1 // SPDX-License-Identifier: GPL-2.0
3 * Serial Attached SCSI (SAS) Expander discovery and configuration
5 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
8 * This file is licensed under GPLv2.
11 #include <linux/scatterlist.h>
12 #include <linux/blkdev.h>
13 #include <linux/slab.h>
14 #include <asm/unaligned.h>
16 #include "sas_internal.h"
18 #include <scsi/sas_ata.h>
19 #include <scsi/scsi_transport.h>
20 #include <scsi/scsi_transport_sas.h>
21 #include "scsi_sas_internal.h"
23 static int sas_discover_expander(struct domain_device *dev);
24 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
25 static int sas_configure_phy(struct domain_device *dev, int phy_id,
26 u8 *sas_addr, int include);
27 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
29 /* ---------- SMP task management ---------- */
31 /* Give it some long enough timeout. In seconds. */
32 #define SMP_TIMEOUT 10
34 static int smp_execute_task_sg(struct domain_device *dev,
35 struct scatterlist *req, struct scatterlist *resp)
38 struct sas_task *task = NULL;
39 struct sas_internal *i =
40 to_sas_internal(dev->port->ha->core.shost->transportt);
41 struct sas_ha_struct *ha = dev->port->ha;
43 pm_runtime_get_sync(ha->dev);
44 mutex_lock(&dev->ex_dev.cmd_mutex);
45 for (retry = 0; retry < 3; retry++) {
46 if (test_bit(SAS_DEV_GONE, &dev->state)) {
51 task = sas_alloc_slow_task(GFP_KERNEL);
57 task->task_proto = dev->tproto;
58 task->smp_task.smp_req = *req;
59 task->smp_task.smp_resp = *resp;
61 task->task_done = sas_task_internal_done;
63 task->slow_task->timer.function = sas_task_internal_timedout;
64 task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
65 add_timer(&task->slow_task->timer);
67 res = i->dft->lldd_execute_task(task, GFP_KERNEL);
70 del_timer(&task->slow_task->timer);
71 pr_notice("executing SMP task failed:%d\n", res);
75 wait_for_completion(&task->slow_task->completion);
77 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
78 pr_notice("smp task timed out or aborted\n");
79 i->dft->lldd_abort_task(task);
80 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
81 pr_notice("SMP task aborted and not done\n");
85 if (task->task_status.resp == SAS_TASK_COMPLETE &&
86 task->task_status.stat == SAS_SAM_STAT_GOOD) {
90 if (task->task_status.resp == SAS_TASK_COMPLETE &&
91 task->task_status.stat == SAS_DATA_UNDERRUN) {
92 /* no error, but return the number of bytes of
94 res = task->task_status.residual;
97 if (task->task_status.resp == SAS_TASK_COMPLETE &&
98 task->task_status.stat == SAS_DATA_OVERRUN) {
102 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
103 task->task_status.stat == SAS_DEVICE_UNKNOWN)
106 pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
108 SAS_ADDR(dev->sas_addr),
109 task->task_status.resp,
110 task->task_status.stat);
115 mutex_unlock(&dev->ex_dev.cmd_mutex);
116 pm_runtime_put_sync(ha->dev);
118 BUG_ON(retry == 3 && task != NULL);
123 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
124 void *resp, int resp_size)
126 struct scatterlist req_sg;
127 struct scatterlist resp_sg;
129 sg_init_one(&req_sg, req, req_size);
130 sg_init_one(&resp_sg, resp, resp_size);
131 return smp_execute_task_sg(dev, &req_sg, &resp_sg);
134 /* ---------- Allocations ---------- */
136 static inline void *alloc_smp_req(int size)
138 u8 *p = kzalloc(size, GFP_KERNEL);
144 static inline void *alloc_smp_resp(int size)
146 return kzalloc(size, GFP_KERNEL);
149 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
151 switch (phy->routing_attr) {
153 if (dev->ex_dev.t2t_supp)
159 case SUBTRACTIVE_ROUTING:
166 static enum sas_device_type to_dev_type(struct discover_resp *dr)
168 /* This is detecting a failure to transmit initial dev to host
169 * FIS as described in section J.5 of sas-2 r16
171 if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
172 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
173 return SAS_SATA_PENDING;
175 return dr->attached_dev_type;
178 static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
179 struct smp_disc_resp *disc_resp)
181 enum sas_device_type dev_type;
182 enum sas_linkrate linkrate;
183 u8 sas_addr[SAS_ADDR_SIZE];
184 struct discover_resp *dr = &disc_resp->disc;
185 struct sas_ha_struct *ha = dev->port->ha;
186 struct expander_device *ex = &dev->ex_dev;
187 struct ex_phy *phy = &ex->ex_phy[phy_id];
188 struct sas_rphy *rphy = dev->rphy;
189 bool new_phy = !phy->phy;
193 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
195 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
197 /* FIXME: error_handling */
201 switch (disc_resp->result) {
202 case SMP_RESP_PHY_VACANT:
203 phy->phy_state = PHY_VACANT;
206 phy->phy_state = PHY_NOT_PRESENT;
208 case SMP_RESP_FUNC_ACC:
209 phy->phy_state = PHY_EMPTY; /* do not know yet */
213 /* check if anything important changed to squelch debug */
214 dev_type = phy->attached_dev_type;
215 linkrate = phy->linkrate;
216 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
218 /* Handle vacant phy - rest of dr data is not valid so skip it */
219 if (phy->phy_state == PHY_VACANT) {
220 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
221 phy->attached_dev_type = SAS_PHY_UNUSED;
222 if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
223 phy->phy_id = phy_id;
229 phy->attached_dev_type = to_dev_type(dr);
230 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
232 phy->phy_id = phy_id;
233 phy->linkrate = dr->linkrate;
234 phy->attached_sata_host = dr->attached_sata_host;
235 phy->attached_sata_dev = dr->attached_sata_dev;
236 phy->attached_sata_ps = dr->attached_sata_ps;
237 phy->attached_iproto = dr->iproto << 1;
238 phy->attached_tproto = dr->tproto << 1;
239 /* help some expanders that fail to zero sas_address in the 'no
