]> Git Repo - linux.git/blob - drivers/net/ethernet/qlogic/qede/qede_main.c
Merge tag 'cxl-for-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl
[linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qede NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6
7 #include <linux/crash_dump.h>
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/device.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/skbuff.h>
14 #include <linux/errno.h>
15 #include <linux/list.h>
16 #include <linux/string.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <asm/byteorder.h>
20 #include <asm/param.h>
21 #include <linux/io.h>
22 #include <linux/netdev_features.h>
23 #include <linux/udp.h>
24 #include <linux/tcp.h>
25 #include <net/udp_tunnel.h>
26 #include <linux/ip.h>
27 #include <net/ipv6.h>
28 #include <net/tcp.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 #include <linux/pkt_sched.h>
32 #include <linux/ethtool.h>
33 #include <linux/in.h>
34 #include <linux/random.h>
35 #include <net/ip6_checksum.h>
36 #include <linux/bitops.h>
37 #include <linux/vmalloc.h>
38 #include <linux/aer.h>
39 #include "qede.h"
40 #include "qede_ptp.h"
41
42 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
43 MODULE_LICENSE("GPL");
44
45 static uint debug;
46 module_param(debug, uint, 0);
47 MODULE_PARM_DESC(debug, " Default debug msglevel");
48
49 static const struct qed_eth_ops *qed_ops;
50
51 #define CHIP_NUM_57980S_40              0x1634
52 #define CHIP_NUM_57980S_10              0x1666
53 #define CHIP_NUM_57980S_MF              0x1636
54 #define CHIP_NUM_57980S_100             0x1644
55 #define CHIP_NUM_57980S_50              0x1654
56 #define CHIP_NUM_57980S_25              0x1656
57 #define CHIP_NUM_57980S_IOV             0x1664
58 #define CHIP_NUM_AH                     0x8070
59 #define CHIP_NUM_AH_IOV                 0x8090
60
61 #ifndef PCI_DEVICE_ID_NX2_57980E
62 #define PCI_DEVICE_ID_57980S_40         CHIP_NUM_57980S_40
63 #define PCI_DEVICE_ID_57980S_10         CHIP_NUM_57980S_10
64 #define PCI_DEVICE_ID_57980S_MF         CHIP_NUM_57980S_MF
65 #define PCI_DEVICE_ID_57980S_100        CHIP_NUM_57980S_100
66 #define PCI_DEVICE_ID_57980S_50         CHIP_NUM_57980S_50
67 #define PCI_DEVICE_ID_57980S_25         CHIP_NUM_57980S_25
68 #define PCI_DEVICE_ID_57980S_IOV        CHIP_NUM_57980S_IOV
69 #define PCI_DEVICE_ID_AH                CHIP_NUM_AH
70 #define PCI_DEVICE_ID_AH_IOV            CHIP_NUM_AH_IOV
71
72 #endif
73
74 enum qede_pci_private {
75         QEDE_PRIVATE_PF,
76         QEDE_PRIVATE_VF
77 };
78
79 static const struct pci_device_id qede_pci_tbl[] = {
80         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), QEDE_PRIVATE_PF},
81         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), QEDE_PRIVATE_PF},
82         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), QEDE_PRIVATE_PF},
83         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), QEDE_PRIVATE_PF},
84         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), QEDE_PRIVATE_PF},
85         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), QEDE_PRIVATE_PF},
86 #ifdef CONFIG_QED_SRIOV
87         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_IOV), QEDE_PRIVATE_VF},
88 #endif
89         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH), QEDE_PRIVATE_PF},
90 #ifdef CONFIG_QED_SRIOV
91         {PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_AH_IOV), QEDE_PRIVATE_VF},
92 #endif
93         { 0 }
94 };
95
96 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
97
98 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
99 static pci_ers_result_t
100 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state);
101
102 #define TX_TIMEOUT              (5 * HZ)
103
104 /* Utilize last protocol index for XDP */
105 #define XDP_PI  11
106
107 static void qede_remove(struct pci_dev *pdev);
108 static void qede_shutdown(struct pci_dev *pdev);
109 static void qede_link_update(void *dev, struct qed_link_output *link);
110 static void qede_schedule_recovery_handler(void *dev);
111 static void qede_recovery_handler(struct qede_dev *edev);
112 static void qede_schedule_hw_err_handler(void *dev,
113                                          enum qed_hw_err_type err_type);
114 static void qede_get_eth_tlv_data(void *edev, void *data);
115 static void qede_get_generic_tlv_data(void *edev,
116                                       struct qed_generic_tlvs *data);
117 static void qede_generic_hw_err_handler(struct qede_dev *edev);
118 #ifdef CONFIG_QED_SRIOV
119 static int qede_set_vf_vlan(struct net_device *ndev, int vf, u16 vlan, u8 qos,
120                             __be16 vlan_proto)
121 {
122         struct qede_dev *edev = netdev_priv(ndev);
123
124         if (vlan > 4095) {
125                 DP_NOTICE(edev, "Illegal vlan value %d\n", vlan);
126                 return -EINVAL;
127         }
128
129         if (vlan_proto != htons(ETH_P_8021Q))
130                 return -EPROTONOSUPPORT;
131
132         DP_VERBOSE(edev, QED_MSG_IOV, "Setting Vlan 0x%04x to VF [%d]\n",
133                    vlan, vf);
134
135         return edev->ops->iov->set_vlan(edev->cdev, vlan, vf);
136 }
137
138 static int qede_set_vf_mac(struct net_device *ndev, int vfidx, u8 *mac)
139 {
140         struct qede_dev *edev = netdev_priv(ndev);
141
142         DP_VERBOSE(edev, QED_MSG_IOV, "Setting MAC %pM to VF [%d]\n", mac, vfidx);
143
144         if (!is_valid_ether_addr(mac)) {
145                 DP_VERBOSE(edev, QED_MSG_IOV, "MAC address isn't valid\n");
146                 return -EINVAL;
147         }
148
149         return edev->ops->iov->set_mac(edev->cdev, mac, vfidx);
150 }
151
152 static int qede_sriov_configure(struct pci_dev *pdev, int num_vfs_param)
153 {
154         struct qede_dev *edev = netdev_priv(pci_get_drvdata(pdev));
155         struct qed_dev_info *qed_info = &edev->dev_info.common;
156         struct qed_update_vport_params *vport_params;
157         int rc;
158
159         vport_params = vzalloc(sizeof(*vport_params));
160         if (!vport_params)
161                 return -ENOMEM;
162         DP_VERBOSE(edev, QED_MSG_IOV, "Requested %d VFs\n", num_vfs_param);
163
164         rc = edev->ops->iov->configure(edev->cdev, num_vfs_param);
165
166         /* Enable/Disable Tx switching for PF */
167         if ((rc == num_vfs_param) && netif_running(edev->ndev) &&
168             !qed_info->b_inter_pf_switch && qed_info->tx_switching) {
169                 vport_params->vport_id = 0;
170                 vport_params->update_tx_switching_flg = 1;
171                 vport_params->tx_switching_flg = num_vfs_param ? 1 : 0;
172                 edev->ops->vport_update(edev->cdev, vport_params);
173         }
174
175         vfree(vport_params);
176         return rc;
177 }
178 #endif
179
180 static const struct pci_error_handlers qede_err_handler = {
181         .error_detected = qede_io_error_detected,
182 };
183
184 static struct pci_driver qede_pci_driver = {
185         .name = "qede",
186         .id_table = qede_pci_tbl,
187         .probe = qede_probe,
188         .remove = qede_remove,
189         .shutdown = qede_shutdown,
190 #ifdef CONFIG_QED_SRIOV
191         .sriov_configure = qede_sriov_configure,
192 #endif
193         .err_handler = &qede_err_handler,
194 };
195
196 static struct qed_eth_cb_ops qede_ll_ops = {
197         {
198 #ifdef CONFIG_RFS_ACCEL
199                 .arfs_filter_op = qede_arfs_filter_op,
200 #endif
201                 .link_update = qede_link_update,
202                 .schedule_recovery_handler = qede_schedule_recovery_handler,
203                 .schedule_hw_err_handler = qede_schedule_hw_err_handler,
204                 .get_generic_tlv_data = qede_get_generic_tlv_data,
205                 .get_protocol_tlv_data = qede_get_eth_tlv_data,
206         },
207         .force_mac = qede_force_mac,
208         .ports_update = qede_udp_ports_update,
209 };
210
211 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
212                              void *ptr)
213 {
214         struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
215         struct ethtool_drvinfo drvinfo;
216         struct qede_dev *edev;
217
218         if (event != NETDEV_CHANGENAME && event != NETDEV_CHANGEADDR)
219                 goto done;
220
221         /* Check whether this is a qede device */
222         if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
223                 goto done;
224
225         memset(&drvinfo, 0, sizeof(drvinfo));
226         ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
227         if (strcmp(drvinfo.driver, "qede"))
228                 goto done;
229         edev = netdev_priv(ndev);
230
231         switch (event) {
232         case NETDEV_CHANGENAME:
233                 /* Notify qed of the name change */
234                 if (!edev->ops || !edev->ops->common)
235                         goto done;
236                 edev->ops->common->set_name(edev->cdev, edev->ndev->name);
237                 break;
238         case NETDEV_CHANGEADDR:
239                 edev = netdev_priv(ndev);
240                 qede_rdma_event_changeaddr(edev);
241                 break;
242         }
243
244 done:
245         return NOTIFY_DONE;
246 }
247
248 static struct notifier_block qede_netdev_notifier = {
249         .notifier_call = qede_netdev_event,
250 };
251
252 static
253 int __init qede_init(void)
254 {
255         int ret;
256
257         pr_info("qede init: QLogic FastLinQ 4xxxx Ethernet Driver qede\n");
258
259         qede_forced_speed_maps_init();
260
261         qed_ops = qed_get_eth_ops();
262         if (!qed_ops) {
263                 pr_notice("Failed to get qed ethtool operations\n");
264                 return -EINVAL;
265         }
266
267         /* Must register notifier before pci ops, since we might miss
268          * interface rename after pci probe and netdev registration.
