We will reenter on the same instruction since
6667 * we do not set complete_userspace_io. This does not
6668 * handle watchpoints yet, those would be handled in
6671 if (!(emulation_type & EMULTYPE_SKIP) &&
6672 kvm_vcpu_check_breakpoint(vcpu, &r))
6675 ctxt->interruptibility = 0;
6676 ctxt->have_exception = false;
6677 ctxt->exception.vector = -1;
6678 ctxt->perm_ok = false;
6680 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6682 r = x86_decode_insn(ctxt, insn, insn_len);
6684 trace_kvm_emulate_insn_start(vcpu);
6685 ++vcpu->stat.insn_emulation;
6686 if (r != EMULATION_OK) {
6687 if ((emulation_type & EMULTYPE_TRAP_UD) ||
6688 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6689 kvm_queue_exception(vcpu, UD_VECTOR);
6692 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6695 if (ctxt->have_exception) {
6697 * #UD should result in just EMULATION_FAILED, and trap-like
6698 * exception should not be encountered during decode.
6700 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6701 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6702 inject_emulated_exception(vcpu);
6705 return handle_emulation_failure(vcpu, emulation_type);
6709 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6710 !is_vmware_backdoor_opcode(ctxt)) {
6711 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6716 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6717 * for kvm_skip_emulated_instruction(). The caller is responsible for
6718 * updating interruptibility state and injecting single-step #DBs.
6720 if (emulation_type & EMULTYPE_SKIP) {
6721 kvm_rip_write(vcpu, ctxt->_eip);
6722 if (ctxt->eflags & X86_EFLAGS_RF)
6723 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6727 if (retry_instruction(ctxt, cr2, emulation_type))
6730 /* this is needed for vmware backdoor interface to work since it
6731 changes registers values during IO operation */
6732 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6733 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6734 emulator_invalidate_register_cache(ctxt);
6738 /* Save the faulting GPA (cr2) in the address field */
6739 ctxt->exception.address = cr2;
6741 r = x86_emulate_insn(ctxt);
6743 if (r == EMULATION_INTERCEPTED)
6746 if (r == EMULATION_FAILED) {
6747 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
6751 return handle_emulation_failure(vcpu, emulation_type);
6754 if (ctxt->have_exception) {
6756 if (inject_emulated_exception(vcpu))
6758 } else if (vcpu->arch.pio.count) {
6759 if (!vcpu->arch.pio.in) {
6760 /* FIXME: return into emulator if single-stepping. */
6761 vcpu->arch.pio.count = 0;
6764 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6767 } else if (vcpu->mmio_needed) {
6768 ++vcpu->stat.mmio_exits;
6770 if (!vcpu->mmio_is_write)
6773 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6774 } else if (r == EMULATION_RESTART)
6780 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6781 toggle_interruptibility(vcpu, ctxt->interruptibility);
6782 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6783 if (!ctxt->have_exception ||
6784 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6785 kvm_rip_write(vcpu, ctxt->eip);
6787 r = kvm_vcpu_do_singlestep(vcpu);
6788 __kvm_set_rflags(vcpu, ctxt->eflags);
6792 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6793 * do nothing, and it will be requested again as soon as
6794 * the shadow expires. But we still need to check here,
6795 * because POPF has no interrupt shadow.
6797 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6798 kvm_make_request(KVM_REQ_EVENT, vcpu);
6800 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6805 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6807 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6809 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6811 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6812 void *insn, int insn_len)
6814 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6816 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6818 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6820 vcpu->arch.pio.count = 0;
6824 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6826 vcpu->arch.pio.count = 0;
6828 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6831 return kvm_skip_emulated_instruction(vcpu);
6834 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6835 unsigned short port)
6837 unsigned long val = kvm_rax_read(vcpu);
6838 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6839 size, port, &val, 1);
6844 * Workaround userspace that relies on old KVM behavior of %rip being
6845 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6848 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6849 vcpu->arch.complete_userspace_io =
6850 complete_fast_pio_out_port_0x7e;
6851 kvm_skip_emulated_instruction(vcpu);
6853 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6854 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6859 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6863 /* We should only ever be called with arch.pio.count equal to 1 */
6864 BUG_ON(vcpu->arch.pio.count != 1);
6866 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6867 vcpu->arch.pio.count = 0;
6871 /* For size less than 4 we merge, else we zero extend */
6872 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6875 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6876 * the copy and tracing
6878 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6879 vcpu->arch.pio.port, &val, 1);
6880 kvm_rax_write(vcpu, val);
6882 return kvm_skip_emulated_instruction(vcpu);
6885 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6886 unsigned short port)
6891 /* For size less than 4 we merge, else we zero extend */
6892 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6894 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6897 kvm_rax_write(vcpu, val);
6901 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6902 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6907 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6912 ret = kvm_fast_pio_in(vcpu, size, port);
6914 ret = kvm_fast_pio_out(vcpu, size, port);
6915 return ret && kvm_skip_emulated_instruction(vcpu);
6917 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6919 static int kvmclock_cpu_down_prep(unsigned int cpu)
6921 __this_cpu_write(cpu_tsc_khz, 0);
6925 static void tsc_khz_changed(void *data)
6927 struct cpufreq_freqs *freq = data;
6928 unsigned long khz = 0;
6932 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
6933 khz = cpufreq_quick_get(raw_smp_processor_id());
6936 __this_cpu_write(cpu_tsc_khz, khz);
6939 #ifdef CONFIG_X86_64
6940 static void kvm_hyperv_tsc_notifier(void)
6943 struct kvm_vcpu *vcpu;
6946 mutex_lock(&kvm_lock);
6947 list_for_each_entry(kvm, &vm_list, vm_list)
6948 kvm_make_mclock_inprogress_request(kvm);
6950 hyperv_stop_tsc_emulation();
6952 /* TSC frequency always matches when on Hyper-V */
6953 for_each_present_cpu(cpu)
6954 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
6955 kvm_max_guest_tsc_khz = tsc_khz;
6957 list_for_each_entry(kvm, &vm_list, vm_list) {
6958 struct kvm_arch *ka = &kvm->arch;
6960 spin_lock(&ka->pvclock_gtod_sync_lock);
6962 pvclock_update_vm_gtod_copy(kvm);
6964 kvm_for_each_vcpu(cpu, vcpu, kvm)
6965 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6967 kvm_for_each_vcpu(cpu, vcpu, kvm)
6968 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
6970 spin_unlock(&ka->pvclock_gtod_sync_lock);
6972 mutex_unlock(&kvm_lock);
6976 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
6979 struct kvm_vcpu *vcpu;
6980 int i, send_ipi = 0;
6983 * We allow guests to temporarily run on slowing clocks,
6984 * provided we notify them after, or to run on accelerating
6985 * clocks, provided we notify them before. Thus time never
6988 * However, we have a problem. We can't atomically update
6989 * the frequency of a given CPU from this function; it is
6990 * merely a notifier, which can be called from any CPU.
6991 * Changing the TSC frequency at arbitrary points in time
6992 * requires a recomputation of local variables related to
6993 * the TSC for each VCPU. We must flag these local variables
6994 * to be updated and be sure the update takes place with the
6995 * new frequency before any guests proceed.
6997 * Unfortunately, the combination of hotplug CPU and frequency
6998 * change creates an intractable locking scenario; the order
6999 * of when these callouts happen is undefined with respect to
7000 * CPU hotplug, and they can race with each other. As such,
7001 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7002 * undefined; you can actually have a CPU frequency change take
7003 * place in between the computation of X and the setting of the
7004 * variable. To protect against this problem, all updates of
7005 * the per_cpu tsc_khz variable are done in an interrupt
7006 * protected IPI, and all callers wishing to update the value
7007 * must wait for a synchronous IPI to complete (which is trivial
7008 * if the caller is on the CPU already). This establishes the
7009 * necessary total order on variable updates.
7011 * Note that because a guest time update may take place
7012 * anytime after the setting of the VCPU's request bit, the
7013 * correct TSC value must be set before the request. However,
7014 * to ensure the update actually makes it to any guest which
7015 * starts running in hardware virtualization between the set
7016 * and the acquisition of the spinlock, we must also ping the
7017 * CPU after setting the request bit.
7021 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7023 mutex_lock(&kvm_lock);
7024 list_for_each_entry(kvm, &vm_list, vm_list) {
7025 kvm_for_each_vcpu(i, vcpu, kvm) {
7026 if (vcpu->cpu != cpu)
7028 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7029 if (vcpu->cpu != raw_smp_processor_id())
7033 mutex_unlock(&kvm_lock);
7035 if (freq->old < freq->new && send_ipi) {
7037 * We upscale the frequency. Must make the guest
7038 * doesn't see old kvmclock values while running with
7039 * the new frequency, otherwise we risk the guest sees
7040 * time go backwards.
7042 * In case we update the frequency for another cpu
7043 * (which might be in guest context) send an interrupt
7044 * to kick the cpu out of guest context. Next time
7045 * guest context is entered kvmclock will be updated,
7046 * so the guest will not see stale values.