242 if (phy->attached_dev_type == SAS_PHY_UNUSED ||
243 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
244 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
246 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
247 phy->attached_phy_id = dr->attached_phy_id;
248 phy->phy_change_count = dr->change_count;
249 phy->routing_attr = dr->routing_attr;
250 phy->virtual = dr->virtual;
251 phy->last_da_index = -1;
253 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
254 phy->phy->identify.device_type = dr->attached_dev_type;
255 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
256 phy->phy->identify.target_port_protocols = phy->attached_tproto;
257 if (!phy->attached_tproto && dr->attached_sata_dev)
258 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
259 phy->phy->identify.phy_identifier = phy_id;
260 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
261 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
262 phy->phy->minimum_linkrate = dr->pmin_linkrate;
263 phy->phy->maximum_linkrate = dr->pmax_linkrate;
264 phy->phy->negotiated_linkrate = phy->linkrate;
265 phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
269 if (sas_phy_add(phy->phy)) {
270 sas_phy_free(phy->phy);
275 switch (phy->attached_dev_type) {
276 case SAS_SATA_PENDING:
277 type = "stp pending";
283 if (phy->attached_iproto) {
284 if (phy->attached_tproto)
285 type = "host+target";
289 if (dr->attached_sata_dev)
295 case SAS_EDGE_EXPANDER_DEVICE:
296 case SAS_FANOUT_EXPANDER_DEVICE:
303 /* this routine is polled by libata error recovery so filter
304 * unimportant messages
306 if (new_phy || phy->attached_dev_type != dev_type ||
307 phy->linkrate != linkrate ||
308 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
313 /* if the attached device type changed and ata_eh is active,
314 * make sure we run revalidation when eh completes (see:
315 * sas_enable_revalidation)
317 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
318 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
320 pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
321 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
322 SAS_ADDR(dev->sas_addr), phy->phy_id,
323 sas_route_char(dev, phy), phy->linkrate,
324 SAS_ADDR(phy->attached_sas_addr), type);
327 /* check if we have an existing attached ata device on this expander phy */
328 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
330 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
331 struct domain_device *dev;
332 struct sas_rphy *rphy;
337 rphy = ex_phy->port->rphy;
341 dev = sas_find_dev_by_rphy(rphy);
343 if (dev && dev_is_sata(dev))
349 #define DISCOVER_REQ_SIZE 16
350 #define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
352 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
353 struct smp_disc_resp *disc_resp,
356 struct discover_resp *dr = &disc_resp->disc;
359 disc_req[9] = single;
361 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
362 disc_resp, DISCOVER_RESP_SIZE);
365 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
366 pr_notice("Found loopback topology, just ignore it!\n");
369 sas_set_ex_phy(dev, single, disc_resp);
373 int sas_ex_phy_discover(struct domain_device *dev, int single)
375 struct expander_device *ex = &dev->ex_dev;
378 struct smp_disc_resp *disc_resp;
380 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
384 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
390 disc_req[1] = SMP_DISCOVER;
392 if (0 <= single && single < ex->num_phys) {
393 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
397 for (i = 0; i < ex->num_phys; i++) {
398 res = sas_ex_phy_discover_helper(dev, disc_req,
410 static int sas_expander_discover(struct domain_device *dev)
412 struct expander_device *ex = &dev->ex_dev;
415 ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
419 res = sas_ex_phy_discover(dev, -1);
430 #define MAX_EXPANDER_PHYS 128
432 #define RG_REQ_SIZE 8
433 #define RG_RESP_SIZE sizeof(struct smp_rg_resp)
435 static int sas_ex_general(struct domain_device *dev)
438 struct smp_rg_resp *rg_resp;
439 struct report_general_resp *rg;
443 rg_req = alloc_smp_req(RG_REQ_SIZE);
447 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
453 rg_req[1] = SMP_REPORT_GENERAL;
455 for (i = 0; i < 5; i++) {
456 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
460 pr_notice("RG to ex %016llx failed:0x%x\n",
461 SAS_ADDR(dev->sas_addr), res);
463 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
464 pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
465 SAS_ADDR(dev->sas_addr), rg_resp->result);
466 res = rg_resp->result;
471 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
472 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
473 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
474 dev->ex_dev.t2t_supp = rg->t2t_supp;
475 dev->ex_dev.conf_route_table = rg->conf_route_table;
476 dev->ex_dev.configuring = rg->configuring;
477 memcpy(dev->ex_dev.enclosure_logical_id,
478 rg->enclosure_logical_id, 8);
480 if (dev->ex_dev.configuring) {
481 pr_debug("RG: ex %016llx self-configuring...\n",
482 SAS_ADDR(dev->sas_addr));
483 schedule_timeout_interruptible(5*HZ);
493 static void ex_assign_manuf_info(struct domain_device *dev, void
496 u8 *mi_resp = _mi_resp;
497 struct sas_rphy *rphy = dev->rphy;
498 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
500 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
501 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
502 memcpy(edev->product_rev, mi_resp + 36,
503 SAS_EXPANDER_PRODUCT_REV_LEN);
505 if (mi_resp[8] & 1) {
506 memcpy(edev->component_vendor_id, mi_resp + 40,
507 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
508 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
509 edev->component_revision_id = mi_resp[50];