269          */
270         ret = register_netdevice_notifier(&qede_netdev_notifier);
271         if (ret) {
272                 pr_notice("Failed to register netdevice_notifier\n");
273                 qed_put_eth_ops();
274                 return -EINVAL;
275         }
276
277         ret = pci_register_driver(&qede_pci_driver);
278         if (ret) {
279                 pr_notice("Failed to register driver\n");
280                 unregister_netdevice_notifier(&qede_netdev_notifier);
281                 qed_put_eth_ops();
282                 return -EINVAL;
283         }
284
285         return 0;
286 }
287
288 static void __exit qede_cleanup(void)
289 {
290         if (debug & QED_LOG_INFO_MASK)
291                 pr_info("qede_cleanup called\n");
292
293         unregister_netdevice_notifier(&qede_netdev_notifier);
294         pci_unregister_driver(&qede_pci_driver);
295         qed_put_eth_ops();
296 }
297
298 module_init(qede_init);
299 module_exit(qede_cleanup);
300
301 static int qede_open(struct net_device *ndev);
302 static int qede_close(struct net_device *ndev);
303
304 void qede_fill_by_demand_stats(struct qede_dev *edev)
305 {
306         struct qede_stats_common *p_common = &edev->stats.common;
307         struct qed_eth_stats stats;
308
309         edev->ops->get_vport_stats(edev->cdev, &stats);
310
311         p_common->no_buff_discards = stats.common.no_buff_discards;
312         p_common->packet_too_big_discard = stats.common.packet_too_big_discard;
313         p_common->ttl0_discard = stats.common.ttl0_discard;
314         p_common->rx_ucast_bytes = stats.common.rx_ucast_bytes;
315         p_common->rx_mcast_bytes = stats.common.rx_mcast_bytes;
316         p_common->rx_bcast_bytes = stats.common.rx_bcast_bytes;
317         p_common->rx_ucast_pkts = stats.common.rx_ucast_pkts;
318         p_common->rx_mcast_pkts = stats.common.rx_mcast_pkts;
319         p_common->rx_bcast_pkts = stats.common.rx_bcast_pkts;
320         p_common->mftag_filter_discards = stats.common.mftag_filter_discards;
321         p_common->mac_filter_discards = stats.common.mac_filter_discards;
322         p_common->gft_filter_drop = stats.common.gft_filter_drop;
323
324         p_common->tx_ucast_bytes = stats.common.tx_ucast_bytes;
325         p_common->tx_mcast_bytes = stats.common.tx_mcast_bytes;
326         p_common->tx_bcast_bytes = stats.common.tx_bcast_bytes;
327         p_common->tx_ucast_pkts = stats.common.tx_ucast_pkts;
328         p_common->tx_mcast_pkts = stats.common.tx_mcast_pkts;
329         p_common->tx_bcast_pkts = stats.common.tx_bcast_pkts;
330         p_common->tx_err_drop_pkts = stats.common.tx_err_drop_pkts;
331         p_common->coalesced_pkts = stats.common.tpa_coalesced_pkts;
332         p_common->coalesced_events = stats.common.tpa_coalesced_events;
333         p_common->coalesced_aborts_num = stats.common.tpa_aborts_num;
334         p_common->non_coalesced_pkts = stats.common.tpa_not_coalesced_pkts;
335         p_common->coalesced_bytes = stats.common.tpa_coalesced_bytes;
336
337         p_common->rx_64_byte_packets = stats.common.rx_64_byte_packets;
338         p_common->rx_65_to_127_byte_packets =
339             stats.common.rx_65_to_127_byte_packets;
340         p_common->rx_128_to_255_byte_packets =
341             stats.common.rx_128_to_255_byte_packets;
342         p_common->rx_256_to_511_byte_packets =
343             stats.common.rx_256_to_511_byte_packets;
344         p_common->rx_512_to_1023_byte_packets =
345             stats.common.rx_512_to_1023_byte_packets;
346         p_common->rx_1024_to_1518_byte_packets =
347             stats.common.rx_1024_to_1518_byte_packets;
348         p_common->rx_crc_errors = stats.common.rx_crc_errors;
349         p_common->rx_mac_crtl_frames = stats.common.rx_mac_crtl_frames;
350         p_common->rx_pause_frames = stats.common.rx_pause_frames;
351         p_common->rx_pfc_frames = stats.common.rx_pfc_frames;
352         p_common->rx_align_errors = stats.common.rx_align_errors;
353         p_common->rx_carrier_errors = stats.common.rx_carrier_errors;
354         p_common->rx_oversize_packets = stats.common.rx_oversize_packets;
355         p_common->rx_jabbers = stats.common.rx_jabbers;
356         p_common->rx_undersize_packets = stats.common.rx_undersize_packets;
357         p_common->rx_fragments = stats.common.rx_fragments;
358         p_common->tx_64_byte_packets = stats.common.tx_64_byte_packets;
359         p_common->tx_65_to_127_byte_packets =
360             stats.common.tx_65_to_127_byte_packets;
361         p_common->tx_128_to_255_byte_packets =
362             stats.common.tx_128_to_255_byte_packets;
363         p_common->tx_256_to_511_byte_packets =
364             stats.common.tx_256_to_511_byte_packets;
365         p_common->tx_512_to_1023_byte_packets =
366             stats.common.tx_512_to_1023_byte_packets;
367         p_common->tx_1024_to_1518_byte_packets =
368             stats.common.tx_1024_to_1518_byte_packets;
369         p_common->tx_pause_frames = stats.common.tx_pause_frames;
370         p_common->tx_pfc_frames = stats.common.tx_pfc_frames;
371         p_common->brb_truncates = stats.common.brb_truncates;
372         p_common->brb_discards = stats.common.brb_discards;
373         p_common->tx_mac_ctrl_frames = stats.common.tx_mac_ctrl_frames;
374         p_common->link_change_count = stats.common.link_change_count;
375         p_common->ptp_skip_txts = edev->ptp_skip_txts;
376
377         if (QEDE_IS_BB(edev)) {
378                 struct qede_stats_bb *p_bb = &edev->stats.bb;
379
380                 p_bb->rx_1519_to_1522_byte_packets =
381                     stats.bb.rx_1519_to_1522_byte_packets;
382                 p_bb->rx_1519_to_2047_byte_packets =
383                     stats.bb.rx_1519_to_2047_byte_packets;
384                 p_bb->rx_2048_to_4095_byte_packets =
385                     stats.bb.rx_2048_to_4095_byte_packets;
386                 p_bb->rx_4096_to_9216_byte_packets =
387                     stats.bb.rx_4096_to_9216_byte_packets;
388                 p_bb->rx_9217_to_16383_byte_packets =
389                     stats.bb.rx_9217_to_16383_byte_packets;
390                 p_bb->tx_1519_to_2047_byte_packets =
391                     stats.bb.tx_1519_to_2047_byte_packets;
392                 p_bb->tx_2048_to_4095_byte_packets =
393                     stats.bb.tx_2048_to_4095_byte_packets;
394                 p_bb->tx_4096_to_9216_byte_packets =
395                     stats.bb.tx_4096_to_9216_byte_packets;
396                 p_bb->tx_9217_to_16383_byte_packets =
397                     stats.bb.tx_9217_to_16383_byte_packets;
398                 p_bb->tx_lpi_entry_count = stats.bb.tx_lpi_entry_count;
399                 p_bb->tx_total_collisions = stats.bb.tx_total_collisions;
400         } else {
401                 struct qede_stats_ah *p_ah = &edev->stats.ah;
402
403                 p_ah->rx_1519_to_max_byte_packets =
404                     stats.ah.rx_1519_to_max_byte_packets;
405                 p_ah->tx_1519_to_max_byte_packets =
406                     stats.ah.tx_1519_to_max_byte_packets;
407         }
408 }
409
410 static void qede_get_stats64(struct net_device *dev,
411                              struct rtnl_link_stats64 *stats)
412 {
413         struct qede_dev *edev = netdev_priv(dev);
414         struct qede_stats_common *p_common;
415
416         qede_fill_by_demand_stats(edev);
417         p_common = &edev->stats.common;
418
419         stats->rx_packets = p_common->rx_ucast_pkts + p_common->rx_mcast_pkts +
420                             p_common->rx_bcast_pkts;
421         stats->tx_packets = p_common->tx_ucast_pkts + p_common->tx_mcast_pkts +
422                             p_common->tx_bcast_pkts;
423
424         stats->rx_bytes = p_common->rx_ucast_bytes + p_common->rx_mcast_bytes +
425                           p_common->rx_bcast_bytes;
426         stats->tx_bytes = p_common->tx_ucast_bytes + p_common->tx_mcast_bytes +
427                           p_common->tx_bcast_bytes;
428
429         stats->tx_errors = p_common->tx_err_drop_pkts;
430         stats->multicast = p_common->rx_mcast_pkts + p_common->rx_bcast_pkts;
431
432         stats->rx_fifo_errors = p_common->no_buff_discards;
433
434         if (QEDE_IS_BB(edev))
435                 stats->collisions = edev->stats.bb.tx_total_collisions;
436         stats->rx_crc_errors = p_common->rx_crc_errors;
437         stats->rx_frame_errors = p_common->rx_align_errors;
438 }
439
440 #ifdef CONFIG_QED_SRIOV
441 static int qede_get_vf_config(struct net_device *dev, int vfidx,
442                               struct ifla_vf_info *ivi)
443 {
444         struct qede_dev *edev = netdev_priv(dev);
445
446         if (!edev->ops)
447                 return -EINVAL;
448
449         return edev->ops->iov->get_config(edev->cdev, vfidx, ivi);
450 }
451
452 static int qede_set_vf_rate(struct net_device *dev, int vfidx,
453                             int min_tx_rate, int max_tx_rate)
454 {
455         struct qede_dev *edev = netdev_priv(dev);
456
457         return edev->ops->iov->set_rate(edev->cdev, vfidx, min_tx_rate,
458                                         max_tx_rate);
459 }
460
461 static int qede_set_vf_spoofchk(struct net_device *dev, int vfidx, bool val)
462 {
463         struct qede_dev *edev = netdev_priv(dev);
464
465         if (!edev->ops)
466                 return -EINVAL;
467
468         return edev->ops->iov->set_spoof(edev->cdev, vfidx, val);
469 }
470
471 static int qede_set_vf_link_state(struct net_device *dev, int vfidx,
472                                   int link_state)
473 {
474         struct qede_dev *edev = netdev_priv(dev);
475
476         if (!edev->ops)
477                 return -EINVAL;
478
479         return edev->ops->iov->set_link_state(edev->cdev, vfidx, link_state);
480 }
481
482 static int qede_set_vf_trust(struct net_device *dev, int vfidx, bool setting)
483 {
484         struct qede_dev *edev = netdev_priv(dev);
485
486         if (!edev->ops)
487                 return -EINVAL;
488
489         return edev->ops->iov->set_trust(edev->cdev, vfidx, setting);
490 }
491 #endif
492
493 static int qede_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
494 {
495         struct qede_dev *edev = netdev_priv(dev);
496
497         if (!netif_running(dev))
498                 return -EAGAIN;
499
500         switch (cmd) {
501         case SIOCSHWTSTAMP:
502                 return qede_ptp_hw_ts(edev, ifr);
503         default:
504                 DP_VERBOSE(edev, QED_MSG_DEBUG,
505                            "default IOCTL cmd 0x%x\n", cmd);
506                 return -EOPNOTSUPP;
507         }
508
509         return 0;
510 }
511
512 static void qede_fp_sb_dump(struct qede_dev *edev, struct qede_fastpath *fp)
513 {
514         char *p_sb = (char *)fp->sb_info->sb_virt;
515         u32 sb_size, i;
516
517         sb_size = sizeof(struct status_block);
518
519         for (i = 0; i < sb_size; i += 8)
520                 DP_NOTICE(edev,
521                           "%02hhX %02hhX %02hhX %02hhX  %02hhX %02hhX %02hhX %02hhX\n",
522                           p_sb[i], p_sb[i + 1], p_sb[i + 2], p_sb[i + 3],
523                           p_sb[i + 4], p_sb[i + 5], p_sb[i + 6], p_sb[i + 7]);
524 }
525
526 static void
527 qede_txq_fp_log_metadata(struct qede_dev *edev,
528                          struct qede_fastpath *fp, struct qede_tx_queue *txq)
529 {
530         struct qed_chain *p_chain = &txq->tx_pbl;
531
532         /* Dump txq/fp/sb ids etc. other metadata */
533         DP_NOTICE(edev,
534                   "fpid 0x%x sbid 0x%x txqid [0x%x] ndev_qid [0x%x] cos [0x%x] p_chain %p cap %d size %d jiffies %lu HZ 0x%x\n",
535                   fp->id, fp->sb_info->igu_sb_id, txq->index, txq->ndev_txq_id, txq->cos,
536                   p_chain, p_chain->capacity, p_chain->size, jiffies, HZ);
537
538         /* Dump all the relevant prod/cons indexes */
539         DP_NOTICE(edev,
540                   "hw cons %04x sw_tx_prod=0x%x, sw_tx_cons=0x%x, bd_prod 0x%x bd_cons 0x%x\n",
541                   le16_to_cpu(*txq->hw_cons_ptr), txq->sw_tx_prod, txq->sw_tx_cons,
542                   qed_chain_get_prod_idx(p_chain), qed_chain_get_cons_idx(p_chain));
543 }
544
545 static void
546 qede_tx_log_print(struct qede_dev *edev, struct qede_fastpath *fp, struct qede_tx_queue *txq)
547 {
548         struct qed_sb_info_dbg sb_dbg;
549         int rc;
550
551         /* sb info */
552         qede_fp_sb_dump(edev, fp);
553
554         memset(&sb_dbg, 0, sizeof(sb_dbg));
555         rc = edev->ops->common->get_sb_info(edev->cdev, fp->sb_info, (u16)fp->id, &sb_dbg);
556
557         DP_NOTICE(edev, "IGU: prod %08x cons %08x CAU Tx %04x\n",
558                   sb_dbg.igu_prod, sb_dbg.igu_cons, sb_dbg.pi[TX_PI(txq->cos)]);
559
560         /* report to mfw */
561         edev->ops->common->mfw_report(edev->cdev,
562                                       "Txq[%d]: FW cons [host] %04x, SW cons %04x, SW prod %04x [Jiffies %lu]\n",
563                                       txq->index, le16_to_cpu(*txq->hw_cons_ptr),
564                                       qed_chain_get_cons_idx(&txq->tx_pbl),
565                                       qed_chain_get_prod_idx(&txq->tx_pbl), jiffies);
566         if (!rc)
567                 edev->ops->common->mfw_report(edev->cdev,
568                                               "Txq[%d]: SB[0x%04x] - IGU: prod %08x cons %08x CAU Tx %04x\n",
569                                               txq->index, fp->sb_info->igu_sb_id,
570                                               sb_dbg.igu_prod, sb_dbg.igu_cons,
571                                               sb_dbg.pi[TX_PI(txq->cos)]);
572 }
573
574 static void qede_tx_timeout(struct net_device *dev, unsigned int txqueue)
575 {
576         struct qede_dev *edev = netdev_priv(dev);
577         int i;
578
579         netif_carrier_off(dev);
580         DP_NOTICE(edev, "TX timeout on queue %u!\n", txqueue);
581
582         for_each_queue(i) {
583                 struct qede_tx_queue *txq;
584                 struct qede_fastpath *fp;
585                 int cos;
586
587                 fp = &edev->fp_array[i];
588                 if (!(fp->type & QEDE_FASTPATH_TX))
589                         continue;
590
591                 for_each_cos_in_txq(edev, cos) {
592                         txq = &fp->txq[cos];
593
594                         /* Dump basic metadata for all queues */
595                         qede_txq_fp_log_metadata(edev, fp, txq);
596
597                         if (qed_chain_get_cons_idx(&txq->tx_pbl) !=
598                             qed_chain_get_prod_idx(&txq->tx_pbl))
599                                 qede_tx_log_print(edev, fp, txq);
600                 }
601         }
602
603         if (IS_VF(edev))
604                 return;
605
606         if (test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
607             edev->state == QEDE_STATE_RECOVERY) {
608                 DP_INFO(edev,
609                         "Avoid handling a Tx timeout while another HW error is being handled\n");
610                 return;
611         }
612
613         set_bit(QEDE_ERR_GET_DBG_INFO, &edev->err_flags);
