1 // SPDX-License-Identifier: GPL-2.0
3 * NVMe I/O command implementation.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/blkdev.h>
8 #include <linux/blk-integrity.h>
9 #include <linux/memremap.h>
10 #include <linux/module.h>
13 void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
15 const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
16 /* Number of logical blocks per physical block. */
17 const u32 lpp = ql->physical_block_size / ql->logical_block_size;
18 /* Logical blocks per physical block, 0's based. */
19 const __le16 lpp0b = to0based(lpp);
22 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
23 * NAWUPF, and NACWU are defined for this namespace and should be
24 * used by the host for this namespace instead of the AWUN, AWUPF,
25 * and ACWU fields in the Identify Controller data structure. If
26 * any of these fields are zero that means that the corresponding
27 * field from the identify controller data structure should be used.
35 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
36 * NOWS are defined for this namespace and should be used by
37 * the host for I/O optimization.
40 /* NPWG = Namespace Preferred Write Granularity. 0's based */
42 /* NPWA = Namespace Preferred Write Alignment. 0's based */
44 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
45 id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
46 /* NPDG = Namespace Preferred Deallocate Alignment */
48 /* NOWS = Namespace Optimal Write Size */
49 id->nows = to0based(ql->io_opt / ql->logical_block_size);
52 void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
55 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
60 static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
62 struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
65 ns->metadata_size = bi->tuple_size;
66 if (bi->profile == &t10_pi_type1_crc)
67 ns->pi_type = NVME_NS_DPS_PI_TYPE1;
68 else if (bi->profile == &t10_pi_type3_crc)
69 ns->pi_type = NVME_NS_DPS_PI_TYPE3;
71 /* Unsupported metadata type */
72 ns->metadata_size = 0;
76 int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
81 * When buffered_io namespace attribute is enabled that means user want
82 * this block device to be used as a file, so block device can take
83 * an advantage of cache.
88 ns->bdev = blkdev_get_by_path(ns->device_path,
89 FMODE_READ | FMODE_WRITE, NULL);
90 if (IS_ERR(ns->bdev)) {
91 ret = PTR_ERR(ns->bdev);
92 if (ret != -ENOTBLK) {
93 pr_err("failed to open block device %s: (%ld)\n",
94 ns->device_path, PTR_ERR(ns->bdev));
99 ns->size = bdev_nr_bytes(ns->bdev);
100 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
103 ns->metadata_size = 0;
104 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
105 nvmet_bdev_ns_enable_integrity(ns);
107 if (bdev_is_zoned(ns->bdev)) {
108 if (!nvmet_bdev_zns_enable(ns)) {
109 nvmet_bdev_ns_disable(ns);
112 ns->csi = NVME_CSI_ZNS;
118 void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
120 ns->size = bdev_nr_bytes(ns->bdev);
123 u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
125 u16 status = NVME_SC_SUCCESS;
127 if (likely(blk_sts == BLK_STS_OK))
130 * Right now there exists M : 1 mapping between block layer error
131 * to the NVMe status code (see nvme_error_status()). For consistency,
132 * when we reverse map we use most appropriate NVMe Status code from
133 * the group of the NVMe staus codes used in the nvme_error_status().
137 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
138 req->error_loc = offsetof(struct nvme_rw_command, length);
141 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
142 req->error_loc = offsetof(struct nvme_rw_command, slba);
144 case BLK_STS_NOTSUPP:
145 req->error_loc = offsetof(struct nvme_common_command, opcode);
146 switch (req->cmd->common.opcode) {
148 case nvme_cmd_write_zeroes:
149 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
152 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
156 status = NVME_SC_ACCESS_DENIED;
157 req->error_loc = offsetof(struct nvme_rw_command, nsid);
161 status = NVME_SC_INTERNAL | NVME_SC_DNR;
162 req->error_loc = offsetof(struct nvme_common_command, opcode);
165 switch (req->cmd->common.opcode) {
168 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
170 case nvme_cmd_write_zeroes:
172 le64_to_cpu(req->cmd->write_zeroes.slba);
180 static void nvmet_bio_done(struct bio *bio)
182 struct nvmet_req *req = bio->bi_private;
184 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
185 nvmet_req_bio_put(req, bio);
188 #ifdef CONFIG_BLK_DEV_INTEGRITY
189 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
190 struct sg_mapping_iter *miter)
192 struct blk_integrity *bi;
193 struct bio_integrity_payload *bip;
197 bi = bdev_get_integrity(req->ns->bdev);
199 pr_err("Unable to locate bio_integrity\n");
203 bip = bio_integrity_alloc(bio, GFP_NOIO,
204 bio_max_segs(req->metadata_sg_cnt));
206 pr_err("Unable to allocate bio_integrity_payload\n");
210 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
