]> Git Repo - linux.git/blob - drivers/scsi/libsas/sas_expander.c
Merge tag 'cxl-for-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl
[linux.git] / drivers / scsi / libsas / sas_expander.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Serial Attached SCSI (SAS) Expander discovery and configuration
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <[email protected]>
7  *
8  * This file is licensed under GPLv2.
9  */
10
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
15
16 #include "sas_internal.h"
17
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
22
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26                              u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
28
29 /* ---------- SMP task management ---------- */
30
31 /* Give it some long enough timeout. In seconds. */
32 #define SMP_TIMEOUT 10
33
34 static int smp_execute_task_sg(struct domain_device *dev,
35                 struct scatterlist *req, struct scatterlist *resp)
36 {
37         int res, retry;
38         struct sas_task *task = NULL;
39         struct sas_internal *i =
40                 to_sas_internal(dev->port->ha->core.shost->transportt);
41         struct sas_ha_struct *ha = dev->port->ha;
42
43         pm_runtime_get_sync(ha->dev);
44         mutex_lock(&dev->ex_dev.cmd_mutex);
45         for (retry = 0; retry < 3; retry++) {
46                 if (test_bit(SAS_DEV_GONE, &dev->state)) {
47                         res = -ECOMM;
48                         break;
49                 }
50
51                 task = sas_alloc_slow_task(GFP_KERNEL);
52                 if (!task) {
53                         res = -ENOMEM;
54                         break;
55                 }
56                 task->dev = dev;
57                 task->task_proto = dev->tproto;
58                 task->smp_task.smp_req = *req;
59                 task->smp_task.smp_resp = *resp;
60
61                 task->task_done = sas_task_internal_done;
62
63                 task->slow_task->timer.function = sas_task_internal_timedout;
64                 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65                 add_timer(&task->slow_task->timer);
66
67                 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
68
69                 if (res) {
70                         del_timer(&task->slow_task->timer);
71                         pr_notice("executing SMP task failed:%d\n", res);
72                         break;
73                 }
74
75                 wait_for_completion(&task->slow_task->completion);
76                 res = -ECOMM;
77                 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78                         pr_notice("smp task timed out or aborted\n");
79                         i->dft->lldd_abort_task(task);
80                         if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81                                 pr_notice("SMP task aborted and not done\n");
82                                 break;
83                         }
84                 }
85                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
86                     task->task_status.stat == SAS_SAM_STAT_GOOD) {
87                         res = 0;
88                         break;
89                 }
90                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
91                     task->task_status.stat == SAS_DATA_UNDERRUN) {
92                         /* no error, but return the number of bytes of
93                          * underrun */
94                         res = task->task_status.residual;
95                         break;
96                 }
97                 if (task->task_status.resp == SAS_TASK_COMPLETE &&
98                     task->task_status.stat == SAS_DATA_OVERRUN) {
99                         res = -EMSGSIZE;
100                         break;
101                 }
102                 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103                     task->task_status.stat == SAS_DEVICE_UNKNOWN)
104                         break;
105                 else {
106                         pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
107                                   __func__,
108                                   SAS_ADDR(dev->sas_addr),
109                                   task->task_status.resp,
110                                   task->task_status.stat);
111                         sas_free_task(task);
112                         task = NULL;
113                 }
114         }
115         mutex_unlock(&dev->ex_dev.cmd_mutex);
116         pm_runtime_put_sync(ha->dev);
117
118         BUG_ON(retry == 3 && task != NULL);
119         sas_free_task(task);
120         return res;
121 }
122
123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124                             void *resp, int resp_size)
125 {
126         struct scatterlist req_sg;
127         struct scatterlist resp_sg;
128
129         sg_init_one(&req_sg, req, req_size);
130         sg_init_one(&resp_sg, resp, resp_size);
131         return smp_execute_task_sg(dev, &req_sg, &resp_sg);
132 }
133
134 /* ---------- Allocations ---------- */
135
136 static inline void *alloc_smp_req(int size)
137 {
138         u8 *p = kzalloc(size, GFP_KERNEL);
139         if (p)
140                 p[0] = SMP_REQUEST;
141         return p;
142 }
143
144 static inline void *alloc_smp_resp(int size)
145 {
146         return kzalloc(size, GFP_KERNEL);
147 }
148
149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
150 {
151         switch (phy->routing_attr) {
152         case TABLE_ROUTING:
153                 if (dev->ex_dev.t2t_supp)
154                         return 'U';
155                 else
156                         return 'T';
157         case DIRECT_ROUTING:
158                 return 'D';
159         case SUBTRACTIVE_ROUTING:
160                 return 'S';
161         default:
162                 return '?';
163         }
164 }
165
166 static enum sas_device_type to_dev_type(struct discover_resp *dr)
167 {
168         /* This is detecting a failure to transmit initial dev to host
169          * FIS as described in section J.5 of sas-2 r16
170          */
171         if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172             dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173                 return SAS_SATA_PENDING;
174         else
175                 return dr->attached_dev_type;
176 }
177
178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
179                            struct smp_disc_resp *disc_resp)
180 {
181         enum sas_device_type dev_type;
182         enum sas_linkrate linkrate;
183         u8 sas_addr[SAS_ADDR_SIZE];
184         struct discover_resp *dr = &disc_resp->disc;
185         struct sas_ha_struct *ha = dev->port->ha;
186         struct expander_device *ex = &dev->ex_dev;
187         struct ex_phy *phy = &ex->ex_phy[phy_id];
188         struct sas_rphy *rphy = dev->rphy;
189         bool new_phy = !phy->phy;
190         char *type;
191
192         if (new_phy) {
193                 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
194                         return;
195                 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
196
197                 /* FIXME: error_handling */
198                 BUG_ON(!phy->phy);
199         }
200
201         switch (disc_resp->result) {
202         case SMP_RESP_PHY_VACANT:
203                 phy->phy_state = PHY_VACANT;
204                 break;
205         default:
206                 phy->phy_state = PHY_NOT_PRESENT;
207                 break;
208         case SMP_RESP_FUNC_ACC:
209                 phy->phy_state = PHY_EMPTY; /* do not know yet */
210                 break;
211         }
212
213         /* check if anything important changed to squelch debug */
214         dev_type = phy->attached_dev_type;
215         linkrate  = phy->linkrate;
216         memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
217
218         /* Handle vacant phy - rest of dr data is not valid so skip it */
219         if (phy->phy_state == PHY_VACANT) {
220                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221                 phy->attached_dev_type = SAS_PHY_UNUSED;
222                 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223                         phy->phy_id = phy_id;
224                         goto skip;
225                 } else
226                         goto out;
227         }
228
229         phy->attached_dev_type = to_dev_type(dr);
230         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
231                 goto out;
232         phy->phy_id = phy_id;
233         phy->linkrate = dr->linkrate;
234         phy->attached_sata_host = dr->attached_sata_host;
235         phy->attached_sata_dev  = dr->attached_sata_dev;
236         phy->attached_sata_ps   = dr->attached_sata_ps;
237         phy->attached_iproto = dr->iproto << 1;
238         phy->attached_tproto = dr->tproto << 1;
239         /* help some expanders that fail to zero sas_address in the 'no
240          * device' case
241          */
242         if (phy->attached_dev_type == SAS_PHY_UNUSED ||
243             phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
244                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
245         else
246                 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
247         phy->attached_phy_id = dr->attached_phy_id;
248         phy->phy_change_count = dr->change_count;
249         phy->routing_attr = dr->routing_attr;
250         phy->virtual = dr->virtual;
251         phy->last_da_index = -1;
252
253         phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
254         phy->phy->identify.device_type = dr->attached_dev_type;
