1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2008-2013 Solarflare Communications Inc.
7 #include <linux/delay.h>
8 #include <linux/moduleparam.h>
9 #include <linux/atomic.h>
10 #include "net_driver.h"
13 #include "farch_regs.h"
14 #include "mcdi_pcol.h"
16 /**************************************************************************
18 * Management-Controller-to-Driver Interface
20 **************************************************************************
23 #define MCDI_RPC_TIMEOUT (10 * HZ)
25 /* A reboot/assertion causes the MCDI status word to be set after the
26 * command word is set or a REBOOT event is sent. If we notice a reboot
27 * via these mechanisms then wait 250ms for the status word to be set.
29 #define MCDI_STATUS_DELAY_US 100
30 #define MCDI_STATUS_DELAY_COUNT 2500
31 #define MCDI_STATUS_SLEEP_MS \
32 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
35 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
37 struct efx_mcdi_async_param {
38 struct list_head list;
43 efx_mcdi_async_completer *complete;
45 /* followed by request/response buffer */
48 static void efx_mcdi_timeout_async(struct timer_list *t);
49 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
50 bool *was_attached_out);
51 static bool efx_mcdi_poll_once(struct efx_nic *efx);
52 static void efx_mcdi_abandon(struct efx_nic *efx);
54 #ifdef CONFIG_SFC_MCDI_LOGGING
55 static bool mcdi_logging_default;
56 module_param(mcdi_logging_default, bool, 0644);
57 MODULE_PARM_DESC(mcdi_logging_default,
58 "Enable MCDI logging on newly-probed functions");
61 int efx_mcdi_init(struct efx_nic *efx)
63 struct efx_mcdi_iface *mcdi;
64 bool already_attached;
67 efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
73 #ifdef CONFIG_SFC_MCDI_LOGGING
74 /* consuming code assumes buffer is page-sized */
75 mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
76 if (!mcdi->logging_buffer)
78 mcdi->logging_enabled = mcdi_logging_default;
80 init_waitqueue_head(&mcdi->wq);
81 init_waitqueue_head(&mcdi->proxy_rx_wq);
82 spin_lock_init(&mcdi->iface_lock);
83 mcdi->state = MCDI_STATE_QUIESCENT;
84 mcdi->mode = MCDI_MODE_POLL;
85 spin_lock_init(&mcdi->async_lock);
86 INIT_LIST_HEAD(&mcdi->async_list);
87 timer_setup(&mcdi->async_timer, efx_mcdi_timeout_async, 0);
89 (void) efx_mcdi_poll_reboot(efx);
90 mcdi->new_epoch = true;
92 /* Recover from a failed assertion before probing */
93 rc = efx_mcdi_handle_assertion(efx);
97 /* Let the MC (and BMC, if this is a LOM) know that the driver
98 * is loaded. We should do this before we reset the NIC.
100 rc = efx_mcdi_drv_attach(efx, true, &already_attached);
102 pci_err(efx->pci_dev, "Unable to register driver with MCPU\n");
105 if (already_attached)
106 /* Not a fatal error */
107 pci_err(efx->pci_dev, "Host already registered with MCPU\n");
109 if (efx->mcdi->fn_flags &
110 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
115 #ifdef CONFIG_SFC_MCDI_LOGGING
116 free_page((unsigned long)mcdi->logging_buffer);
125 void efx_mcdi_detach(struct efx_nic *efx)
130 BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
132 /* Relinquish the device (back to the BMC, if this is a LOM) */
133 efx_mcdi_drv_attach(efx, false, NULL);
136 void efx_mcdi_fini(struct efx_nic *efx)
141 #ifdef CONFIG_SFC_MCDI_LOGGING
142 free_page((unsigned long)efx->mcdi->iface.logging_buffer);
148 static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
149 const efx_dword_t *inbuf, size_t inlen)
151 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
152 #ifdef CONFIG_SFC_MCDI_LOGGING
153 char *buf = mcdi->logging_buffer; /* page-sized */
159 BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
161 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
162 spin_lock_bh(&mcdi->iface_lock);
164 seqno = mcdi->seqno & SEQ_MASK;
165 spin_unlock_bh(&mcdi->iface_lock);
168 if (mcdi->mode == MCDI_MODE_EVENTS)
169 xflags |= MCDI_HEADER_XFLAGS_EVREQ;
171 if (efx->type->mcdi_max_ver == 1) {
173 EFX_POPULATE_DWORD_7(hdr[0],
174 MCDI_HEADER_RESPONSE, 0,
175 MCDI_HEADER_RESYNC, 1,
176 MCDI_HEADER_CODE, cmd,
177 MCDI_HEADER_DATALEN, inlen,
178 MCDI_HEADER_SEQ, seqno,
179 MCDI_HEADER_XFLAGS, xflags,
180 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
184 BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
185 EFX_POPULATE_DWORD_7(hdr[0],
186 MCDI_HEADER_RESPONSE, 0,
187 MCDI_HEADER_RESYNC, 1,
188 MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
189 MCDI_HEADER_DATALEN, 0,
190 MCDI_HEADER_SEQ, seqno,
191 MCDI_HEADER_XFLAGS, xflags,
192 MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
193 EFX_POPULATE_DWORD_2(hdr[1],
194 MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
195 MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
199 #ifdef CONFIG_SFC_MCDI_LOGGING
200 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
203 /* Lengths should always be a whole number of dwords, so scream
206 WARN_ON_ONCE(hdr_len % 4);
207 WARN_ON_ONCE(inlen % 4);
209 /* We own the logging buffer, as only one MCDI can be in
210 * progress on a NIC at any one time. So no need for locking.