7048 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7052 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7055 struct cpufreq_freqs *freq = data;
7058 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7060 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7063 for_each_cpu(cpu, freq->policy->cpus)
7064 __kvmclock_cpufreq_notifier(freq, cpu);
7069 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7070 .notifier_call = kvmclock_cpufreq_notifier
7073 static int kvmclock_cpu_online(unsigned int cpu)
7075 tsc_khz_changed(NULL);
7079 static void kvm_timer_init(void)
7081 max_tsc_khz = tsc_khz;
7083 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7084 #ifdef CONFIG_CPU_FREQ
7085 struct cpufreq_policy policy;
7088 memset(&policy, 0, sizeof(policy));
7090 cpufreq_get_policy(&policy, cpu);
7091 if (policy.cpuinfo.max_freq)
7092 max_tsc_khz = policy.cpuinfo.max_freq;
7095 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7096 CPUFREQ_TRANSITION_NOTIFIER);
7099 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7100 kvmclock_cpu_online, kvmclock_cpu_down_prep);
7103 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7104 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7106 int kvm_is_in_guest(void)
7108 return __this_cpu_read(current_vcpu) != NULL;
7111 static int kvm_is_user_mode(void)
7115 if (__this_cpu_read(current_vcpu))
7116 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7118 return user_mode != 0;
7121 static unsigned long kvm_get_guest_ip(void)
7123 unsigned long ip = 0;
7125 if (__this_cpu_read(current_vcpu))
7126 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7131 static void kvm_handle_intel_pt_intr(void)
7133 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7135 kvm_make_request(KVM_REQ_PMI, vcpu);
7136 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7137 (unsigned long *)&vcpu->arch.pmu.global_status);
7140 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7141 .is_in_guest = kvm_is_in_guest,
7142 .is_user_mode = kvm_is_user_mode,
7143 .get_guest_ip = kvm_get_guest_ip,
7144 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
7147 #ifdef CONFIG_X86_64
7148 static void pvclock_gtod_update_fn(struct work_struct *work)
7152 struct kvm_vcpu *vcpu;
7155 mutex_lock(&kvm_lock);
7156 list_for_each_entry(kvm, &vm_list, vm_list)
7157 kvm_for_each_vcpu(i, vcpu, kvm)
7158 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7159 atomic_set(&kvm_guest_has_master_clock, 0);
7160 mutex_unlock(&kvm_lock);
7163 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7166 * Notification about pvclock gtod data update.
7168 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7171 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7172 struct timekeeper *tk = priv;
7174 update_pvclock_gtod(tk);
7176 /* disable master clock if host does not trust, or does not
7177 * use, TSC based clocksource.
7179 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7180 atomic_read(&kvm_guest_has_master_clock) != 0)
7181 queue_work(system_long_wq, &pvclock_gtod_work);
7186 static struct notifier_block pvclock_gtod_notifier = {
7187 .notifier_call = pvclock_gtod_notify,
7191 int kvm_arch_init(void *opaque)
7194 struct kvm_x86_ops *ops = opaque;
7197 printk(KERN_ERR "kvm: already loaded the other module\n");
7202 if (!ops->cpu_has_kvm_support()) {
7203 printk(KERN_ERR "kvm: no hardware support\n");
7207 if (ops->disabled_by_bios()) {
7208 printk(KERN_ERR "kvm: disabled by bios\n");
7214 * KVM explicitly assumes that the guest has an FPU and
7215 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7216 * vCPU's FPU state as a fxregs_state struct.
7218 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7219 printk(KERN_ERR "kvm: inadequate fpu\n");
7225 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7226 __alignof__(struct fpu), SLAB_ACCOUNT,
7228 if (!x86_fpu_cache) {
7229 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7233 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7235 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7236 goto out_free_x86_fpu_cache;
7239 r = kvm_mmu_module_init();
7241 goto out_free_percpu;
7245 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7246 PT_DIRTY_MASK, PT64_NX_MASK, 0,
7247 PT_PRESENT_MASK, 0, sme_me_mask);
7250 perf_register_guest_info_callbacks(&kvm_guest_cbs);
7252 if (boot_cpu_has(X86_FEATURE_XSAVE))
7253 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7256 if (pi_inject_timer == -1)
7257 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7258 #ifdef CONFIG_X86_64
7259 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7261 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7262 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7268 free_percpu(shared_msrs);
7269 out_free_x86_fpu_cache:
7270 kmem_cache_destroy(x86_fpu_cache);
7275 void kvm_arch_exit(void)
7277 #ifdef CONFIG_X86_64
7278 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7279 clear_hv_tscchange_cb();
7282 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7284 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7285 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7286 CPUFREQ_TRANSITION_NOTIFIER);
7287 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7288 #ifdef CONFIG_X86_64
7289 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7292 kvm_mmu_module_exit();
7293 free_percpu(shared_msrs);
7294 kmem_cache_destroy(x86_fpu_cache);
7297 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7299 ++vcpu->stat.halt_exits;
7300 if (lapic_in_kernel(vcpu)) {
7301 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7304 vcpu->run->exit_reason = KVM_EXIT_HLT;
7308 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7310 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7312 int ret = kvm_skip_emulated_instruction(vcpu);
7314 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7315 * KVM_EXIT_DEBUG here.
7317 return kvm_vcpu_halt(vcpu) && ret;
7319 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7321 #ifdef CONFIG_X86_64
7322 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7323 unsigned long clock_type)
7325 struct kvm_clock_pairing clock_pairing;
7326 struct timespec64 ts;
7330 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7331 return -KVM_EOPNOTSUPP;
7333 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7334 return -KVM_EOPNOTSUPP;
7336 clock_pairing.sec = ts.tv_sec;
7337 clock_pairing.nsec = ts.tv_nsec;
7338 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7339 clock_pairing.flags = 0;
7340 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7343 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7344 sizeof(struct kvm_clock_pairing)))
7352 * kvm_pv_kick_cpu_op: Kick a vcpu.
7354 * @apicid - apicid of vcpu to be kicked.
7356 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7358 struct kvm_lapic_irq lapic_irq;
7360 lapic_irq.shorthand = 0;
7361 lapic_irq.dest_mode = 0;
7362 lapic_irq.level = 0;
7363 lapic_irq.dest_id = apicid;
7364 lapic_irq.msi_redir_hint = false;
7366 lapic_irq.delivery_mode = APIC_DM_REMRD;
7367 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7370 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7372 if (!lapic_in_kernel(vcpu)) {
7373 WARN_ON_ONCE(vcpu->arch.apicv_active);
7376 if (!vcpu->arch.apicv_active)
7379 vcpu->arch.apicv_active = false;
7380 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7383 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7385 struct kvm_vcpu *target = NULL;
7386 struct kvm_apic_map *map;
7389 map = rcu_dereference(kvm->arch.apic_map);
7391 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7392 target = map->phys_map[dest_id]->vcpu;
7396 if (target && READ_ONCE(target->ready))
7397 kvm_vcpu_yield_to(target);
7400 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7402 unsigned long nr, a0, a1, a2, a3, ret;
7405 if (kvm_hv_hypercall_enabled(vcpu->kvm))
7406 return kvm_hv_hypercall(vcpu);
7408 nr = kvm_rax_read(vcpu);
7409 a0 = kvm_rbx_read(vcpu);
7410 a1 = kvm_rcx_read(vcpu);
7411 a2 = kvm_rdx_read(vcpu);
7412 a3 = kvm_rsi_read(vcpu);
7414 trace_kvm_hypercall(nr, a0, a1, a2, a3);
7416 op_64_bit = is_64_bit_mode(vcpu);
7425 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7431 case KVM_HC_VAPIC_POLL_IRQ:
7434 case KVM_HC_KICK_CPU:
7435 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7436 kvm_sched_yield(vcpu->kvm, a1);
7439 #ifdef CONFIG_X86_64
7440 case KVM_HC_CLOCK_PAIRING:
7441 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7444 case KVM_HC_SEND_IPI:
7445 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7447 case KVM_HC_SCHED_YIELD:
7448 kvm_sched_yield(vcpu->kvm, a0);
7458 kvm_rax_write(vcpu, ret);
7460 ++vcpu->stat.hypercalls;
7461 return kvm_skip_emulated_instruction(vcpu);
7463 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7465 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7467 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7468 char instruction[3];
7469 unsigned long rip = kvm_rip_read(vcpu);
7471 kvm_x86_ops->patch_hypercall(vcpu, instruction);
7473 return emulator_write_emulated(ctxt, rip, instruction, 3,
7477 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7479 return vcpu->run->request_interrupt_window &&
7480 likely(!pic_in_kernel(vcpu->kvm));
7483 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7485 struct kvm_run *kvm_run = vcpu->run;
7487 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7488 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7489 kvm_run->cr8 = kvm_get_cr8(vcpu);
7490 kvm_run->apic_base = kvm_get_apic_base(vcpu);
7491 kvm_run->ready_for_interrupt_injection =
7492 pic_in_kernel(vcpu->kvm) ||
7493 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7496 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7500 if (!kvm_x86_ops->update_cr8_intercept)
7503 if (!lapic_in_kernel(vcpu))
7506 if (vcpu->arch.apicv_active)
7509 if (!vcpu->arch.apic->vapic_addr)
7510 max_irr = kvm_lapic_find_highest_irr(vcpu);
7517 tpr = kvm_lapic_get_cr8(vcpu);
7519 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7522 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7526 /* try to reinject previous events if any */
7528 if (vcpu->arch.exception.injected)
7529 kvm_x86_ops->queue_exception(vcpu);
7531 * Do not inject an NMI or interrupt if there is a pending
7532 * exception. Exceptions and interrupts are recognized at
7533 * instruction boundaries, i.e. the start of an instruction.
7534 * Trap-like exceptions, e.g. #DB, have higher priority than
7535 * NMIs and interrupts, i.e. traps are recognized before an
7536 * NMI/interrupt that's pending on the same instruction.
7537 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7538 * priority, but are only generated (pended) during instruction
7539 * execution, i.e. a pending fault-like exception means the
7540 * fault occurred on the *previous* instruction and must be
7541 * serviced prior to recognizing any new events in order to
7542 * fully complete the previous instruction.