255         phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
256         phy->phy->identify.target_port_protocols = phy->attached_tproto;
257         if (!phy->attached_tproto && dr->attached_sata_dev)
258                 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
259         phy->phy->identify.phy_identifier = phy_id;
260         phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
261         phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
262         phy->phy->minimum_linkrate = dr->pmin_linkrate;
263         phy->phy->maximum_linkrate = dr->pmax_linkrate;
264         phy->phy->negotiated_linkrate = phy->linkrate;
265         phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
266
267  skip:
268         if (new_phy)
269                 if (sas_phy_add(phy->phy)) {
270                         sas_phy_free(phy->phy);
271                         return;
272                 }
273
274  out:
275         switch (phy->attached_dev_type) {
276         case SAS_SATA_PENDING:
277                 type = "stp pending";
278                 break;
279         case SAS_PHY_UNUSED:
280                 type = "no device";
281                 break;
282         case SAS_END_DEVICE:
283                 if (phy->attached_iproto) {
284                         if (phy->attached_tproto)
285                                 type = "host+target";
286                         else
287                                 type = "host";
288                 } else {
289                         if (dr->attached_sata_dev)
290                                 type = "stp";
291                         else
292                                 type = "ssp";
293                 }
294                 break;
295         case SAS_EDGE_EXPANDER_DEVICE:
296         case SAS_FANOUT_EXPANDER_DEVICE:
297                 type = "smp";
298                 break;
299         default:
300                 type = "unknown";
301         }
302
303         /* this routine is polled by libata error recovery so filter
304          * unimportant messages
305          */
306         if (new_phy || phy->attached_dev_type != dev_type ||
307             phy->linkrate != linkrate ||
308             SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
309                 /* pass */;
310         else
311                 return;
312
313         /* if the attached device type changed and ata_eh is active,
314          * make sure we run revalidation when eh completes (see:
315          * sas_enable_revalidation)
316          */
317         if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
318                 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
319
320         pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
321                  test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
322                  SAS_ADDR(dev->sas_addr), phy->phy_id,
323                  sas_route_char(dev, phy), phy->linkrate,
324                  SAS_ADDR(phy->attached_sas_addr), type);
325 }
326
327 /* check if we have an existing attached ata device on this expander phy */
328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
329 {
330         struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
331         struct domain_device *dev;
332         struct sas_rphy *rphy;
333
334         if (!ex_phy->port)
335                 return NULL;
336
337         rphy = ex_phy->port->rphy;
338         if (!rphy)
339                 return NULL;
340
341         dev = sas_find_dev_by_rphy(rphy);
342
343         if (dev && dev_is_sata(dev))
344                 return dev;
345
346         return NULL;
347 }
348
349 #define DISCOVER_REQ_SIZE  16
350 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
351
352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
353                                       struct smp_disc_resp *disc_resp,
354                                       int single)
355 {
356         struct discover_resp *dr = &disc_resp->disc;
357         int res;
358
359         disc_req[9] = single;
360
361         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
362                                disc_resp, DISCOVER_RESP_SIZE);
363         if (res)
364                 return res;
365         if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
366                 pr_notice("Found loopback topology, just ignore it!\n");
367                 return 0;
368         }
369         sas_set_ex_phy(dev, single, disc_resp);
370         return 0;
371 }
372
373 int sas_ex_phy_discover(struct domain_device *dev, int single)
374 {
375         struct expander_device *ex = &dev->ex_dev;
376         int  res = 0;
377         u8   *disc_req;
378         struct smp_disc_resp *disc_resp;
379
380         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
381         if (!disc_req)
382                 return -ENOMEM;
383
384         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
385         if (!disc_resp) {
386                 kfree(disc_req);
387                 return -ENOMEM;
388         }
389
390         disc_req[1] = SMP_DISCOVER;
391
392         if (0 <= single && single < ex->num_phys) {
393                 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
394         } else {
395                 int i;
396
397                 for (i = 0; i < ex->num_phys; i++) {
398                         res = sas_ex_phy_discover_helper(dev, disc_req,
399                                                          disc_resp, i);
400                         if (res)
401                                 goto out_err;
402                 }
403         }
404 out_err:
405         kfree(disc_resp);
406         kfree(disc_req);
407         return res;
408 }
409
410 static int sas_expander_discover(struct domain_device *dev)
411 {
412         struct expander_device *ex = &dev->ex_dev;
413         int res;
414
415         ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
416         if (!ex->ex_phy)
417                 return -ENOMEM;
418
419         res = sas_ex_phy_discover(dev, -1);
420         if (res)
421                 goto out_err;
422
423         return 0;
424  out_err:
425         kfree(ex->ex_phy);
426         ex->ex_phy = NULL;
427         return res;
428 }
429
430 #define MAX_EXPANDER_PHYS 128
431
432 #define RG_REQ_SIZE   8
433 #define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
434
435 static int sas_ex_general(struct domain_device *dev)
436 {
437         u8 *rg_req;
438         struct smp_rg_resp *rg_resp;
439         struct report_general_resp *rg;
440         int res;
441         int i;
442
443         rg_req = alloc_smp_req(RG_REQ_SIZE);
444         if (!rg_req)
445                 return -ENOMEM;
446
447         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
448         if (!rg_resp) {
449                 kfree(rg_req);
450                 return -ENOMEM;
451         }
452
453         rg_req[1] = SMP_REPORT_GENERAL;
454
455         for (i = 0; i < 5; i++) {
456                 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
457                                        RG_RESP_SIZE);
458
459                 if (res) {
460                         pr_notice("RG to ex %016llx failed:0x%x\n",
461                                   SAS_ADDR(dev->sas_addr), res);
462                         goto out;
463                 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
464                         pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
465                                  SAS_ADDR(dev->sas_addr), rg_resp->result);
466                         res = rg_resp->result;
467                         goto out;
468                 }
469
470                 rg = &rg_resp->rg;
471                 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
472                 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
473                 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
474                 dev->ex_dev.t2t_supp = rg->t2t_supp;
475                 dev->ex_dev.conf_route_table = rg->conf_route_table;
476                 dev->ex_dev.configuring = rg->configuring;
477                 memcpy(dev->ex_dev.enclosure_logical_id,
478                        rg->enclosure_logical_id, 8);
479
480                 if (dev->ex_dev.configuring) {
481                         pr_debug("RG: ex %016llx self-configuring...\n",
482                                  SAS_ADDR(dev->sas_addr));
483                         schedule_timeout_interruptible(5*HZ);
484                 } else
485                         break;
486         }
487 out:
488         kfree(rg_req);
489         kfree(rg_resp);
490         return res;
491 }
492
493 static void ex_assign_manuf_info(struct domain_device *dev, void
494                                         *_mi_resp)
495 {
496         u8 *mi_resp = _mi_resp;
497         struct sas_rphy *rphy = dev->rphy;
498         struct sas_expander_device *edev = rphy_to_expander_device(rphy);
499
500         memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
501         memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
502         memcpy(edev->product_rev, mi_resp + 36,
503                SAS_EXPANDER_PRODUCT_REV_LEN);
504
505         if (mi_resp[8] & 1) {
506                 memcpy(edev->component_vendor_id, mi_resp + 40,
507                        SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
508                 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
509                 edev->component_revision_id = mi_resp[50];
510         }
511 }
512
513 #define MI_REQ_SIZE   8
514 #define MI_RESP_SIZE 64
515
516 static int sas_ex_manuf_info(struct domain_device *dev)
517 {
518         u8 *mi_req;
519         u8 *mi_resp;
520         int res;
521
522         mi_req = alloc_smp_req(MI_REQ_SIZE);
523         if (!mi_req)