212 for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
213 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
215 le32_to_cpu(hdr[i].u32[0]));
217 for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
218 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
220 le32_to_cpu(inbuf[i].u32[0]));
222 netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
226 efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
228 mcdi->new_epoch = false;
231 static int efx_mcdi_errno(unsigned int mcdi_err)
236 #define TRANSLATE_ERROR(name) \
237 case MC_CMD_ERR_ ## name: \
239 TRANSLATE_ERROR(EPERM);
240 TRANSLATE_ERROR(ENOENT);
241 TRANSLATE_ERROR(EINTR);
242 TRANSLATE_ERROR(EAGAIN);
243 TRANSLATE_ERROR(EACCES);
244 TRANSLATE_ERROR(EBUSY);
245 TRANSLATE_ERROR(EINVAL);
246 TRANSLATE_ERROR(EDEADLK);
247 TRANSLATE_ERROR(ENOSYS);
248 TRANSLATE_ERROR(ETIME);
249 TRANSLATE_ERROR(EALREADY);
250 TRANSLATE_ERROR(ENOSPC);
251 #undef TRANSLATE_ERROR
252 case MC_CMD_ERR_ENOTSUP:
254 case MC_CMD_ERR_ALLOC_FAIL:
256 case MC_CMD_ERR_MAC_EXIST:
263 static void efx_mcdi_read_response_header(struct efx_nic *efx)
265 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
266 unsigned int respseq, respcmd, error;
267 #ifdef CONFIG_SFC_MCDI_LOGGING
268 char *buf = mcdi->logging_buffer; /* page-sized */
272 efx->type->mcdi_read_response(efx, &hdr, 0, 4);
273 respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
274 respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
275 error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
277 if (respcmd != MC_CMD_V2_EXTN) {
278 mcdi->resp_hdr_len = 4;
279 mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
281 efx->type->mcdi_read_response(efx, &hdr, 4, 4);
282 mcdi->resp_hdr_len = 8;
283 mcdi->resp_data_len =
284 EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
287 #ifdef CONFIG_SFC_MCDI_LOGGING
288 if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
289 size_t hdr_len, data_len;
293 WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
294 hdr_len = mcdi->resp_hdr_len / 4;
295 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
296 * to dword size, and the MCDI buffer is always dword size
298 data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
300 /* We own the logging buffer, as only one MCDI can be in
301 * progress on a NIC at any one time. So no need for locking.
303 for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
304 efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
305 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
306 " %08x", le32_to_cpu(hdr.u32[0]));
309 for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
310 efx->type->mcdi_read_response(efx, &hdr,
311 mcdi->resp_hdr_len + (i * 4), 4);
312 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
313 " %08x", le32_to_cpu(hdr.u32[0]));
316 netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
320 mcdi->resprc_raw = 0;
321 if (error && mcdi->resp_data_len == 0) {
322 netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
324 } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
325 netif_err(efx, hw, efx->net_dev,
326 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
327 respseq, mcdi->seqno);
330 efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
331 mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
332 mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
338 static bool efx_mcdi_poll_once(struct efx_nic *efx)
340 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
343 if (!efx->type->mcdi_poll_response(efx))
346 spin_lock_bh(&mcdi->iface_lock);
347 efx_mcdi_read_response_header(efx);
348 spin_unlock_bh(&mcdi->iface_lock);
353 static int efx_mcdi_poll(struct efx_nic *efx)
355 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
356 unsigned long time, finish;
360 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
361 rc = efx_mcdi_poll_reboot(efx);
363 spin_lock_bh(&mcdi->iface_lock);
365 mcdi->resp_hdr_len = 0;
366 mcdi->resp_data_len = 0;
367 spin_unlock_bh(&mcdi->iface_lock);
371 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
372 * because generally mcdi responses are fast. After that, back off
373 * and poll once a jiffy (approximately)
375 spins = USER_TICK_USEC;
376 finish = jiffies + MCDI_RPC_TIMEOUT;
383 schedule_timeout_uninterruptible(1);
388 if (efx_mcdi_poll_once(efx))
391 if (time_after(time, finish))
395 /* Return rc=0 like wait_event_timeout() */
399 /* Test and clear MC-rebooted flag for this port/function; reset
400 * software state as necessary.
402 int efx_mcdi_poll_reboot(struct efx_nic *efx)
407 return efx->type->mcdi_poll_reboot(efx);
410 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
412 return cmpxchg(&mcdi->state,
413 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
414 MCDI_STATE_QUIESCENT;
417 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
419 /* Wait until the interface becomes QUIESCENT and we win the race
420 * to mark it RUNNING_SYNC.
423 cmpxchg(&mcdi->state,
424 MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
425 MCDI_STATE_QUIESCENT);
428 static int efx_mcdi_await_completion(struct efx_nic *efx)
430 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
432 if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
433 MCDI_RPC_TIMEOUT) == 0)
436 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
437 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
438 * completed the request first, then we'll just end up completing the
439 * request again, which is safe.
441 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
442 * wait_event_timeout() implicitly provides.
444 if (mcdi->mode == MCDI_MODE_POLL)
445 return efx_mcdi_poll(efx);
450 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
451 * requester. Return whether this was done. Does not take any locks.
453 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
455 if (cmpxchg(&mcdi->state,
456 MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
457 MCDI_STATE_RUNNING_SYNC) {
465 static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
467 if (mcdi->mode == MCDI_MODE_EVENTS) {
468 struct efx_mcdi_async_param *async;
469 struct efx_nic *efx = mcdi->efx;
471 /* Process the asynchronous request queue */
472 spin_lock_bh(&mcdi->async_lock);
473 async = list_first_entry_or_null(
474 &mcdi->async_list, struct efx_mcdi_async_param, list);
476 mcdi->state = MCDI_STATE_RUNNING_ASYNC;
477 efx_mcdi_send_request(efx, async->cmd,
478 (const efx_dword_t *)(async + 1),
480 mod_timer(&mcdi->async_timer,
481 jiffies + MCDI_RPC_TIMEOUT);
483 spin_unlock_bh(&mcdi->async_lock);
489 mcdi->state = MCDI_STATE_QUIESCENT;
493 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
494 * asynchronous completion function, and release the interface.
495 * Return whether this was done. Must be called in bh-disabled
496 * context. Will take iface_lock and async_lock.
498 static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
500 struct efx_nic *efx = mcdi->efx;
501 struct efx_mcdi_async_param *async;
502 size_t hdr_len, data_len, err_len;
504 MCDI_DECLARE_BUF_ERR(errbuf);
507 if (cmpxchg(&mcdi->state,
508 MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
509 MCDI_STATE_RUNNING_ASYNC)
512 spin_lock(&mcdi->iface_lock);
514 /* Ensure that if the completion event arrives later,
515 * the seqno check in efx_mcdi_ev_cpl() will fail
524 hdr_len = mcdi->resp_hdr_len;
525 data_len = mcdi->resp_data_len;
527 spin_unlock(&mcdi->iface_lock);
529 /* Stop the timer. In case the timer function is running, we
530 * must wait for it to return so that there is no possibility
531 * of it aborting the next request.