7544 else if (!vcpu->arch.exception.pending) {
7545 if (vcpu->arch.nmi_injected)
7546 kvm_x86_ops->set_nmi(vcpu);
7547 else if (vcpu->arch.interrupt.injected)
7548 kvm_x86_ops->set_irq(vcpu);
7552 * Call check_nested_events() even if we reinjected a previous event
7553 * in order for caller to determine if it should require immediate-exit
7554 * from L2 to L1 due to pending L1 events which require exit
7557 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7558 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7563 /* try to inject new event if pending */
7564 if (vcpu->arch.exception.pending) {
7565 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7566 vcpu->arch.exception.has_error_code,
7567 vcpu->arch.exception.error_code);
7569 WARN_ON_ONCE(vcpu->arch.exception.injected);
7570 vcpu->arch.exception.pending = false;
7571 vcpu->arch.exception.injected = true;
7573 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7574 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7577 if (vcpu->arch.exception.nr == DB_VECTOR) {
7579 * This code assumes that nSVM doesn't use
7580 * check_nested_events(). If it does, the
7581 * DR6/DR7 changes should happen before L1
7582 * gets a #VMEXIT for an intercepted #DB in
7583 * L2. (Under VMX, on the other hand, the
7584 * DR6/DR7 changes should not happen in the
7585 * event of a VM-exit to L1 for an intercepted
7588 kvm_deliver_exception_payload(vcpu);
7589 if (vcpu->arch.dr7 & DR7_GD) {
7590 vcpu->arch.dr7 &= ~DR7_GD;
7591 kvm_update_dr7(vcpu);
7595 kvm_x86_ops->queue_exception(vcpu);
7598 /* Don't consider new event if we re-injected an event */
7599 if (kvm_event_needs_reinjection(vcpu))
7602 if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7603 kvm_x86_ops->smi_allowed(vcpu)) {
7604 vcpu->arch.smi_pending = false;
7605 ++vcpu->arch.smi_count;
7607 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7608 --vcpu->arch.nmi_pending;
7609 vcpu->arch.nmi_injected = true;
7610 kvm_x86_ops->set_nmi(vcpu);
7611 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7613 * Because interrupts can be injected asynchronously, we are
7614 * calling check_nested_events again here to avoid a race condition.
7615 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7616 * proposal and current concerns. Perhaps we should be setting
7617 * KVM_REQ_EVENT only on certain events and not unconditionally?
7619 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7620 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7624 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7625 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7627 kvm_x86_ops->set_irq(vcpu);
7634 static void process_nmi(struct kvm_vcpu *vcpu)
7639 * x86 is limited to one NMI running, and one NMI pending after it.
7640 * If an NMI is already in progress, limit further NMIs to just one.
7641 * Otherwise, allow two (and we'll inject the first one immediately).
7643 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7646 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7647 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7648 kvm_make_request(KVM_REQ_EVENT, vcpu);
7651 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7654 flags |= seg->g << 23;
7655 flags |= seg->db << 22;
7656 flags |= seg->l << 21;
7657 flags |= seg->avl << 20;
7658 flags |= seg->present << 15;
7659 flags |= seg->dpl << 13;
7660 flags |= seg->s << 12;
7661 flags |= seg->type << 8;
7665 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7667 struct kvm_segment seg;
7670 kvm_get_segment(vcpu, &seg, n);
7671 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7674 offset = 0x7f84 + n * 12;
7676 offset = 0x7f2c + (n - 3) * 12;
7678 put_smstate(u32, buf, offset + 8, seg.base);
7679 put_smstate(u32, buf, offset + 4, seg.limit);
7680 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7683 #ifdef CONFIG_X86_64
7684 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7686 struct kvm_segment seg;
7690 kvm_get_segment(vcpu, &seg, n);
7691 offset = 0x7e00 + n * 16;
7693 flags = enter_smm_get_segment_flags(&seg) >> 8;
7694 put_smstate(u16, buf, offset, seg.selector);
7695 put_smstate(u16, buf, offset + 2, flags);
7696 put_smstate(u32, buf, offset + 4, seg.limit);
7697 put_smstate(u64, buf, offset + 8, seg.base);
7701 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7704 struct kvm_segment seg;
7708 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7709 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7710 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7711 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7713 for (i = 0; i < 8; i++)
7714 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7716 kvm_get_dr(vcpu, 6, &val);
7717 put_smstate(u32, buf, 0x7fcc, (u32)val);
7718 kvm_get_dr(vcpu, 7, &val);
7719 put_smstate(u32, buf, 0x7fc8, (u32)val);
7721 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7722 put_smstate(u32, buf, 0x7fc4, seg.selector);
7723 put_smstate(u32, buf, 0x7f64, seg.base);
7724 put_smstate(u32, buf, 0x7f60, seg.limit);
7725 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7727 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7728 put_smstate(u32, buf, 0x7fc0, seg.selector);
7729 put_smstate(u32, buf, 0x7f80, seg.base);
7730 put_smstate(u32, buf, 0x7f7c, seg.limit);
7731 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7733 kvm_x86_ops->get_gdt(vcpu, &dt);
7734 put_smstate(u32, buf, 0x7f74, dt.address);
7735 put_smstate(u32, buf, 0x7f70, dt.size);
7737 kvm_x86_ops->get_idt(vcpu, &dt);
7738 put_smstate(u32, buf, 0x7f58, dt.address);
7739 put_smstate(u32, buf, 0x7f54, dt.size);
7741 for (i = 0; i < 6; i++)
7742 enter_smm_save_seg_32(vcpu, buf, i);
7744 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7747 put_smstate(u32, buf, 0x7efc, 0x00020000);
7748 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7751 #ifdef CONFIG_X86_64
7752 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7755 struct kvm_segment seg;
7759 for (i = 0; i < 16; i++)
7760 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7762 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7763 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7765 kvm_get_dr(vcpu, 6, &val);
7766 put_smstate(u64, buf, 0x7f68, val);
7767 kvm_get_dr(vcpu, 7, &val);
7768 put_smstate(u64, buf, 0x7f60, val);
7770 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7771 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7772 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7774 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7777 put_smstate(u32, buf, 0x7efc, 0x00020064);
7779 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7781 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7782 put_smstate(u16, buf, 0x7e90, seg.selector);
7783 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7784 put_smstate(u32, buf, 0x7e94, seg.limit);
7785 put_smstate(u64, buf, 0x7e98, seg.base);
7787 kvm_x86_ops->get_idt(vcpu, &dt);
7788 put_smstate(u32, buf, 0x7e84, dt.size);
7789 put_smstate(u64, buf, 0x7e88, dt.address);
7791 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7792 put_smstate(u16, buf, 0x7e70, seg.selector);
7793 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7794 put_smstate(u32, buf, 0x7e74, seg.limit);
7795 put_smstate(u64, buf, 0x7e78, seg.base);
7797 kvm_x86_ops->get_gdt(vcpu, &dt);
7798 put_smstate(u32, buf, 0x7e64, dt.size);
7799 put_smstate(u64, buf, 0x7e68, dt.address);
7801 for (i = 0; i < 6; i++)
7802 enter_smm_save_seg_64(vcpu, buf, i);
7806 static void enter_smm(struct kvm_vcpu *vcpu)
7808 struct kvm_segment cs, ds;
7813 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7814 memset(buf, 0, 512);
7815 #ifdef CONFIG_X86_64
7816 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7817 enter_smm_save_state_64(vcpu, buf);
7820 enter_smm_save_state_32(vcpu, buf);
7823 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7824 * vCPU state (e.g. leave guest mode) after we've saved the state into
7825 * the SMM state-save area.
7827 kvm_x86_ops->pre_enter_smm(vcpu, buf);
7829 vcpu->arch.hflags |= HF_SMM_MASK;
7830 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7832 if (kvm_x86_ops->get_nmi_mask(vcpu))
7833 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7835 kvm_x86_ops->set_nmi_mask(vcpu, true);
7837 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7838 kvm_rip_write(vcpu, 0x8000);
7840 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7841 kvm_x86_ops->set_cr0(vcpu, cr0);
7842 vcpu->arch.cr0 = cr0;
7844 kvm_x86_ops->set_cr4(vcpu, 0);
7846 /* Undocumented: IDT limit is set to zero on entry to SMM. */
7847 dt.address = dt.size = 0;
7848 kvm_x86_ops->set_idt(vcpu, &dt);
7850 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7852 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7853 cs.base = vcpu->arch.smbase;
7858 cs.limit = ds.limit = 0xffffffff;
7859 cs.type = ds.type = 0x3;
7860 cs.dpl = ds.dpl = 0;
7865 cs.avl = ds.avl = 0;
7866 cs.present = ds.present = 1;
7867 cs.unusable = ds.unusable = 0;
7868 cs.padding = ds.padding = 0;
7870 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7871 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7872 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7873 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7874 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7875 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7877 #ifdef CONFIG_X86_64
7878 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7879 kvm_x86_ops->set_efer(vcpu, 0);
7882 kvm_update_cpuid(vcpu);
7883 kvm_mmu_reset_context(vcpu);
7886 static void process_smi(struct kvm_vcpu *vcpu)
7888 vcpu->arch.smi_pending = true;
7889 kvm_make_request(KVM_REQ_EVENT, vcpu);
7892 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
7893 unsigned long *vcpu_bitmap)
7897 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
7899 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
7902 free_cpumask_var(cpus);
7905 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7907 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7910 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7912 if (!kvm_apic_present(vcpu))
7915 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7917 if (irqchip_split(vcpu->kvm))
7918 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7920 if (vcpu->arch.apicv_active)
7921 kvm_x86_ops->sync_pir_to_irr(vcpu);
7922 if (ioapic_in_kernel(vcpu->kvm))
7923 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
7926 if (is_guest_mode(vcpu))
7927 vcpu->arch.load_eoi_exitmap_pending = true;
7929 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
7932 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
7934 u64 eoi_exit_bitmap[4];
7936 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
7939 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
7940 vcpu_to_synic(vcpu)->vec_bitmap, 256);
7941 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
7944 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
7945 unsigned long start, unsigned long end,
7948 unsigned long apic_address;
7951 * The physical address of apic access page is stored in the VMCS.
7952 * Update it when it becomes invalid.
7954 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7955 if (start <= apic_address && apic_address < end)
7956 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
7961 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
7963 struct page *page = NULL;
7965 if (!lapic_in_kernel(vcpu))
7968 if (!kvm_x86_ops->set_apic_access_page_addr)
7971 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
7972 if (is_error_page(page))
7974 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
7977 * Do not pin apic access page in memory, the MMU notifier
7978 * will call us again if it is migrated or swapped out.