524                 return -ENOMEM;
525
526         mi_resp = alloc_smp_resp(MI_RESP_SIZE);
527         if (!mi_resp) {
528                 kfree(mi_req);
529                 return -ENOMEM;
530         }
531
532         mi_req[1] = SMP_REPORT_MANUF_INFO;
533
534         res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
535         if (res) {
536                 pr_notice("MI: ex %016llx failed:0x%x\n",
537                           SAS_ADDR(dev->sas_addr), res);
538                 goto out;
539         } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
540                 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
541                          SAS_ADDR(dev->sas_addr), mi_resp[2]);
542                 goto out;
543         }
544
545         ex_assign_manuf_info(dev, mi_resp);
546 out:
547         kfree(mi_req);
548         kfree(mi_resp);
549         return res;
550 }
551
552 #define PC_REQ_SIZE  44
553 #define PC_RESP_SIZE 8
554
555 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
556                         enum phy_func phy_func,
557                         struct sas_phy_linkrates *rates)
558 {
559         u8 *pc_req;
560         u8 *pc_resp;
561         int res;
562
563         pc_req = alloc_smp_req(PC_REQ_SIZE);
564         if (!pc_req)
565                 return -ENOMEM;
566
567         pc_resp = alloc_smp_resp(PC_RESP_SIZE);
568         if (!pc_resp) {
569                 kfree(pc_req);
570                 return -ENOMEM;
571         }
572
573         pc_req[1] = SMP_PHY_CONTROL;
574         pc_req[9] = phy_id;
575         pc_req[10] = phy_func;
576         if (rates) {
577                 pc_req[32] = rates->minimum_linkrate << 4;
578                 pc_req[33] = rates->maximum_linkrate << 4;
579         }
580
581         res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
582         if (res) {
583                 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
584                        SAS_ADDR(dev->sas_addr), phy_id, res);
585         } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
586                 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
587                        SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
588                 res = pc_resp[2];
589         }
590         kfree(pc_resp);
591         kfree(pc_req);
592         return res;
593 }
594
595 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
596 {
597         struct expander_device *ex = &dev->ex_dev;
598         struct ex_phy *phy = &ex->ex_phy[phy_id];
599
600         sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
601         phy->linkrate = SAS_PHY_DISABLED;
602 }
603
604 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
605 {
606         struct expander_device *ex = &dev->ex_dev;
607         int i;
608
609         for (i = 0; i < ex->num_phys; i++) {
610                 struct ex_phy *phy = &ex->ex_phy[i];
611
612                 if (phy->phy_state == PHY_VACANT ||
613                     phy->phy_state == PHY_NOT_PRESENT)
614                         continue;
615
616                 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
617                         sas_ex_disable_phy(dev, i);
618         }
619 }
620
621 static int sas_dev_present_in_domain(struct asd_sas_port *port,
622                                             u8 *sas_addr)
623 {
624         struct domain_device *dev;
625
626         if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
627                 return 1;
628         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
629                 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
630                         return 1;
631         }
632         return 0;
633 }
634
635 #define RPEL_REQ_SIZE   16
636 #define RPEL_RESP_SIZE  32
637 int sas_smp_get_phy_events(struct sas_phy *phy)
638 {
639         int res;
640         u8 *req;
641         u8 *resp;
642         struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
643         struct domain_device *dev = sas_find_dev_by_rphy(rphy);
644
645         req = alloc_smp_req(RPEL_REQ_SIZE);
646         if (!req)
647                 return -ENOMEM;
648
649         resp = alloc_smp_resp(RPEL_RESP_SIZE);
650         if (!resp) {
651                 kfree(req);
652                 return -ENOMEM;
653         }
654
655         req[1] = SMP_REPORT_PHY_ERR_LOG;
656         req[9] = phy->number;
657
658         res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
659                                resp, RPEL_RESP_SIZE);
660
661         if (res)
662                 goto out;
663
664         phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
665         phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
666         phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
667         phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
668
669  out:
670         kfree(req);
671         kfree(resp);
672         return res;
673
674 }
675
676 #ifdef CONFIG_SCSI_SAS_ATA
677
678 #define RPS_REQ_SIZE  16
679 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
680
681 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
682                             struct smp_rps_resp *rps_resp)
683 {
684         int res;
685         u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
686         u8 *resp = (u8 *)rps_resp;
687
688         if (!rps_req)
689                 return -ENOMEM;
690
691         rps_req[1] = SMP_REPORT_PHY_SATA;
692         rps_req[9] = phy_id;
693
694         res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
695                                rps_resp, RPS_RESP_SIZE);
696
697         /* 0x34 is the FIS type for the D2H fis.  There's a potential
698          * standards cockup here.  sas-2 explicitly specifies the FIS
699          * should be encoded so that FIS type is in resp[24].
700          * However, some expanders endian reverse this.  Undo the
701          * reversal here */
702         if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
703                 int i;
704
705                 for (i = 0; i < 5; i++) {
706                         int j = 24 + (i*4);
707                         u8 a, b;
708                         a = resp[j + 0];
709                         b = resp[j + 1];
710                         resp[j + 0] = resp[j + 3];
711                         resp[j + 1] = resp[j + 2];
712                         resp[j + 2] = b;
713                         resp[j + 3] = a;
714                 }
715         }
716
717         kfree(rps_req);
718         return res;
719 }
720 #endif
721
722 static void sas_ex_get_linkrate(struct domain_device *parent,
723                                        struct domain_device *child,
724                                        struct ex_phy *parent_phy)
725 {
726         struct expander_device *parent_ex = &parent->ex_dev;
727         struct sas_port *port;
728         int i;
729
730         child->pathways = 0;
731
732         port = parent_phy->port;
733
734         for (i = 0; i < parent_ex->num_phys; i++) {
735                 struct ex_phy *phy = &parent_ex->ex_phy[i];
736
737                 if (phy->phy_state == PHY_VACANT ||
738                     phy->phy_state == PHY_NOT_PRESENT)
739                         continue;
740
741                 if (SAS_ADDR(phy->attached_sas_addr) ==
742                     SAS_ADDR(child->sas_addr)) {
743
744                         child->min_linkrate = min(parent->min_linkrate,
745                                                   phy->linkrate);
746                         child->max_linkrate = max(parent->max_linkrate,
747                                                   phy->linkrate);
748                         child->pathways++;
749                         sas_port_add_phy(port, phy->phy);
750                 }
751         }
752         child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
753         child->pathways = min(child->pathways, parent->pathways);
754 }
755
756 static struct domain_device *sas_ex_discover_end_dev(
757         struct domain_device *parent, int phy_id)
758 {
759         struct expander_device *parent_ex = &parent->ex_dev;
760         struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
761         struct domain_device *child = NULL;
762         struct sas_rphy *rphy;
763         int res;
764
765         if (phy->attached_sata_host || phy->attached_sata_ps)
766                 return NULL;
767
768         child = sas_alloc_device();
769         if (!child)
770                 return NULL;
771
772         kref_get(&parent->kref);
773         child->parent = parent;
774         child->port   = parent->port;
775         child->iproto = phy->attached_iproto;
776         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
777         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
778         if (!phy->port) {
779                 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
780                 if (unlikely(!phy->port))
781                         goto out_err;
782                 if (unlikely(sas_port_add(phy->port) != 0)) {
783                         sas_port_free(phy->port);
784                         goto out_err;
785                 }
786         }
787         sas_ex_get_linkrate(parent, child, phy);
788         sas_device_set_phy(child, phy->port);
789
790 #ifdef CONFIG_SCSI_SAS_ATA
791         if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
792                 if (child->linkrate > parent->min_linkrate) {
793                         struct sas_phy *cphy = child->phy;
794                         enum sas_linkrate min_prate = cphy->minimum_linkrate,
795                                 parent_min_lrate = parent->min_linkrate,
796                                 min_linkrate = (min_prate > parent_min_lrate) ?