534 del_timer_sync(&mcdi->async_timer);
536 spin_lock(&mcdi->async_lock);
537 async = list_first_entry(&mcdi->async_list,
538 struct efx_mcdi_async_param, list);
539 list_del(&async->list);
540 spin_unlock(&mcdi->async_lock);
542 outbuf = (efx_dword_t *)(async + 1);
543 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
544 min(async->outlen, data_len));
545 if (!timeout && rc && !async->quiet) {
546 err_len = min(sizeof(errbuf), data_len);
547 efx->type->mcdi_read_response(efx, errbuf, hdr_len,
549 efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
554 async->complete(efx, async->cookie, rc, outbuf,
555 min(async->outlen, data_len));
558 efx_mcdi_release(mcdi);
563 static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
564 unsigned int datalen, unsigned int mcdi_err)
566 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
569 spin_lock(&mcdi->iface_lock);
571 if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
573 /* The request has been cancelled */
576 netif_err(efx, hw, efx->net_dev,
577 "MC response mismatch tx seq 0x%x rx "
578 "seq 0x%x\n", seqno, mcdi->seqno);
580 if (efx->type->mcdi_max_ver >= 2) {
581 /* MCDI v2 responses don't fit in an event */
582 efx_mcdi_read_response_header(efx);
584 mcdi->resprc = efx_mcdi_errno(mcdi_err);
585 mcdi->resp_hdr_len = 4;
586 mcdi->resp_data_len = datalen;
592 spin_unlock(&mcdi->iface_lock);
595 if (!efx_mcdi_complete_async(mcdi, false))
596 (void) efx_mcdi_complete_sync(mcdi);
598 /* If the interface isn't RUNNING_ASYNC or
599 * RUNNING_SYNC then we've received a duplicate
600 * completion after we've already transitioned back to
601 * QUIESCENT. [A subsequent invocation would increment
602 * seqno, so would have failed the seqno check].
607 static void efx_mcdi_timeout_async(struct timer_list *t)
609 struct efx_mcdi_iface *mcdi = from_timer(mcdi, t, async_timer);
611 efx_mcdi_complete_async(mcdi, true);
615 efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
617 if (efx->type->mcdi_max_ver < 0 ||
618 (efx->type->mcdi_max_ver < 2 &&
619 cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
622 if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
623 (efx->type->mcdi_max_ver < 2 &&
624 inlen > MCDI_CTL_SDU_LEN_MAX_V1))
630 static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
631 size_t hdr_len, size_t data_len,
634 MCDI_DECLARE_BUF_ERR(testbuf);
635 const size_t buflen = sizeof(testbuf);
637 if (!proxy_handle || data_len < buflen)
640 efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
641 if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
642 *proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
649 static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
651 efx_dword_t *outbuf, size_t outlen,
652 size_t *outlen_actual, bool quiet,
653 u32 *proxy_handle, int *raw_rc)
655 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
656 MCDI_DECLARE_BUF_ERR(errbuf);
659 if (mcdi->mode == MCDI_MODE_POLL)
660 rc = efx_mcdi_poll(efx);
662 rc = efx_mcdi_await_completion(efx);
665 netif_err(efx, hw, efx->net_dev,
666 "MC command 0x%x inlen %d mode %d timed out\n",
667 cmd, (int)inlen, mcdi->mode);
669 if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
670 netif_err(efx, hw, efx->net_dev,
671 "MCDI request was completed without an event\n");
675 efx_mcdi_abandon(efx);
677 /* Close the race with efx_mcdi_ev_cpl() executing just too late
678 * and completing a request we've just cancelled, by ensuring
679 * that the seqno check therein fails.
681 spin_lock_bh(&mcdi->iface_lock);
684 spin_unlock_bh(&mcdi->iface_lock);
694 size_t hdr_len, data_len, err_len;
696 /* At the very least we need a memory barrier here to ensure
697 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
698 * a spurious efx_mcdi_ev_cpl() running concurrently by
699 * acquiring the iface_lock. */
700 spin_lock_bh(&mcdi->iface_lock);
703 *raw_rc = mcdi->resprc_raw;
704 hdr_len = mcdi->resp_hdr_len;
705 data_len = mcdi->resp_data_len;
706 err_len = min(sizeof(errbuf), data_len);
707 spin_unlock_bh(&mcdi->iface_lock);
711 efx->type->mcdi_read_response(efx, outbuf, hdr_len,
712 min(outlen, data_len));
714 *outlen_actual = data_len;
716 efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
718 if (cmd == MC_CMD_REBOOT && rc == -EIO) {
719 /* Don't reset if MC_CMD_REBOOT returns EIO */
720 } else if (rc == -EIO || rc == -EINTR) {
721 netif_err(efx, hw, efx->net_dev, "MC reboot detected\n");
722 netif_dbg(efx, hw, efx->net_dev, "MC rebooted during command %d rc %d\n",
724 if (efx->type->mcdi_reboot_detected)
725 efx->type->mcdi_reboot_detected(efx);
726 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
727 } else if (proxy_handle && (rc == -EPROTO) &&
728 efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
730 mcdi->proxy_rx_status = 0;
731 mcdi->proxy_rx_handle = 0;
732 mcdi->state = MCDI_STATE_PROXY_WAIT;
733 } else if (rc && !quiet) {
734 efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
738 if (rc == -EIO || rc == -EINTR) {
739 msleep(MCDI_STATUS_SLEEP_MS);
740 efx_mcdi_poll_reboot(efx);
741 mcdi->new_epoch = true;
745 if (!proxy_handle || !*proxy_handle)
746 efx_mcdi_release(mcdi);
750 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
752 if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
753 /* Interrupt the proxy wait. */
754 mcdi->proxy_rx_status = -EINTR;
755 wake_up(&mcdi->proxy_rx_wq);
759 static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
760 u32 handle, int status)
762 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
764 WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
766 mcdi->proxy_rx_status = efx_mcdi_errno(status);
767 /* Ensure the status is written before we update the handle, since the
768 * latter is used to check if we've finished.
771 mcdi->proxy_rx_handle = handle;
772 wake_up(&mcdi->proxy_rx_wq);
775 static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
777 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
780 /* Wait for a proxy event, or timeout. */
781 rc = wait_event_timeout(mcdi->proxy_rx_wq,
782 mcdi->proxy_rx_handle != 0 ||
783 mcdi->proxy_rx_status == -EINTR,
787 netif_dbg(efx, hw, efx->net_dev,
788 "MCDI proxy timeout %d\n", handle);
790 } else if (mcdi->proxy_rx_handle != handle) {
791 netif_warn(efx, hw, efx->net_dev,
792 "MCDI proxy unexpected handle %d (expected %d)\n",
793 mcdi->proxy_rx_handle, handle);
797 return mcdi->proxy_rx_status;
800 static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
801 const efx_dword_t *inbuf, size_t inlen,
802 efx_dword_t *outbuf, size_t outlen,
803 size_t *outlen_actual, bool quiet, int *raw_rc)
805 u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
808 if (inbuf && inlen && (inbuf == outbuf)) {
809 /* The input buffer can't be aliased with the output. */
814 rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
818 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
819 outlen_actual, quiet, &proxy_handle, raw_rc);
822 /* Handle proxy authorisation. This allows approval of MCDI
823 * operations to be delegated to the admin function, allowing
824 * fine control over (eg) multicast subscriptions.