513 #define MI_REQ_SIZE 8
514 #define MI_RESP_SIZE 64
516 static int sas_ex_manuf_info(struct domain_device *dev)
522 mi_req = alloc_smp_req(MI_REQ_SIZE);
526 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
532 mi_req[1] = SMP_REPORT_MANUF_INFO;
534 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
536 pr_notice("MI: ex %016llx failed:0x%x\n",
537 SAS_ADDR(dev->sas_addr), res);
539 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
540 pr_debug("MI ex %016llx returned SMP result:0x%x\n",
541 SAS_ADDR(dev->sas_addr), mi_resp[2]);
545 ex_assign_manuf_info(dev, mi_resp);
552 #define PC_REQ_SIZE 44
553 #define PC_RESP_SIZE 8
555 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
556 enum phy_func phy_func,
557 struct sas_phy_linkrates *rates)
563 pc_req = alloc_smp_req(PC_REQ_SIZE);
567 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
573 pc_req[1] = SMP_PHY_CONTROL;
575 pc_req[10] = phy_func;
577 pc_req[32] = rates->minimum_linkrate << 4;
578 pc_req[33] = rates->maximum_linkrate << 4;
581 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
583 pr_err("ex %016llx phy%02d PHY control failed: %d\n",
584 SAS_ADDR(dev->sas_addr), phy_id, res);
585 } else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
586 pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
587 SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
595 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
597 struct expander_device *ex = &dev->ex_dev;
598 struct ex_phy *phy = &ex->ex_phy[phy_id];
600 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
601 phy->linkrate = SAS_PHY_DISABLED;
604 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
606 struct expander_device *ex = &dev->ex_dev;
609 for (i = 0; i < ex->num_phys; i++) {
610 struct ex_phy *phy = &ex->ex_phy[i];
612 if (phy->phy_state == PHY_VACANT ||
613 phy->phy_state == PHY_NOT_PRESENT)
616 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
617 sas_ex_disable_phy(dev, i);
621 static int sas_dev_present_in_domain(struct asd_sas_port *port,
624 struct domain_device *dev;
626 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
628 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
629 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
635 #define RPEL_REQ_SIZE 16
636 #define RPEL_RESP_SIZE 32
637 int sas_smp_get_phy_events(struct sas_phy *phy)
642 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
643 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
645 req = alloc_smp_req(RPEL_REQ_SIZE);
649 resp = alloc_smp_resp(RPEL_RESP_SIZE);
655 req[1] = SMP_REPORT_PHY_ERR_LOG;
656 req[9] = phy->number;
658 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
659 resp, RPEL_RESP_SIZE);
664 phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
665 phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
666 phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
667 phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
676 #ifdef CONFIG_SCSI_SAS_ATA
678 #define RPS_REQ_SIZE 16
679 #define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
681 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
682 struct smp_rps_resp *rps_resp)
685 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
686 u8 *resp = (u8 *)rps_resp;
691 rps_req[1] = SMP_REPORT_PHY_SATA;
694 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
695 rps_resp, RPS_RESP_SIZE);
697 /* 0x34 is the FIS type for the D2H fis. There's a potential
698 * standards cockup here. sas-2 explicitly specifies the FIS
699 * should be encoded so that FIS type is in resp[24].
700 * However, some expanders endian reverse this. Undo the
702 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
705 for (i = 0; i < 5; i++) {
710 resp[j + 0] = resp[j + 3];
711 resp[j + 1] = resp[j + 2];
722 static void sas_ex_get_linkrate(struct domain_device *parent,
723 struct domain_device *child,
724 struct ex_phy *parent_phy)
726 struct expander_device *parent_ex = &parent->ex_dev;
727 struct sas_port *port;
732 port = parent_phy->port;
734 for (i = 0; i < parent_ex->num_phys; i++) {
735 struct ex_phy *phy = &parent_ex->ex_phy[i];
737 if (phy->phy_state == PHY_VACANT ||
738 phy->phy_state == PHY_NOT_PRESENT)
741 if (SAS_ADDR(phy->attached_sas_addr) ==
742 SAS_ADDR(child->sas_addr)) {
744 child->min_linkrate = min(parent->min_linkrate,
746 child->max_linkrate = max(parent->max_linkrate,
749 sas_port_add_phy(port, phy->phy);
752 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
753 child->pathways = min(child->pathways, parent->pathways);
756 static struct domain_device *sas_ex_discover_end_dev(
757 struct domain_device *parent, int phy_id)
759 struct expander_device *parent_ex = &parent->ex_dev;
760 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
761 struct domain_device *child = NULL;
762 struct sas_rphy *rphy;
765 if (phy->attached_sata_host || phy->attached_sata_ps)
768 child = sas_alloc_device();
772 kref_get(&parent->kref);
773 child->parent = parent;
774 child->port = parent->port;
775 child->iproto = phy->attached_iproto;
776 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
777 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
779 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
780 if (unlikely(!phy->port))
782 if (unlikely(sas_port_add(phy->port) != 0)) {
783 sas_port_free(phy->port);
787 sas_ex_get_linkrate(parent, child, phy);
788 sas_device_set_phy(child, phy->port);
790 #ifdef CONFIG_SCSI_SAS_ATA
791 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
792 if (child->linkrate > parent->min_linkrate) {
793 struct sas_phy *cphy = child->phy;
794 enum sas_linkrate min_prate = cphy->minimum_linkrate,
795 parent_min_lrate = parent->min_linkrate,
796 min_linkrate = (min_prate > parent_min_lrate) ?