797                                                parent_min_lrate : 0;
798                         struct sas_phy_linkrates rates = {
799                                 .maximum_linkrate = parent->min_linkrate,
800                                 .minimum_linkrate = min_linkrate,
801                         };
802                         int ret;
803
804                         pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
805                                    SAS_ADDR(child->sas_addr), phy_id);
806                         ret = sas_smp_phy_control(parent, phy_id,
807                                                   PHY_FUNC_LINK_RESET, &rates);
808                         if (ret) {
809                                 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
810                                        SAS_ADDR(child->sas_addr), phy_id, ret);
811                                 goto out_free;
812                         }
813                         pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
814                                   SAS_ADDR(child->sas_addr), phy_id);
815                         child->linkrate = child->min_linkrate;
816                 }
817                 res = sas_get_ata_info(child, phy);
818                 if (res)
819                         goto out_free;
820
821                 sas_init_dev(child);
822                 res = sas_ata_init(child);
823                 if (res)
824                         goto out_free;
825                 rphy = sas_end_device_alloc(phy->port);
826                 if (!rphy)
827                         goto out_free;
828                 rphy->identify.phy_identifier = phy_id;
829
830                 child->rphy = rphy;
831                 get_device(&rphy->dev);
832
833                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
834
835                 res = sas_discover_sata(child);
836                 if (res) {
837                         pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
838                                   SAS_ADDR(child->sas_addr),
839                                   SAS_ADDR(parent->sas_addr), phy_id, res);
840                         goto out_list_del;
841                 }
842         } else
843 #endif
844           if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
845                 child->dev_type = SAS_END_DEVICE;
846                 rphy = sas_end_device_alloc(phy->port);
847                 /* FIXME: error handling */
848                 if (unlikely(!rphy))
849                         goto out_free;
850                 child->tproto = phy->attached_tproto;
851                 sas_init_dev(child);
852
853                 child->rphy = rphy;
854                 get_device(&rphy->dev);
855                 rphy->identify.phy_identifier = phy_id;
856                 sas_fill_in_rphy(child, rphy);
857
858                 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
859
860                 res = sas_discover_end_dev(child);
861                 if (res) {
862                         pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
863                                   SAS_ADDR(child->sas_addr),
864                                   SAS_ADDR(parent->sas_addr), phy_id, res);
865                         goto out_list_del;
866                 }
867         } else {
868                 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
869                           phy->attached_tproto, SAS_ADDR(parent->sas_addr),
870                           phy_id);
871                 goto out_free;
872         }
873
874         list_add_tail(&child->siblings, &parent_ex->children);
875         return child;
876
877  out_list_del:
878         sas_rphy_free(child->rphy);
879         list_del(&child->disco_list_node);
880         spin_lock_irq(&parent->port->dev_list_lock);
881         list_del(&child->dev_list_node);
882         spin_unlock_irq(&parent->port->dev_list_lock);
883  out_free:
884         sas_port_delete(phy->port);
885  out_err:
886         phy->port = NULL;
887         sas_put_device(child);
888         return NULL;
889 }
890
891 /* See if this phy is part of a wide port */
892 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
893 {
894         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
895         int i;
896
897         for (i = 0; i < parent->ex_dev.num_phys; i++) {
898                 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
899
900                 if (ephy == phy)
901                         continue;
902
903                 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
904                             SAS_ADDR_SIZE) && ephy->port) {
905                         sas_port_add_phy(ephy->port, phy->phy);
906                         phy->port = ephy->port;
907                         phy->phy_state = PHY_DEVICE_DISCOVERED;
908                         return true;
909                 }
910         }
911
912         return false;
913 }
914
915 static struct domain_device *sas_ex_discover_expander(
916         struct domain_device *parent, int phy_id)
917 {
918         struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
919         struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
920         struct domain_device *child = NULL;
921         struct sas_rphy *rphy;
922         struct sas_expander_device *edev;
923         struct asd_sas_port *port;
924         int res;
925
926         if (phy->routing_attr == DIRECT_ROUTING) {
927                 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
928                         SAS_ADDR(parent->sas_addr), phy_id,
929                         SAS_ADDR(phy->attached_sas_addr),
930                         phy->attached_phy_id);
931                 return NULL;
932         }
933         child = sas_alloc_device();
934         if (!child)
935                 return NULL;
936
937         phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
938         /* FIXME: better error handling */
939         BUG_ON(sas_port_add(phy->port) != 0);
940
941
942         switch (phy->attached_dev_type) {
943         case SAS_EDGE_EXPANDER_DEVICE:
944                 rphy = sas_expander_alloc(phy->port,
945                                           SAS_EDGE_EXPANDER_DEVICE);
946                 break;
947         case SAS_FANOUT_EXPANDER_DEVICE:
948                 rphy = sas_expander_alloc(phy->port,
949                                           SAS_FANOUT_EXPANDER_DEVICE);
950                 break;
951         default:
952                 rphy = NULL;    /* shut gcc up */
953                 BUG();
954         }
955         port = parent->port;
956         child->rphy = rphy;
957         get_device(&rphy->dev);
958         edev = rphy_to_expander_device(rphy);
959         child->dev_type = phy->attached_dev_type;
960         kref_get(&parent->kref);
961         child->parent = parent;
962         child->port = port;
963         child->iproto = phy->attached_iproto;
964         child->tproto = phy->attached_tproto;
965         memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
966         sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
967         sas_ex_get_linkrate(parent, child, phy);
968         edev->level = parent_ex->level + 1;
969         parent->port->disc.max_level = max(parent->port->disc.max_level,
970                                            edev->level);
971         sas_init_dev(child);
972         sas_fill_in_rphy(child, rphy);
973         sas_rphy_add(rphy);
974
975         spin_lock_irq(&parent->port->dev_list_lock);
976         list_add_tail(&child->dev_list_node, &parent->port->dev_list);
977         spin_unlock_irq(&parent->port->dev_list_lock);
978
979         res = sas_discover_expander(child);
980         if (res) {
981                 sas_rphy_delete(rphy);
982                 spin_lock_irq(&parent->port->dev_list_lock);
983                 list_del(&child->dev_list_node);
984                 spin_unlock_irq(&parent->port->dev_list_lock);
985                 sas_put_device(child);
986                 sas_port_delete(phy->port);
987                 phy->port = NULL;
988                 return NULL;
989         }
990         list_add_tail(&child->siblings, &parent->ex_dev.children);
991         return child;
992 }
993
994 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
995 {
996         struct expander_device *ex = &dev->ex_dev;
997         struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
998         struct domain_device *child = NULL;
999         int res = 0;
1000
1001         /* Phy state */
1002         if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1003                 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1004                         res = sas_ex_phy_discover(dev, phy_id);
1005                 if (res)
1006                         return res;
1007         }
1008
1009         /* Parent and domain coherency */
1010         if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1011                              SAS_ADDR(dev->port->sas_addr))) {
1012                 sas_add_parent_port(dev, phy_id);
1013                 return 0;
1014         }
1015         if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1016                             SAS_ADDR(dev->parent->sas_addr))) {
1017                 sas_add_parent_port(dev, phy_id);
1018                 if (ex_phy->routing_attr == TABLE_ROUTING)
1019                         sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1020                 return 0;
1021         }
1022
1023         if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1024                 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1025
1026         if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1027                 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1028                         memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1029                         sas_configure_routing(dev, ex_phy->attached_sas_addr);
1030                 }
1031                 return 0;
1032         } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1033                 return 0;
1034
1035         if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1036             ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1037             ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1038             ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1039                 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1040                         ex_phy->attached_dev_type,
1041                         SAS_ADDR(dev->sas_addr),
1042                         phy_id);
1043                 return 0;
1044         }
1045
1046         res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1047         if (res) {
1048                 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1049                           SAS_ADDR(ex_phy->attached_sas_addr), res);
1050                 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1051                 return res;
1052         }
1053
1054         if (sas_ex_join_wide_port(dev, phy_id)) {
1055                 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1056                          phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1057                 return res;
1058         }
1059
1060         switch (ex_phy->attached_dev_type) {
1061         case SAS_END_DEVICE:
1062         case SAS_SATA_PENDING:
1063                 child = sas_ex_discover_end_dev(dev, phy_id);
1064                 break;
1065         case SAS_FANOUT_EXPANDER_DEVICE:
1066                 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1067                         pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1068                                  SAS_ADDR(ex_phy->attached_sas_addr),
1069                                  ex_phy->attached_phy_id,
1070                                  SAS_ADDR(dev->sas_addr),
1071                                  phy_id);
1072                         sas_ex_disable_phy(dev, phy_id);
1073                         return res;
1074                 } else
1075                         memcpy(dev->port->disc.fanout_sas_addr,
1076                                ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1077                 fallthrough;
1078         case SAS_EDGE_EXPANDER_DEVICE:
1079                 child = sas_ex_discover_expander(dev, phy_id);
1080                 break;
1081         default:
1082                 break;
1083         }
1084
1085         if (!child)
1086                 pr_notice("ex %016llx phy%02d failed to discover\n",
1087                           SAS_ADDR(dev->sas_addr), phy_id);
1088         return res;
1089 }
1090
1091 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1092 {
1093         struct expander_device *ex = &dev->ex_dev;
1094         int i;
1095
1096         for (i = 0; i < ex->num_phys; i++) {
1097                 struct ex_phy *phy = &ex->ex_phy[i];
1098
1099                 if (phy->phy_state == PHY_VACANT ||
1100                     phy->phy_state == PHY_NOT_PRESENT)
1101                         continue;
1102
1103                 if (dev_is_expander(phy->attached_dev_type) &&
1104                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1105
1106                         memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1107
1108                         return 1;
1109                 }
1110         }
1111         return 0;
1112 }
1113
1114 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1115 {
1116         struct expander_device *ex = &dev->ex_dev;
1117         struct domain_device *child;
1118         u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1119
1120         list_for_each_entry(child, &ex->children, siblings) {
1121                 if (!dev_is_expander(child->dev_type))
1122                         continue;
1123                 if (sub_addr[0] == 0) {
1124                         sas_find_sub_addr(child, sub_addr);
1125                         continue;
1126                 } else {
1127                         u8 s2[SAS_ADDR_SIZE];
1128
1129                         if (sas_find_sub_addr(child, s2) &&
1130                             (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1131
1132                                 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1133                                           SAS_ADDR(dev->sas_addr),
1134                                           SAS_ADDR(child->sas_addr),
1135                                           SAS_ADDR(s2),
1136                                           SAS_ADDR(sub_addr));
1137
1138                                 sas_ex_disable_port(child, s2);
1139                         }
1140                 }
1141         }
1142         return 0;
1143 }
1144 /**
1145  * sas_ex_discover_devices - discover devices attached to this expander
1146  * @dev: pointer to the expander domain device
1147  * @single: if you want to do a single phy, else set to -1;
1148  *
1149  * Configure this expander for use with its devices and register the
1150  * devices of this expander.