826 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
828 netif_dbg(efx, hw, efx->net_dev,
829 "MCDI waiting for proxy auth %d\n",
831 rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
834 netif_dbg(efx, hw, efx->net_dev,
835 "MCDI proxy retry %d\n", proxy_handle);
837 /* We now retry the original request. */
838 mcdi->state = MCDI_STATE_RUNNING_SYNC;
839 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
841 rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
842 outbuf, outlen, outlen_actual,
843 quiet, NULL, raw_rc);
845 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
846 "MC command 0x%x failed after proxy auth rc=%d\n",
849 if (rc == -EINTR || rc == -EIO)
850 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
851 efx_mcdi_release(mcdi);
858 static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
859 const efx_dword_t *inbuf, size_t inlen,
860 efx_dword_t *outbuf, size_t outlen,
861 size_t *outlen_actual, bool quiet)
866 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
867 outbuf, outlen, outlen_actual, true, &raw_rc);
869 if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
871 /* If the EVB port isn't available within a VF this may
872 * mean the PF is still bringing the switch up. We should
873 * retry our request shortly.
875 unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
876 unsigned int delay_us = 10000;
878 netif_dbg(efx, hw, efx->net_dev,
879 "%s: NO_EVB_PORT; will retry request\n",
883 usleep_range(delay_us, delay_us + 10000);
884 rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
885 outbuf, outlen, outlen_actual,
887 if (delay_us < 100000)
889 } while ((rc == -EPROTO) &&
890 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
891 time_before(jiffies, abort_time));
894 if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
895 efx_mcdi_display_error(efx, cmd, inlen,
902 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
903 * @efx: NIC through which to issue the command
904 * @cmd: Command type number
905 * @inbuf: Command parameters
906 * @inlen: Length of command parameters, in bytes. Must be a multiple
907 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
908 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
909 * @outlen: Length of response buffer, in bytes. If the actual
910 * response is longer than @outlen & ~3, it will be truncated
912 * @outlen_actual: Pointer through which to return the actual response
913 * length. May be %NULL if this is not needed.
915 * This function may sleep and therefore must be called in an appropriate
918 * Return: A negative error code, or zero if successful. The error
919 * code may come from the MCDI response or may indicate a failure
920 * to communicate with the MC. In the former case, the response
921 * will still be copied to @outbuf and *@outlen_actual will be
922 * set accordingly. In the latter case, *@outlen_actual will be
925 int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
926 const efx_dword_t *inbuf, size_t inlen,
927 efx_dword_t *outbuf, size_t outlen,
928 size_t *outlen_actual)
930 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
931 outlen_actual, false);
934 /* Normally, on receiving an error code in the MCDI response,
935 * efx_mcdi_rpc will log an error message containing (among other
936 * things) the raw error code, by means of efx_mcdi_display_error.
937 * This _quiet version suppresses that; if the caller wishes to log
938 * the error conditionally on the return code, it should call this
939 * function and is then responsible for calling efx_mcdi_display_error
942 int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
943 const efx_dword_t *inbuf, size_t inlen,
944 efx_dword_t *outbuf, size_t outlen,
945 size_t *outlen_actual)
947 return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
948 outlen_actual, true);
951 int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
952 const efx_dword_t *inbuf, size_t inlen)
954 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
957 rc = efx_mcdi_check_supported(efx, cmd, inlen);
961 if (efx->mc_bist_for_other_fn)
964 if (mcdi->mode == MCDI_MODE_FAIL)
967 efx_mcdi_acquire_sync(mcdi);
968 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
972 static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
973 const efx_dword_t *inbuf, size_t inlen,
975 efx_mcdi_async_completer *complete,
976 unsigned long cookie, bool quiet)
978 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
979 struct efx_mcdi_async_param *async;
982 rc = efx_mcdi_check_supported(efx, cmd, inlen);
986 if (efx->mc_bist_for_other_fn)
989 async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
995 async->inlen = inlen;
996 async->outlen = outlen;
997 async->quiet = quiet;
998 async->complete = complete;
999 async->cookie = cookie;
1000 memcpy(async + 1, inbuf, inlen);
1002 spin_lock_bh(&mcdi->async_lock);
1004 if (mcdi->mode == MCDI_MODE_EVENTS) {
1005 list_add_tail(&async->list, &mcdi->async_list);
1007 /* If this is at the front of the queue, try to start it
1010 if (mcdi->async_list.next == &async->list &&
1011 efx_mcdi_acquire_async(mcdi)) {
1012 efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1013 mod_timer(&mcdi->async_timer,
1014 jiffies + MCDI_RPC_TIMEOUT);
1021 spin_unlock_bh(&mcdi->async_lock);
1027 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1028 * @efx: NIC through which to issue the command
1029 * @cmd: Command type number
1030 * @inbuf: Command parameters
1031 * @inlen: Length of command parameters, in bytes
1032 * @outlen: Length to allocate for response buffer, in bytes
1033 * @complete: Function to be called on completion or cancellation.
1034 * @cookie: Arbitrary value to be passed to @complete.
1036 * This function does not sleep and therefore may be called in atomic
1037 * context. It will fail if event queues are disabled or if MCDI
1038 * event completions have been disabled due to an error.
1040 * If it succeeds, the @complete function will be called exactly once
1041 * in atomic context, when one of the following occurs:
1042 * (a) the completion event is received (in NAPI context)
1043 * (b) event queues are disabled (in the process that disables them)
1044 * (c) the request times-out (in timer context)
1047 efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1048 const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1049 efx_mcdi_async_completer *complete, unsigned long cookie)
1051 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1055 int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1056 const efx_dword_t *inbuf, size_t inlen,
1057 size_t outlen, efx_mcdi_async_completer *complete,
1058 unsigned long cookie)
1060 return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1064 int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1065 efx_dword_t *outbuf, size_t outlen,
1066 size_t *outlen_actual)
1068 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1069 outlen_actual, false, NULL, NULL);
1072 int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1073 efx_dword_t *outbuf, size_t outlen,
1074 size_t *outlen_actual)
1076 return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1077 outlen_actual, true, NULL, NULL);
1080 void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1081 size_t inlen, efx_dword_t *outbuf,
1082 size_t outlen, int rc)
1084 int code = 0, err_arg = 0;
1086 if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1087 code = MCDI_DWORD(outbuf, ERR_CODE);
1088 if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1089 err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1090 netif_cond_dbg(efx, hw, efx->net_dev, rc == -EPERM, err,
1091 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1092 cmd, inlen, rc, code, err_arg);
1095 /* Switch to polled MCDI completions. This can be called in various
1096 * error conditions with various locks held, so it must be lockless.