797 parent_min_lrate : 0;
798 struct sas_phy_linkrates rates = {
799 .maximum_linkrate = parent->min_linkrate,
800 .minimum_linkrate = min_linkrate,
804 pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
805 SAS_ADDR(child->sas_addr), phy_id);
806 ret = sas_smp_phy_control(parent, phy_id,
807 PHY_FUNC_LINK_RESET, &rates);
809 pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
810 SAS_ADDR(child->sas_addr), phy_id, ret);
813 pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
814 SAS_ADDR(child->sas_addr), phy_id);
815 child->linkrate = child->min_linkrate;
817 res = sas_get_ata_info(child, phy);
822 res = sas_ata_init(child);
825 rphy = sas_end_device_alloc(phy->port);
828 rphy->identify.phy_identifier = phy_id;
831 get_device(&rphy->dev);
833 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
835 res = sas_discover_sata(child);
837 pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
838 SAS_ADDR(child->sas_addr),
839 SAS_ADDR(parent->sas_addr), phy_id, res);
844 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
845 child->dev_type = SAS_END_DEVICE;
846 rphy = sas_end_device_alloc(phy->port);
847 /* FIXME: error handling */
850 child->tproto = phy->attached_tproto;
854 get_device(&rphy->dev);
855 rphy->identify.phy_identifier = phy_id;
856 sas_fill_in_rphy(child, rphy);
858 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
860 res = sas_discover_end_dev(child);
862 pr_notice("sas_discover_end_dev() for device %016llx at %016llx:%02d returned 0x%x\n",
863 SAS_ADDR(child->sas_addr),
864 SAS_ADDR(parent->sas_addr), phy_id, res);
868 pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
869 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
874 list_add_tail(&child->siblings, &parent_ex->children);
878 sas_rphy_free(child->rphy);
879 list_del(&child->disco_list_node);
880 spin_lock_irq(&parent->port->dev_list_lock);
881 list_del(&child->dev_list_node);
882 spin_unlock_irq(&parent->port->dev_list_lock);
884 sas_port_delete(phy->port);
887 sas_put_device(child);
891 /* See if this phy is part of a wide port */
892 static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
894 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
897 for (i = 0; i < parent->ex_dev.num_phys; i++) {
898 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
903 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
904 SAS_ADDR_SIZE) && ephy->port) {
905 sas_port_add_phy(ephy->port, phy->phy);
906 phy->port = ephy->port;
907 phy->phy_state = PHY_DEVICE_DISCOVERED;
915 static struct domain_device *sas_ex_discover_expander(
916 struct domain_device *parent, int phy_id)
918 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
919 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
920 struct domain_device *child = NULL;
921 struct sas_rphy *rphy;
922 struct sas_expander_device *edev;
923 struct asd_sas_port *port;
926 if (phy->routing_attr == DIRECT_ROUTING) {
927 pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
928 SAS_ADDR(parent->sas_addr), phy_id,
929 SAS_ADDR(phy->attached_sas_addr),
930 phy->attached_phy_id);
933 child = sas_alloc_device();
937 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
938 /* FIXME: better error handling */
939 BUG_ON(sas_port_add(phy->port) != 0);
942 switch (phy->attached_dev_type) {
943 case SAS_EDGE_EXPANDER_DEVICE:
944 rphy = sas_expander_alloc(phy->port,
945 SAS_EDGE_EXPANDER_DEVICE);
947 case SAS_FANOUT_EXPANDER_DEVICE:
948 rphy = sas_expander_alloc(phy->port,
949 SAS_FANOUT_EXPANDER_DEVICE);
952 rphy = NULL; /* shut gcc up */
957 get_device(&rphy->dev);
958 edev = rphy_to_expander_device(rphy);
959 child->dev_type = phy->attached_dev_type;
960 kref_get(&parent->kref);
961 child->parent = parent;
963 child->iproto = phy->attached_iproto;
964 child->tproto = phy->attached_tproto;
965 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
966 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
967 sas_ex_get_linkrate(parent, child, phy);
968 edev->level = parent_ex->level + 1;
969 parent->port->disc.max_level = max(parent->port->disc.max_level,
972 sas_fill_in_rphy(child, rphy);
975 spin_lock_irq(&parent->port->dev_list_lock);
976 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
977 spin_unlock_irq(&parent->port->dev_list_lock);
979 res = sas_discover_expander(child);
981 sas_rphy_delete(rphy);
982 spin_lock_irq(&parent->port->dev_list_lock);
983 list_del(&child->dev_list_node);
984 spin_unlock_irq(&parent->port->dev_list_lock);
985 sas_put_device(child);
986 sas_port_delete(phy->port);
990 list_add_tail(&child->siblings, &parent->ex_dev.children);
994 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
996 struct expander_device *ex = &dev->ex_dev;
997 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
998 struct domain_device *child = NULL;
1002 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1003 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1004 res = sas_ex_phy_discover(dev, phy_id);
1009 /* Parent and domain coherency */
1010 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1011 SAS_ADDR(dev->port->sas_addr))) {
1012 sas_add_parent_port(dev, phy_id);
1015 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1016 SAS_ADDR(dev->parent->sas_addr))) {
1017 sas_add_parent_port(dev, phy_id);
1018 if (ex_phy->routing_attr == TABLE_ROUTING)
1019 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1023 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1024 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1026 if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1027 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1028 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1029 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1032 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1035 if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1036 ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1037 ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1038 ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1039 pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1040 ex_phy->attached_dev_type,