614         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
615         schedule_delayed_work(&edev->sp_task, 0);
616 }
617
618 static int qede_setup_tc(struct net_device *ndev, u8 num_tc)
619 {
620         struct qede_dev *edev = netdev_priv(ndev);
621         int cos, count, offset;
622
623         if (num_tc > edev->dev_info.num_tc)
624                 return -EINVAL;
625
626         netdev_reset_tc(ndev);
627         netdev_set_num_tc(ndev, num_tc);
628
629         for_each_cos_in_txq(edev, cos) {
630                 count = QEDE_TSS_COUNT(edev);
631                 offset = cos * QEDE_TSS_COUNT(edev);
632                 netdev_set_tc_queue(ndev, cos, count, offset);
633         }
634
635         return 0;
636 }
637
638 static int
639 qede_set_flower(struct qede_dev *edev, struct flow_cls_offload *f,
640                 __be16 proto)
641 {
642         switch (f->command) {
643         case FLOW_CLS_REPLACE:
644                 return qede_add_tc_flower_fltr(edev, proto, f);
645         case FLOW_CLS_DESTROY:
646                 return qede_delete_flow_filter(edev, f->cookie);
647         default:
648                 return -EOPNOTSUPP;
649         }
650 }
651
652 static int qede_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
653                                   void *cb_priv)
654 {
655         struct flow_cls_offload *f;
656         struct qede_dev *edev = cb_priv;
657
658         if (!tc_cls_can_offload_and_chain0(edev->ndev, type_data))
659                 return -EOPNOTSUPP;
660
661         switch (type) {
662         case TC_SETUP_CLSFLOWER:
663                 f = type_data;
664                 return qede_set_flower(edev, f, f->common.protocol);
665         default:
666                 return -EOPNOTSUPP;
667         }
668 }
669
670 static LIST_HEAD(qede_block_cb_list);
671
672 static int
673 qede_setup_tc_offload(struct net_device *dev, enum tc_setup_type type,
674                       void *type_data)
675 {
676         struct qede_dev *edev = netdev_priv(dev);
677         struct tc_mqprio_qopt *mqprio;
678
679         switch (type) {
680         case TC_SETUP_BLOCK:
681                 return flow_block_cb_setup_simple(type_data,
682                                                   &qede_block_cb_list,
683                                                   qede_setup_tc_block_cb,
684                                                   edev, edev, true);
685         case TC_SETUP_QDISC_MQPRIO:
686                 mqprio = type_data;
687
688                 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
689                 return qede_setup_tc(dev, mqprio->num_tc);
690         default:
691                 return -EOPNOTSUPP;
692         }
693 }
694
695 static const struct net_device_ops qede_netdev_ops = {
696         .ndo_open               = qede_open,
697         .ndo_stop               = qede_close,
698         .ndo_start_xmit         = qede_start_xmit,
699         .ndo_select_queue       = qede_select_queue,
700         .ndo_set_rx_mode        = qede_set_rx_mode,
701         .ndo_set_mac_address    = qede_set_mac_addr,
702         .ndo_validate_addr      = eth_validate_addr,
703         .ndo_change_mtu         = qede_change_mtu,
704         .ndo_eth_ioctl          = qede_ioctl,
705         .ndo_tx_timeout         = qede_tx_timeout,
706 #ifdef CONFIG_QED_SRIOV
707         .ndo_set_vf_mac         = qede_set_vf_mac,
708         .ndo_set_vf_vlan        = qede_set_vf_vlan,
709         .ndo_set_vf_trust       = qede_set_vf_trust,
710 #endif
711         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
712         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
713         .ndo_fix_features       = qede_fix_features,
714         .ndo_set_features       = qede_set_features,
715         .ndo_get_stats64        = qede_get_stats64,
716 #ifdef CONFIG_QED_SRIOV
717         .ndo_set_vf_link_state  = qede_set_vf_link_state,
718         .ndo_set_vf_spoofchk    = qede_set_vf_spoofchk,
719         .ndo_get_vf_config      = qede_get_vf_config,
720         .ndo_set_vf_rate        = qede_set_vf_rate,
721 #endif
722         .ndo_features_check     = qede_features_check,
723         .ndo_bpf                = qede_xdp,
724 #ifdef CONFIG_RFS_ACCEL
725         .ndo_rx_flow_steer      = qede_rx_flow_steer,
726 #endif
727         .ndo_xdp_xmit           = qede_xdp_transmit,
728         .ndo_setup_tc           = qede_setup_tc_offload,
729 };
730
731 static const struct net_device_ops qede_netdev_vf_ops = {
732         .ndo_open               = qede_open,
733         .ndo_stop               = qede_close,
734         .ndo_start_xmit         = qede_start_xmit,
735         .ndo_select_queue       = qede_select_queue,
736         .ndo_set_rx_mode        = qede_set_rx_mode,
737         .ndo_set_mac_address    = qede_set_mac_addr,
738         .ndo_validate_addr      = eth_validate_addr,
739         .ndo_change_mtu         = qede_change_mtu,
740         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
741         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
742         .ndo_fix_features       = qede_fix_features,
743         .ndo_set_features       = qede_set_features,
744         .ndo_get_stats64        = qede_get_stats64,
745         .ndo_features_check     = qede_features_check,
746 };
747
748 static const struct net_device_ops qede_netdev_vf_xdp_ops = {
749         .ndo_open               = qede_open,
750         .ndo_stop               = qede_close,
751         .ndo_start_xmit         = qede_start_xmit,
752         .ndo_select_queue       = qede_select_queue,
753         .ndo_set_rx_mode        = qede_set_rx_mode,
754         .ndo_set_mac_address    = qede_set_mac_addr,
755         .ndo_validate_addr      = eth_validate_addr,
756         .ndo_change_mtu         = qede_change_mtu,
757         .ndo_vlan_rx_add_vid    = qede_vlan_rx_add_vid,
758         .ndo_vlan_rx_kill_vid   = qede_vlan_rx_kill_vid,
759         .ndo_fix_features       = qede_fix_features,
760         .ndo_set_features       = qede_set_features,
761         .ndo_get_stats64        = qede_get_stats64,
762         .ndo_features_check     = qede_features_check,
763         .ndo_bpf                = qede_xdp,
764         .ndo_xdp_xmit           = qede_xdp_transmit,
765 };
766
767 /* -------------------------------------------------------------------------
768  * START OF PROBE / REMOVE
769  * -------------------------------------------------------------------------
770  */
771
772 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
773                                             struct pci_dev *pdev,
774                                             struct qed_dev_eth_info *info,
775                                             u32 dp_module, u8 dp_level)
776 {
777         struct net_device *ndev;
778         struct qede_dev *edev;
779
780         ndev = alloc_etherdev_mqs(sizeof(*edev),
781                                   info->num_queues * info->num_tc,
782                                   info->num_queues);
783         if (!ndev) {
784                 pr_err("etherdev allocation failed\n");
785                 return NULL;
786         }
787
788         edev = netdev_priv(ndev);
789         edev->ndev = ndev;
790         edev->cdev = cdev;
791         edev->pdev = pdev;
792         edev->dp_module = dp_module;
793         edev->dp_level = dp_level;
794         edev->ops = qed_ops;
795
796         if (is_kdump_kernel()) {
797                 edev->q_num_rx_buffers = NUM_RX_BDS_KDUMP_MIN;
798                 edev->q_num_tx_buffers = NUM_TX_BDS_KDUMP_MIN;
799         } else {
800                 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
801                 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
802         }
803
804         DP_INFO(edev, "Allocated netdev with %d tx queues and %d rx queues\n",
805                 info->num_queues, info->num_queues);
806
807         SET_NETDEV_DEV(ndev, &pdev->dev);
808
809         memset(&edev->stats, 0, sizeof(edev->stats));
810         memcpy(&edev->dev_info, info, sizeof(*info));
811
812         /* As ethtool doesn't have the ability to show WoL behavior as
813          * 'default', if device supports it declare it's enabled.
814          */
815         if (edev->dev_info.common.wol_support)
816                 edev->wol_enabled = true;
817
818         INIT_LIST_HEAD(&edev->vlan_list);
819
820         return edev;
821 }
822
823 static void qede_init_ndev(struct qede_dev *edev)
824 {
825         struct net_device *ndev = edev->ndev;
826         struct pci_dev *pdev = edev->pdev;
827         bool udp_tunnel_enable = false;
828         netdev_features_t hw_features;
829
830         pci_set_drvdata(pdev, ndev);
831
832         ndev->mem_start = edev->dev_info.common.pci_mem_start;
833         ndev->base_addr = ndev->mem_start;
834         ndev->mem_end = edev->dev_info.common.pci_mem_end;
835         ndev->irq = edev->dev_info.common.pci_irq;
836
837         ndev->watchdog_timeo = TX_TIMEOUT;
838
839         if (IS_VF(edev)) {
840                 if (edev->dev_info.xdp_supported)
841                         ndev->netdev_ops = &qede_netdev_vf_xdp_ops;
842                 else
843                         ndev->netdev_ops = &qede_netdev_vf_ops;
844         } else {
845                 ndev->netdev_ops = &qede_netdev_ops;
846         }
847
848         qede_set_ethtool_ops(ndev);
849
850         ndev->priv_flags |= IFF_UNICAST_FLT;
851
852         /* user-changeble features */
853         hw_features = NETIF_F_GRO | NETIF_F_GRO_HW | NETIF_F_SG |
854                       NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
855                       NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_TC;
856
857         if (edev->dev_info.common.b_arfs_capable)
858                 hw_features |= NETIF_F_NTUPLE;
859
860         if (edev->dev_info.common.vxlan_enable ||
861             edev->dev_info.common.geneve_enable)
862                 udp_tunnel_enable = true;
863
864         if (udp_tunnel_enable || edev->dev_info.common.gre_enable) {
865                 hw_features |= NETIF_F_TSO_ECN;
866                 ndev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
867                                         NETIF_F_SG | NETIF_F_TSO |
868                                         NETIF_F_TSO_ECN | NETIF_F_TSO6 |
869                                         NETIF_F_RXCSUM;
870         }
871
872         if (udp_tunnel_enable) {
873                 hw_features |= (NETIF_F_GSO_UDP_TUNNEL |
874                                 NETIF_F_GSO_UDP_TUNNEL_CSUM);
875                 ndev->hw_enc_features |= (NETIF_F_GSO_UDP_TUNNEL |
876                                           NETIF_F_GSO_UDP_TUNNEL_CSUM);
877
878                 qede_set_udp_tunnels(edev);
879         }
880
881         if (edev->dev_info.common.gre_enable) {
882                 hw_features |= (NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM);
883                 ndev->hw_enc_features |= (NETIF_F_GSO_GRE |
884                                           NETIF_F_GSO_GRE_CSUM);
885         }
886
887         ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
888                               NETIF_F_HIGHDMA;
889         ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
890                          NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
891                          NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
892
893         ndev->hw_features = hw_features;
894
895         /* MTU range: 46 - 9600 */
896         ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
897         ndev->max_mtu = QEDE_MAX_JUMBO_PACKET_SIZE;
898
899         /* Set network device HW mac */
900         eth_hw_addr_set(edev->ndev, edev->dev_info.common.hw_mac);
901
902         ndev->mtu = edev->dev_info.common.mtu;
903 }
904
905 /* This function converts from 32b param to two params of level and module
906  * Input 32b decoding:
907  * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
908  * 'happy' flow, e.g. memory allocation failed.
909  * b30 - enable all INFO prints. INFO prints are for major steps in the flow
910  * and provide important parameters.
911  * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
912  * module. VERBOSE prints are for tracking the specific flow in low level.
913  *
914  * Notice that the level should be that of the lowest required logs.
915  */
916 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
917 {
918         *p_dp_level = QED_LEVEL_NOTICE;
919         *p_dp_module = 0;
920
921         if (debug & QED_LOG_VERBOSE_MASK) {
922                 *p_dp_level = QED_LEVEL_VERBOSE;
923                 *p_dp_module = (debug & 0x3FFFFFFF);
924         } else if (debug & QED_LOG_INFO_MASK) {
925                 *p_dp_level = QED_LEVEL_INFO;
926         } else if (debug & QED_LOG_NOTICE_MASK) {
927                 *p_dp_level = QED_LEVEL_NOTICE;
928         }
929 }
930
931 static void qede_free_fp_array(struct qede_dev *edev)
932 {
933         if (edev->fp_array) {
934                 struct qede_fastpath *fp;
935                 int i;
936
937                 for_each_queue(i) {
938                         fp = &edev->fp_array[i];
939
940                         kfree(fp->sb_info);
941                         /* Handle mem alloc failure case where qede_init_fp
942                          * didn't register xdp_rxq_info yet.
943                          * Implicit only (fp->type & QEDE_FASTPATH_RX)
944                          */
945                         if (fp->rxq && xdp_rxq_info_is_reg(&fp->rxq->xdp_rxq))
946                                 xdp_rxq_info_unreg(&fp->rxq->xdp_rxq);
947                         kfree(fp->rxq);
948                         kfree(fp->xdp_tx);
949                         kfree(fp->txq);
950                 }
951                 kfree(edev->fp_array);
952         }
953
954         edev->num_queues = 0;
955         edev->fp_num_tx = 0;
956         edev->fp_num_rx = 0;
957 }
958
959 static int qede_alloc_fp_array(struct qede_dev *edev)
960 {
961         u8 fp_combined, fp_rx = edev->fp_num_rx;
962         struct qede_fastpath *fp;
963         void *mem;
964         int i;
965
966         edev->fp_array = kcalloc(QEDE_QUEUE_CNT(edev),
967                                  sizeof(*edev->fp_array), GFP_KERNEL);
968         if (!edev->fp_array) {
969                 DP_NOTICE(edev, "fp array allocation failed\n");
970                 goto err;
971         }
972
973         mem = krealloc(edev->coal_entry, QEDE_QUEUE_CNT(edev) *
974                        sizeof(*edev->coal_entry), GFP_KERNEL);
975         if (!mem) {
976                 DP_ERR(edev, "coalesce entry allocation failed\n");
977                 kfree(edev->coal_entry);
978                 goto err;
979         }
980         edev->coal_entry = mem;
981
982         fp_combined = QEDE_QUEUE_CNT(edev) - fp_rx - edev->fp_num_tx;
983
984         /* Allocate the FP elements for Rx queues followed by combined and then
985          * the Tx. This ordering should be maintained so that the respective
986          * queues (Rx or Tx) will be together in the fastpath array and the
987          * associated ids will be sequential.