1097 * Caller is responsible for flushing asynchronous requests later.
1099 void efx_mcdi_mode_poll(struct efx_nic *efx)
1101 struct efx_mcdi_iface *mcdi;
1106 mcdi = efx_mcdi(efx);
1107 /* If already in polling mode, nothing to do.
1108 * If in fail-fast state, don't switch to polled completion.
1109 * FLR recovery will do that later.
1111 if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1114 /* We can switch from event completion to polled completion, because
1115 * mcdi requests are always completed in shared memory. We do this by
1116 * switching the mode to POLL'd then completing the request.
1117 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1119 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1120 * which efx_mcdi_complete_sync() provides for us.
1122 mcdi->mode = MCDI_MODE_POLL;
1124 efx_mcdi_complete_sync(mcdi);
1127 /* Flush any running or queued asynchronous requests, after event processing
1130 void efx_mcdi_flush_async(struct efx_nic *efx)
1132 struct efx_mcdi_async_param *async, *next;
1133 struct efx_mcdi_iface *mcdi;
1138 mcdi = efx_mcdi(efx);
1140 /* We must be in poll or fail mode so no more requests can be queued */
1141 BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1143 del_timer_sync(&mcdi->async_timer);
1145 /* If a request is still running, make sure we give the MC
1146 * time to complete it so that the response won't overwrite our
1149 if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1151 mcdi->state = MCDI_STATE_QUIESCENT;
1154 /* Nothing else will access the async list now, so it is safe
1155 * to walk it without holding async_lock. If we hold it while
1156 * calling a completer then lockdep may warn that we have
1157 * acquired locks in the wrong order.
1159 list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1160 if (async->complete)
1161 async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1162 list_del(&async->list);
1167 void efx_mcdi_mode_event(struct efx_nic *efx)
1169 struct efx_mcdi_iface *mcdi;
1174 mcdi = efx_mcdi(efx);
1175 /* If already in event completion mode, nothing to do.
1176 * If in fail-fast state, don't switch to event completion. FLR
1177 * recovery will do that later.
1179 if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1182 /* We can't switch from polled to event completion in the middle of a
1183 * request, because the completion method is specified in the request.
1184 * So acquire the interface to serialise the requestors. We don't need
1185 * to acquire the iface_lock to change the mode here, but we do need a
1186 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1187 * efx_mcdi_acquire() provides.
1189 efx_mcdi_acquire_sync(mcdi);
1190 mcdi->mode = MCDI_MODE_EVENTS;
1191 efx_mcdi_release(mcdi);
1194 static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1196 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1198 /* If there is an outstanding MCDI request, it has been terminated
1199 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1200 * in polled mode, then do nothing because the MC reboot handler will
1201 * set the header correctly. However, if the mcdi interface is waiting
1202 * for a CMDDONE event it won't receive it [and since all MCDI events
1203 * are sent to the same queue, we can't be racing with
1204 * efx_mcdi_ev_cpl()]
1206 * If there is an outstanding asynchronous request, we can't
1207 * complete it now (efx_mcdi_complete() would deadlock). The
1208 * reset process will take care of this.
1210 * There's a race here with efx_mcdi_send_request(), because
1211 * we might receive a REBOOT event *before* the request has
1212 * been copied out. In polled mode (during startup) this is
1213 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1214 * event mode, this condition is just an edge-case of
1215 * receiving a REBOOT event after posting the MCDI
1216 * request. Did the mc reboot before or after the copyout? The
1217 * best we can do always is just return failure.
1219 * If there is an outstanding proxy response expected it is not going
1220 * to arrive. We should thus abort it.
1222 spin_lock(&mcdi->iface_lock);
1223 efx_mcdi_proxy_abort(mcdi);
1225 if (efx_mcdi_complete_sync(mcdi)) {
1226 if (mcdi->mode == MCDI_MODE_EVENTS) {
1228 mcdi->resp_hdr_len = 0;
1229 mcdi->resp_data_len = 0;
1235 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1236 for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1237 rc = efx_mcdi_poll_reboot(efx);
1240 udelay(MCDI_STATUS_DELAY_US);
1243 /* On EF10, a CODE_MC_REBOOT event can be received without the
1244 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1245 * If zero was returned from the final call to
1246 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1247 * MC has definitely rebooted so prepare for the reset.
1249 if (!rc && efx->type->mcdi_reboot_detected)
1250 efx->type->mcdi_reboot_detected(efx);
1252 mcdi->new_epoch = true;
1254 /* Nobody was waiting for an MCDI request, so trigger a reset */
1255 efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1258 spin_unlock(&mcdi->iface_lock);
1261 /* The MC is going down in to BIST mode. set the BIST flag to block
1262 * new MCDI, cancel any outstanding MCDI and schedule a BIST-type reset
1263 * (which doesn't actually execute a reset, it waits for the controlling
1264 * function to reset it).