7983 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
7985 smp_send_reschedule(vcpu->cpu);
7987 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
7990 * Returns 1 to let vcpu_run() continue the guest execution loop without
7991 * exiting to the userspace. Otherwise, the value will be returned to the
7994 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
7998 dm_request_for_irq_injection(vcpu) &&
7999 kvm_cpu_accept_dm_intr(vcpu);
8001 bool req_immediate_exit = false;
8003 if (kvm_request_pending(vcpu)) {
8004 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8005 if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) {
8010 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8011 kvm_mmu_unload(vcpu);
8012 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8013 __kvm_migrate_timers(vcpu);
8014 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8015 kvm_gen_update_masterclock(vcpu->kvm);
8016 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8017 kvm_gen_kvmclock_update(vcpu);
8018 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8019 r = kvm_guest_time_update(vcpu);
8023 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8024 kvm_mmu_sync_roots(vcpu);
8025 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
8026 kvm_mmu_load_cr3(vcpu);
8027 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8028 kvm_vcpu_flush_tlb(vcpu, true);
8029 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8030 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8034 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8035 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8036 vcpu->mmio_needed = 0;
8040 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8041 /* Page is swapped out. Do synthetic halt */
8042 vcpu->arch.apf.halted = true;
8046 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8047 record_steal_time(vcpu);
8048 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8050 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8052 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8053 kvm_pmu_handle_event(vcpu);
8054 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8055 kvm_pmu_deliver_pmi(vcpu);
8056 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8057 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8058 if (test_bit(vcpu->arch.pending_ioapic_eoi,
8059 vcpu->arch.ioapic_handled_vectors)) {
8060 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8061 vcpu->run->eoi.vector =
8062 vcpu->arch.pending_ioapic_eoi;
8067 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8068 vcpu_scan_ioapic(vcpu);
8069 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8070 vcpu_load_eoi_exitmap(vcpu);
8071 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8072 kvm_vcpu_reload_apic_access_page(vcpu);
8073 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8074 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8075 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8079 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8080 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8081 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8085 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8086 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8087 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8093 * KVM_REQ_HV_STIMER has to be processed after
8094 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8095 * depend on the guest clock being up-to-date
8097 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8098 kvm_hv_process_stimers(vcpu);
8101 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8102 ++vcpu->stat.req_event;
8103 kvm_apic_accept_events(vcpu);
8104 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8109 if (inject_pending_event(vcpu, req_int_win) != 0)
8110 req_immediate_exit = true;
8112 /* Enable SMI/NMI/IRQ window open exits if needed.
8114 * SMIs have three cases:
8115 * 1) They can be nested, and then there is nothing to
8116 * do here because RSM will cause a vmexit anyway.
8117 * 2) There is an ISA-specific reason why SMI cannot be
8118 * injected, and the moment when this changes can be
8120 * 3) Or the SMI can be pending because
8121 * inject_pending_event has completed the injection
8122 * of an IRQ or NMI from the previous vmexit, and
8123 * then we request an immediate exit to inject the
8126 if (vcpu->arch.smi_pending && !is_smm(vcpu))
8127 if (!kvm_x86_ops->enable_smi_window(vcpu))
8128 req_immediate_exit = true;
8129 if (vcpu->arch.nmi_pending)
8130 kvm_x86_ops->enable_nmi_window(vcpu);
8131 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8132 kvm_x86_ops->enable_irq_window(vcpu);
8133 WARN_ON(vcpu->arch.exception.pending);
8136 if (kvm_lapic_enabled(vcpu)) {
8137 update_cr8_intercept(vcpu);
8138 kvm_lapic_sync_to_vapic(vcpu);
8142 r = kvm_mmu_reload(vcpu);
8144 goto cancel_injection;
8149 kvm_x86_ops->prepare_guest_switch(vcpu);
8152 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
8153 * IPI are then delayed after guest entry, which ensures that they
8154 * result in virtual interrupt delivery.
8156 local_irq_disable();
8157 vcpu->mode = IN_GUEST_MODE;
8159 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8162 * 1) We should set ->mode before checking ->requests. Please see
8163 * the comment in kvm_vcpu_exiting_guest_mode().
8165 * 2) For APICv, we should set ->mode before checking PID.ON. This
8166 * pairs with the memory barrier implicit in pi_test_and_set_on
8167 * (see vmx_deliver_posted_interrupt).
8169 * 3) This also orders the write to mode from any reads to the page
8170 * tables done while the VCPU is running. Please see the comment
8171 * in kvm_flush_remote_tlbs.
8173 smp_mb__after_srcu_read_unlock();
8176 * This handles the case where a posted interrupt was
8177 * notified with kvm_vcpu_kick.
8179 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8180 kvm_x86_ops->sync_pir_to_irr(vcpu);
8182 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8183 || need_resched() || signal_pending(current)) {
8184 vcpu->mode = OUTSIDE_GUEST_MODE;
8188 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8190 goto cancel_injection;
8193 if (req_immediate_exit) {
8194 kvm_make_request(KVM_REQ_EVENT, vcpu);
8195 kvm_x86_ops->request_immediate_exit(vcpu);
8198 trace_kvm_entry(vcpu->vcpu_id);
8199 guest_enter_irqoff();
8201 /* The preempt notifier should have taken care of the FPU already. */
8202 WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8204 if (unlikely(vcpu->arch.switch_db_regs)) {
8206 set_debugreg(vcpu->arch.eff_db[0], 0);
8207 set_debugreg(vcpu->arch.eff_db[1], 1);
8208 set_debugreg(vcpu->arch.eff_db[2], 2);
8209 set_debugreg(vcpu->arch.eff_db[3], 3);
8210 set_debugreg(vcpu->arch.dr6, 6);
8211 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8214 kvm_x86_ops->run(vcpu);
8217 * Do this here before restoring debug registers on the host. And
8218 * since we do this before handling the vmexit, a DR access vmexit
8219 * can (a) read the correct value of the debug registers, (b) set
8220 * KVM_DEBUGREG_WONT_EXIT again.
8222 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8223 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8224 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8225 kvm_update_dr0123(vcpu);
8226 kvm_update_dr6(vcpu);
8227 kvm_update_dr7(vcpu);
8228 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8232 * If the guest has used debug registers, at least dr7
8233 * will be disabled while returning to the host.
8234 * If we don't have active breakpoints in the host, we don't
8235 * care about the messed up debug address registers. But if
8236 * we have some of them active, restore the old state.
8238 if (hw_breakpoint_active())
8239 hw_breakpoint_restore();
8241 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8243 vcpu->mode = OUTSIDE_GUEST_MODE;
8246 kvm_x86_ops->handle_exit_irqoff(vcpu);
8249 * Consume any pending interrupts, including the possible source of
8250 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8251 * An instruction is required after local_irq_enable() to fully unblock
8252 * interrupts on processors that implement an interrupt shadow, the
8253 * stat.exits increment will do nicely.
8255 kvm_before_interrupt(vcpu);
8258 local_irq_disable();
8259 kvm_after_interrupt(vcpu);
8261 guest_exit_irqoff();
8262 if (lapic_in_kernel(vcpu)) {
8263 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8264 if (delta != S64_MIN) {
8265 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8266 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8273 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8276 * Profile KVM exit RIPs:
8278 if (unlikely(prof_on == KVM_PROFILING)) {
8279 unsigned long rip = kvm_rip_read(vcpu);
8280 profile_hit(KVM_PROFILING, (void *)rip);
8283 if (unlikely(vcpu->arch.tsc_always_catchup))
8284 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8286 if (vcpu->arch.apic_attention)
8287 kvm_lapic_sync_from_vapic(vcpu);
8289 vcpu->arch.gpa_available = false;
8290 r = kvm_x86_ops->handle_exit(vcpu);
8294 kvm_x86_ops->cancel_injection(vcpu);
8295 if (unlikely(vcpu->arch.apic_attention))
8296 kvm_lapic_sync_from_vapic(vcpu);
8301 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8303 if (!kvm_arch_vcpu_runnable(vcpu) &&
8304 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8305 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8306 kvm_vcpu_block(vcpu);
8307 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8309 if (kvm_x86_ops->post_block)
8310 kvm_x86_ops->post_block(vcpu);
8312 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8316 kvm_apic_accept_events(vcpu);
8317 switch(vcpu->arch.mp_state) {
8318 case KVM_MP_STATE_HALTED:
8319 vcpu->arch.pv.pv_unhalted = false;
8320 vcpu->arch.mp_state =
8321 KVM_MP_STATE_RUNNABLE;
8323 case KVM_MP_STATE_RUNNABLE:
8324 vcpu->arch.apf.halted = false;
8326 case KVM_MP_STATE_INIT_RECEIVED:
8335 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8337 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8338 kvm_x86_ops->check_nested_events(vcpu, false);
8340 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8341 !vcpu->arch.apf.halted);
8344 static int vcpu_run(struct kvm_vcpu *vcpu)
8347 struct kvm *kvm = vcpu->kvm;
8349 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8350 vcpu->arch.l1tf_flush_l1d = true;
8353 if (kvm_vcpu_running(vcpu)) {
8354 r = vcpu_enter_guest(vcpu);
8356 r = vcpu_block(kvm, vcpu);
8362 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8363 if (kvm_cpu_has_pending_timer(vcpu))
8364 kvm_inject_pending_timer_irqs(vcpu);
8366 if (dm_request_for_irq_injection(vcpu) &&
8367 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8369 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8370 ++vcpu->stat.request_irq_exits;
8374 kvm_check_async_pf_completion(vcpu);
8376 if (signal_pending(current)) {
8378 vcpu->run->exit_reason = KVM_EXIT_INTR;
8379 ++vcpu->stat.signal_exits;
8382 if (need_resched()) {
8383 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8385 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8389 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8394 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8398 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8399 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8400 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8404 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8406 BUG_ON(!vcpu->arch.pio.count);
8408 return complete_emulated_io(vcpu);
8412 * Implements the following, as a state machine:
8416 * for each mmio piece in the fragment
8424 * for each mmio piece in the fragment
8429 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8431 struct kvm_run *run = vcpu->run;
8432 struct kvm_mmio_fragment *frag;
8435 BUG_ON(!vcpu->mmio_needed);
8437 /* Complete previous fragment */
8438 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8439 len = min(8u, frag->len);
8440 if (!vcpu->mmio_is_write)
8441 memcpy(frag->data, run->mmio.data, len);
8443 if (frag->len <= 8) {
8444 /* Switch to the next fragment. */
8446 vcpu->mmio_cur_fragment++;
8448 /* Go forward to the next mmio piece. */
8454 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8455 vcpu->mmio_needed = 0;
8457 /* FIXME: return into emulator if single-stepping. */
8458 if (vcpu->mmio_is_write)
8460 vcpu->mmio_read_completed = 1;