988          */
989         for_each_queue(i) {
990                 fp = &edev->fp_array[i];
991
992                 fp->sb_info = kzalloc(sizeof(*fp->sb_info), GFP_KERNEL);
993                 if (!fp->sb_info) {
994                         DP_NOTICE(edev, "sb info struct allocation failed\n");
995                         goto err;
996                 }
997
998                 if (fp_rx) {
999                         fp->type = QEDE_FASTPATH_RX;
1000                         fp_rx--;
1001                 } else if (fp_combined) {
1002                         fp->type = QEDE_FASTPATH_COMBINED;
1003                         fp_combined--;
1004                 } else {
1005                         fp->type = QEDE_FASTPATH_TX;
1006                 }
1007
1008                 if (fp->type & QEDE_FASTPATH_TX) {
1009                         fp->txq = kcalloc(edev->dev_info.num_tc,
1010                                           sizeof(*fp->txq), GFP_KERNEL);
1011                         if (!fp->txq)
1012                                 goto err;
1013                 }
1014
1015                 if (fp->type & QEDE_FASTPATH_RX) {
1016                         fp->rxq = kzalloc(sizeof(*fp->rxq), GFP_KERNEL);
1017                         if (!fp->rxq)
1018                                 goto err;
1019
1020                         if (edev->xdp_prog) {
1021                                 fp->xdp_tx = kzalloc(sizeof(*fp->xdp_tx),
1022                                                      GFP_KERNEL);
1023                                 if (!fp->xdp_tx)
1024                                         goto err;
1025                                 fp->type |= QEDE_FASTPATH_XDP;
1026                         }
1027                 }
1028         }
1029
1030         return 0;
1031 err:
1032         qede_free_fp_array(edev);
1033         return -ENOMEM;
1034 }
1035
1036 /* The qede lock is used to protect driver state change and driver flows that
1037  * are not reentrant.
1038  */
1039 void __qede_lock(struct qede_dev *edev)
1040 {
1041         mutex_lock(&edev->qede_lock);
1042 }
1043
1044 void __qede_unlock(struct qede_dev *edev)
1045 {
1046         mutex_unlock(&edev->qede_lock);
1047 }
1048
1049 /* This version of the lock should be used when acquiring the RTNL lock is also
1050  * needed in addition to the internal qede lock.
1051  */
1052 static void qede_lock(struct qede_dev *edev)
1053 {
1054         rtnl_lock();
1055         __qede_lock(edev);
1056 }
1057
1058 static void qede_unlock(struct qede_dev *edev)
1059 {
1060         __qede_unlock(edev);
1061         rtnl_unlock();
1062 }
1063
1064 static void qede_sp_task(struct work_struct *work)
1065 {
1066         struct qede_dev *edev = container_of(work, struct qede_dev,
1067                                              sp_task.work);
1068
1069         /* Disable execution of this deferred work once
1070          * qede removal is in progress, this stop any future
1071          * scheduling of sp_task.
1072          */
1073         if (test_bit(QEDE_SP_DISABLE, &edev->sp_flags))
1074                 return;
1075
1076         /* The locking scheme depends on the specific flag:
1077          * In case of QEDE_SP_RECOVERY, acquiring the RTNL lock is required to
1078          * ensure that ongoing flows are ended and new ones are not started.
1079          * In other cases - only the internal qede lock should be acquired.
1080          */
1081
1082         if (test_and_clear_bit(QEDE_SP_RECOVERY, &edev->sp_flags)) {
1083 #ifdef CONFIG_QED_SRIOV
1084                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1085                  * The recovery of the active VFs is currently not supported.
1086                  */
1087                 if (pci_num_vf(edev->pdev))
1088                         qede_sriov_configure(edev->pdev, 0);
1089 #endif
1090                 qede_lock(edev);
1091                 qede_recovery_handler(edev);
1092                 qede_unlock(edev);
1093         }
1094
1095         __qede_lock(edev);
1096
1097         if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
1098                 if (edev->state == QEDE_STATE_OPEN)
1099                         qede_config_rx_mode(edev->ndev);
1100
1101 #ifdef CONFIG_RFS_ACCEL
1102         if (test_and_clear_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags)) {
1103                 if (edev->state == QEDE_STATE_OPEN)
1104                         qede_process_arfs_filters(edev, false);
1105         }
1106 #endif
1107         if (test_and_clear_bit(QEDE_SP_HW_ERR, &edev->sp_flags))
1108                 qede_generic_hw_err_handler(edev);
1109         __qede_unlock(edev);
1110
1111         if (test_and_clear_bit(QEDE_SP_AER, &edev->sp_flags)) {
1112 #ifdef CONFIG_QED_SRIOV
1113                 /* SRIOV must be disabled outside the lock to avoid a deadlock.
1114                  * The recovery of the active VFs is currently not supported.
1115                  */
1116                 if (pci_num_vf(edev->pdev))
1117                         qede_sriov_configure(edev->pdev, 0);
1118 #endif
1119                 edev->ops->common->recovery_process(edev->cdev);
1120         }
1121 }
1122
1123 static void qede_update_pf_params(struct qed_dev *cdev)
1124 {
1125         struct qed_pf_params pf_params;
1126         u16 num_cons;
1127
1128         /* 64 rx + 64 tx + 64 XDP */
1129         memset(&pf_params, 0, sizeof(struct qed_pf_params));
1130
1131         /* 1 rx + 1 xdp + max tx cos */
1132         num_cons = QED_MIN_L2_CONS;
1133
1134         pf_params.eth_pf_params.num_cons = (MAX_SB_PER_PF_MIMD - 1) * num_cons;
1135
1136         /* Same for VFs - make sure they'll have sufficient connections
1137          * to support XDP Tx queues.
1138          */
1139         pf_params.eth_pf_params.num_vf_cons = 48;
1140
1141         pf_params.eth_pf_params.num_arfs_filters = QEDE_RFS_MAX_FLTR;
1142         qed_ops->common->update_pf_params(cdev, &pf_params);
1143 }
1144
1145 #define QEDE_FW_VER_STR_SIZE    80
1146
1147 static void qede_log_probe(struct qede_dev *edev)
1148 {
1149         struct qed_dev_info *p_dev_info = &edev->dev_info.common;
1150         u8 buf[QEDE_FW_VER_STR_SIZE];
1151         size_t left_size;
1152
1153         snprintf(buf, QEDE_FW_VER_STR_SIZE,
1154                  "Storm FW %d.%d.%d.%d, Management FW %d.%d.%d.%d",
1155                  p_dev_info->fw_major, p_dev_info->fw_minor, p_dev_info->fw_rev,
1156                  p_dev_info->fw_eng,
1157                  (p_dev_info->mfw_rev & QED_MFW_VERSION_3_MASK) >>
1158                  QED_MFW_VERSION_3_OFFSET,
1159                  (p_dev_info->mfw_rev & QED_MFW_VERSION_2_MASK) >>
1160                  QED_MFW_VERSION_2_OFFSET,
1161                  (p_dev_info->mfw_rev & QED_MFW_VERSION_1_MASK) >>
1162                  QED_MFW_VERSION_1_OFFSET,
1163                  (p_dev_info->mfw_rev & QED_MFW_VERSION_0_MASK) >>
1164                  QED_MFW_VERSION_0_OFFSET);
1165
1166         left_size = QEDE_FW_VER_STR_SIZE - strlen(buf);
1167         if (p_dev_info->mbi_version && left_size)
1168                 snprintf(buf + strlen(buf), left_size,
1169                          " [MBI %d.%d.%d]",
1170                          (p_dev_info->mbi_version & QED_MBI_VERSION_2_MASK) >>
1171                          QED_MBI_VERSION_2_OFFSET,
1172                          (p_dev_info->mbi_version & QED_MBI_VERSION_1_MASK) >>
1173                          QED_MBI_VERSION_1_OFFSET,
1174                          (p_dev_info->mbi_version & QED_MBI_VERSION_0_MASK) >>
1175                          QED_MBI_VERSION_0_OFFSET);
1176
1177         pr_info("qede %02x:%02x.%02x: %s [%s]\n", edev->pdev->bus->number,
1178                 PCI_SLOT(edev->pdev->devfn), PCI_FUNC(edev->pdev->devfn),
1179                 buf, edev->ndev->name);
1180 }
1181
1182 enum qede_probe_mode {
1183         QEDE_PROBE_NORMAL,
1184         QEDE_PROBE_RECOVERY,
1185 };
1186
1187 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
1188                         bool is_vf, enum qede_probe_mode mode)
1189 {
1190         struct qed_probe_params probe_params;
1191         struct qed_slowpath_params sp_params;
1192         struct qed_dev_eth_info dev_info;
1193         struct qede_dev *edev;
1194         struct qed_dev *cdev;
1195         int rc;
1196
1197         if (unlikely(dp_level & QED_LEVEL_INFO))
1198                 pr_notice("Starting qede probe\n");
1199
1200         memset(&probe_params, 0, sizeof(probe_params));
1201         probe_params.protocol = QED_PROTOCOL_ETH;
1202         probe_params.dp_module = dp_module;
1203         probe_params.dp_level = dp_level;
1204         probe_params.is_vf = is_vf;
1205         probe_params.recov_in_prog = (mode == QEDE_PROBE_RECOVERY);
1206         cdev = qed_ops->common->probe(pdev, &probe_params);
1207         if (!cdev) {
1208                 rc = -ENODEV;
1209                 goto err0;
1210         }
1211
1212         qede_update_pf_params(cdev);
1213
1214         /* Start the Slowpath-process */
1215         memset(&sp_params, 0, sizeof(sp_params));
1216         sp_params.int_mode = QED_INT_MODE_MSIX;
1217         strlcpy(sp_params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
1218         rc = qed_ops->common->slowpath_start(cdev, &sp_params);
1219         if (rc) {
1220                 pr_notice("Cannot start slowpath\n");
1221                 goto err1;
1222         }
1223
1224         /* Learn information crucial for qede to progress */
1225         rc = qed_ops->fill_dev_info(cdev, &dev_info);
1226         if (rc)
1227                 goto err2;
1228
1229         if (mode != QEDE_PROBE_RECOVERY) {
1230                 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
1231                                            dp_level);
1232                 if (!edev) {
1233                         rc = -ENOMEM;
1234                         goto err2;
1235                 }
1236
1237                 edev->devlink = qed_ops->common->devlink_register(cdev);
1238                 if (IS_ERR(edev->devlink)) {
1239                         DP_NOTICE(edev, "Cannot register devlink\n");
1240                         rc = PTR_ERR(edev->devlink);
1241                         edev->devlink = NULL;
1242                         goto err3;
1243                 }
1244         } else {
1245                 struct net_device *ndev = pci_get_drvdata(pdev);
1246                 struct qed_devlink *qdl;
1247
1248                 edev = netdev_priv(ndev);
1249                 qdl = devlink_priv(edev->devlink);
1250                 qdl->cdev = cdev;
1251                 edev->cdev = cdev;
1252                 memset(&edev->stats, 0, sizeof(edev->stats));
1253                 memcpy(&edev->dev_info, &dev_info, sizeof(dev_info));
1254         }
1255
1256         if (is_vf)
1257                 set_bit(QEDE_FLAGS_IS_VF, &edev->flags);
1258
1259         qede_init_ndev(edev);
1260
1261         rc = qede_rdma_dev_add(edev, (mode == QEDE_PROBE_RECOVERY));
1262         if (rc)
1263                 goto err3;
1264
1265         if (mode != QEDE_PROBE_RECOVERY) {
1266                 /* Prepare the lock prior to the registration of the netdev,
1267                  * as once it's registered we might reach flows requiring it
1268                  * [it's even possible to reach a flow needing it directly
1269                  * from there, although it's unlikely].
1270                  */
1271                 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
1272                 mutex_init(&edev->qede_lock);
1273
1274                 rc = register_netdev(edev->ndev);
1275                 if (rc) {
1276                         DP_NOTICE(edev, "Cannot register net-device\n");
1277                         goto err4;
1278                 }
1279         }
1280
1281         edev->ops->common->set_name(cdev, edev->ndev->name);
1282
1283         /* PTP not supported on VFs */
1284         if (!is_vf)
1285                 qede_ptp_enable(edev);
1286
1287         edev->ops->register_ops(cdev, &qede_ll_ops, edev);
1288
1289 #ifdef CONFIG_DCB
1290         if (!IS_VF(edev))
1291                 qede_set_dcbnl_ops(edev->ndev);
1292 #endif
1293
1294         edev->rx_copybreak = QEDE_RX_HDR_SIZE;
1295
1296         qede_log_probe(edev);
1297         return 0;
1298
1299 err4:
1300         qede_rdma_dev_remove(edev, (mode == QEDE_PROBE_RECOVERY));
1301 err3:
1302         if (mode != QEDE_PROBE_RECOVERY)
1303                 free_netdev(edev->ndev);
1304         else
1305                 edev->cdev = NULL;
1306 err2:
1307         qed_ops->common->slowpath_stop(cdev);
1308 err1:
1309         qed_ops->common->remove(cdev);
1310 err0:
1311         return rc;
1312 }
1313
1314 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1315 {
1316         bool is_vf = false;
1317         u32 dp_module = 0;
1318         u8 dp_level = 0;
1319
1320         switch ((enum qede_pci_private)id->driver_data) {
1321         case QEDE_PRIVATE_VF:
1322                 if (debug & QED_LOG_VERBOSE_MASK)
1323                         dev_err(&pdev->dev, "Probing a VF\n");
1324                 is_vf = true;
1325                 break;
1326         default:
1327                 if (debug & QED_LOG_VERBOSE_MASK)
1328                         dev_err(&pdev->dev, "Probing a PF\n");
1329         }
1330
1331         qede_config_debug(debug, &dp_module, &dp_level);
1332
1333         return __qede_probe(pdev, dp_module, dp_level, is_vf,
1334                             QEDE_PROBE_NORMAL);
1335 }
1336
1337 enum qede_remove_mode {
1338         QEDE_REMOVE_NORMAL,
1339         QEDE_REMOVE_RECOVERY,
1340 };
1341
1342 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
1343 {
1344         struct net_device *ndev = pci_get_drvdata(pdev);
1345         struct qede_dev *edev;
1346         struct qed_dev *cdev;
1347
1348         if (!ndev) {
1349                 dev_info(&pdev->dev, "Device has already been removed\n");
1350                 return;
1351         }
1352
1353         edev = netdev_priv(ndev);
1354         cdev = edev->cdev;
1355
1356         DP_INFO(edev, "Starting qede_remove\n");
1357
1358         qede_rdma_dev_remove(edev, (mode == QEDE_REMOVE_RECOVERY));
1359
1360         if (mode != QEDE_REMOVE_RECOVERY) {
1361                 set_bit(QEDE_SP_DISABLE, &edev->sp_flags);
1362                 unregister_netdev(ndev);
1363
1364                 cancel_delayed_work_sync(&edev->sp_task);
1365
1366                 edev->ops->common->set_power_state(cdev, PCI_D0);
1367
1368                 pci_set_drvdata(pdev, NULL);
1369         }
1370
1371         qede_ptp_disable(edev);
1372
1373         /* Use global ops since we've freed edev */
1374         qed_ops->common->slowpath_stop(cdev);
1375         if (system_state == SYSTEM_POWER_OFF)
1376                 return;
1377
1378         if (mode != QEDE_REMOVE_RECOVERY && edev->devlink) {
1379                 qed_ops->common->devlink_unregister(edev->devlink);
1380                 edev->devlink = NULL;
1381         }
1382         qed_ops->common->remove(cdev);
1383         edev->cdev = NULL;
1384
1385         /* Since this can happen out-of-sync with other flows,
1386          * don't release the netdevice until after slowpath stop
1387          * has been called to guarantee various other contexts
1388          * [e.g., QED register callbacks] won't break anything when
1389          * accessing the netdevice.