1041 SAS_ADDR(dev->sas_addr),
1046 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1048 pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1049 SAS_ADDR(ex_phy->attached_sas_addr), res);
1050 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1054 if (sas_ex_join_wide_port(dev, phy_id)) {
1055 pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1056 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1060 switch (ex_phy->attached_dev_type) {
1061 case SAS_END_DEVICE:
1062 case SAS_SATA_PENDING:
1063 child = sas_ex_discover_end_dev(dev, phy_id);
1065 case SAS_FANOUT_EXPANDER_DEVICE:
1066 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1067 pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1068 SAS_ADDR(ex_phy->attached_sas_addr),
1069 ex_phy->attached_phy_id,
1070 SAS_ADDR(dev->sas_addr),
1072 sas_ex_disable_phy(dev, phy_id);
1075 memcpy(dev->port->disc.fanout_sas_addr,
1076 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1078 case SAS_EDGE_EXPANDER_DEVICE:
1079 child = sas_ex_discover_expander(dev, phy_id);
1086 pr_notice("ex %016llx phy%02d failed to discover\n",
1087 SAS_ADDR(dev->sas_addr), phy_id);
1091 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1093 struct expander_device *ex = &dev->ex_dev;
1096 for (i = 0; i < ex->num_phys; i++) {
1097 struct ex_phy *phy = &ex->ex_phy[i];
1099 if (phy->phy_state == PHY_VACANT ||
1100 phy->phy_state == PHY_NOT_PRESENT)
1103 if (dev_is_expander(phy->attached_dev_type) &&
1104 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1106 memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1114 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1116 struct expander_device *ex = &dev->ex_dev;
1117 struct domain_device *child;
1118 u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1120 list_for_each_entry(child, &ex->children, siblings) {
1121 if (!dev_is_expander(child->dev_type))
1123 if (sub_addr[0] == 0) {
1124 sas_find_sub_addr(child, sub_addr);
1127 u8 s2[SAS_ADDR_SIZE];
1129 if (sas_find_sub_addr(child, s2) &&
1130 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1132 pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1133 SAS_ADDR(dev->sas_addr),
1134 SAS_ADDR(child->sas_addr),
1136 SAS_ADDR(sub_addr));
1138 sas_ex_disable_port(child, s2);
1145 * sas_ex_discover_devices - discover devices attached to this expander
1146 * @dev: pointer to the expander domain device
1147 * @single: if you want to do a single phy, else set to -1;
1149 * Configure this expander for use with its devices and register the
1150 * devices of this expander.
1152 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1154 struct expander_device *ex = &dev->ex_dev;
1155 int i = 0, end = ex->num_phys;
1158 if (0 <= single && single < end) {
1163 for ( ; i < end; i++) {
1164 struct ex_phy *ex_phy = &ex->ex_phy[i];
1166 if (ex_phy->phy_state == PHY_VACANT ||
1167 ex_phy->phy_state == PHY_NOT_PRESENT ||
1168 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1171 switch (ex_phy->linkrate) {
1172 case SAS_PHY_DISABLED:
1173 case SAS_PHY_RESET_PROBLEM:
1174 case SAS_SATA_PORT_SELECTOR:
1177 res = sas_ex_discover_dev(dev, i);
1185 sas_check_level_subtractive_boundary(dev);
1190 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1192 struct expander_device *ex = &dev->ex_dev;
1194 u8 *sub_sas_addr = NULL;
1196 if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1199 for (i = 0; i < ex->num_phys; i++) {
1200 struct ex_phy *phy = &ex->ex_phy[i];
1202 if (phy->phy_state == PHY_VACANT ||
1203 phy->phy_state == PHY_NOT_PRESENT)
1206 if (dev_is_expander(phy->attached_dev_type) &&
1207 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1210 sub_sas_addr = &phy->attached_sas_addr[0];
1211 else if (SAS_ADDR(sub_sas_addr) !=
1212 SAS_ADDR(phy->attached_sas_addr)) {
1214 pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1215 SAS_ADDR(dev->sas_addr), i,
1216 SAS_ADDR(phy->attached_sas_addr),
1217 SAS_ADDR(sub_sas_addr));
1218 sas_ex_disable_phy(dev, i);
1225 static void sas_print_parent_topology_bug(struct domain_device *child,
1226 struct ex_phy *parent_phy,
1227 struct ex_phy *child_phy)
1229 static const char *ex_type[] = {
1230 [SAS_EDGE_EXPANDER_DEVICE] = "edge",
1231 [SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1233 struct domain_device *parent = child->parent;
1235 pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1236 ex_type[parent->dev_type],
1237 SAS_ADDR(parent->sas_addr),
1240 ex_type[child->dev_type],
1241 SAS_ADDR(child->sas_addr),
1244 sas_route_char(parent, parent_phy),
1245 sas_route_char(child, child_phy));
1248 static int sas_check_eeds(struct domain_device *child,
1249 struct ex_phy *parent_phy,
1250 struct ex_phy *child_phy)
1253 struct domain_device *parent = child->parent;
1255 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1257 pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1258 SAS_ADDR(parent->sas_addr),
1260 SAS_ADDR(child->sas_addr),
1262 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1263 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1264 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1266 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1268 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1269 SAS_ADDR(parent->sas_addr)) ||
1270 (SAS_ADDR(parent->port->disc.eeds_a) ==
1271 SAS_ADDR(child->sas_addr)))
1273 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1274 SAS_ADDR(parent->sas_addr)) ||
1275 (SAS_ADDR(parent->port->disc.eeds_b) ==
1276 SAS_ADDR(child->sas_addr))))
1280 pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1281 SAS_ADDR(parent->sas_addr),
1283 SAS_ADDR(child->sas_addr),
1290 /* Here we spill over 80 columns. It is intentional.