1266 static void efx_mcdi_ev_bist(struct efx_nic *efx)
1268 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1270 spin_lock(&mcdi->iface_lock);
1271 efx->mc_bist_for_other_fn = true;
1272 efx_mcdi_proxy_abort(mcdi);
1274 if (efx_mcdi_complete_sync(mcdi)) {
1275 if (mcdi->mode == MCDI_MODE_EVENTS) {
1276 mcdi->resprc = -EIO;
1277 mcdi->resp_hdr_len = 0;
1278 mcdi->resp_data_len = 0;
1282 mcdi->new_epoch = true;
1283 efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1284 spin_unlock(&mcdi->iface_lock);
1287 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1290 static void efx_mcdi_abandon(struct efx_nic *efx)
1292 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1294 if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1295 return; /* it had already been done */
1296 netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1297 efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1300 static void efx_handle_drain_event(struct efx_nic *efx)
1302 if (atomic_dec_and_test(&efx->active_queues))
1303 wake_up(&efx->flush_wq);
1305 WARN_ON(atomic_read(&efx->active_queues) < 0);
1308 /* Called from efx_farch_ev_process and efx_ef10_ev_process for MCDI events */
1309 void efx_mcdi_process_event(struct efx_channel *channel,
1312 struct efx_nic *efx = channel->efx;
1313 int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1314 u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1317 case MCDI_EVENT_CODE_BADSSERT:
1318 netif_err(efx, hw, efx->net_dev,
1319 "MC watchdog or assertion failure at 0x%x\n", data);
1320 efx_mcdi_ev_death(efx, -EINTR);
1323 case MCDI_EVENT_CODE_PMNOTICE:
1324 netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1327 case MCDI_EVENT_CODE_CMDDONE:
1328 efx_mcdi_ev_cpl(efx,
1329 MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1330 MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1331 MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1334 case MCDI_EVENT_CODE_LINKCHANGE:
1335 efx_mcdi_process_link_change(efx, event);
1337 case MCDI_EVENT_CODE_SENSOREVT:
1338 efx_sensor_event(efx, event);
1340 case MCDI_EVENT_CODE_SCHEDERR:
1341 netif_dbg(efx, hw, efx->net_dev,
1342 "MC Scheduler alert (0x%x)\n", data);
1344 case MCDI_EVENT_CODE_REBOOT:
1345 case MCDI_EVENT_CODE_MC_REBOOT:
1346 netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1347 efx_mcdi_ev_death(efx, -EIO);
1349 case MCDI_EVENT_CODE_MC_BIST:
1350 netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1351 efx_mcdi_ev_bist(efx);
1353 case MCDI_EVENT_CODE_MAC_STATS_DMA:
1354 /* MAC stats are gather lazily. We can ignore this. */
1356 case MCDI_EVENT_CODE_FLR:
1357 if (efx->type->sriov_flr)
1358 efx->type->sriov_flr(efx,
1359 MCDI_EVENT_FIELD(*event, FLR_VF));
1361 case MCDI_EVENT_CODE_PTP_RX:
1362 case MCDI_EVENT_CODE_PTP_FAULT:
1363 case MCDI_EVENT_CODE_PTP_PPS:
1364 efx_ptp_event(efx, event);
1366 case MCDI_EVENT_CODE_PTP_TIME:
1367 efx_time_sync_event(channel, event);
1369 case MCDI_EVENT_CODE_TX_FLUSH:
1370 case MCDI_EVENT_CODE_RX_FLUSH:
1371 /* Two flush events will be sent: one to the same event
1372 * queue as completions, and one to event queue 0.
1373 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1374 * flag will be set, and we should ignore the event
1375 * because we want to wait for all completions.
1377 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1378 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1379 if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1380 efx_handle_drain_event(efx);
1382 case MCDI_EVENT_CODE_TX_ERR:
1383 case MCDI_EVENT_CODE_RX_ERR:
1384 netif_err(efx, hw, efx->net_dev,
1385 "%s DMA error (event: "EFX_QWORD_FMT")\n",
1386 code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1387 EFX_QWORD_VAL(*event));
1388 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1390 case MCDI_EVENT_CODE_PROXY_RESPONSE:
1391 efx_mcdi_ev_proxy_response(efx,
1392 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1393 MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1396 netif_err(efx, hw, efx->net_dev,
1397 "Unknown MCDI event " EFX_QWORD_FMT "\n",
1398 EFX_QWORD_VAL(*event));
1402 /**************************************************************************
1404 * Specific request functions
1406 **************************************************************************
1409 void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1411 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1413 const __le16 *ver_words;
1417 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1418 rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1419 outbuf, sizeof(outbuf), &outlength);
1422 if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1427 ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1428 offset = scnprintf(buf, len, "%u.%u.%u.%u",
1429 le16_to_cpu(ver_words[0]),
1430 le16_to_cpu(ver_words[1]),
1431 le16_to_cpu(ver_words[2]),
1432 le16_to_cpu(ver_words[3]));
1434 if (efx->type->print_additional_fwver)
1435 offset += efx->type->print_additional_fwver(efx, buf + offset,
1438 /* It's theoretically possible for the string to exceed 31
1439 * characters, though in practice the first three version
1440 * components are short enough that this doesn't happen.
1442 if (WARN_ON(offset >= len))
1448 pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc);
1452 static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1455 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1456 MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1460 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1461 driver_operating ? 1 : 0);
1462 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1463 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1465 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1466 outbuf, sizeof(outbuf), &outlen);
1467 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1468 * specified will fail with EPERM, and we have to tell the MC we don't
1469 * care what firmware we get.
1472 pci_dbg(efx->pci_dev,
1473 "%s with fw-variant setting failed EPERM, trying without it\n",
1475 MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1476 MC_CMD_FW_DONT_CARE);
1477 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1478 sizeof(inbuf), outbuf, sizeof(outbuf),
1482 efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1483 outbuf, outlen, rc);
1486 if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1491 if (driver_operating) {
1492 if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1493 efx->mcdi->fn_flags =
1495 DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1497 /* Synthesise flags for Siena */
1498 efx->mcdi->fn_flags =
1499 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1500 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1501 (efx_port_num(efx) == 0) <<
1502 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1506 /* We currently assume we have control of the external link
1507 * and are completely trusted by firmware. Abort probing
1508 * if that's not true for this function.