1151  */
1152 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1153 {
1154         struct expander_device *ex = &dev->ex_dev;
1155         int i = 0, end = ex->num_phys;
1156         int res = 0;
1157
1158         if (0 <= single && single < end) {
1159                 i = single;
1160                 end = i+1;
1161         }
1162
1163         for ( ; i < end; i++) {
1164                 struct ex_phy *ex_phy = &ex->ex_phy[i];
1165
1166                 if (ex_phy->phy_state == PHY_VACANT ||
1167                     ex_phy->phy_state == PHY_NOT_PRESENT ||
1168                     ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1169                         continue;
1170
1171                 switch (ex_phy->linkrate) {
1172                 case SAS_PHY_DISABLED:
1173                 case SAS_PHY_RESET_PROBLEM:
1174                 case SAS_SATA_PORT_SELECTOR:
1175                         continue;
1176                 default:
1177                         res = sas_ex_discover_dev(dev, i);
1178                         if (res)
1179                                 break;
1180                         continue;
1181                 }
1182         }
1183
1184         if (!res)
1185                 sas_check_level_subtractive_boundary(dev);
1186
1187         return res;
1188 }
1189
1190 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1191 {
1192         struct expander_device *ex = &dev->ex_dev;
1193         int i;
1194         u8  *sub_sas_addr = NULL;
1195
1196         if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1197                 return 0;
1198
1199         for (i = 0; i < ex->num_phys; i++) {
1200                 struct ex_phy *phy = &ex->ex_phy[i];
1201
1202                 if (phy->phy_state == PHY_VACANT ||
1203                     phy->phy_state == PHY_NOT_PRESENT)
1204                         continue;
1205
1206                 if (dev_is_expander(phy->attached_dev_type) &&
1207                     phy->routing_attr == SUBTRACTIVE_ROUTING) {
1208
1209                         if (!sub_sas_addr)
1210                                 sub_sas_addr = &phy->attached_sas_addr[0];
1211                         else if (SAS_ADDR(sub_sas_addr) !=
1212                                  SAS_ADDR(phy->attached_sas_addr)) {
1213
1214                                 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1215                                           SAS_ADDR(dev->sas_addr), i,
1216                                           SAS_ADDR(phy->attached_sas_addr),
1217                                           SAS_ADDR(sub_sas_addr));
1218                                 sas_ex_disable_phy(dev, i);
1219                         }
1220                 }
1221         }
1222         return 0;
1223 }
1224
1225 static void sas_print_parent_topology_bug(struct domain_device *child,
1226                                                  struct ex_phy *parent_phy,
1227                                                  struct ex_phy *child_phy)
1228 {
1229         static const char *ex_type[] = {
1230                 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1231                 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1232         };
1233         struct domain_device *parent = child->parent;
1234
1235         pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1236                   ex_type[parent->dev_type],
1237                   SAS_ADDR(parent->sas_addr),
1238                   parent_phy->phy_id,
1239
1240                   ex_type[child->dev_type],
1241                   SAS_ADDR(child->sas_addr),
1242                   child_phy->phy_id,
1243
1244                   sas_route_char(parent, parent_phy),
1245                   sas_route_char(child, child_phy));
1246 }
1247
1248 static int sas_check_eeds(struct domain_device *child,
1249                                  struct ex_phy *parent_phy,
1250                                  struct ex_phy *child_phy)
1251 {
1252         int res = 0;
1253         struct domain_device *parent = child->parent;
1254
1255         if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1256                 res = -ENODEV;
1257                 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1258                         SAS_ADDR(parent->sas_addr),
1259                         parent_phy->phy_id,
1260                         SAS_ADDR(child->sas_addr),
1261                         child_phy->phy_id,
1262                         SAS_ADDR(parent->port->disc.fanout_sas_addr));
1263         } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1264                 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1265                        SAS_ADDR_SIZE);
1266                 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1267                        SAS_ADDR_SIZE);
1268         } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1269                     SAS_ADDR(parent->sas_addr)) ||
1270                    (SAS_ADDR(parent->port->disc.eeds_a) ==
1271                     SAS_ADDR(child->sas_addr)))
1272                    &&
1273                    ((SAS_ADDR(parent->port->disc.eeds_b) ==
1274                      SAS_ADDR(parent->sas_addr)) ||
1275                     (SAS_ADDR(parent->port->disc.eeds_b) ==
1276                      SAS_ADDR(child->sas_addr))))
1277                 ;
1278         else {
1279                 res = -ENODEV;
1280                 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1281                         SAS_ADDR(parent->sas_addr),
1282                         parent_phy->phy_id,
1283                         SAS_ADDR(child->sas_addr),
1284                         child_phy->phy_id);
1285         }
1286
1287         return res;
1288 }
1289
1290 /* Here we spill over 80 columns.  It is intentional.