1292 static int sas_check_parent_topology(struct domain_device *child)
1294 struct expander_device *child_ex = &child->ex_dev;
1295 struct expander_device *parent_ex;
1302 if (!dev_is_expander(child->parent->dev_type))
1305 parent_ex = &child->parent->ex_dev;
1307 for (i = 0; i < parent_ex->num_phys; i++) {
1308 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1309 struct ex_phy *child_phy;
1311 if (parent_phy->phy_state == PHY_VACANT ||
1312 parent_phy->phy_state == PHY_NOT_PRESENT)
1315 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1318 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1320 switch (child->parent->dev_type) {
1321 case SAS_EDGE_EXPANDER_DEVICE:
1322 if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1323 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1324 child_phy->routing_attr != TABLE_ROUTING) {
1325 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1328 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1329 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1330 res = sas_check_eeds(child, parent_phy, child_phy);
1331 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1332 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1335 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1336 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1337 (child_phy->routing_attr == TABLE_ROUTING &&
1338 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1341 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1346 case SAS_FANOUT_EXPANDER_DEVICE:
1347 if (parent_phy->routing_attr != TABLE_ROUTING ||
1348 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1349 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1361 #define RRI_REQ_SIZE 16
1362 #define RRI_RESP_SIZE 44
1364 static int sas_configure_present(struct domain_device *dev, int phy_id,
1365 u8 *sas_addr, int *index, int *present)
1368 struct expander_device *ex = &dev->ex_dev;
1369 struct ex_phy *phy = &ex->ex_phy[phy_id];
1376 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1380 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1386 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1387 rri_req[9] = phy_id;
1389 for (i = 0; i < ex->max_route_indexes ; i++) {
1390 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1391 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1396 if (res == SMP_RESP_NO_INDEX) {
1397 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1398 SAS_ADDR(dev->sas_addr), phy_id, i);
1400 } else if (res != SMP_RESP_FUNC_ACC) {
1401 pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1402 __func__, SAS_ADDR(dev->sas_addr), phy_id,
1406 if (SAS_ADDR(sas_addr) != 0) {
1407 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1409 if ((rri_resp[12] & 0x80) == 0x80)
1414 } else if (SAS_ADDR(rri_resp+16) == 0) {
1419 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1420 phy->last_da_index < i) {
1421 phy->last_da_index = i;
1434 #define CRI_REQ_SIZE 44
1435 #define CRI_RESP_SIZE 8
1437 static int sas_configure_set(struct domain_device *dev, int phy_id,
1438 u8 *sas_addr, int index, int include)
1444 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1448 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1454 cri_req[1] = SMP_CONF_ROUTE_INFO;
1455 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1456 cri_req[9] = phy_id;
1457 if (SAS_ADDR(sas_addr) == 0 || !include)
1458 cri_req[12] |= 0x80;
1459 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1461 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1466 if (res == SMP_RESP_NO_INDEX) {
1467 pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1468 SAS_ADDR(dev->sas_addr), phy_id, index);
1476 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1477 u8 *sas_addr, int include)
1483 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1486 if (include ^ present)
1487 return sas_configure_set(dev, phy_id, sas_addr, index,
1494 * sas_configure_parent - configure routing table of parent
1495 * @parent: parent expander
1496 * @child: child expander
1497 * @sas_addr: SAS port identifier of device directly attached to child
1498 * @include: whether or not to include @child in the expander routing table
1500 static int sas_configure_parent(struct domain_device *parent,
1501 struct domain_device *child,
1502 u8 *sas_addr, int include)
1504 struct expander_device *ex_parent = &parent->ex_dev;
1508 if (parent->parent) {
1509 res = sas_configure_parent(parent->parent, parent, sas_addr,
1515 if (ex_parent->conf_route_table == 0) {
1516 pr_debug("ex %016llx has self-configuring routing table\n",
1517 SAS_ADDR(parent->sas_addr));
1521 for (i = 0; i < ex_parent->num_phys; i++) {
1522 struct ex_phy *phy = &ex_parent->ex_phy[i];
1524 if ((phy->routing_attr == TABLE_ROUTING) &&
1525 (SAS_ADDR(phy->attached_sas_addr) ==
1526 SAS_ADDR(child->sas_addr))) {
1527 res = sas_configure_phy(parent, i, sas_addr, include);
1537 * sas_configure_routing - configure routing
1538 * @dev: expander device
1539 * @sas_addr: port identifier of device directly attached to the expander device
1541 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1544 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1548 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1551 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1556 * sas_discover_expander - expander discovery
1557 * @dev: pointer to expander domain device
1559 * See comment in sas_discover_sata().