1511 if (was_attached != NULL)
1512 *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1516 pci_err(efx->pci_dev, "%s: failed rc=%d\n", __func__, rc);
1520 int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1521 u16 *fw_subtype_list, u32 *capabilities)
1523 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1525 int port_num = efx_port_num(efx);
1528 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1529 /* we need __aligned(2) for ether_addr_copy */
1530 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1531 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1533 rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1534 outbuf, sizeof(outbuf), &outlen);
1538 if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1544 ether_addr_copy(mac_address,
1546 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1547 MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1548 if (fw_subtype_list) {
1550 i < MCDI_VAR_ARRAY_LEN(outlen,
1551 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1553 fw_subtype_list[i] = MCDI_ARRAY_WORD(
1554 outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1555 for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1556 fw_subtype_list[i] = 0;
1560 *capabilities = MCDI_DWORD(outbuf,
1561 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1563 *capabilities = MCDI_DWORD(outbuf,
1564 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1570 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1571 __func__, rc, (int)outlen);
1576 int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1578 MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1583 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1585 dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1587 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1588 MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1590 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1592 rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1597 int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1599 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1603 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1605 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1606 outbuf, sizeof(outbuf), &outlen);
1609 if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1614 *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1618 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1623 /* This function finds types using the new NVRAM_PARTITIONS mcdi. */
1624 static int efx_new_mcdi_nvram_types(struct efx_nic *efx, u32 *number,
1627 efx_dword_t *outbuf = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1635 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
1637 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
1638 outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2, &outlen);
1642 *number = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
1644 memcpy(nvram_types, MCDI_PTR(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID),
1645 *number * sizeof(u32));
1652 int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1653 size_t *size_out, size_t *erase_size_out,
1654 bool *protected_out)
1656 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1657 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1661 MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1663 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1664 outbuf, sizeof(outbuf), &outlen);
1667 if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1672 *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1673 *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1674 *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1675 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1679 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1683 static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1685 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1686 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1689 MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1691 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1692 outbuf, sizeof(outbuf), NULL);
1696 switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1697 case MC_CMD_NVRAM_TEST_PASS:
1698 case MC_CMD_NVRAM_TEST_NOTSUPP:
1705 /* This function tests nvram partitions using the new mcdi partition lookup scheme */
1706 int efx_new_mcdi_nvram_test_all(struct efx_nic *efx)
1708 u32 *nvram_types = kzalloc(MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX_MCDI2,
1710 unsigned int number;
1716 rc = efx_new_mcdi_nvram_types(efx, &number, nvram_types);
1720 /* Require at least one check */
1723 for (i = 0; i < number; i++) {
1724 if (nvram_types[i] == NVRAM_PARTITION_TYPE_PARTITION_MAP ||
1725 nvram_types[i] == NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG)
1728 rc = efx_mcdi_nvram_test(efx, nvram_types[i]);
1738 int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1744 rc = efx_mcdi_nvram_types(efx, &nvram_types);
1749 while (nvram_types != 0) {
1750 if (nvram_types & 1) {
1751 rc = efx_mcdi_nvram_test(efx, type);
1762 netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1765 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1769 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1770 * negative on error.
1772 static int efx_mcdi_read_assertion(struct efx_nic *efx)
1774 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1775 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1776 unsigned int flags, index;
1782 /* Attempt to read any stored assertion state before we reboot
1783 * the mcfw out of the assertion handler. Retry twice, once
1784 * because a boot-time assertion might cause this command to fail
1785 * with EINTR. And once again because GET_ASSERTS can race with
1786 * MC_CMD_REBOOT running on the other port. */
1789 MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1790 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1791 inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1792 outbuf, sizeof(outbuf), &outlen);
1795 } while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1798 efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1799 MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1803 if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1806 /* Print out any recorded assertion state */
1807 flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1808 if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1811 reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1812 ? "system-level assertion"
1813 : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1814 ? "thread-level assertion"
1815 : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1817 : "unknown assertion";
1818 netif_err(efx, hw, efx->net_dev,
1819 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1820 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1821 MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1823 /* Print out the registers */
1825 index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1827 netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1829 MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1835 static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1837 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1840 /* If the MC is running debug firmware, it might now be
1841 * waiting for a debugger to attach, but we just want it to
1842 * reboot. We set a flag that makes the command a no-op if it
1843 * has already done so.
1844 * The MCDI will thus return either 0 or -EIO.
1846 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1847 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1848 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1849 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1854 efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1859 int efx_mcdi_handle_assertion(struct efx_nic *efx)
1863 rc = efx_mcdi_read_assertion(efx);
1867 return efx_mcdi_exit_assertion(efx);
1870 int efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1872 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1874 BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1875 BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1876 BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1878 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1880 MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1882 return efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), NULL, 0, NULL);
1885 static int efx_mcdi_reset_func(struct efx_nic *efx)
1887 MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1890 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1891 MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1892 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1893 rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1898 static int efx_mcdi_reset_mc(struct efx_nic *efx)
1900 MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1903 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1904 MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1905 rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1907 /* White is black, and up is down */
1915 enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1917 return RESET_TYPE_RECOVER_OR_ALL;
1920 int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1924 /* If MCDI is down, we can't handle_assertion */
1925 if (method == RESET_TYPE_MCDI_TIMEOUT) {
1926 rc = pci_reset_function(efx->pci_dev);
1929 /* Re-enable polled MCDI completion */
1931 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1932 mcdi->mode = MCDI_MODE_POLL;
1937 /* Recover from a failed assertion pre-reset */
1938 rc = efx_mcdi_handle_assertion(efx);
1942 if (method == RESET_TYPE_DATAPATH)
1944 else if (method == RESET_TYPE_WORLD)
1945 return efx_mcdi_reset_mc(efx);
1947 return efx_mcdi_reset_func(efx);
1950 static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1951 const u8 *mac, int *id_out)
1953 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1954 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1958 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1959 MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1960 MC_CMD_FILTER_MODE_SIMPLE);
1961 ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1963 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1964 outbuf, sizeof(outbuf), &outlen);
1968 if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1973 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1979 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1986 efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
1988 return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1992 int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1994 MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1998 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1999 outbuf, sizeof(outbuf), &outlen);
2003 if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
2008 *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
2014 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2019 int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
2021 MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
2024 MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
2026 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
2031 int efx_mcdi_flush_rxqs(struct efx_nic *efx)
2033 struct efx_channel *channel;
2034 struct efx_rx_queue *rx_queue;
2035 MCDI_DECLARE_BUF(inbuf,
2036 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
2039 BUILD_BUG_ON(EFX_MAX_CHANNELS >
2040 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
2043 efx_for_each_channel(channel, efx) {
2044 efx_for_each_channel_rx_queue(rx_queue, channel) {
2045 if (rx_queue->flush_pending) {
2046 rx_queue->flush_pending = false;
2047 atomic_dec(&efx->rxq_flush_pending);
2048 MCDI_SET_ARRAY_DWORD(
2049 inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
2050 count, efx_rx_queue_index(rx_queue));
2056 rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
2057 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
2063 int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
2067 rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2071 int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2072 unsigned int *flags)
2074 MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2075 MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2079 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2080 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2081 MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2082 rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2083 outbuf, sizeof(outbuf), &outlen);
2090 if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2091 *flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2098 int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2099 unsigned int *enabled_out)
2101 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2105 rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2106 outbuf, sizeof(outbuf), &outlen);
2110 if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2116 *impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2119 *enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2124 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2125 * terrifying. The call site will have to deal with it though.
2127 netif_cond_dbg(efx, hw, efx->net_dev, rc == -ENOSYS, err,
2128 "%s: failed rc=%d\n", __func__, rc);
2132 /* Failure to read a privilege mask is never fatal, because we can always
2133 * carry on as though we didn't have the privilege we were interested in.