1291  */
1292 static int sas_check_parent_topology(struct domain_device *child)
1293 {
1294         struct expander_device *child_ex = &child->ex_dev;
1295         struct expander_device *parent_ex;
1296         int i;
1297         int res = 0;
1298
1299         if (!child->parent)
1300                 return 0;
1301
1302         if (!dev_is_expander(child->parent->dev_type))
1303                 return 0;
1304
1305         parent_ex = &child->parent->ex_dev;
1306
1307         for (i = 0; i < parent_ex->num_phys; i++) {
1308                 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1309                 struct ex_phy *child_phy;
1310
1311                 if (parent_phy->phy_state == PHY_VACANT ||
1312                     parent_phy->phy_state == PHY_NOT_PRESENT)
1313                         continue;
1314
1315                 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1316                         continue;
1317
1318                 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1319
1320                 switch (child->parent->dev_type) {
1321                 case SAS_EDGE_EXPANDER_DEVICE:
1322                         if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1323                                 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1324                                     child_phy->routing_attr != TABLE_ROUTING) {
1325                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1326                                         res = -ENODEV;
1327                                 }
1328                         } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1329                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1330                                         res = sas_check_eeds(child, parent_phy, child_phy);
1331                                 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1332                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1333                                         res = -ENODEV;
1334                                 }
1335                         } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1336                                 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1337                                     (child_phy->routing_attr == TABLE_ROUTING &&
1338                                      child_ex->t2t_supp && parent_ex->t2t_supp)) {
1339                                         /* All good */;
1340                                 } else {
1341                                         sas_print_parent_topology_bug(child, parent_phy, child_phy);
1342                                         res = -ENODEV;
1343                                 }
1344                         }
1345                         break;
1346                 case SAS_FANOUT_EXPANDER_DEVICE:
1347                         if (parent_phy->routing_attr != TABLE_ROUTING ||
1348                             child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1349                                 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1350                                 res = -ENODEV;
1351                         }
1352                         break;
1353                 default:
1354                         break;
1355                 }
1356         }
1357
1358         return res;
1359 }
1360
1361 #define RRI_REQ_SIZE  16
1362 #define RRI_RESP_SIZE 44
1363
1364 static int sas_configure_present(struct domain_device *dev, int phy_id,
1365                                  u8 *sas_addr, int *index, int *present)
1366 {
1367         int i, res = 0;
1368         struct expander_device *ex = &dev->ex_dev;
1369         struct ex_phy *phy = &ex->ex_phy[phy_id];
1370         u8 *rri_req;
1371         u8 *rri_resp;
1372
1373         *present = 0;
1374         *index = 0;
1375
1376         rri_req = alloc_smp_req(RRI_REQ_SIZE);
1377         if (!rri_req)
1378                 return -ENOMEM;
1379
1380         rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1381         if (!rri_resp) {
1382                 kfree(rri_req);
1383                 return -ENOMEM;
1384         }
1385
1386         rri_req[1] = SMP_REPORT_ROUTE_INFO;
1387         rri_req[9] = phy_id;
1388
1389         for (i = 0; i < ex->max_route_indexes ; i++) {
1390                 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1391                 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1392                                        RRI_RESP_SIZE);
1393                 if (res)
1394                         goto out;
1395                 res = rri_resp[2];
1396                 if (res == SMP_RESP_NO_INDEX) {
1397                         pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1398                                 SAS_ADDR(dev->sas_addr), phy_id, i);
1399                         goto out;
1400                 } else if (res != SMP_RESP_FUNC_ACC) {
1401                         pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1402                                   __func__, SAS_ADDR(dev->sas_addr), phy_id,
1403                                   i, res);
1404                         goto out;
1405                 }
1406                 if (SAS_ADDR(sas_addr) != 0) {
1407                         if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1408                                 *index = i;
1409                                 if ((rri_resp[12] & 0x80) == 0x80)
1410                                         *present = 0;
1411                                 else
1412                                         *present = 1;
1413                                 goto out;
1414                         } else if (SAS_ADDR(rri_resp+16) == 0) {
1415                                 *index = i;
1416                                 *present = 0;
1417                                 goto out;
1418                         }
1419                 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1420                            phy->last_da_index < i) {
1421                         phy->last_da_index = i;
1422                         *index = i;
1423                         *present = 0;
1424                         goto out;
1425                 }
1426         }
1427         res = -1;
1428 out:
1429         kfree(rri_req);
1430         kfree(rri_resp);
1431         return res;
1432 }
1433
1434 #define CRI_REQ_SIZE  44
1435 #define CRI_RESP_SIZE  8
1436
1437 static int sas_configure_set(struct domain_device *dev, int phy_id,
1438                              u8 *sas_addr, int index, int include)
1439 {
1440         int res;
1441         u8 *cri_req;
1442         u8 *cri_resp;
1443
1444         cri_req = alloc_smp_req(CRI_REQ_SIZE);
1445         if (!cri_req)
1446                 return -ENOMEM;
1447
1448         cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1449         if (!cri_resp) {
1450                 kfree(cri_req);
1451                 return -ENOMEM;
1452         }
1453
1454         cri_req[1] = SMP_CONF_ROUTE_INFO;
1455         *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1456         cri_req[9] = phy_id;
1457         if (SAS_ADDR(sas_addr) == 0 || !include)
1458                 cri_req[12] |= 0x80;
1459         memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1460
1461         res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1462                                CRI_RESP_SIZE);
1463         if (res)
1464                 goto out;
1465         res = cri_resp[2];
1466         if (res == SMP_RESP_NO_INDEX) {
1467                 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1468                         SAS_ADDR(dev->sas_addr), phy_id, index);
1469         }
1470 out:
1471         kfree(cri_req);
1472         kfree(cri_resp);
1473         return res;
1474 }
1475
1476 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1477                                     u8 *sas_addr, int include)
1478 {
1479         int index;
1480         int present;
1481         int res;
1482
1483         res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1484         if (res)
1485                 return res;
1486         if (include ^ present)
1487                 return sas_configure_set(dev, phy_id, sas_addr, index,
1488                                          include);
1489
1490         return res;
1491 }
1492
1493 /**
1494  * sas_configure_parent - configure routing table of parent
1495  * @parent: parent expander
1496  * @child: child expander
1497  * @sas_addr: SAS port identifier of device directly attached to child
1498  * @include: whether or not to include @child in the expander routing table
1499  */
1500 static int sas_configure_parent(struct domain_device *parent,
1501                                 struct domain_device *child,
1502                                 u8 *sas_addr, int include)
1503 {
1504         struct expander_device *ex_parent = &parent->ex_dev;
1505         int res = 0;
1506         int i;
1507
1508         if (parent->parent) {
1509                 res = sas_configure_parent(parent->parent, parent, sas_addr,
1510                                            include);
1511                 if (res)
1512                         return res;
1513         }
1514
1515         if (ex_parent->conf_route_table == 0) {
1516                 pr_debug("ex %016llx has self-configuring routing table\n",
1517                          SAS_ADDR(parent->sas_addr));
1518                 return 0;
1519         }
1520
1521         for (i = 0; i < ex_parent->num_phys; i++) {
1522                 struct ex_phy *phy = &ex_parent->ex_phy[i];
1523
1524                 if ((phy->routing_attr == TABLE_ROUTING) &&
1525                     (SAS_ADDR(phy->attached_sas_addr) ==
1526                      SAS_ADDR(child->sas_addr))) {
1527                         res = sas_configure_phy(parent, i, sas_addr, include);
1528                         if (res)
1529                                 return res;
1530                 }
1531         }
1532
1533         return res;
1534 }
1535
1536 /**
1537  * sas_configure_routing - configure routing
1538  * @dev: expander device
1539  * @sas_addr: port identifier of device directly attached to the expander device
1540  */
1541 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1542 {
1543         if (dev->parent)
1544                 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1545         return 0;
1546 }
1547
1548 static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1549 {
1550         if (dev->parent)
1551                 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1552         return 0;
1553 }
1554
1555 /**
1556  * sas_discover_expander - expander discovery
1557  * @dev: pointer to expander domain device
1558  *
1559  * See comment in sas_discover_sata().