8461 return complete_emulated_io(vcpu);
8464 run->exit_reason = KVM_EXIT_MMIO;
8465 run->mmio.phys_addr = frag->gpa;
8466 if (vcpu->mmio_is_write)
8467 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8468 run->mmio.len = min(8u, frag->len);
8469 run->mmio.is_write = vcpu->mmio_is_write;
8470 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8474 /* Swap (qemu) user FPU context for the guest FPU context. */
8475 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8479 copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8480 /* PKRU is separately restored in kvm_x86_ops->run. */
8481 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8482 ~XFEATURE_MASK_PKRU);
8484 fpregs_mark_activate();
8490 /* When vcpu_run ends, restore user space FPU context. */
8491 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8495 copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8496 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8498 fpregs_mark_activate();
8501 ++vcpu->stat.fpu_reload;
8505 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8510 kvm_sigset_activate(vcpu);
8511 kvm_load_guest_fpu(vcpu);
8513 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8514 if (kvm_run->immediate_exit) {
8518 kvm_vcpu_block(vcpu);
8519 kvm_apic_accept_events(vcpu);
8520 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8522 if (signal_pending(current)) {
8524 vcpu->run->exit_reason = KVM_EXIT_INTR;
8525 ++vcpu->stat.signal_exits;
8530 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8535 if (vcpu->run->kvm_dirty_regs) {
8536 r = sync_regs(vcpu);
8541 /* re-sync apic's tpr */
8542 if (!lapic_in_kernel(vcpu)) {
8543 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8549 if (unlikely(vcpu->arch.complete_userspace_io)) {
8550 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8551 vcpu->arch.complete_userspace_io = NULL;
8556 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8558 if (kvm_run->immediate_exit)
8564 kvm_put_guest_fpu(vcpu);
8565 if (vcpu->run->kvm_valid_regs)
8567 post_kvm_run_save(vcpu);
8568 kvm_sigset_deactivate(vcpu);
8574 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8576 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8578 * We are here if userspace calls get_regs() in the middle of
8579 * instruction emulation. Registers state needs to be copied
8580 * back from emulation context to vcpu. Userspace shouldn't do
8581 * that usually, but some bad designed PV devices (vmware
8582 * backdoor interface) need this to work
8584 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8585 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8587 regs->rax = kvm_rax_read(vcpu);
8588 regs->rbx = kvm_rbx_read(vcpu);
8589 regs->rcx = kvm_rcx_read(vcpu);
8590 regs->rdx = kvm_rdx_read(vcpu);
8591 regs->rsi = kvm_rsi_read(vcpu);
8592 regs->rdi = kvm_rdi_read(vcpu);
8593 regs->rsp = kvm_rsp_read(vcpu);
8594 regs->rbp = kvm_rbp_read(vcpu);
8595 #ifdef CONFIG_X86_64
8596 regs->r8 = kvm_r8_read(vcpu);
8597 regs->r9 = kvm_r9_read(vcpu);
8598 regs->r10 = kvm_r10_read(vcpu);
8599 regs->r11 = kvm_r11_read(vcpu);
8600 regs->r12 = kvm_r12_read(vcpu);
8601 regs->r13 = kvm_r13_read(vcpu);
8602 regs->r14 = kvm_r14_read(vcpu);
8603 regs->r15 = kvm_r15_read(vcpu);
8606 regs->rip = kvm_rip_read(vcpu);
8607 regs->rflags = kvm_get_rflags(vcpu);
8610 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8613 __get_regs(vcpu, regs);
8618 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8620 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8621 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8623 kvm_rax_write(vcpu, regs->rax);
8624 kvm_rbx_write(vcpu, regs->rbx);
8625 kvm_rcx_write(vcpu, regs->rcx);
8626 kvm_rdx_write(vcpu, regs->rdx);
8627 kvm_rsi_write(vcpu, regs->rsi);
8628 kvm_rdi_write(vcpu, regs->rdi);
8629 kvm_rsp_write(vcpu, regs->rsp);
8630 kvm_rbp_write(vcpu, regs->rbp);
8631 #ifdef CONFIG_X86_64
8632 kvm_r8_write(vcpu, regs->r8);
8633 kvm_r9_write(vcpu, regs->r9);
8634 kvm_r10_write(vcpu, regs->r10);
8635 kvm_r11_write(vcpu, regs->r11);
8636 kvm_r12_write(vcpu, regs->r12);
8637 kvm_r13_write(vcpu, regs->r13);
8638 kvm_r14_write(vcpu, regs->r14);
8639 kvm_r15_write(vcpu, regs->r15);
8642 kvm_rip_write(vcpu, regs->rip);
8643 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8645 vcpu->arch.exception.pending = false;
8647 kvm_make_request(KVM_REQ_EVENT, vcpu);
8650 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8653 __set_regs(vcpu, regs);
8658 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8660 struct kvm_segment cs;
8662 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8666 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8668 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8672 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8673 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8674 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8675 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8676 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8677 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8679 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8680 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8682 kvm_x86_ops->get_idt(vcpu, &dt);
8683 sregs->idt.limit = dt.size;
8684 sregs->idt.base = dt.address;
8685 kvm_x86_ops->get_gdt(vcpu, &dt);
8686 sregs->gdt.limit = dt.size;
8687 sregs->gdt.base = dt.address;
8689 sregs->cr0 = kvm_read_cr0(vcpu);
8690 sregs->cr2 = vcpu->arch.cr2;
8691 sregs->cr3 = kvm_read_cr3(vcpu);
8692 sregs->cr4 = kvm_read_cr4(vcpu);
8693 sregs->cr8 = kvm_get_cr8(vcpu);
8694 sregs->efer = vcpu->arch.efer;
8695 sregs->apic_base = kvm_get_apic_base(vcpu);
8697 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8699 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8700 set_bit(vcpu->arch.interrupt.nr,
8701 (unsigned long *)sregs->interrupt_bitmap);
8704 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8705 struct kvm_sregs *sregs)
8708 __get_sregs(vcpu, sregs);
8713 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8714 struct kvm_mp_state *mp_state)
8718 kvm_apic_accept_events(vcpu);
8719 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8720 vcpu->arch.pv.pv_unhalted)
8721 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8723 mp_state->mp_state = vcpu->arch.mp_state;
8729 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8730 struct kvm_mp_state *mp_state)
8736 if (!lapic_in_kernel(vcpu) &&
8737 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8741 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8742 * INIT state; latched init should be reported using
8743 * KVM_SET_VCPU_EVENTS, so reject it here.
8745 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8746 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8747 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8750 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8751 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8752 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8754 vcpu->arch.mp_state = mp_state->mp_state;
8755 kvm_make_request(KVM_REQ_EVENT, vcpu);
8763 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8764 int reason, bool has_error_code, u32 error_code)
8766 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8769 init_emulate_ctxt(vcpu);
8771 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8772 has_error_code, error_code);
8774 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8775 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8776 vcpu->run->internal.ndata = 0;
8780 kvm_rip_write(vcpu, ctxt->eip);
8781 kvm_set_rflags(vcpu, ctxt->eflags);
8782 kvm_make_request(KVM_REQ_EVENT, vcpu);
8785 EXPORT_SYMBOL_GPL(kvm_task_switch);
8787 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8789 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8791 * When EFER.LME and CR0.PG are set, the processor is in
8792 * 64-bit mode (though maybe in a 32-bit code segment).
8793 * CR4.PAE and EFER.LMA must be set.
8795 if (!(sregs->cr4 & X86_CR4_PAE)
8796 || !(sregs->efer & EFER_LMA))
8800 * Not in 64-bit mode: EFER.LMA is clear and the code
8801 * segment cannot be 64-bit.
8803 if (sregs->efer & EFER_LMA || sregs->cs.l)
8807 return kvm_valid_cr4(vcpu, sregs->cr4);
8810 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8812 struct msr_data apic_base_msr;
8813 int mmu_reset_needed = 0;
8814 int cpuid_update_needed = 0;
8815 int pending_vec, max_bits, idx;
8819 if (kvm_valid_sregs(vcpu, sregs))
8822 apic_base_msr.data = sregs->apic_base;
8823 apic_base_msr.host_initiated = true;
8824 if (kvm_set_apic_base(vcpu, &apic_base_msr))
8827 dt.size = sregs->idt.limit;
8828 dt.address = sregs->idt.base;
8829 kvm_x86_ops->set_idt(vcpu, &dt);
8830 dt.size = sregs->gdt.limit;
8831 dt.address = sregs->gdt.base;
8832 kvm_x86_ops->set_gdt(vcpu, &dt);
8834 vcpu->arch.cr2 = sregs->cr2;
8835 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8836 vcpu->arch.cr3 = sregs->cr3;
8837 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
8839 kvm_set_cr8(vcpu, sregs->cr8);
8841 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8842 kvm_x86_ops->set_efer(vcpu, sregs->efer);
8844 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8845 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8846 vcpu->arch.cr0 = sregs->cr0;
8848 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8849 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8850 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8851 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8852 if (cpuid_update_needed)
8853 kvm_update_cpuid(vcpu);
8855 idx = srcu_read_lock(&vcpu->kvm->srcu);
8856 if (is_pae_paging(vcpu)) {
8857 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8858 mmu_reset_needed = 1;
8860 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8862 if (mmu_reset_needed)
8863 kvm_mmu_reset_context(vcpu);
8865 max_bits = KVM_NR_INTERRUPTS;
8866 pending_vec = find_first_bit(
8867 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8868 if (pending_vec < max_bits) {
8869 kvm_queue_interrupt(vcpu, pending_vec, false);
8870 pr_debug("Set back pending irq %d\n", pending_vec);
8873 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8874 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8875 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8876 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8877 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8878 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8880 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8881 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8883 update_cr8_intercept(vcpu);
8885 /* Older userspace won't unhalt the vcpu on reset. */
8886 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8887 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8889 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8891 kvm_make_request(KVM_REQ_EVENT, vcpu);
8898 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8899 struct kvm_sregs *sregs)
8904 ret = __set_sregs(vcpu, sregs);
8909 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8910 struct kvm_guest_debug *dbg)
8912 unsigned long rflags;
8917 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
8919 if (vcpu->arch.exception.pending)
8921 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
8922 kvm_queue_exception(vcpu, DB_VECTOR);
8924 kvm_queue_exception(vcpu, BP_VECTOR);
8928 * Read rflags as long as potentially injected trace flags are still
8931 rflags = kvm_get_rflags(vcpu);
8933 vcpu->guest_debug = dbg->control;
8934 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
8935 vcpu->guest_debug = 0;
8937 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
8938 for (i = 0; i < KVM_NR_DB_REGS; ++i)
8939 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
8940 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
8942 for (i = 0; i < KVM_NR_DB_REGS; i++)
8943 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
8945 kvm_update_dr7(vcpu);
8947 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8948 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
8949 get_segment_base(vcpu, VCPU_SREG_CS);
8952 * Trigger an rflags update that will inject or remove the trace
8955 kvm_set_rflags(vcpu, rflags);
8957 kvm_x86_ops->update_bp_intercept(vcpu);
8967 * Translate a guest virtual address to a guest physical address.