1390          */
1391         if (mode != QEDE_REMOVE_RECOVERY) {
1392                 kfree(edev->coal_entry);
1393                 free_netdev(ndev);
1394         }
1395
1396         dev_info(&pdev->dev, "Ending qede_remove successfully\n");
1397 }
1398
1399 static void qede_remove(struct pci_dev *pdev)
1400 {
1401         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1402 }
1403
1404 static void qede_shutdown(struct pci_dev *pdev)
1405 {
1406         __qede_remove(pdev, QEDE_REMOVE_NORMAL);
1407 }
1408
1409 /* -------------------------------------------------------------------------
1410  * START OF LOAD / UNLOAD
1411  * -------------------------------------------------------------------------
1412  */
1413
1414 static int qede_set_num_queues(struct qede_dev *edev)
1415 {
1416         int rc;
1417         u16 rss_num;
1418
1419         /* Setup queues according to possible resources*/
1420         if (edev->req_queues)
1421                 rss_num = edev->req_queues;
1422         else
1423                 rss_num = netif_get_num_default_rss_queues() *
1424                           edev->dev_info.common.num_hwfns;
1425
1426         rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
1427
1428         rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
1429         if (rc > 0) {
1430                 /* Managed to request interrupts for our queues */
1431                 edev->num_queues = rc;
1432                 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
1433                         QEDE_QUEUE_CNT(edev), rss_num);
1434                 rc = 0;
1435         }
1436
1437         edev->fp_num_tx = edev->req_num_tx;
1438         edev->fp_num_rx = edev->req_num_rx;
1439
1440         return rc;
1441 }
1442
1443 static void qede_free_mem_sb(struct qede_dev *edev, struct qed_sb_info *sb_info,
1444                              u16 sb_id)
1445 {
1446         if (sb_info->sb_virt) {
1447                 edev->ops->common->sb_release(edev->cdev, sb_info, sb_id,
1448                                               QED_SB_TYPE_L2_QUEUE);
1449                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
1450                                   (void *)sb_info->sb_virt, sb_info->sb_phys);
1451                 memset(sb_info, 0, sizeof(*sb_info));
1452         }
1453 }
1454
1455 /* This function allocates fast-path status block memory */
1456 static int qede_alloc_mem_sb(struct qede_dev *edev,
1457                              struct qed_sb_info *sb_info, u16 sb_id)
1458 {
1459         struct status_block *sb_virt;
1460         dma_addr_t sb_phys;
1461         int rc;
1462
1463         sb_virt = dma_alloc_coherent(&edev->pdev->dev,
1464                                      sizeof(*sb_virt), &sb_phys, GFP_KERNEL);
1465         if (!sb_virt) {
1466                 DP_ERR(edev, "Status block allocation failed\n");
1467                 return -ENOMEM;
1468         }
1469
1470         rc = edev->ops->common->sb_init(edev->cdev, sb_info,
1471                                         sb_virt, sb_phys, sb_id,
1472                                         QED_SB_TYPE_L2_QUEUE);
1473         if (rc) {
1474                 DP_ERR(edev, "Status block initialization failed\n");
1475                 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
1476                                   sb_virt, sb_phys);
1477                 return rc;
1478         }
1479
1480         return 0;
1481 }
1482
1483 static void qede_free_rx_buffers(struct qede_dev *edev,
1484                                  struct qede_rx_queue *rxq)
1485 {
1486         u16 i;
1487
1488         for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
1489                 struct sw_rx_data *rx_buf;
1490                 struct page *data;
1491
1492                 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
1493                 data = rx_buf->data;
1494
1495                 dma_unmap_page(&edev->pdev->dev,
1496                                rx_buf->mapping, PAGE_SIZE, rxq->data_direction);
1497
1498                 rx_buf->data = NULL;
1499                 __free_page(data);
1500         }
1501 }
1502
1503 static void qede_free_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1504 {
1505         /* Free rx buffers */
1506         qede_free_rx_buffers(edev, rxq);
1507
1508         /* Free the parallel SW ring */
1509         kfree(rxq->sw_rx_ring);
1510
1511         /* Free the real RQ ring used by FW */
1512         edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
1513         edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
1514 }
1515
1516 static void qede_set_tpa_param(struct qede_rx_queue *rxq)
1517 {
1518         int i;
1519
1520         for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
1521                 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
1522
1523                 tpa_info->state = QEDE_AGG_STATE_NONE;
1524         }
1525 }
1526
1527 /* This function allocates all memory needed per Rx queue */
1528 static int qede_alloc_mem_rxq(struct qede_dev *edev, struct qede_rx_queue *rxq)
1529 {
1530         struct qed_chain_init_params params = {
1531                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1532                 .num_elems      = RX_RING_SIZE,
1533         };
1534         struct qed_dev *cdev = edev->cdev;
1535         int i, rc, size;
1536
1537         rxq->num_rx_buffers = edev->q_num_rx_buffers;
1538
1539         rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD + edev->ndev->mtu;
1540
1541         rxq->rx_headroom = edev->xdp_prog ? XDP_PACKET_HEADROOM : NET_SKB_PAD;
1542         size = rxq->rx_headroom +
1543                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1544
1545         /* Make sure that the headroom and  payload fit in a single page */
1546         if (rxq->rx_buf_size + size > PAGE_SIZE)
1547                 rxq->rx_buf_size = PAGE_SIZE - size;
1548
1549         /* Segment size to split a page in multiple equal parts,
1550          * unless XDP is used in which case we'd use the entire page.
1551          */
1552         if (!edev->xdp_prog) {
1553                 size = size + rxq->rx_buf_size;
1554                 rxq->rx_buf_seg_size = roundup_pow_of_two(size);
1555         } else {
1556                 rxq->rx_buf_seg_size = PAGE_SIZE;
1557                 edev->ndev->features &= ~NETIF_F_GRO_HW;
1558         }
1559
1560         /* Allocate the parallel driver ring for Rx buffers */
1561         size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
1562         rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
1563         if (!rxq->sw_rx_ring) {
1564                 DP_ERR(edev, "Rx buffers ring allocation failed\n");
1565                 rc = -ENOMEM;
1566                 goto err;
1567         }
1568
1569         /* Allocate FW Rx ring  */
1570         params.mode = QED_CHAIN_MODE_NEXT_PTR;
1571         params.intended_use = QED_CHAIN_USE_TO_CONSUME_PRODUCE;
1572         params.elem_size = sizeof(struct eth_rx_bd);
1573
1574         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_bd_ring, &params);
1575         if (rc)
1576                 goto err;
1577
1578         /* Allocate FW completion ring */
1579         params.mode = QED_CHAIN_MODE_PBL;
1580         params.intended_use = QED_CHAIN_USE_TO_CONSUME;
1581         params.elem_size = sizeof(union eth_rx_cqe);
1582
1583         rc = edev->ops->common->chain_alloc(cdev, &rxq->rx_comp_ring, &params);
1584         if (rc)
1585                 goto err;
1586
1587         /* Allocate buffers for the Rx ring */
1588         rxq->filled_buffers = 0;
1589         for (i = 0; i < rxq->num_rx_buffers; i++) {
1590                 rc = qede_alloc_rx_buffer(rxq, false);
1591                 if (rc) {
1592                         DP_ERR(edev,
1593                                "Rx buffers allocation failed at index %d\n", i);
1594                         goto err;
1595                 }
1596         }
1597
1598         edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO_HW);
1599         if (!edev->gro_disable)
1600                 qede_set_tpa_param(rxq);
1601 err:
1602         return rc;
1603 }
1604
1605 static void qede_free_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1606 {
1607         /* Free the parallel SW ring */
1608         if (txq->is_xdp)
1609                 kfree(txq->sw_tx_ring.xdp);
1610         else
1611                 kfree(txq->sw_tx_ring.skbs);
1612
1613         /* Free the real RQ ring used by FW */
1614         edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
1615 }
1616
1617 /* This function allocates all memory needed per Tx queue */
1618 static int qede_alloc_mem_txq(struct qede_dev *edev, struct qede_tx_queue *txq)
1619 {
1620         struct qed_chain_init_params params = {
1621                 .mode           = QED_CHAIN_MODE_PBL,
1622                 .intended_use   = QED_CHAIN_USE_TO_CONSUME_PRODUCE,
1623                 .cnt_type       = QED_CHAIN_CNT_TYPE_U16,
1624                 .num_elems      = edev->q_num_tx_buffers,
1625                 .elem_size      = sizeof(union eth_tx_bd_types),
1626         };
1627         int size, rc;
1628
1629         txq->num_tx_buffers = edev->q_num_tx_buffers;
1630
1631         /* Allocate the parallel driver ring for Tx buffers */
1632         if (txq->is_xdp) {
1633                 size = sizeof(*txq->sw_tx_ring.xdp) * txq->num_tx_buffers;
1634                 txq->sw_tx_ring.xdp = kzalloc(size, GFP_KERNEL);
1635                 if (!txq->sw_tx_ring.xdp)
1636                         goto err;
1637         } else {
1638                 size = sizeof(*txq->sw_tx_ring.skbs) * txq->num_tx_buffers;
1639                 txq->sw_tx_ring.skbs = kzalloc(size, GFP_KERNEL);
1640                 if (!txq->sw_tx_ring.skbs)
1641                         goto err;
1642         }
1643
1644         rc = edev->ops->common->chain_alloc(edev->cdev, &txq->tx_pbl, &params);
1645         if (rc)
1646                 goto err;
1647
1648         return 0;
1649
1650 err:
1651         qede_free_mem_txq(edev, txq);
1652         return -ENOMEM;
1653 }
1654
1655 /* This function frees all memory of a single fp */
1656 static void qede_free_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1657 {
1658         qede_free_mem_sb(edev, fp->sb_info, fp->id);
1659
1660         if (fp->type & QEDE_FASTPATH_RX)
1661                 qede_free_mem_rxq(edev, fp->rxq);
1662
1663         if (fp->type & QEDE_FASTPATH_XDP)
1664                 qede_free_mem_txq(edev, fp->xdp_tx);
1665
1666         if (fp->type & QEDE_FASTPATH_TX) {
1667                 int cos;
1668
1669                 for_each_cos_in_txq(edev, cos)
1670                         qede_free_mem_txq(edev, &fp->txq[cos]);
1671         }
1672 }
1673
1674 /* This function allocates all memory needed for a single fp (i.e. an entity
1675  * which contains status block, one rx queue and/or multiple per-TC tx queues.