1560  */
1561 static int sas_discover_expander(struct domain_device *dev)
1562 {
1563         int res;
1564
1565         res = sas_notify_lldd_dev_found(dev);
1566         if (res)
1567                 return res;
1568
1569         res = sas_ex_general(dev);
1570         if (res)
1571                 goto out_err;
1572         res = sas_ex_manuf_info(dev);
1573         if (res)
1574                 goto out_err;
1575
1576         res = sas_expander_discover(dev);
1577         if (res) {
1578                 pr_warn("expander %016llx discovery failed(0x%x)\n",
1579                         SAS_ADDR(dev->sas_addr), res);
1580                 goto out_err;
1581         }
1582
1583         sas_check_ex_subtractive_boundary(dev);
1584         res = sas_check_parent_topology(dev);
1585         if (res)
1586                 goto out_err;
1587         return 0;
1588 out_err:
1589         sas_notify_lldd_dev_gone(dev);
1590         return res;
1591 }
1592
1593 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1594 {
1595         int res = 0;
1596         struct domain_device *dev;
1597
1598         list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1599                 if (dev_is_expander(dev->dev_type)) {
1600                         struct sas_expander_device *ex =
1601                                 rphy_to_expander_device(dev->rphy);
1602
1603                         if (level == ex->level)
1604                                 res = sas_ex_discover_devices(dev, -1);
1605                         else if (level > 0)
1606                                 res = sas_ex_discover_devices(port->port_dev, -1);
1607
1608                 }
1609         }
1610
1611         return res;
1612 }
1613
1614 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1615 {
1616         int res;
1617         int level;
1618
1619         do {
1620                 level = port->disc.max_level;
1621                 res = sas_ex_level_discovery(port, level);
1622                 mb();
1623         } while (level < port->disc.max_level);
1624
1625         return res;
1626 }
1627
1628 int sas_discover_root_expander(struct domain_device *dev)
1629 {
1630         int res;
1631         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1632
1633         res = sas_rphy_add(dev->rphy);
1634         if (res)
1635                 goto out_err;
1636
1637         ex->level = dev->port->disc.max_level; /* 0 */
1638         res = sas_discover_expander(dev);
1639         if (res)
1640                 goto out_err2;
1641
1642         sas_ex_bfs_disc(dev->port);
1643
1644         return res;
1645
1646 out_err2:
1647         sas_rphy_remove(dev->rphy);
1648 out_err:
1649         return res;
1650 }
1651
1652 /* ---------- Domain revalidation ---------- */
1653
1654 static int sas_get_phy_discover(struct domain_device *dev,
1655                                 int phy_id, struct smp_disc_resp *disc_resp)
1656 {
1657         int res;
1658         u8 *disc_req;
1659
1660         disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1661         if (!disc_req)
1662                 return -ENOMEM;
1663
1664         disc_req[1] = SMP_DISCOVER;
1665         disc_req[9] = phy_id;
1666
1667         res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1668                                disc_resp, DISCOVER_RESP_SIZE);
1669         if (res)
1670                 goto out;
1671         if (disc_resp->result != SMP_RESP_FUNC_ACC)
1672                 res = disc_resp->result;
1673 out:
1674         kfree(disc_req);
1675         return res;
1676 }
1677
1678 static int sas_get_phy_change_count(struct domain_device *dev,
1679                                     int phy_id, int *pcc)
1680 {
1681         int res;
1682         struct smp_disc_resp *disc_resp;
1683
1684         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1685         if (!disc_resp)
1686                 return -ENOMEM;
1687
1688         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1689         if (!res)
1690                 *pcc = disc_resp->disc.change_count;
1691
1692         kfree(disc_resp);
1693         return res;
1694 }
1695
1696 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1697                                     u8 *sas_addr, enum sas_device_type *type)
1698 {
1699         int res;
1700         struct smp_disc_resp *disc_resp;
1701
1702         disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1703         if (!disc_resp)
1704                 return -ENOMEM;
1705
1706         res = sas_get_phy_discover(dev, phy_id, disc_resp);
1707         if (res == 0) {
1708                 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1709                        SAS_ADDR_SIZE);
1710                 *type = to_dev_type(&disc_resp->disc);
1711                 if (*type == 0)
1712                         memset(sas_addr, 0, SAS_ADDR_SIZE);
1713         }
1714         kfree(disc_resp);
1715         return res;
1716 }
1717
1718 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1719                               int from_phy, bool update)
1720 {
1721         struct expander_device *ex = &dev->ex_dev;
1722         int res = 0;
1723         int i;
1724
1725         for (i = from_phy; i < ex->num_phys; i++) {
1726                 int phy_change_count = 0;
1727
1728                 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1729                 switch (res) {
1730                 case SMP_RESP_PHY_VACANT:
1731                 case SMP_RESP_NO_PHY:
1732                         continue;
1733                 case SMP_RESP_FUNC_ACC:
1734                         break;
1735                 default:
1736                         return res;
1737                 }
1738
1739                 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1740                         if (update)
1741                                 ex->ex_phy[i].phy_change_count =
1742                                         phy_change_count;
1743                         *phy_id = i;
1744                         return 0;
1745                 }
1746         }
1747         return 0;
1748 }
1749
1750 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1751 {
1752         int res;
1753         u8  *rg_req;
1754         struct smp_rg_resp  *rg_resp;
1755
1756         rg_req = alloc_smp_req(RG_REQ_SIZE);
1757         if (!rg_req)
1758                 return -ENOMEM;
1759
1760         rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1761         if (!rg_resp) {
1762                 kfree(rg_req);
1763                 return -ENOMEM;
1764         }
1765
1766         rg_req[1] = SMP_REPORT_GENERAL;
1767
1768         res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1769                                RG_RESP_SIZE);
1770         if (res)
1771                 goto out;
1772         if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1773                 res = rg_resp->result;
1774                 goto out;
1775         }
1776
1777         *ecc = be16_to_cpu(rg_resp->rg.change_count);
1778 out:
1779         kfree(rg_resp);
1780         kfree(rg_req);
1781         return res;
1782 }
1783 /**
1784  * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1785  * @dev:domain device to be detect.
1786  * @src_dev: the device which originated BROADCAST(CHANGE).
1787  *
1788  * Add self-configuration expander support. Suppose two expander cascading,
1789  * when the first level expander is self-configuring, hotplug the disks in
1790  * second level expander, BROADCAST(CHANGE) will not only be originated
1791  * in the second level expander, but also be originated in the first level
1792  * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1793  * expander changed count in two level expanders will all increment at least
1794  * once, but the phy which chang count has changed is the source device which
1795  * we concerned.
1796  */
1797
1798 static int sas_find_bcast_dev(struct domain_device *dev,
1799                               struct domain_device **src_dev)
1800 {
1801         struct expander_device *ex = &dev->ex_dev;
1802         int ex_change_count = -1;
1803         int phy_id = -1;
1804         int res;
1805         struct domain_device *ch;
1806
1807         res = sas_get_ex_change_count(dev, &ex_change_count);
1808         if (res)
1809                 goto out;
1810         if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1811                 /* Just detect if this expander phys phy change count changed,
1812                 * in order to determine if this expander originate BROADCAST,
1813                 * and do not update phy change count field in our structure.
1814                 */
1815                 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1816                 if (phy_id != -1) {
1817                         *src_dev = dev;
1818                         ex->ex_change_count = ex_change_count;
1819                         pr_info("ex %016llx phy%02d change count has changed\n",
1820                                 SAS_ADDR(dev->sas_addr), phy_id);
1821                         return res;
1822                 } else
1823                         pr_info("ex %016llx phys DID NOT change\n",
1824                                 SAS_ADDR(dev->sas_addr));
1825         }
1826         list_for_each_entry(ch, &ex->children, siblings) {
1827                 if (dev_is_expander(ch->dev_type)) {
1828                         res = sas_find_bcast_dev(ch, src_dev);
1829                         if (*src_dev)
1830                                 return res;
1831                 }
1832         }
1833 out:
1834         return res;
1835 }
1836
1837 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1838 {
1839         struct expander_device *ex = &dev->ex_dev;
1840         struct domain_device *child, *n;
1841
1842         list_for_each_entry_safe(child, n, &ex->children, siblings) {
1843                 set_bit(SAS_DEV_GONE, &child->state);
1844                 if (dev_is_expander(child->dev_type))
1845                         sas_unregister_ex_tree(port, child);
1846                 else
1847                         sas_unregister_dev(port, child);
1848         }
1849         sas_unregister_dev(port, dev);
1850 }
1851
1852 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1853                                          int phy_id, bool last)
1854 {
1855         struct expander_device *ex_dev = &parent->ex_dev;
1856         struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1857         struct domain_device *child, *n, *found = NULL;
1858         if (last) {
1859                 list_for_each_entry_safe(child, n,
1860                         &ex_dev->children, siblings) {
1861                         if (SAS_ADDR(child->sas_addr) ==
1862                             SAS_ADDR(phy->attached_sas_addr)) {
1863                                 set_bit(SAS_DEV_GONE, &child->state);
1864                                 if (dev_is_expander(child->dev_type))
1865                                         sas_unregister_ex_tree(parent->port, child);
1866                                 else
1867                                         sas_unregister_dev(parent->port, child);
1868                                 found = child;
1869                                 break;
1870                         }
1871                 }
1872                 sas_disable_routing(parent, phy->attached_sas_addr);