1561 static int sas_discover_expander(struct domain_device *dev)
1565 res = sas_notify_lldd_dev_found(dev);
1569 res = sas_ex_general(dev);
1572 res = sas_ex_manuf_info(dev);
1576 res = sas_expander_discover(dev);
1578 pr_warn("expander %016llx discovery failed(0x%x)\n",
1579 SAS_ADDR(dev->sas_addr), res);
1583 sas_check_ex_subtractive_boundary(dev);
1584 res = sas_check_parent_topology(dev);
1589 sas_notify_lldd_dev_gone(dev);
1593 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1596 struct domain_device *dev;
1598 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1599 if (dev_is_expander(dev->dev_type)) {
1600 struct sas_expander_device *ex =
1601 rphy_to_expander_device(dev->rphy);
1603 if (level == ex->level)
1604 res = sas_ex_discover_devices(dev, -1);
1606 res = sas_ex_discover_devices(port->port_dev, -1);
1614 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1620 level = port->disc.max_level;
1621 res = sas_ex_level_discovery(port, level);
1623 } while (level < port->disc.max_level);
1628 int sas_discover_root_expander(struct domain_device *dev)
1631 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1633 res = sas_rphy_add(dev->rphy);
1637 ex->level = dev->port->disc.max_level; /* 0 */
1638 res = sas_discover_expander(dev);
1642 sas_ex_bfs_disc(dev->port);
1647 sas_rphy_remove(dev->rphy);
1652 /* ---------- Domain revalidation ---------- */
1654 static int sas_get_phy_discover(struct domain_device *dev,
1655 int phy_id, struct smp_disc_resp *disc_resp)
1660 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1664 disc_req[1] = SMP_DISCOVER;
1665 disc_req[9] = phy_id;
1667 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1668 disc_resp, DISCOVER_RESP_SIZE);
1671 if (disc_resp->result != SMP_RESP_FUNC_ACC)
1672 res = disc_resp->result;
1678 static int sas_get_phy_change_count(struct domain_device *dev,
1679 int phy_id, int *pcc)
1682 struct smp_disc_resp *disc_resp;
1684 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1688 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1690 *pcc = disc_resp->disc.change_count;
1696 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1697 u8 *sas_addr, enum sas_device_type *type)
1700 struct smp_disc_resp *disc_resp;
1702 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1706 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1708 memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1710 *type = to_dev_type(&disc_resp->disc);
1712 memset(sas_addr, 0, SAS_ADDR_SIZE);
1718 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1719 int from_phy, bool update)
1721 struct expander_device *ex = &dev->ex_dev;
1725 for (i = from_phy; i < ex->num_phys; i++) {
1726 int phy_change_count = 0;
1728 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1730 case SMP_RESP_PHY_VACANT:
1731 case SMP_RESP_NO_PHY:
1733 case SMP_RESP_FUNC_ACC:
1739 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1741 ex->ex_phy[i].phy_change_count =
1750 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1754 struct smp_rg_resp *rg_resp;
1756 rg_req = alloc_smp_req(RG_REQ_SIZE);
1760 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1766 rg_req[1] = SMP_REPORT_GENERAL;
1768 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1772 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1773 res = rg_resp->result;
1777 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1784 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1785 * @dev:domain device to be detect.
1786 * @src_dev: the device which originated BROADCAST(CHANGE).
1788 * Add self-configuration expander support. Suppose two expander cascading,
1789 * when the first level expander is self-configuring, hotplug the disks in
1790 * second level expander, BROADCAST(CHANGE) will not only be originated
1791 * in the second level expander, but also be originated in the first level
1792 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1793 * expander changed count in two level expanders will all increment at least
1794 * once, but the phy which chang count has changed is the source device which
1798 static int sas_find_bcast_dev(struct domain_device *dev,
1799 struct domain_device **src_dev)
1801 struct expander_device *ex = &dev->ex_dev;
1802 int ex_change_count = -1;
1805 struct domain_device *ch;
1807 res = sas_get_ex_change_count(dev, &ex_change_count);
1810 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1811 /* Just detect if this expander phys phy change count changed,
1812 * in order to determine if this expander originate BROADCAST,
1813 * and do not update phy change count field in our structure.
1815 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1818 ex->ex_change_count = ex_change_count;
1819 pr_info("ex %016llx phy%02d change count has changed\n",
1820 SAS_ADDR(dev->sas_addr), phy_id);
1823 pr_info("ex %016llx phys DID NOT change\n",
1824 SAS_ADDR(dev->sas_addr));
1826 list_for_each_entry(ch, &ex->children, siblings) {
1827 if (dev_is_expander(ch->dev_type)) {
1828 res = sas_find_bcast_dev(ch, src_dev);
1837 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1839 struct expander_device *ex = &dev->ex_dev;
1840 struct domain_device *child, *n;
1842 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1843 set_bit(SAS_DEV_GONE, &child->state);
1844 if (dev_is_expander(child->dev_type))
1845 sas_unregister_ex_tree(port, child);
1847 sas_unregister_dev(port, child);
1849 sas_unregister_dev(port, dev);
1852 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1853 int phy_id, bool last)
1855 struct expander_device *ex_dev = &parent->ex_dev;
1856 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1857 struct domain_device *child, *n, *found = NULL;
1859 list_for_each_entry_safe(child, n,
1860 &ex_dev->children, siblings) {
1861 if (SAS_ADDR(child->sas_addr) ==
1862 SAS_ADDR(phy->attached_sas_addr)) {
1863 set_bit(SAS_DEV_GONE, &child->state);
1864 if (dev_is_expander(child->dev_type))
1865 sas_unregister_ex_tree(parent->port, child);
1867 sas_unregister_dev(parent->port, child);
1872 sas_disable_routing(parent, phy->attached_sas_addr);
1874 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1876 sas_port_delete_phy(phy->port, phy->phy);
1877 sas_device_set_phy(found, phy->port);
1878 if (phy->port->num_phys == 0)
1879 list_add_tail(&phy->port->del_list,
1880 &parent->port->sas_port_del_list);
1885 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1888 struct expander_device *ex_root = &root->ex_dev;