2134 * So use efx_mcdi_rpc_quiet().
2136 int efx_mcdi_get_privilege_mask(struct efx_nic *efx, u32 *mask)
2138 MCDI_DECLARE_BUF(fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
2139 MCDI_DECLARE_BUF(pm_inbuf, MC_CMD_PRIVILEGE_MASK_IN_LEN);
2140 MCDI_DECLARE_BUF(pm_outbuf, MC_CMD_PRIVILEGE_MASK_OUT_LEN);
2148 /* Get our function number */
2149 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0,
2150 fi_outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN,
2154 if (outlen < MC_CMD_GET_FUNCTION_INFO_OUT_LEN)
2157 pf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_PF);
2158 vf = MCDI_DWORD(fi_outbuf, GET_FUNCTION_INFO_OUT_VF);
2160 MCDI_POPULATE_DWORD_2(pm_inbuf, PRIVILEGE_MASK_IN_FUNCTION,
2161 PRIVILEGE_MASK_IN_FUNCTION_PF, pf,
2162 PRIVILEGE_MASK_IN_FUNCTION_VF, vf);
2164 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PRIVILEGE_MASK,
2165 pm_inbuf, sizeof(pm_inbuf),
2166 pm_outbuf, sizeof(pm_outbuf), &outlen);
2170 if (outlen < MC_CMD_PRIVILEGE_MASK_OUT_LEN)
2173 *mask = MCDI_DWORD(pm_outbuf, PRIVILEGE_MASK_OUT_OLD_MASK);
2178 #ifdef CONFIG_SFC_MTD
2180 #define EFX_MCDI_NVRAM_LEN_MAX 128
2182 static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2184 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_V2_IN_LEN);
2187 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2188 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_START_V2_IN_FLAGS,
2189 NVRAM_UPDATE_START_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2192 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2194 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2200 static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2201 loff_t offset, u8 *buffer, size_t length)
2203 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_V2_LEN);
2204 MCDI_DECLARE_BUF(outbuf,
2205 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2209 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2210 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2211 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2212 MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_V2_MODE,
2213 MC_CMD_NVRAM_READ_IN_V2_DEFAULT);
2215 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2216 outbuf, sizeof(outbuf), &outlen);
2220 memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2224 static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2225 loff_t offset, const u8 *buffer, size_t length)
2227 MCDI_DECLARE_BUF(inbuf,
2228 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2231 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2232 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2233 MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2234 memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2236 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2238 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2239 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2244 static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2245 loff_t offset, size_t length)
2247 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2250 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2251 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2252 MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2254 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2256 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2261 static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2263 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_IN_LEN);
2264 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN);
2268 MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2269 /* Always set this flag. Old firmware ignores it */
2270 MCDI_POPULATE_DWORD_1(inbuf, NVRAM_UPDATE_FINISH_V2_IN_FLAGS,
2271 NVRAM_UPDATE_FINISH_V2_IN_FLAG_REPORT_VERIFY_RESULT,
2274 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2275 outbuf, sizeof(outbuf), &outlen);
2276 if (!rc && outlen >= MC_CMD_NVRAM_UPDATE_FINISH_V2_OUT_LEN) {
2277 rc2 = MCDI_DWORD(outbuf, NVRAM_UPDATE_FINISH_V2_OUT_RESULT_CODE);
2278 if (rc2 != MC_CMD_NVRAM_VERIFY_RC_SUCCESS)
2279 netif_err(efx, drv, efx->net_dev,
2280 "NVRAM update failed verification with code 0x%x\n",
2283 case MC_CMD_NVRAM_VERIFY_RC_SUCCESS:
2285 case MC_CMD_NVRAM_VERIFY_RC_CMS_CHECK_FAILED:
2286 case MC_CMD_NVRAM_VERIFY_RC_MESSAGE_DIGEST_CHECK_FAILED:
2287 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHECK_FAILED:
2288 case MC_CMD_NVRAM_VERIFY_RC_TRUSTED_APPROVERS_CHECK_FAILED:
2289 case MC_CMD_NVRAM_VERIFY_RC_SIGNATURE_CHAIN_CHECK_FAILED:
2292 case MC_CMD_NVRAM_VERIFY_RC_INVALID_CMS_FORMAT:
2293 case MC_CMD_NVRAM_VERIFY_RC_BAD_MESSAGE_DIGEST:
2296 case MC_CMD_NVRAM_VERIFY_RC_NO_VALID_SIGNATURES:
2297 case MC_CMD_NVRAM_VERIFY_RC_NO_TRUSTED_APPROVERS:
2298 case MC_CMD_NVRAM_VERIFY_RC_NO_SIGNATURE_MATCH:
2302 netif_err(efx, drv, efx->net_dev,
2303 "Unknown response to NVRAM_UPDATE_FINISH\n");
2311 int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2312 size_t len, size_t *retlen, u8 *buffer)
2314 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2315 struct efx_nic *efx = mtd->priv;
2316 loff_t offset = start;
2317 loff_t end = min_t(loff_t, start + len, mtd->size);
2321 while (offset < end) {
2322 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2323 rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2331 *retlen = offset - start;
2335 int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2337 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2338 struct efx_nic *efx = mtd->priv;
2339 loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2340 loff_t end = min_t(loff_t, start + len, mtd->size);
2341 size_t chunk = part->common.mtd.erasesize;
2344 if (!part->updating) {
2345 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2348 part->updating = true;
2351 /* The MCDI interface can in fact do multiple erase blocks at once;
2352 * but erasing may be slow, so we make multiple calls here to avoid
2353 * tripping the MCDI RPC timeout. */
2354 while (offset < end) {
2355 rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2365 int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2366 size_t len, size_t *retlen, const u8 *buffer)
2368 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2369 struct efx_nic *efx = mtd->priv;
2370 loff_t offset = start;
2371 loff_t end = min_t(loff_t, start + len, mtd->size);
2375 if (!part->updating) {
2376 rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2379 part->updating = true;
2382 while (offset < end) {
2383 chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2384 rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2392 *retlen = offset - start;
2396 int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2398 struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2399 struct efx_nic *efx = mtd->priv;
2402 if (part->updating) {
2403 part->updating = false;
2404 rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2410 void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2412 struct efx_mcdi_mtd_partition *mcdi_part =
2413 container_of(part, struct efx_mcdi_mtd_partition, common);
2414 struct efx_nic *efx = part->mtd.priv;
2416 snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2417 efx->name, part->type_name, mcdi_part->fw_subtype);
2420 #endif /* CONFIG_SFC_MTD */