211 /* virtual start sector must be in integrity interval units */
212 bip_set_seed(bip, bio->bi_iter.bi_sector >>
213 (bi->interval_exp - SECTOR_SHIFT));
215 resid = bip->bip_iter.bi_size;
216 while (resid > 0 && sg_miter_next(miter)) {
217 len = min_t(size_t, miter->length, resid);
218 rc = bio_integrity_add_page(bio, miter->page, len,
219 offset_in_page(miter->addr));
220 if (unlikely(rc != len)) {
221 pr_err("bio_integrity_add_page() failed; %d\n", rc);
222 sg_miter_stop(miter);
227 if (len < miter->length)
228 miter->consumed -= miter->length - len;
230 sg_miter_stop(miter);
235 static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
236 struct sg_mapping_iter *miter)
240 #endif /* CONFIG_BLK_DEV_INTEGRITY */
242 static void nvmet_bdev_execute_rw(struct nvmet_req *req)
244 unsigned int sg_cnt = req->sg_cnt;
246 struct scatterlist *sg;
247 struct blk_plug plug;
251 struct sg_mapping_iter prot_miter;
252 unsigned int iter_flags;
253 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
255 if (!nvmet_check_transfer_len(req, total_len))
259 nvmet_req_complete(req, 0);
263 if (req->cmd->rw.opcode == nvme_cmd_write) {
264 opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
265 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
267 iter_flags = SG_MITER_TO_SG;
270 iter_flags = SG_MITER_FROM_SG;
273 if (is_pci_p2pdma_page(sg_page(req->sg)))
276 sector = nvmet_lba_to_sect(req->ns, req->cmd->rw.slba);
278 if (nvmet_use_inline_bvec(req)) {
279 bio = &req->b.inline_bio;
280 bio_init(bio, req->ns->bdev, req->inline_bvec,
281 ARRAY_SIZE(req->inline_bvec), opf);
283 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt), opf,
286 bio->bi_iter.bi_sector = sector;
287 bio->bi_private = req;
288 bio->bi_end_io = nvmet_bio_done;
290 blk_start_plug(&plug);
291 if (req->metadata_len)
292 sg_miter_start(&prot_miter, req->metadata_sg,
293 req->metadata_sg_cnt, iter_flags);
295 for_each_sg(req->sg, sg, req->sg_cnt, i) {
296 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
298 struct bio *prev = bio;
300 if (req->metadata_len) {
301 rc = nvmet_bdev_alloc_bip(req, bio,
309 bio = bio_alloc(req->ns->bdev, bio_max_segs(sg_cnt),
311 bio->bi_iter.bi_sector = sector;
313 bio_chain(bio, prev);
317 sector += sg->length >> 9;
321 if (req->metadata_len) {
322 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
330 blk_finish_plug(&plug);
333 static void nvmet_bdev_execute_flush(struct nvmet_req *req)
335 struct bio *bio = &req->b.inline_bio;
337 if (!nvmet_check_transfer_len(req, 0))
340 bio_init(bio, req->ns->bdev, req->inline_bvec,
341 ARRAY_SIZE(req->inline_bvec), REQ_OP_WRITE | REQ_PREFLUSH);
342 bio->bi_private = req;
343 bio->bi_end_io = nvmet_bio_done;
348 u16 nvmet_bdev_flush(struct nvmet_req *req)
350 if (blkdev_issue_flush(req->ns->bdev))
351 return NVME_SC_INTERNAL | NVME_SC_DNR;
355 static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
356 struct nvme_dsm_range *range, struct bio **bio)
358 struct nvmet_ns *ns = req->ns;
361 ret = __blkdev_issue_discard(ns->bdev,
362 nvmet_lba_to_sect(ns, range->slba),
363 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
365 if (ret && ret != -EOPNOTSUPP) {
366 req->error_slba = le64_to_cpu(range->slba);
367 return errno_to_nvme_status(req, ret);
369 return NVME_SC_SUCCESS;
372 static void nvmet_bdev_execute_discard(struct nvmet_req *req)
374 struct nvme_dsm_range range;
375 struct bio *bio = NULL;
379 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
380 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
385 status = nvmet_bdev_discard_range(req, &range, &bio);
391 bio->bi_private = req;
392 bio->bi_end_io = nvmet_bio_done;
398 nvmet_req_complete(req, status);
402 static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
404 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
407 switch (le32_to_cpu(req->cmd->dsm.attributes)) {
409 nvmet_bdev_execute_discard(req);
411 case NVME_DSMGMT_IDR:
412 case NVME_DSMGMT_IDW:
414 /* Not supported yet */
415 nvmet_req_complete(req, 0);
420 static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
422 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
423 struct bio *bio = NULL;
428 if (!nvmet_check_transfer_len(req, 0))
431 sector = nvmet_lba_to_sect(req->ns, write_zeroes->slba);
432 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
433 (req->ns->blksize_shift - 9));
435 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
436 GFP_KERNEL, &bio, 0);
438 bio->bi_private = req;
439 bio->bi_end_io = nvmet_bio_done;
442 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
446 u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
448 switch (req->cmd->common.opcode) {
451 req->execute = nvmet_bdev_execute_rw;
452 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
453 req->metadata_len = nvmet_rw_metadata_len(req);
456 req->execute = nvmet_bdev_execute_flush;
459 req->execute = nvmet_bdev_execute_dsm;
461 case nvme_cmd_write_zeroes:
462 req->execute = nvmet_bdev_execute_write_zeroes;
465 return nvmet_report_invalid_opcode(req);