8969 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
8970 struct kvm_translation *tr)
8972 unsigned long vaddr = tr->linear_address;
8978 idx = srcu_read_lock(&vcpu->kvm->srcu);
8979 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
8980 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8981 tr->physical_address = gpa;
8982 tr->valid = gpa != UNMAPPED_GVA;
8990 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
8992 struct fxregs_state *fxsave;
8996 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
8997 memcpy(fpu->fpr, fxsave->st_space, 128);
8998 fpu->fcw = fxsave->cwd;
8999 fpu->fsw = fxsave->swd;
9000 fpu->ftwx = fxsave->twd;
9001 fpu->last_opcode = fxsave->fop;
9002 fpu->last_ip = fxsave->rip;
9003 fpu->last_dp = fxsave->rdp;
9004 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9010 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9012 struct fxregs_state *fxsave;
9016 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9018 memcpy(fxsave->st_space, fpu->fpr, 128);
9019 fxsave->cwd = fpu->fcw;
9020 fxsave->swd = fpu->fsw;
9021 fxsave->twd = fpu->ftwx;
9022 fxsave->fop = fpu->last_opcode;
9023 fxsave->rip = fpu->last_ip;
9024 fxsave->rdp = fpu->last_dp;
9025 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9031 static void store_regs(struct kvm_vcpu *vcpu)
9033 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9035 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9036 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9038 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9039 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9041 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9042 kvm_vcpu_ioctl_x86_get_vcpu_events(
9043 vcpu, &vcpu->run->s.regs.events);
9046 static int sync_regs(struct kvm_vcpu *vcpu)
9048 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9051 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9052 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9053 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9055 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9056 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9058 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9060 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9061 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9062 vcpu, &vcpu->run->s.regs.events))
9064 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9070 static void fx_init(struct kvm_vcpu *vcpu)
9072 fpstate_init(&vcpu->arch.guest_fpu->state);
9073 if (boot_cpu_has(X86_FEATURE_XSAVES))
9074 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9075 host_xcr0 | XSTATE_COMPACTION_ENABLED;
9078 * Ensure guest xcr0 is valid for loading
9080 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9082 vcpu->arch.cr0 |= X86_CR0_ET;
9085 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
9087 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
9089 kvmclock_reset(vcpu);
9091 kvm_x86_ops->vcpu_free(vcpu);
9092 free_cpumask_var(wbinvd_dirty_mask);
9095 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
9098 struct kvm_vcpu *vcpu;
9100 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9101 printk_once(KERN_WARNING
9102 "kvm: SMP vm created on host with unstable TSC; "
9103 "guest TSC will not be reliable\n");
9105 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
9110 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
9112 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9113 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9114 kvm_vcpu_mtrr_init(vcpu);
9116 kvm_vcpu_reset(vcpu, false);
9117 kvm_init_mmu(vcpu, false);
9122 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9124 struct msr_data msr;
9125 struct kvm *kvm = vcpu->kvm;
9127 kvm_hv_vcpu_postcreate(vcpu);
9129 if (mutex_lock_killable(&vcpu->mutex))
9133 msr.index = MSR_IA32_TSC;
9134 msr.host_initiated = true;
9135 kvm_write_tsc(vcpu, &msr);
9138 /* poll control enabled by default */
9139 vcpu->arch.msr_kvm_poll_control = 1;
9141 mutex_unlock(&vcpu->mutex);
9143 if (!kvmclock_periodic_sync)
9146 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9147 KVMCLOCK_SYNC_PERIOD);
9150 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9152 vcpu->arch.apf.msr_val = 0;
9155 kvm_mmu_unload(vcpu);
9158 kvm_x86_ops->vcpu_free(vcpu);
9161 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9163 kvm_lapic_reset(vcpu, init_event);
9165 vcpu->arch.hflags = 0;
9167 vcpu->arch.smi_pending = 0;
9168 vcpu->arch.smi_count = 0;
9169 atomic_set(&vcpu->arch.nmi_queued, 0);
9170 vcpu->arch.nmi_pending = 0;
9171 vcpu->arch.nmi_injected = false;
9172 kvm_clear_interrupt_queue(vcpu);
9173 kvm_clear_exception_queue(vcpu);
9174 vcpu->arch.exception.pending = false;
9176 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9177 kvm_update_dr0123(vcpu);
9178 vcpu->arch.dr6 = DR6_INIT;
9179 kvm_update_dr6(vcpu);
9180 vcpu->arch.dr7 = DR7_FIXED_1;
9181 kvm_update_dr7(vcpu);
9185 kvm_make_request(KVM_REQ_EVENT, vcpu);
9186 vcpu->arch.apf.msr_val = 0;
9187 vcpu->arch.st.msr_val = 0;
9189 kvmclock_reset(vcpu);
9191 kvm_clear_async_pf_completion_queue(vcpu);
9192 kvm_async_pf_hash_reset(vcpu);
9193 vcpu->arch.apf.halted = false;
9195 if (kvm_mpx_supported()) {
9196 void *mpx_state_buffer;
9199 * To avoid have the INIT path from kvm_apic_has_events() that be
9200 * called with loaded FPU and does not let userspace fix the state.
9203 kvm_put_guest_fpu(vcpu);
9204 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9206 if (mpx_state_buffer)
9207 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9208 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9210 if (mpx_state_buffer)
9211 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9213 kvm_load_guest_fpu(vcpu);
9217 kvm_pmu_reset(vcpu);
9218 vcpu->arch.smbase = 0x30000;
9220 vcpu->arch.msr_misc_features_enables = 0;
9222 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9225 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9226 vcpu->arch.regs_avail = ~0;
9227 vcpu->arch.regs_dirty = ~0;
9229 vcpu->arch.ia32_xss = 0;
9231 kvm_x86_ops->vcpu_reset(vcpu, init_event);
9234 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9236 struct kvm_segment cs;
9238 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9239 cs.selector = vector << 8;
9240 cs.base = vector << 12;
9241 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9242 kvm_rip_write(vcpu, 0);
9245 int kvm_arch_hardware_enable(void)
9248 struct kvm_vcpu *vcpu;
9253 bool stable, backwards_tsc = false;
9255 kvm_shared_msr_cpu_online();
9256 ret = kvm_x86_ops->hardware_enable();
9260 local_tsc = rdtsc();
9261 stable = !kvm_check_tsc_unstable();
9262 list_for_each_entry(kvm, &vm_list, vm_list) {
9263 kvm_for_each_vcpu(i, vcpu, kvm) {
9264 if (!stable && vcpu->cpu == smp_processor_id())
9265 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9266 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9267 backwards_tsc = true;
9268 if (vcpu->arch.last_host_tsc > max_tsc)
9269 max_tsc = vcpu->arch.last_host_tsc;
9275 * Sometimes, even reliable TSCs go backwards. This happens on
9276 * platforms that reset TSC during suspend or hibernate actions, but
9277 * maintain synchronization. We must compensate. Fortunately, we can
9278 * detect that condition here, which happens early in CPU bringup,
9279 * before any KVM threads can be running. Unfortunately, we can't
9280 * bring the TSCs fully up to date with real time, as we aren't yet far
9281 * enough into CPU bringup that we know how much real time has actually
9282 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9283 * variables that haven't been updated yet.
9285 * So we simply find the maximum observed TSC above, then record the
9286 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
9287 * the adjustment will be applied. Note that we accumulate
9288 * adjustments, in case multiple suspend cycles happen before some VCPU
9289 * gets a chance to run again. In the event that no KVM threads get a
9290 * chance to run, we will miss the entire elapsed period, as we'll have
9291 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9292 * loose cycle time. This isn't too big a deal, since the loss will be
9293 * uniform across all VCPUs (not to mention the scenario is extremely
9294 * unlikely). It is possible that a second hibernate recovery happens
9295 * much faster than a first, causing the observed TSC here to be
9296 * smaller; this would require additional padding adjustment, which is
9297 * why we set last_host_tsc to the local tsc observed here.
9299 * N.B. - this code below runs only on platforms with reliable TSC,
9300 * as that is the only way backwards_tsc is set above. Also note
9301 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9302 * have the same delta_cyc adjustment applied if backwards_tsc
9303 * is detected. Note further, this adjustment is only done once,
9304 * as we reset last_host_tsc on all VCPUs to stop this from being
9305 * called multiple times (one for each physical CPU bringup).
9307 * Platforms with unreliable TSCs don't have to deal with this, they
9308 * will be compensated by the logic in vcpu_load, which sets the TSC to
9309 * catchup mode. This will catchup all VCPUs to real time, but cannot
9310 * guarantee that they stay in perfect synchronization.
9312 if (backwards_tsc) {
9313 u64 delta_cyc = max_tsc - local_tsc;
9314 list_for_each_entry(kvm, &vm_list, vm_list) {
9315 kvm->arch.backwards_tsc_observed = true;
9316 kvm_for_each_vcpu(i, vcpu, kvm) {
9317 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9318 vcpu->arch.last_host_tsc = local_tsc;
9319 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9323 * We have to disable TSC offset matching.. if you were
9324 * booting a VM while issuing an S4 host suspend....