1676  */
1677 static int qede_alloc_mem_fp(struct qede_dev *edev, struct qede_fastpath *fp)
1678 {
1679         int rc = 0;
1680
1681         rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->id);
1682         if (rc)
1683                 goto out;
1684
1685         if (fp->type & QEDE_FASTPATH_RX) {
1686                 rc = qede_alloc_mem_rxq(edev, fp->rxq);
1687                 if (rc)
1688                         goto out;
1689         }
1690
1691         if (fp->type & QEDE_FASTPATH_XDP) {
1692                 rc = qede_alloc_mem_txq(edev, fp->xdp_tx);
1693                 if (rc)
1694                         goto out;
1695         }
1696
1697         if (fp->type & QEDE_FASTPATH_TX) {
1698                 int cos;
1699
1700                 for_each_cos_in_txq(edev, cos) {
1701                         rc = qede_alloc_mem_txq(edev, &fp->txq[cos]);
1702                         if (rc)
1703                                 goto out;
1704                 }
1705         }
1706
1707 out:
1708         return rc;
1709 }
1710
1711 static void qede_free_mem_load(struct qede_dev *edev)
1712 {
1713         int i;
1714
1715         for_each_queue(i) {
1716                 struct qede_fastpath *fp = &edev->fp_array[i];
1717
1718                 qede_free_mem_fp(edev, fp);
1719         }
1720 }
1721
1722 /* This function allocates all qede memory at NIC load. */
1723 static int qede_alloc_mem_load(struct qede_dev *edev)
1724 {
1725         int rc = 0, queue_id;
1726
1727         for (queue_id = 0; queue_id < QEDE_QUEUE_CNT(edev); queue_id++) {
1728                 struct qede_fastpath *fp = &edev->fp_array[queue_id];
1729
1730                 rc = qede_alloc_mem_fp(edev, fp);
1731                 if (rc) {
1732                         DP_ERR(edev,
1733                                "Failed to allocate memory for fastpath - rss id = %d\n",
1734                                queue_id);
1735                         qede_free_mem_load(edev);
1736                         return rc;
1737                 }
1738         }
1739
1740         return 0;
1741 }
1742
1743 static void qede_empty_tx_queue(struct qede_dev *edev,
1744                                 struct qede_tx_queue *txq)
1745 {
1746         unsigned int pkts_compl = 0, bytes_compl = 0;
1747         struct netdev_queue *netdev_txq;
1748         int rc, len = 0;
1749
1750         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
1751
1752         while (qed_chain_get_cons_idx(&txq->tx_pbl) !=
1753                qed_chain_get_prod_idx(&txq->tx_pbl)) {
1754                 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1755                            "Freeing a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1756                            txq->index, qed_chain_get_cons_idx(&txq->tx_pbl),
1757                            qed_chain_get_prod_idx(&txq->tx_pbl));
1758
1759                 rc = qede_free_tx_pkt(edev, txq, &len);
1760                 if (rc) {
1761                         DP_NOTICE(edev,
1762                                   "Failed to free a packet on tx queue[%d]: chain_cons 0x%x, chain_prod 0x%x\n",
1763                                   txq->index,
1764                                   qed_chain_get_cons_idx(&txq->tx_pbl),
1765                                   qed_chain_get_prod_idx(&txq->tx_pbl));
1766                         break;
1767                 }
1768
1769                 bytes_compl += len;
1770                 pkts_compl++;
1771                 txq->sw_tx_cons++;
1772         }
1773
1774         netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
1775 }
1776
1777 static void qede_empty_tx_queues(struct qede_dev *edev)
1778 {
1779         int i;
1780
1781         for_each_queue(i)
1782                 if (edev->fp_array[i].type & QEDE_FASTPATH_TX) {
1783                         int cos;
1784
1785                         for_each_cos_in_txq(edev, cos) {
1786                                 struct qede_fastpath *fp;
1787
1788                                 fp = &edev->fp_array[i];
1789                                 qede_empty_tx_queue(edev,
1790                                                     &fp->txq[cos]);
1791                         }
1792                 }
1793 }
1794
1795 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
1796 static void qede_init_fp(struct qede_dev *edev)
1797 {
1798         int queue_id, rxq_index = 0, txq_index = 0;
1799         struct qede_fastpath *fp;
1800         bool init_xdp = false;
1801
1802         for_each_queue(queue_id) {
1803                 fp = &edev->fp_array[queue_id];
1804
1805                 fp->edev = edev;
1806                 fp->id = queue_id;
1807
1808                 if (fp->type & QEDE_FASTPATH_XDP) {
1809                         fp->xdp_tx->index = QEDE_TXQ_IDX_TO_XDP(edev,
1810                                                                 rxq_index);
1811                         fp->xdp_tx->is_xdp = 1;
1812
1813                         spin_lock_init(&fp->xdp_tx->xdp_tx_lock);
1814                         init_xdp = true;
1815                 }
1816
1817                 if (fp->type & QEDE_FASTPATH_RX) {
1818                         fp->rxq->rxq_id = rxq_index++;
1819
1820                         /* Determine how to map buffers for this queue */
1821                         if (fp->type & QEDE_FASTPATH_XDP)
1822                                 fp->rxq->data_direction = DMA_BIDIRECTIONAL;
1823                         else
1824                                 fp->rxq->data_direction = DMA_FROM_DEVICE;
1825                         fp->rxq->dev = &edev->pdev->dev;
1826
1827                         /* Driver have no error path from here */
1828                         WARN_ON(xdp_rxq_info_reg(&fp->rxq->xdp_rxq, edev->ndev,
1829                                                  fp->rxq->rxq_id, 0) < 0);
1830
1831                         if (xdp_rxq_info_reg_mem_model(&fp->rxq->xdp_rxq,
1832                                                        MEM_TYPE_PAGE_ORDER0,
1833                                                        NULL)) {
1834                                 DP_NOTICE(edev,
1835                                           "Failed to register XDP memory model\n");
1836                         }
1837                 }
1838
1839                 if (fp->type & QEDE_FASTPATH_TX) {
1840                         int cos;
1841
1842                         for_each_cos_in_txq(edev, cos) {
1843                                 struct qede_tx_queue *txq = &fp->txq[cos];
1844                                 u16 ndev_tx_id;
1845
1846                                 txq->cos = cos;
1847                                 txq->index = txq_index;
1848                                 ndev_tx_id = QEDE_TXQ_TO_NDEV_TXQ_ID(edev, txq);
1849                                 txq->ndev_txq_id = ndev_tx_id;
1850
1851                                 if (edev->dev_info.is_legacy)
1852                                         txq->is_legacy = true;
1853                                 txq->dev = &edev->pdev->dev;
1854                         }
1855
1856                         txq_index++;
1857                 }
1858
1859                 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1860                          edev->ndev->name, queue_id);
1861         }
1862
1863         if (init_xdp) {
1864                 edev->total_xdp_queues = QEDE_RSS_COUNT(edev);
1865                 DP_INFO(edev, "Total XDP queues: %u\n", edev->total_xdp_queues);
1866         }
1867 }
1868
1869 static int qede_set_real_num_queues(struct qede_dev *edev)
1870 {
1871         int rc = 0;
1872
1873         rc = netif_set_real_num_tx_queues(edev->ndev,
1874                                           QEDE_TSS_COUNT(edev) *
1875                                           edev->dev_info.num_tc);
1876         if (rc) {
1877                 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
1878                 return rc;
1879         }
1880
1881         rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_COUNT(edev));
1882         if (rc) {
1883                 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
1884                 return rc;
1885         }
1886
1887         return 0;
1888 }
1889
1890 static void qede_napi_disable_remove(struct qede_dev *edev)
1891 {
1892         int i;
1893
1894         for_each_queue(i) {
1895                 napi_disable(&edev->fp_array[i].napi);
1896
1897                 netif_napi_del(&edev->fp_array[i].napi);
1898         }
1899 }
1900
1901 static void qede_napi_add_enable(struct qede_dev *edev)
1902 {
1903         int i;
1904
1905         /* Add NAPI objects */
1906         for_each_queue(i) {
1907                 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
1908                                qede_poll, NAPI_POLL_WEIGHT);
1909                 napi_enable(&edev->fp_array[i].napi);
1910         }
1911 }
1912
1913 static void qede_sync_free_irqs(struct qede_dev *edev)
1914 {
1915         int i;
1916
1917         for (i = 0; i < edev->int_info.used_cnt; i++) {
1918                 if (edev->int_info.msix_cnt) {
1919                         free_irq(edev->int_info.msix[i].vector,
1920                                  &edev->fp_array[i]);
1921                 } else {
1922                         edev->ops->common->simd_handler_clean(edev->cdev, i);
1923                 }
1924         }
1925
1926         edev->int_info.used_cnt = 0;
1927         edev->int_info.msix_cnt = 0;
1928 }
1929
1930 static int qede_req_msix_irqs(struct qede_dev *edev)
1931 {
1932         int i, rc;
1933
1934         /* Sanitize number of interrupts == number of prepared RSS queues */
1935         if (QEDE_QUEUE_CNT(edev) > edev->int_info.msix_cnt) {
1936                 DP_ERR(edev,
1937                        "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
1938                        QEDE_QUEUE_CNT(edev), edev->int_info.msix_cnt);
1939                 return -EINVAL;
1940         }
1941
1942         for (i = 0; i < QEDE_QUEUE_CNT(edev); i++) {
1943 #ifdef CONFIG_RFS_ACCEL
1944                 struct qede_fastpath *fp = &edev->fp_array[i];
1945
1946                 if (edev->ndev->rx_cpu_rmap && (fp->type & QEDE_FASTPATH_RX)) {
1947                         rc = irq_cpu_rmap_add(edev->ndev->rx_cpu_rmap,
1948                                               edev->int_info.msix[i].vector);
1949                         if (rc) {
1950                                 DP_ERR(edev, "Failed to add CPU rmap\n");
1951                                 qede_free_arfs(edev);
1952                         }
1953                 }
1954 #endif
1955                 rc = request_irq(edev->int_info.msix[i].vector,
1956                                  qede_msix_fp_int, 0, edev->fp_array[i].name,
1957                                  &edev->fp_array[i]);
1958                 if (rc) {
1959                         DP_ERR(edev, "Request fp %d irq failed\n", i);
1960 #ifdef CONFIG_RFS_ACCEL
1961                         if (edev->ndev->rx_cpu_rmap)
1962                                 free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
1963
1964                         edev->ndev->rx_cpu_rmap = NULL;
1965 #endif
1966                         qede_sync_free_irqs(edev);
1967                         return rc;
1968                 }
1969                 DP_VERBOSE(edev, NETIF_MSG_INTR,
1970                            "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
1971                            edev->fp_array[i].name, i,
1972                            &edev->fp_array[i]);
1973                 edev->int_info.used_cnt++;
1974         }
1975
1976         return 0;
1977 }
1978
1979 static void qede_simd_fp_handler(void *cookie)
1980 {
1981         struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
1982
1983         napi_schedule_irqoff(&fp->napi);
1984 }
1985
1986 static int qede_setup_irqs(struct qede_dev *edev)
1987 {
1988         int i, rc = 0;
1989
1990         /* Learn Interrupt configuration */
1991         rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
1992         if (rc)
1993                 return rc;
1994
1995         if (edev->int_info.msix_cnt) {
1996                 rc = qede_req_msix_irqs(edev);
1997                 if (rc)
1998                         return rc;
1999                 edev->ndev->irq = edev->int_info.msix[0].vector;
2000         } else {
2001                 const struct qed_common_ops *ops;
2002
2003                 /* qed should learn receive the RSS ids and callbacks */
2004                 ops = edev->ops->common;
2005                 for (i = 0; i < QEDE_QUEUE_CNT(edev); i++)
2006                         ops->simd_handler_config(edev->cdev,
2007                                                  &edev->fp_array[i], i,
2008                                                  qede_simd_fp_handler);
2009                 edev->int_info.used_cnt = QEDE_QUEUE_CNT(edev);
2010         }
2011         return 0;
2012 }
2013
2014 static int qede_drain_txq(struct qede_dev *edev,
2015                           struct qede_tx_queue *txq, bool allow_drain)
2016 {
2017         int rc, cnt = 1000;
2018
2019         while (txq->sw_tx_cons != txq->sw_tx_prod) {
2020                 if (!cnt) {
2021                         if (allow_drain) {
2022                                 DP_NOTICE(edev,
2023                                           "Tx queue[%d] is stuck, requesting MCP to drain\n",
2024                                           txq->index);
2025                                 rc = edev->ops->common->drain(edev->cdev);
2026                                 if (rc)
2027                                         return rc;
2028                                 return qede_drain_txq(edev, txq, false);
2029                         }
2030                         DP_NOTICE(edev,
2031                                   "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2032                                   txq->index, txq->sw_tx_prod,
2033                                   txq->sw_tx_cons);
2034                         return -ENODEV;
2035                 }
2036                 cnt--;
2037                 usleep_range(1000, 2000);
2038                 barrier();
2039         }
2040
2041         /* FW finished processing, wait for HW to transmit all tx packets */
2042         usleep_range(1000, 2000);
2043
2044         return 0;
2045 }
2046
2047 static int qede_stop_txq(struct qede_dev *edev,
2048                          struct qede_tx_queue *txq, int rss_id)
2049 {
2050         /* delete doorbell from doorbell recovery mechanism */
2051         edev->ops->common->db_recovery_del(edev->cdev, txq->doorbell_addr,
2052                                            &txq->tx_db);
2053
2054         return edev->ops->q_tx_stop(edev->cdev, rss_id, txq->handle);
2055 }
2056
2057 static int qede_stop_queues(struct qede_dev *edev)
2058 {
2059         struct qed_update_vport_params *vport_update_params;
2060         struct qed_dev *cdev = edev->cdev;
2061         struct qede_fastpath *fp;
2062         int rc, i;
2063
2064         /* Disable the vport */
2065         vport_update_params = vzalloc(sizeof(*vport_update_params));
2066         if (!vport_update_params)
2067                 return -ENOMEM;
2068
2069         vport_update_params->vport_id = 0;
2070         vport_update_params->update_vport_active_flg = 1;
2071         vport_update_params->vport_active_flg = 0;
2072         vport_update_params->update_rss_flg = 0;
2073
2074         rc = edev->ops->vport_update(cdev, vport_update_params);
2075         vfree(vport_update_params);
2076
2077         if (rc) {
2078                 DP_ERR(edev, "Failed to update vport\n");
2079                 return rc;
2080         }
2081
2082         /* Flush Tx queues. If needed, request drain from MCP */
2083         for_each_queue(i) {
2084                 fp = &edev->fp_array[i];
2085
2086                 if (fp->type & QEDE_FASTPATH_TX) {
2087                         int cos;
2088
2089                         for_each_cos_in_txq(edev, cos) {
2090                                 rc = qede_drain_txq(edev, &fp->txq[cos], true);
2091                                 if (rc)
2092                                         return rc;
2093                         }
2094                 }
2095
2096                 if (fp->type & QEDE_FASTPATH_XDP) {
2097                         rc = qede_drain_txq(edev, fp->xdp_tx, true);
2098                         if (rc)
2099                                 return rc;
2100                 }
2101         }
2102
2103         /* Stop all Queues in reverse order */
2104         for (i = QEDE_QUEUE_CNT(edev) - 1; i >= 0; i--) {
2105                 fp = &edev->fp_array[i];
2106
2107                 /* Stop the Tx Queue(s) */
2108                 if (fp->type & QEDE_FASTPATH_TX) {
2109                         int cos;
2110
2111                         for_each_cos_in_txq(edev, cos) {
2112                                 rc = qede_stop_txq(edev, &fp->txq[cos], i);
2113                                 if (rc)
2114                                         return rc;
2115                         }
2116                 }
2117
2118                 /* Stop the Rx Queue */
2119                 if (fp->type & QEDE_FASTPATH_RX) {
2120                         rc = edev->ops->q_rx_stop(cdev, i, fp->rxq->handle);
2121                         if (rc) {
2122                                 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2123                                 return rc;
2124                         }
2125                 }
2126
2127                 /* Stop the XDP forwarding queue */
2128                 if (fp->type & QEDE_FASTPATH_XDP) {
2129                         rc = qede_stop_txq(edev, fp->xdp_tx, i);
2130                         if (rc)
2131                                 return rc;
2132
2133                         bpf_prog_put(fp->rxq->xdp_prog);
2134                 }
2135         }
2136
2137         /* Stop the vport */
2138         rc = edev->ops->vport_stop(cdev, 0);
2139         if (rc)
2140                 DP_ERR(edev, "Failed to stop VPORT\n");
2141
2142         return rc;
2143 }
2144
2145 static int qede_start_txq(struct qede_dev *edev,
2146                           struct qede_fastpath *fp,
2147                           struct qede_tx_queue *txq, u8 rss_id, u16 sb_idx)
2148 {
2149         dma_addr_t phys_table = qed_chain_get_pbl_phys(&txq->tx_pbl);
2150         u32 page_cnt = qed_chain_get_page_cnt(&txq->tx_pbl);
2151         struct qed_queue_start_common_params params;
2152         struct qed_txq_start_ret_params ret_params;
2153         int rc;
2154
2155         memset(&params, 0, sizeof(params));
2156         memset(&ret_params, 0, sizeof(ret_params));
2157
2158         /* Let the XDP queue share the queue-zone with one of the regular txq.