1873         }
1874         memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1875         if (phy->port) {
1876                 sas_port_delete_phy(phy->port, phy->phy);
1877                 sas_device_set_phy(found, phy->port);
1878                 if (phy->port->num_phys == 0)
1879                         list_add_tail(&phy->port->del_list,
1880                                 &parent->port->sas_port_del_list);
1881                 phy->port = NULL;
1882         }
1883 }
1884
1885 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1886                                           const int level)
1887 {
1888         struct expander_device *ex_root = &root->ex_dev;
1889         struct domain_device *child;
1890         int res = 0;
1891
1892         list_for_each_entry(child, &ex_root->children, siblings) {
1893                 if (dev_is_expander(child->dev_type)) {
1894                         struct sas_expander_device *ex =
1895                                 rphy_to_expander_device(child->rphy);
1896
1897                         if (level > ex->level)
1898                                 res = sas_discover_bfs_by_root_level(child,
1899                                                                      level);
1900                         else if (level == ex->level)
1901                                 res = sas_ex_discover_devices(child, -1);
1902                 }
1903         }
1904         return res;
1905 }
1906
1907 static int sas_discover_bfs_by_root(struct domain_device *dev)
1908 {
1909         int res;
1910         struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1911         int level = ex->level+1;
1912
1913         res = sas_ex_discover_devices(dev, -1);
1914         if (res)
1915                 goto out;
1916         do {
1917                 res = sas_discover_bfs_by_root_level(dev, level);
1918                 mb();
1919                 level += 1;
1920         } while (level <= dev->port->disc.max_level);
1921 out:
1922         return res;
1923 }
1924
1925 static int sas_discover_new(struct domain_device *dev, int phy_id)
1926 {
1927         struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1928         struct domain_device *child;
1929         int res;
1930
1931         pr_debug("ex %016llx phy%02d new device attached\n",
1932                  SAS_ADDR(dev->sas_addr), phy_id);
1933         res = sas_ex_phy_discover(dev, phy_id);
1934         if (res)
1935                 return res;
1936
1937         if (sas_ex_join_wide_port(dev, phy_id))
1938                 return 0;
1939
1940         res = sas_ex_discover_devices(dev, phy_id);
1941         if (res)
1942                 return res;
1943         list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1944                 if (SAS_ADDR(child->sas_addr) ==
1945                     SAS_ADDR(ex_phy->attached_sas_addr)) {
1946                         if (dev_is_expander(child->dev_type))
1947                                 res = sas_discover_bfs_by_root(child);
1948                         break;
1949                 }
1950         }
1951         return res;
1952 }
1953
1954 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1955 {
1956         if (old == new)
1957                 return true;
1958
1959         /* treat device directed resets as flutter, if we went
1960          * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1961          */
1962         if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1963             (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1964                 return true;
1965
1966         return false;
1967 }
1968
1969 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1970                               bool last, int sibling)
1971 {
1972         struct expander_device *ex = &dev->ex_dev;
1973         struct ex_phy *phy = &ex->ex_phy[phy_id];
1974         enum sas_device_type type = SAS_PHY_UNUSED;
1975         u8 sas_addr[SAS_ADDR_SIZE];
1976         char msg[80] = "";
1977         int res;
1978
1979         if (!last)
1980                 sprintf(msg, ", part of a wide port with phy%02d", sibling);
1981
1982         pr_debug("ex %016llx rediscovering phy%02d%s\n",
1983                  SAS_ADDR(dev->sas_addr), phy_id, msg);
1984
1985         memset(sas_addr, 0, SAS_ADDR_SIZE);
1986         res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1987         switch (res) {
1988         case SMP_RESP_NO_PHY:
1989                 phy->phy_state = PHY_NOT_PRESENT;
1990                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1991                 return res;
1992         case SMP_RESP_PHY_VACANT:
1993                 phy->phy_state = PHY_VACANT;
1994                 sas_unregister_devs_sas_addr(dev, phy_id, last);
1995                 return res;
1996         case SMP_RESP_FUNC_ACC:
1997                 break;
1998         case -ECOMM:
1999                 break;
2000         default:
2001                 return res;
2002         }
2003
2004         if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2005                 phy->phy_state = PHY_EMPTY;
2006                 sas_unregister_devs_sas_addr(dev, phy_id, last);
2007                 /*
2008                  * Even though the PHY is empty, for convenience we discover
2009                  * the PHY to update the PHY info, like negotiated linkrate.
2010                  */
2011                 sas_ex_phy_discover(dev, phy_id);
2012                 return res;
2013         } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2014                    dev_type_flutter(type, phy->attached_dev_type)) {
2015                 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2016                 char *action = "";
2017
2018                 sas_ex_phy_discover(dev, phy_id);
2019
2020                 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2021                         action = ", needs recovery";
2022                 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2023                          SAS_ADDR(dev->sas_addr), phy_id, action);
2024                 return res;
2025         }
2026
2027         /* we always have to delete the old device when we went here */
2028         pr_info("ex %016llx phy%02d replace %016llx\n",
2029                 SAS_ADDR(dev->sas_addr), phy_id,
2030                 SAS_ADDR(phy->attached_sas_addr));
2031         sas_unregister_devs_sas_addr(dev, phy_id, last);
2032
2033         return sas_discover_new(dev, phy_id);
2034 }
2035
2036 /**
2037  * sas_rediscover - revalidate the domain.
2038  * @dev:domain device to be detect.
2039  * @phy_id: the phy id will be detected.
2040  *
2041  * NOTE: this process _must_ quit (return) as soon as any connection
2042  * errors are encountered.  Connection recovery is done elsewhere.
2043  * Discover process only interrogates devices in order to discover the
2044  * domain.For plugging out, we un-register the device only when it is
2045  * the last phy in the port, for other phys in this port, we just delete it
2046  * from the port.For inserting, we do discovery when it is the
2047  * first phy,for other phys in this port, we add it to the port to
2048  * forming the wide-port.
2049  */
2050 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2051 {
2052         struct expander_device *ex = &dev->ex_dev;
2053         struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2054         int res = 0;
2055         int i;
2056         bool last = true;       /* is this the last phy of the port */
2057
2058         pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2059                  SAS_ADDR(dev->sas_addr), phy_id);
2060
2061         if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2062                 for (i = 0; i < ex->num_phys; i++) {
2063                         struct ex_phy *phy = &ex->ex_phy[i];
2064
2065                         if (i == phy_id)
2066                                 continue;
2067                         if (SAS_ADDR(phy->attached_sas_addr) ==
2068                             SAS_ADDR(changed_phy->attached_sas_addr)) {
2069                                 last = false;
2070                                 break;
2071                         }
2072                 }
2073                 res = sas_rediscover_dev(dev, phy_id, last, i);
2074         } else
2075                 res = sas_discover_new(dev, phy_id);
2076         return res;
2077 }
2078
2079 /**
2080  * sas_ex_revalidate_domain - revalidate the domain
2081  * @port_dev: port domain device.
2082  *
2083  * NOTE: this process _must_ quit (return) as soon as any connection
2084  * errors are encountered.  Connection recovery is done elsewhere.
2085  * Discover process only interrogates devices in order to discover the
2086  * domain.
2087  */
2088 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2089 {
2090         int res;
2091         struct domain_device *dev = NULL;
2092
2093         res = sas_find_bcast_dev(port_dev, &dev);
2094         if (res == 0 && dev) {
2095                 struct expander_device *ex = &dev->ex_dev;
2096                 int i = 0, phy_id;
2097
2098                 do {
2099                         phy_id = -1;
2100                         res = sas_find_bcast_phy(dev, &phy_id, i, true);
2101                         if (phy_id == -1)
2102                                 break;
2103                         res = sas_rediscover(dev, phy_id);
2104                         i = phy_id + 1;
2105                 } while (i < ex->num_phys);
2106         }
2107         return res;
2108 }
2109
2110 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2111                 struct sas_rphy *rphy)
2112 {
2113         struct domain_device *dev;
2114         unsigned int rcvlen = 0;
2115         int ret = -EINVAL;
2116
2117         /* no rphy means no smp target support (ie aic94xx host) */
2118         if (!rphy)
2119                 return sas_smp_host_handler(job, shost);
2120
2121         switch (rphy->identify.device_type) {
2122         case SAS_EDGE_EXPANDER_DEVICE:
2123         case SAS_FANOUT_EXPANDER_DEVICE:
2124                 break;
2125         default:
2126                 pr_err("%s: can we send a smp request to a device?\n",
2127                        __func__);
2128                 goto out;
2129         }
2130
2131         dev = sas_find_dev_by_rphy(rphy);
2132         if (!dev) {
2133                 pr_err("%s: fail to find a domain_device?\n", __func__);
2134                 goto out;
2135         }
2136
2137         /* do we need to support multiple segments? */
2138         if (job->request_payload.sg_cnt > 1 ||
2139             job->reply_payload.sg_cnt > 1) {
2140                 pr_info("%s: multiple segments req %u, rsp %u\n",
2141                         __func__, job->request_payload.payload_len,
2142                         job->reply_payload.payload_len);
2143                 goto out;
2144         }
2145
2146         ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2147                         job->reply_payload.sg_list);
2148         if (ret >= 0) {
2149                 /* bsg_job_done() requires the length received  */
2150                 rcvlen = job->reply_payload.payload_len - ret;
2151                 ret = 0;
2152         }
2153
2154 out:
2155         bsg_job_done(job, ret, rcvlen);
2156 }
This page took 0.166902 seconds and 4 git commands to generate.