9325 * you may have some problem. Solving this issue is
9326 * left as an exercise to the reader.
9328 kvm->arch.last_tsc_nsec = 0;
9329 kvm->arch.last_tsc_write = 0;
9336 void kvm_arch_hardware_disable(void)
9338 kvm_x86_ops->hardware_disable();
9339 drop_user_return_notifiers();
9342 int kvm_arch_hardware_setup(void)
9346 r = kvm_x86_ops->hardware_setup();
9350 if (kvm_has_tsc_control) {
9352 * Make sure the user can only configure tsc_khz values that
9353 * fit into a signed integer.
9354 * A min value is not calculated because it will always
9355 * be 1 on all machines.
9357 u64 max = min(0x7fffffffULL,
9358 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9359 kvm_max_guest_tsc_khz = max;
9361 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9364 if (boot_cpu_has(X86_FEATURE_XSAVES))
9365 rdmsrl(MSR_IA32_XSS, host_xss);
9367 kvm_init_msr_list();
9371 void kvm_arch_hardware_unsetup(void)
9373 kvm_x86_ops->hardware_unsetup();
9376 int kvm_arch_check_processor_compat(void)
9378 return kvm_x86_ops->check_processor_compatibility();
9381 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9383 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9385 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9387 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9389 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9392 struct static_key kvm_no_apic_vcpu __read_mostly;
9393 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9395 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9400 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9401 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9402 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9404 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9406 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9411 vcpu->arch.pio_data = page_address(page);
9413 kvm_set_tsc_khz(vcpu, max_tsc_khz);
9415 r = kvm_mmu_create(vcpu);
9417 goto fail_free_pio_data;
9419 if (irqchip_in_kernel(vcpu->kvm)) {
9420 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu->kvm);
9421 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9423 goto fail_mmu_destroy;
9425 static_key_slow_inc(&kvm_no_apic_vcpu);
9427 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9428 GFP_KERNEL_ACCOUNT);
9429 if (!vcpu->arch.mce_banks) {
9431 goto fail_free_lapic;
9433 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9435 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9436 GFP_KERNEL_ACCOUNT)) {
9438 goto fail_free_mce_banks;
9443 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9445 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9447 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9449 kvm_async_pf_hash_reset(vcpu);
9452 vcpu->arch.pending_external_vector = -1;
9453 vcpu->arch.preempted_in_kernel = false;
9455 kvm_hv_vcpu_init(vcpu);
9459 fail_free_mce_banks:
9460 kfree(vcpu->arch.mce_banks);
9462 kvm_free_lapic(vcpu);
9464 kvm_mmu_destroy(vcpu);
9466 free_page((unsigned long)vcpu->arch.pio_data);
9471 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9475 kvm_hv_vcpu_uninit(vcpu);
9476 kvm_pmu_destroy(vcpu);
9477 kfree(vcpu->arch.mce_banks);
9478 kvm_free_lapic(vcpu);
9479 idx = srcu_read_lock(&vcpu->kvm->srcu);
9480 kvm_mmu_destroy(vcpu);
9481 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9482 free_page((unsigned long)vcpu->arch.pio_data);
9483 if (!lapic_in_kernel(vcpu))
9484 static_key_slow_dec(&kvm_no_apic_vcpu);
9487 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9489 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9491 vcpu->arch.l1tf_flush_l1d = true;
9492 if (pmu->version && unlikely(pmu->event_count)) {
9493 pmu->need_cleanup = true;
9494 kvm_make_request(KVM_REQ_PMU, vcpu);
9496 kvm_x86_ops->sched_in(vcpu, cpu);
9499 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9504 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9505 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9506 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9507 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9508 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9509 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9511 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9512 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9513 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9514 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9515 &kvm->arch.irq_sources_bitmap);
9517 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9518 mutex_init(&kvm->arch.apic_map_lock);
9519 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9521 kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9522 pvclock_update_vm_gtod_copy(kvm);
9524 kvm->arch.guest_can_read_msr_platform_info = true;
9526 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9527 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9529 kvm_hv_init_vm(kvm);
9530 kvm_page_track_init(kvm);
9531 kvm_mmu_init_vm(kvm);
9533 return kvm_x86_ops->vm_init(kvm);
9536 int kvm_arch_post_init_vm(struct kvm *kvm)
9538 return kvm_mmu_post_init_vm(kvm);
9541 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9544 kvm_mmu_unload(vcpu);
9548 static void kvm_free_vcpus(struct kvm *kvm)
9551 struct kvm_vcpu *vcpu;
9554 * Unpin any mmu pages first.
9556 kvm_for_each_vcpu(i, vcpu, kvm) {
9557 kvm_clear_async_pf_completion_queue(vcpu);
9558 kvm_unload_vcpu_mmu(vcpu);
9560 kvm_for_each_vcpu(i, vcpu, kvm)
9561 kvm_arch_vcpu_free(vcpu);
9563 mutex_lock(&kvm->lock);
9564 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9565 kvm->vcpus[i] = NULL;
9567 atomic_set(&kvm->online_vcpus, 0);
9568 mutex_unlock(&kvm->lock);
9571 void kvm_arch_sync_events(struct kvm *kvm)
9573 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9574 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9578 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9582 struct kvm_memslots *slots = kvm_memslots(kvm);
9583 struct kvm_memory_slot *slot, old;
9585 /* Called with kvm->slots_lock held. */
9586 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9589 slot = id_to_memslot(slots, id);
9595 * MAP_SHARED to prevent internal slot pages from being moved
9598 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9599 MAP_SHARED | MAP_ANONYMOUS, 0);
9600 if (IS_ERR((void *)hva))
9601 return PTR_ERR((void *)hva);
9610 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9611 struct kvm_userspace_memory_region m;
9613 m.slot = id | (i << 16);
9615 m.guest_phys_addr = gpa;
9616 m.userspace_addr = hva;
9617 m.memory_size = size;
9618 r = __kvm_set_memory_region(kvm, &m);
9624 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9628 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9630 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9634 mutex_lock(&kvm->slots_lock);
9635 r = __x86_set_memory_region(kvm, id, gpa, size);
9636 mutex_unlock(&kvm->slots_lock);
9640 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9642 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9644 kvm_mmu_pre_destroy_vm(kvm);
9647 void kvm_arch_destroy_vm(struct kvm *kvm)
9649 if (current->mm == kvm->mm) {
9651 * Free memory regions allocated on behalf of userspace,
9652 * unless the the memory map has changed due to process exit
9655 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9656 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9657 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9659 if (kvm_x86_ops->vm_destroy)
9660 kvm_x86_ops->vm_destroy(kvm);
9661 kvm_pic_destroy(kvm);
9662 kvm_ioapic_destroy(kvm);
9663 kvm_free_vcpus(kvm);
9664 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9665 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9666 kvm_mmu_uninit_vm(kvm);
9667 kvm_page_track_cleanup(kvm);
9668 kvm_hv_destroy_vm(kvm);
9671 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9672 struct kvm_memory_slot *dont)
9676 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9677 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9678 kvfree(free->arch.rmap[i]);
9679 free->arch.rmap[i] = NULL;
9684 if (!dont || free->arch.lpage_info[i - 1] !=
9685 dont->arch.lpage_info[i - 1]) {
9686 kvfree(free->arch.lpage_info[i - 1]);
9687 free->arch.lpage_info[i - 1] = NULL;
9691 kvm_page_track_free_memslot(free, dont);
9694 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9695 unsigned long npages)
9699 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9700 struct kvm_lpage_info *linfo;
9705 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9706 slot->base_gfn, level) + 1;
9708 slot->arch.rmap[i] =
9709 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9710 GFP_KERNEL_ACCOUNT);
9711 if (!slot->arch.rmap[i])
9716 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9720 slot->arch.lpage_info[i - 1] = linfo;
9722 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9723 linfo[0].disallow_lpage = 1;
9724 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9725 linfo[lpages - 1].disallow_lpage = 1;
9726 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9728 * If the gfn and userspace address are not aligned wrt each
9729 * other, or if explicitly asked to, disable large page
9730 * support for this slot
9732 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9733 !kvm_largepages_enabled()) {
9736 for (j = 0; j < lpages; ++j)
9737 linfo[j].disallow_lpage = 1;
9741 if (kvm_page_track_create_memslot(slot, npages))
9747 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9748 kvfree(slot->arch.rmap[i]);
9749 slot->arch.rmap[i] = NULL;
9753 kvfree(slot->arch.lpage_info[i - 1]);
9754 slot->arch.lpage_info[i - 1] = NULL;
9759 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9762 * memslots->generation has been incremented.
9763 * mmio generation may have reached its maximum value.
9765 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9768 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9769 struct kvm_memory_slot *memslot,
9770 const struct kvm_userspace_memory_region *mem,
9771 enum kvm_mr_change change)
9776 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9777 struct kvm_memory_slot *new)
9779 /* Still write protect RO slot */
9780 if (new->flags & KVM_MEM_READONLY) {
9781 kvm_mmu_slot_remove_write_access(kvm, new);
9786 * Call kvm_x86_ops dirty logging hooks when they are valid.
9788 * kvm_x86_ops->slot_disable_log_dirty is called when:
9790 * - KVM_MR_CREATE with dirty logging is disabled
9791 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9793 * The reason is, in case of PML, we need to set D-bit for any slots
9794 * with dirty logging disabled in order to eliminate unnecessary GPA
9795 * logging in PML buffer (and potential PML buffer full VMEXT). This
9796 * guarantees leaving PML enabled during guest's lifetime won't have
9797 * any additional overhead from PML when guest is running with dirty
9798 * logging disabled for memory slots.
9800 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9801 * to dirty logging mode.
9803 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9805 * In case of write protect:
9807 * Write protect all pages for dirty logging.
9809 * All the sptes including the large sptes which point to this
9810 * slot are set to readonly. We can not create any new large
9811 * spte on this slot until the end of the logging.
9813 * See the comments in fast_page_fault().