2159          * We don't really care about its coalescing.
2160          */
2161         if (txq->is_xdp)
2162                 params.queue_id = QEDE_TXQ_XDP_TO_IDX(edev, txq);
2163         else
2164                 params.queue_id = txq->index;
2165
2166         params.p_sb = fp->sb_info;
2167         params.sb_idx = sb_idx;
2168         params.tc = txq->cos;
2169
2170         rc = edev->ops->q_tx_start(edev->cdev, rss_id, &params, phys_table,
2171                                    page_cnt, &ret_params);
2172         if (rc) {
2173                 DP_ERR(edev, "Start TXQ #%d failed %d\n", txq->index, rc);
2174                 return rc;
2175         }
2176
2177         txq->doorbell_addr = ret_params.p_doorbell;
2178         txq->handle = ret_params.p_handle;
2179
2180         /* Determine the FW consumer address associated */
2181         txq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[sb_idx];
2182
2183         /* Prepare the doorbell parameters */
2184         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_DEST, DB_DEST_XCM);
2185         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD, DB_AGG_CMD_SET);
2186         SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_VAL_SEL,
2187                   DQ_XCM_ETH_TX_BD_PROD_CMD);
2188         txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2189
2190         /* register doorbell with doorbell recovery mechanism */
2191         rc = edev->ops->common->db_recovery_add(edev->cdev, txq->doorbell_addr,
2192                                                 &txq->tx_db, DB_REC_WIDTH_32B,
2193                                                 DB_REC_KERNEL);
2194
2195         return rc;
2196 }
2197
2198 static int qede_start_queues(struct qede_dev *edev, bool clear_stats)
2199 {
2200         int vlan_removal_en = 1;
2201         struct qed_dev *cdev = edev->cdev;
2202         struct qed_dev_info *qed_info = &edev->dev_info.common;
2203         struct qed_update_vport_params *vport_update_params;
2204         struct qed_queue_start_common_params q_params;
2205         struct qed_start_vport_params start = {0};
2206         int rc, i;
2207
2208         if (!edev->num_queues) {
2209                 DP_ERR(edev,
2210                        "Cannot update V-VPORT as active as there are no Rx queues\n");
2211                 return -EINVAL;
2212         }
2213
2214         vport_update_params = vzalloc(sizeof(*vport_update_params));
2215         if (!vport_update_params)
2216                 return -ENOMEM;
2217
2218         start.handle_ptp_pkts = !!(edev->ptp);
2219         start.gro_enable = !edev->gro_disable;
2220         start.mtu = edev->ndev->mtu;
2221         start.vport_id = 0;
2222         start.drop_ttl0 = true;
2223         start.remove_inner_vlan = vlan_removal_en;
2224         start.clear_stats = clear_stats;
2225
2226         rc = edev->ops->vport_start(cdev, &start);
2227
2228         if (rc) {
2229                 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2230                 goto out;
2231         }
2232
2233         DP_VERBOSE(edev, NETIF_MSG_IFUP,
2234                    "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2235                    start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2236
2237         for_each_queue(i) {
2238                 struct qede_fastpath *fp = &edev->fp_array[i];
2239                 dma_addr_t p_phys_table;
2240                 u32 page_cnt;
2241
2242                 if (fp->type & QEDE_FASTPATH_RX) {
2243                         struct qed_rxq_start_ret_params ret_params;
2244                         struct qede_rx_queue *rxq = fp->rxq;
2245                         __le16 *val;
2246
2247                         memset(&ret_params, 0, sizeof(ret_params));
2248                         memset(&q_params, 0, sizeof(q_params));
2249                         q_params.queue_id = rxq->rxq_id;
2250                         q_params.vport_id = 0;
2251                         q_params.p_sb = fp->sb_info;
2252                         q_params.sb_idx = RX_PI;
2253
2254                         p_phys_table =
2255                             qed_chain_get_pbl_phys(&rxq->rx_comp_ring);
2256                         page_cnt = qed_chain_get_page_cnt(&rxq->rx_comp_ring);
2257
2258                         rc = edev->ops->q_rx_start(cdev, i, &q_params,
2259                                                    rxq->rx_buf_size,
2260                                                    rxq->rx_bd_ring.p_phys_addr,
2261                                                    p_phys_table,
2262                                                    page_cnt, &ret_params);
2263                         if (rc) {
2264                                 DP_ERR(edev, "Start RXQ #%d failed %d\n", i,
2265                                        rc);
2266                                 goto out;
2267                         }
2268
2269                         /* Use the return parameters */
2270                         rxq->hw_rxq_prod_addr = ret_params.p_prod;
2271                         rxq->handle = ret_params.p_handle;
2272
2273                         val = &fp->sb_info->sb_virt->pi_array[RX_PI];
2274                         rxq->hw_cons_ptr = val;
2275
2276                         qede_update_rx_prod(edev, rxq);
2277                 }
2278
2279                 if (fp->type & QEDE_FASTPATH_XDP) {
2280                         rc = qede_start_txq(edev, fp, fp->xdp_tx, i, XDP_PI);
2281                         if (rc)
2282                                 goto out;
2283
2284                         bpf_prog_add(edev->xdp_prog, 1);
2285                         fp->rxq->xdp_prog = edev->xdp_prog;
2286                 }
2287
2288                 if (fp->type & QEDE_FASTPATH_TX) {
2289                         int cos;
2290
2291                         for_each_cos_in_txq(edev, cos) {
2292                                 rc = qede_start_txq(edev, fp, &fp->txq[cos], i,
2293                                                     TX_PI(cos));
2294                                 if (rc)
2295                                         goto out;
2296                         }
2297                 }
2298         }
2299
2300         /* Prepare and send the vport enable */
2301         vport_update_params->vport_id = start.vport_id;
2302         vport_update_params->update_vport_active_flg = 1;
2303         vport_update_params->vport_active_flg = 1;
2304
2305         if ((qed_info->b_inter_pf_switch || pci_num_vf(edev->pdev)) &&
2306             qed_info->tx_switching) {
2307                 vport_update_params->update_tx_switching_flg = 1;
2308                 vport_update_params->tx_switching_flg = 1;
2309         }
2310
2311         qede_fill_rss_params(edev, &vport_update_params->rss_params,
2312                              &vport_update_params->update_rss_flg);
2313
2314         rc = edev->ops->vport_update(cdev, vport_update_params);
2315         if (rc)
2316                 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2317
2318 out:
2319         vfree(vport_update_params);
2320         return rc;
2321 }
2322
2323 enum qede_unload_mode {
2324         QEDE_UNLOAD_NORMAL,
2325         QEDE_UNLOAD_RECOVERY,
2326 };
2327
2328 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode,
2329                         bool is_locked)
2330 {
2331         struct qed_link_params link_params;
2332         int rc;
2333
2334         DP_INFO(edev, "Starting qede unload\n");
2335
2336         if (!is_locked)
2337                 __qede_lock(edev);
2338
2339         clear_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2340
2341         if (mode != QEDE_UNLOAD_RECOVERY)
2342                 edev->state = QEDE_STATE_CLOSED;
2343
2344         qede_rdma_dev_event_close(edev);
2345
2346         /* Close OS Tx */
2347         netif_tx_disable(edev->ndev);
2348         netif_carrier_off(edev->ndev);
2349
2350         if (mode != QEDE_UNLOAD_RECOVERY) {
2351                 /* Reset the link */
2352                 memset(&link_params, 0, sizeof(link_params));
2353                 link_params.link_up = false;
2354                 edev->ops->common->set_link(edev->cdev, &link_params);
2355
2356                 rc = qede_stop_queues(edev);
2357                 if (rc) {
2358 #ifdef CONFIG_RFS_ACCEL
2359                         if (edev->dev_info.common.b_arfs_capable) {
2360                                 qede_poll_for_freeing_arfs_filters(edev);
2361                                 if (edev->ndev->rx_cpu_rmap)
2362                                         free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap);
2363
2364                                 edev->ndev->rx_cpu_rmap = NULL;
2365                         }
2366 #endif
2367                         qede_sync_free_irqs(edev);
2368                         goto out;
2369                 }
2370
2371                 DP_INFO(edev, "Stopped Queues\n");
2372         }
2373
2374         qede_vlan_mark_nonconfigured(edev);
2375         edev->ops->fastpath_stop(edev->cdev);
2376
2377         if (edev->dev_info.common.b_arfs_capable) {
2378                 qede_poll_for_freeing_arfs_filters(edev);
2379                 qede_free_arfs(edev);
2380         }
2381
2382         /* Release the interrupts */
2383         qede_sync_free_irqs(edev);
2384         edev->ops->common->set_fp_int(edev->cdev, 0);
2385
2386         qede_napi_disable_remove(edev);
2387
2388         if (mode == QEDE_UNLOAD_RECOVERY)
2389                 qede_empty_tx_queues(edev);
2390
2391         qede_free_mem_load(edev);
2392         qede_free_fp_array(edev);
2393
2394 out:
2395         if (!is_locked)
2396                 __qede_unlock(edev);
2397
2398         if (mode != QEDE_UNLOAD_RECOVERY)
2399                 DP_NOTICE(edev, "Link is down\n");
2400
2401         edev->ptp_skip_txts = 0;
2402
2403         DP_INFO(edev, "Ending qede unload\n");
2404 }
2405
2406 enum qede_load_mode {
2407         QEDE_LOAD_NORMAL,
2408         QEDE_LOAD_RELOAD,
2409         QEDE_LOAD_RECOVERY,
2410 };
2411
2412 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode,
2413                      bool is_locked)
2414 {
2415         struct qed_link_params link_params;
2416         struct ethtool_coalesce coal = {};
2417         u8 num_tc;
2418         int rc, i;
2419
2420         DP_INFO(edev, "Starting qede load\n");
2421
2422         if (!is_locked)
2423                 __qede_lock(edev);
2424
2425         rc = qede_set_num_queues(edev);
2426         if (rc)
2427                 goto out;
2428
2429         rc = qede_alloc_fp_array(edev);
2430         if (rc)
2431                 goto out;
2432
2433         qede_init_fp(edev);
2434
2435         rc = qede_alloc_mem_load(edev);
2436         if (rc)
2437                 goto err1;
2438         DP_INFO(edev, "Allocated %d Rx, %d Tx queues\n",
2439                 QEDE_RSS_COUNT(edev), QEDE_TSS_COUNT(edev));
2440
2441         rc = qede_set_real_num_queues(edev);
2442         if (rc)
2443                 goto err2;
2444
2445         if (qede_alloc_arfs(edev)) {
2446                 edev->ndev->features &= ~NETIF_F_NTUPLE;
2447                 edev->dev_info.common.b_arfs_capable = false;
2448         }
2449
2450         qede_napi_add_enable(edev);
2451         DP_INFO(edev, "Napi added and enabled\n");
2452
2453         rc = qede_setup_irqs(edev);
2454         if (rc)
2455                 goto err3;
2456         DP_INFO(edev, "Setup IRQs succeeded\n");
2457
2458         rc = qede_start_queues(edev, mode != QEDE_LOAD_RELOAD);
2459         if (rc)
2460                 goto err4;
2461         DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
2462
2463         num_tc = netdev_get_num_tc(edev->ndev);
2464         num_tc = num_tc ? num_tc : edev->dev_info.num_tc;
2465         qede_setup_tc(edev->ndev, num_tc);
2466
2467         /* Program un-configured VLANs */
2468         qede_configure_vlan_filters(edev);
2469
2470         set_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags);
2471
2472         /* Ask for link-up using current configuration */
2473         memset(&link_params, 0, sizeof(link_params));
2474         link_params.link_up = true;
2475         edev->ops->common->set_link(edev->cdev, &link_params);
2476
2477         edev->state = QEDE_STATE_OPEN;
2478
2479         coal.rx_coalesce_usecs = QED_DEFAULT_RX_USECS;
2480         coal.tx_coalesce_usecs = QED_DEFAULT_TX_USECS;
2481
2482         for_each_queue(i) {
2483                 if (edev->coal_entry[i].isvalid) {
2484                         coal.rx_coalesce_usecs = edev->coal_entry[i].rxc;
2485                         coal.tx_coalesce_usecs = edev->coal_entry[i].txc;
2486                 }
2487                 __qede_unlock(edev);
2488                 qede_set_per_coalesce(edev->ndev, i, &coal);
2489                 __qede_lock(edev);
2490         }
2491         DP_INFO(edev, "Ending successfully qede load\n");
2492
2493         goto out;
2494 err4:
2495         qede_sync_free_irqs(edev);
2496 err3:
2497         qede_napi_disable_remove(edev);
2498 err2:
2499         qede_free_mem_load(edev);
2500 err1:
2501         edev->ops->common->set_fp_int(edev->cdev, 0);
2502         qede_free_fp_array(edev);
2503         edev->num_queues = 0;
2504         edev->fp_num_tx = 0;
2505         edev->fp_num_rx = 0;
2506 out:
2507         if (!is_locked)
2508                 __qede_unlock(edev);
2509
2510         return rc;
2511 }
2512
2513 /* 'func' should be able to run between unload and reload assuming interface
2514  * is actually running, or afterwards in case it's currently DOWN.