1889 struct domain_device *child;
1892 list_for_each_entry(child, &ex_root->children, siblings) {
1893 if (dev_is_expander(child->dev_type)) {
1894 struct sas_expander_device *ex =
1895 rphy_to_expander_device(child->rphy);
1897 if (level > ex->level)
1898 res = sas_discover_bfs_by_root_level(child,
1900 else if (level == ex->level)
1901 res = sas_ex_discover_devices(child, -1);
1907 static int sas_discover_bfs_by_root(struct domain_device *dev)
1910 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1911 int level = ex->level+1;
1913 res = sas_ex_discover_devices(dev, -1);
1917 res = sas_discover_bfs_by_root_level(dev, level);
1920 } while (level <= dev->port->disc.max_level);
1925 static int sas_discover_new(struct domain_device *dev, int phy_id)
1927 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1928 struct domain_device *child;
1931 pr_debug("ex %016llx phy%02d new device attached\n",
1932 SAS_ADDR(dev->sas_addr), phy_id);
1933 res = sas_ex_phy_discover(dev, phy_id);
1937 if (sas_ex_join_wide_port(dev, phy_id))
1940 res = sas_ex_discover_devices(dev, phy_id);
1943 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1944 if (SAS_ADDR(child->sas_addr) ==
1945 SAS_ADDR(ex_phy->attached_sas_addr)) {
1946 if (dev_is_expander(child->dev_type))
1947 res = sas_discover_bfs_by_root(child);
1954 static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1959 /* treat device directed resets as flutter, if we went
1960 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1962 if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1963 (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1969 static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1970 bool last, int sibling)
1972 struct expander_device *ex = &dev->ex_dev;
1973 struct ex_phy *phy = &ex->ex_phy[phy_id];
1974 enum sas_device_type type = SAS_PHY_UNUSED;
1975 u8 sas_addr[SAS_ADDR_SIZE];
1980 sprintf(msg, ", part of a wide port with phy%02d", sibling);
1982 pr_debug("ex %016llx rediscovering phy%02d%s\n",
1983 SAS_ADDR(dev->sas_addr), phy_id, msg);
1985 memset(sas_addr, 0, SAS_ADDR_SIZE);
1986 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
1988 case SMP_RESP_NO_PHY:
1989 phy->phy_state = PHY_NOT_PRESENT;
1990 sas_unregister_devs_sas_addr(dev, phy_id, last);
1992 case SMP_RESP_PHY_VACANT:
1993 phy->phy_state = PHY_VACANT;
1994 sas_unregister_devs_sas_addr(dev, phy_id, last);
1996 case SMP_RESP_FUNC_ACC:
2004 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2005 phy->phy_state = PHY_EMPTY;
2006 sas_unregister_devs_sas_addr(dev, phy_id, last);
2008 * Even though the PHY is empty, for convenience we discover
2009 * the PHY to update the PHY info, like negotiated linkrate.
2011 sas_ex_phy_discover(dev, phy_id);
2013 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2014 dev_type_flutter(type, phy->attached_dev_type)) {
2015 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2018 sas_ex_phy_discover(dev, phy_id);
2020 if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2021 action = ", needs recovery";
2022 pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2023 SAS_ADDR(dev->sas_addr), phy_id, action);
2027 /* we always have to delete the old device when we went here */
2028 pr_info("ex %016llx phy%02d replace %016llx\n",
2029 SAS_ADDR(dev->sas_addr), phy_id,
2030 SAS_ADDR(phy->attached_sas_addr));
2031 sas_unregister_devs_sas_addr(dev, phy_id, last);
2033 return sas_discover_new(dev, phy_id);
2037 * sas_rediscover - revalidate the domain.
2038 * @dev:domain device to be detect.
2039 * @phy_id: the phy id will be detected.
2041 * NOTE: this process _must_ quit (return) as soon as any connection
2042 * errors are encountered. Connection recovery is done elsewhere.
2043 * Discover process only interrogates devices in order to discover the
2044 * domain.For plugging out, we un-register the device only when it is
2045 * the last phy in the port, for other phys in this port, we just delete it
2046 * from the port.For inserting, we do discovery when it is the
2047 * first phy,for other phys in this port, we add it to the port to
2048 * forming the wide-port.
2050 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2052 struct expander_device *ex = &dev->ex_dev;
2053 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2056 bool last = true; /* is this the last phy of the port */
2058 pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2059 SAS_ADDR(dev->sas_addr), phy_id);
2061 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2062 for (i = 0; i < ex->num_phys; i++) {
2063 struct ex_phy *phy = &ex->ex_phy[i];
2067 if (SAS_ADDR(phy->attached_sas_addr) ==
2068 SAS_ADDR(changed_phy->attached_sas_addr)) {
2073 res = sas_rediscover_dev(dev, phy_id, last, i);
2075 res = sas_discover_new(dev, phy_id);
2080 * sas_ex_revalidate_domain - revalidate the domain
2081 * @port_dev: port domain device.
2083 * NOTE: this process _must_ quit (return) as soon as any connection
2084 * errors are encountered. Connection recovery is done elsewhere.
2085 * Discover process only interrogates devices in order to discover the
2088 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2091 struct domain_device *dev = NULL;
2093 res = sas_find_bcast_dev(port_dev, &dev);
2094 if (res == 0 && dev) {
2095 struct expander_device *ex = &dev->ex_dev;
2100 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2103 res = sas_rediscover(dev, phy_id);
2105 } while (i < ex->num_phys);
2110 void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2111 struct sas_rphy *rphy)
2113 struct domain_device *dev;
2114 unsigned int rcvlen = 0;
2117 /* no rphy means no smp target support (ie aic94xx host) */
2119 return sas_smp_host_handler(job, shost);
2121 switch (rphy->identify.device_type) {
2122 case SAS_EDGE_EXPANDER_DEVICE:
2123 case SAS_FANOUT_EXPANDER_DEVICE:
2126 pr_err("%s: can we send a smp request to a device?\n",
2131 dev = sas_find_dev_by_rphy(rphy);
2133 pr_err("%s: fail to find a domain_device?\n", __func__);
2137 /* do we need to support multiple segments? */
2138 if (job->request_payload.sg_cnt > 1 ||
2139 job->reply_payload.sg_cnt > 1) {
2140 pr_info("%s: multiple segments req %u, rsp %u\n",
2141 __func__, job->request_payload.payload_len,
2142 job->reply_payload.payload_len);
2146 ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2147 job->reply_payload.sg_list);
2149 /* bsg_job_done() requires the length received */
2150 rcvlen = job->reply_payload.payload_len - ret;
2155 bsg_job_done(job, ret, rcvlen);