9815 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9816 if (kvm_x86_ops->slot_enable_log_dirty)
9817 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9819 kvm_mmu_slot_remove_write_access(kvm, new);
9821 if (kvm_x86_ops->slot_disable_log_dirty)
9822 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9826 void kvm_arch_commit_memory_region(struct kvm *kvm,
9827 const struct kvm_userspace_memory_region *mem,
9828 const struct kvm_memory_slot *old,
9829 const struct kvm_memory_slot *new,
9830 enum kvm_mr_change change)
9832 if (!kvm->arch.n_requested_mmu_pages)
9833 kvm_mmu_change_mmu_pages(kvm,
9834 kvm_mmu_calculate_default_mmu_pages(kvm));
9837 * Dirty logging tracks sptes in 4k granularity, meaning that large
9838 * sptes have to be split. If live migration is successful, the guest
9839 * in the source machine will be destroyed and large sptes will be
9840 * created in the destination. However, if the guest continues to run
9841 * in the source machine (for example if live migration fails), small
9842 * sptes will remain around and cause bad performance.
9844 * Scan sptes if dirty logging has been stopped, dropping those
9845 * which can be collapsed into a single large-page spte. Later
9846 * page faults will create the large-page sptes.
9848 * There is no need to do this in any of the following cases:
9849 * CREATE: No dirty mappings will already exist.
9850 * MOVE/DELETE: The old mappings will already have been cleaned up by
9851 * kvm_arch_flush_shadow_memslot()
9853 if (change == KVM_MR_FLAGS_ONLY &&
9854 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9855 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9856 kvm_mmu_zap_collapsible_sptes(kvm, new);
9859 * Set up write protection and/or dirty logging for the new slot.
9861 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9862 * been zapped so no dirty logging staff is needed for old slot. For
9863 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9864 * new and it's also covered when dealing with the new slot.
9866 * FIXME: const-ify all uses of struct kvm_memory_slot.
9868 if (change != KVM_MR_DELETE)
9869 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9872 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9874 kvm_mmu_zap_all(kvm);
9877 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9878 struct kvm_memory_slot *slot)
9880 kvm_page_track_flush_slot(kvm, slot);
9883 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9885 return (is_guest_mode(vcpu) &&
9886 kvm_x86_ops->guest_apic_has_interrupt &&
9887 kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9890 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9892 if (!list_empty_careful(&vcpu->async_pf.done))
9895 if (kvm_apic_has_events(vcpu))
9898 if (vcpu->arch.pv.pv_unhalted)
9901 if (vcpu->arch.exception.pending)
9904 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9905 (vcpu->arch.nmi_pending &&
9906 kvm_x86_ops->nmi_allowed(vcpu)))
9909 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
9910 (vcpu->arch.smi_pending && !is_smm(vcpu)))
9913 if (kvm_arch_interrupt_allowed(vcpu) &&
9914 (kvm_cpu_has_interrupt(vcpu) ||
9915 kvm_guest_apic_has_interrupt(vcpu)))
9918 if (kvm_hv_has_stimer_pending(vcpu))
9924 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
9926 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
9929 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
9931 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
9934 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
9935 kvm_test_request(KVM_REQ_SMI, vcpu) ||
9936 kvm_test_request(KVM_REQ_EVENT, vcpu))
9939 if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
9945 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
9947 return vcpu->arch.preempted_in_kernel;
9950 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
9952 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
9955 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
9957 return kvm_x86_ops->interrupt_allowed(vcpu);
9960 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
9962 if (is_64_bit_mode(vcpu))
9963 return kvm_rip_read(vcpu);
9964 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
9965 kvm_rip_read(vcpu));
9967 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
9969 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
9971 return kvm_get_linear_rip(vcpu) == linear_rip;
9973 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
9975 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
9977 unsigned long rflags;
9979 rflags = kvm_x86_ops->get_rflags(vcpu);
9980 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9981 rflags &= ~X86_EFLAGS_TF;
9984 EXPORT_SYMBOL_GPL(kvm_get_rflags);
9986 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9988 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
9989 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
9990 rflags |= X86_EFLAGS_TF;
9991 kvm_x86_ops->set_rflags(vcpu, rflags);
9994 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
9996 __kvm_set_rflags(vcpu, rflags);
9997 kvm_make_request(KVM_REQ_EVENT, vcpu);
9999 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10001 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10005 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10009 r = kvm_mmu_reload(vcpu);
10013 if (!vcpu->arch.mmu->direct_map &&
10014 work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
10017 vcpu->arch.mmu->page_fault(vcpu, work->gva, 0, true);
10020 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10022 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10025 static inline u32 kvm_async_pf_next_probe(u32 key)
10027 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10030 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10032 u32 key = kvm_async_pf_hash_fn(gfn);
10034 while (vcpu->arch.apf.gfns[key] != ~0)
10035 key = kvm_async_pf_next_probe(key);
10037 vcpu->arch.apf.gfns[key] = gfn;
10040 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10043 u32 key = kvm_async_pf_hash_fn(gfn);
10045 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10046 (vcpu->arch.apf.gfns[key] != gfn &&
10047 vcpu->arch.apf.gfns[key] != ~0); i++)
10048 key = kvm_async_pf_next_probe(key);
10053 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10055 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10058 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10062 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10064 vcpu->arch.apf.gfns[i] = ~0;
10066 j = kvm_async_pf_next_probe(j);
10067 if (vcpu->arch.apf.gfns[j] == ~0)
10069 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10071 * k lies cyclically in ]i,j]
10073 * |....j i.k.| or |.k..j i...|
10075 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10076 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10081 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10084 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10088 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10091 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10095 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10097 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10100 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10101 (vcpu->arch.apf.send_user_only &&
10102 kvm_x86_ops->get_cpl(vcpu) == 0))
10108 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10110 if (unlikely(!lapic_in_kernel(vcpu) ||
10111 kvm_event_needs_reinjection(vcpu) ||
10112 vcpu->arch.exception.pending))
10115 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10119 * If interrupts are off we cannot even use an artificial
10122 return kvm_x86_ops->interrupt_allowed(vcpu);
10125 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10126 struct kvm_async_pf *work)
10128 struct x86_exception fault;
10130 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
10131 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10133 if (kvm_can_deliver_async_pf(vcpu) &&
10134 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10135 fault.vector = PF_VECTOR;
10136 fault.error_code_valid = true;
10137 fault.error_code = 0;
10138 fault.nested_page_fault = false;
10139 fault.address = work->arch.token;
10140 fault.async_page_fault = true;
10141 kvm_inject_page_fault(vcpu, &fault);
10144 * It is not possible to deliver a paravirtualized asynchronous
10145 * page fault, but putting the guest in an artificial halt state
10146 * can be beneficial nevertheless: if an interrupt arrives, we
10147 * can deliver it timely and perhaps the guest will schedule
10148 * another process. When the instruction that triggered a page
10149 * fault is retried, hopefully the page will be ready in the host.
10151 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10155 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10156 struct kvm_async_pf *work)
10158 struct x86_exception fault;
10161 if (work->wakeup_all)
10162 work->arch.token = ~0; /* broadcast wakeup */
10164 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10165 trace_kvm_async_pf_ready(work->arch.token, work->gva);
10167 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10168 !apf_get_user(vcpu, &val)) {
10169 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10170 vcpu->arch.exception.pending &&
10171 vcpu->arch.exception.nr == PF_VECTOR &&
10172 !apf_put_user(vcpu, 0)) {
10173 vcpu->arch.exception.injected = false;
10174 vcpu->arch.exception.pending = false;
10175 vcpu->arch.exception.nr = 0;
10176 vcpu->arch.exception.has_error_code = false;
10177 vcpu->arch.exception.error_code = 0;
10178 vcpu->arch.exception.has_payload = false;
10179 vcpu->arch.exception.payload = 0;
10180 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10181 fault.vector = PF_VECTOR;
10182 fault.error_code_valid = true;
10183 fault.error_code = 0;
10184 fault.nested_page_fault = false;
10185 fault.address = work->arch.token;
10186 fault.async_page_fault = true;
10187 kvm_inject_page_fault(vcpu, &fault);
10190 vcpu->arch.apf.halted = false;
10191 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10194 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10196 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10199 return kvm_can_do_async_pf(vcpu);
10202 void kvm_arch_start_assignment(struct kvm *kvm)
10204 atomic_inc(&kvm->arch.assigned_device_count);
10206 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10208 void kvm_arch_end_assignment(struct kvm *kvm)
10210 atomic_dec(&kvm->arch.assigned_device_count);
10212 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10214 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10216 return atomic_read(&kvm->arch.assigned_device_count);
10218 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10220 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10222 atomic_inc(&kvm->arch.noncoherent_dma_count);
10224 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10226 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10228 atomic_dec(&kvm->arch.noncoherent_dma_count);
10230 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10232 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10234 return atomic_read(&kvm->arch.noncoherent_dma_count);
10236 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10238 bool kvm_arch_has_irq_bypass(void)
10243 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10244 struct irq_bypass_producer *prod)
10246 struct kvm_kernel_irqfd *irqfd =
10247 container_of(cons, struct kvm_kernel_irqfd, consumer);
10249 irqfd->producer = prod;
10251 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10252 prod->irq, irqfd->gsi, 1);
10255 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10256 struct irq_bypass_producer *prod)
10259 struct kvm_kernel_irqfd *irqfd =
10260 container_of(cons, struct kvm_kernel_irqfd, consumer);
10262 WARN_ON(irqfd->producer != prod);
10263 irqfd->producer = NULL;
10266 * When producer of consumer is unregistered, we change back to
10267 * remapped mode, so we can re-use the current implementation
10268 * when the irq is masked/disabled or the consumer side (KVM
10269 * int this case doesn't want to receive the interrupts.
10271 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10273 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10274 " fails: %d\n", irqfd->consumer.token, ret);
10277 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10278 uint32_t guest_irq, bool set)
10280 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10283 bool kvm_vector_hashing_enabled(void)
10285 return vector_hashing;
10287 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10289 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10291 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10293 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10296 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10306 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10307 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10308 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10309 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10310 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10311 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10312 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10313 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10314 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10315 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);