2515  */
2516 void qede_reload(struct qede_dev *edev,
2517                  struct qede_reload_args *args, bool is_locked)
2518 {
2519         if (!is_locked)
2520                 __qede_lock(edev);
2521
2522         /* Since qede_lock is held, internal state wouldn't change even
2523          * if netdev state would start transitioning. Check whether current
2524          * internal configuration indicates device is up, then reload.
2525          */
2526         if (edev->state == QEDE_STATE_OPEN) {
2527                 qede_unload(edev, QEDE_UNLOAD_NORMAL, true);
2528                 if (args)
2529                         args->func(edev, args);
2530                 qede_load(edev, QEDE_LOAD_RELOAD, true);
2531
2532                 /* Since no one is going to do it for us, re-configure */
2533                 qede_config_rx_mode(edev->ndev);
2534         } else if (args) {
2535                 args->func(edev, args);
2536         }
2537
2538         if (!is_locked)
2539                 __qede_unlock(edev);
2540 }
2541
2542 /* called with rtnl_lock */
2543 static int qede_open(struct net_device *ndev)
2544 {
2545         struct qede_dev *edev = netdev_priv(ndev);
2546         int rc;
2547
2548         netif_carrier_off(ndev);
2549
2550         edev->ops->common->set_power_state(edev->cdev, PCI_D0);
2551
2552         rc = qede_load(edev, QEDE_LOAD_NORMAL, false);
2553         if (rc)
2554                 return rc;
2555
2556         udp_tunnel_nic_reset_ntf(ndev);
2557
2558         edev->ops->common->update_drv_state(edev->cdev, true);
2559
2560         return 0;
2561 }
2562
2563 static int qede_close(struct net_device *ndev)
2564 {
2565         struct qede_dev *edev = netdev_priv(ndev);
2566
2567         qede_unload(edev, QEDE_UNLOAD_NORMAL, false);
2568
2569         if (edev->cdev)
2570                 edev->ops->common->update_drv_state(edev->cdev, false);
2571
2572         return 0;
2573 }
2574
2575 static void qede_link_update(void *dev, struct qed_link_output *link)
2576 {
2577         struct qede_dev *edev = dev;
2578
2579         if (!test_bit(QEDE_FLAGS_LINK_REQUESTED, &edev->flags)) {
2580                 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not ready\n");
2581                 return;
2582         }
2583
2584         if (link->link_up) {
2585                 if (!netif_carrier_ok(edev->ndev)) {
2586                         DP_NOTICE(edev, "Link is up\n");
2587                         netif_tx_start_all_queues(edev->ndev);
2588                         netif_carrier_on(edev->ndev);
2589                         qede_rdma_dev_event_open(edev);
2590                 }
2591         } else {
2592                 if (netif_carrier_ok(edev->ndev)) {
2593                         DP_NOTICE(edev, "Link is down\n");
2594                         netif_tx_disable(edev->ndev);
2595                         netif_carrier_off(edev->ndev);
2596                         qede_rdma_dev_event_close(edev);
2597                 }
2598         }
2599 }
2600
2601 static void qede_schedule_recovery_handler(void *dev)
2602 {
2603         struct qede_dev *edev = dev;
2604
2605         if (edev->state == QEDE_STATE_RECOVERY) {
2606                 DP_NOTICE(edev,
2607                           "Avoid scheduling a recovery handling since already in recovery state\n");
2608                 return;
2609         }
2610
2611         set_bit(QEDE_SP_RECOVERY, &edev->sp_flags);
2612         schedule_delayed_work(&edev->sp_task, 0);
2613
2614         DP_INFO(edev, "Scheduled a recovery handler\n");
2615 }
2616
2617 static void qede_recovery_failed(struct qede_dev *edev)
2618 {
2619         netdev_err(edev->ndev, "Recovery handling has failed. Power cycle is needed.\n");
2620
2621         netif_device_detach(edev->ndev);
2622
2623         if (edev->cdev)
2624                 edev->ops->common->set_power_state(edev->cdev, PCI_D3hot);
2625 }
2626
2627 static void qede_recovery_handler(struct qede_dev *edev)
2628 {
2629         u32 curr_state = edev->state;
2630         int rc;
2631
2632         DP_NOTICE(edev, "Starting a recovery process\n");
2633
2634         /* No need to acquire first the qede_lock since is done by qede_sp_task
2635          * before calling this function.
2636          */
2637         edev->state = QEDE_STATE_RECOVERY;
2638
2639         edev->ops->common->recovery_prolog(edev->cdev);
2640
2641         if (curr_state == QEDE_STATE_OPEN)
2642                 qede_unload(edev, QEDE_UNLOAD_RECOVERY, true);
2643
2644         __qede_remove(edev->pdev, QEDE_REMOVE_RECOVERY);
2645
2646         rc = __qede_probe(edev->pdev, edev->dp_module, edev->dp_level,
2647                           IS_VF(edev), QEDE_PROBE_RECOVERY);
2648         if (rc) {
2649                 edev->cdev = NULL;
2650                 goto err;
2651         }
2652
2653         if (curr_state == QEDE_STATE_OPEN) {
2654                 rc = qede_load(edev, QEDE_LOAD_RECOVERY, true);
2655                 if (rc)
2656                         goto err;
2657
2658                 qede_config_rx_mode(edev->ndev);
2659                 udp_tunnel_nic_reset_ntf(edev->ndev);
2660         }
2661
2662         edev->state = curr_state;
2663
2664         DP_NOTICE(edev, "Recovery handling is done\n");
2665
2666         return;
2667
2668 err:
2669         qede_recovery_failed(edev);
2670 }
2671
2672 static void qede_atomic_hw_err_handler(struct qede_dev *edev)
2673 {
2674         struct qed_dev *cdev = edev->cdev;
2675
2676         DP_NOTICE(edev,
2677                   "Generic non-sleepable HW error handling started - err_flags 0x%lx\n",
2678                   edev->err_flags);
2679
2680         /* Get a call trace of the flow that led to the error */
2681         WARN_ON(test_bit(QEDE_ERR_WARN, &edev->err_flags));
2682
2683         /* Prevent HW attentions from being reasserted */
2684         if (test_bit(QEDE_ERR_ATTN_CLR_EN, &edev->err_flags))
2685                 edev->ops->common->attn_clr_enable(cdev, true);
2686
2687         DP_NOTICE(edev, "Generic non-sleepable HW error handling is done\n");
2688 }
2689
2690 static void qede_generic_hw_err_handler(struct qede_dev *edev)
2691 {
2692         DP_NOTICE(edev,
2693                   "Generic sleepable HW error handling started - err_flags 0x%lx\n",
2694                   edev->err_flags);
2695
2696         if (edev->devlink) {
2697                 DP_NOTICE(edev, "Reporting fatal error to devlink\n");
2698                 edev->ops->common->report_fatal_error(edev->devlink, edev->last_err_type);
2699         }
2700
2701         clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2702
2703         DP_NOTICE(edev, "Generic sleepable HW error handling is done\n");
2704 }
2705
2706 static void qede_set_hw_err_flags(struct qede_dev *edev,
2707                                   enum qed_hw_err_type err_type)
2708 {
2709         unsigned long err_flags = 0;
2710
2711         switch (err_type) {
2712         case QED_HW_ERR_DMAE_FAIL:
2713                 set_bit(QEDE_ERR_WARN, &err_flags);
2714                 fallthrough;
2715         case QED_HW_ERR_MFW_RESP_FAIL:
2716         case QED_HW_ERR_HW_ATTN:
2717         case QED_HW_ERR_RAMROD_FAIL:
2718         case QED_HW_ERR_FW_ASSERT:
2719                 set_bit(QEDE_ERR_ATTN_CLR_EN, &err_flags);
2720                 set_bit(QEDE_ERR_GET_DBG_INFO, &err_flags);
2721                 /* make this error as recoverable and start recovery*/
2722                 set_bit(QEDE_ERR_IS_RECOVERABLE, &err_flags);
2723                 break;
2724
2725         default:
2726                 DP_NOTICE(edev, "Unexpected HW error [%d]\n", err_type);
2727                 break;
2728         }
2729
2730         edev->err_flags |= err_flags;
2731 }
2732
2733 static void qede_schedule_hw_err_handler(void *dev,
2734                                          enum qed_hw_err_type err_type)
2735 {
2736         struct qede_dev *edev = dev;
2737
2738         /* Fan failure cannot be masked by handling of another HW error or by a
2739          * concurrent recovery process.
2740          */
2741         if ((test_and_set_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags) ||
2742              edev->state == QEDE_STATE_RECOVERY) &&
2743              err_type != QED_HW_ERR_FAN_FAIL) {
2744                 DP_INFO(edev,
2745                         "Avoid scheduling an error handling while another HW error is being handled\n");
2746                 return;
2747         }
2748
2749         if (err_type >= QED_HW_ERR_LAST) {
2750                 DP_NOTICE(edev, "Unknown HW error [%d]\n", err_type);
2751                 clear_bit(QEDE_ERR_IS_HANDLED, &edev->err_flags);
2752                 return;
2753         }
2754
2755         edev->last_err_type = err_type;
2756         qede_set_hw_err_flags(edev, err_type);
2757         qede_atomic_hw_err_handler(edev);
2758         set_bit(QEDE_SP_HW_ERR, &edev->sp_flags);
2759         schedule_delayed_work(&edev->sp_task, 0);
2760
2761         DP_INFO(edev, "Scheduled a error handler [err_type %d]\n", err_type);
2762 }
2763
2764 static bool qede_is_txq_full(struct qede_dev *edev, struct qede_tx_queue *txq)
2765 {
2766         struct netdev_queue *netdev_txq;
2767
2768         netdev_txq = netdev_get_tx_queue(edev->ndev, txq->ndev_txq_id);
2769         if (netif_xmit_stopped(netdev_txq))
2770                 return true;
2771
2772         return false;
2773 }
2774
2775 static void qede_get_generic_tlv_data(void *dev, struct qed_generic_tlvs *data)
2776 {
2777         struct qede_dev *edev = dev;
2778         struct netdev_hw_addr *ha;
2779         int i;
2780
2781         if (edev->ndev->features & NETIF_F_IP_CSUM)
2782                 data->feat_flags |= QED_TLV_IP_CSUM;
2783         if (edev->ndev->features & NETIF_F_TSO)
2784                 data->feat_flags |= QED_TLV_LSO;
2785
2786         ether_addr_copy(data->mac[0], edev->ndev->dev_addr);
2787         eth_zero_addr(data->mac[1]);
2788         eth_zero_addr(data->mac[2]);
2789         /* Copy the first two UC macs */
2790         netif_addr_lock_bh(edev->ndev);
2791         i = 1;
2792         netdev_for_each_uc_addr(ha, edev->ndev) {
2793                 ether_addr_copy(data->mac[i++], ha->addr);
2794                 if (i == QED_TLV_MAC_COUNT)
2795                         break;
2796         }
2797
2798         netif_addr_unlock_bh(edev->ndev);
2799 }
2800
2801 static void qede_get_eth_tlv_data(void *dev, void *data)
2802 {
2803         struct qed_mfw_tlv_eth *etlv = data;
2804         struct qede_dev *edev = dev;
2805         struct qede_fastpath *fp;
2806         int i;
2807
2808         etlv->lso_maxoff_size = 0XFFFF;
2809         etlv->lso_maxoff_size_set = true;
2810         etlv->lso_minseg_size = (u16)ETH_TX_LSO_WINDOW_MIN_LEN;
2811         etlv->lso_minseg_size_set = true;
2812         etlv->prom_mode = !!(edev->ndev->flags & IFF_PROMISC);
2813         etlv->prom_mode_set = true;
2814         etlv->tx_descr_size = QEDE_TSS_COUNT(edev);
2815         etlv->tx_descr_size_set = true;
2816         etlv->rx_descr_size = QEDE_RSS_COUNT(edev);
2817         etlv->rx_descr_size_set = true;
2818         etlv->iov_offload = QED_MFW_TLV_IOV_OFFLOAD_VEB;
2819         etlv->iov_offload_set = true;
2820
2821         /* Fill information regarding queues; Should be done under the qede
2822          * lock to guarantee those don't change beneath our feet.
2823          */
2824         etlv->txqs_empty = true;
2825         etlv->rxqs_empty = true;
2826         etlv->num_txqs_full = 0;
2827         etlv->num_rxqs_full = 0;
2828
2829         __qede_lock(edev);
2830         for_each_queue(i) {
2831                 fp = &edev->fp_array[i];
2832                 if (fp->type & QEDE_FASTPATH_TX) {
2833                         struct qede_tx_queue *txq = QEDE_FP_TC0_TXQ(fp);
2834
2835                         if (txq->sw_tx_cons != txq->sw_tx_prod)
2836                                 etlv->txqs_empty = false;
2837                         if (qede_is_txq_full(edev, txq))
2838                                 etlv->num_txqs_full++;
2839                 }
2840                 if (fp->type & QEDE_FASTPATH_RX) {
2841                         if (qede_has_rx_work(fp->rxq))
2842                                 etlv->rxqs_empty = false;
2843
2844                         /* This one is a bit tricky; Firmware might stop
2845                          * placing packets if ring is not yet full.
2846                          * Give an approximation.
2847                          */
2848                         if (le16_to_cpu(*fp->rxq->hw_cons_ptr) -
2849                             qed_chain_get_cons_idx(&fp->rxq->rx_comp_ring) >
2850                             RX_RING_SIZE - 100)
2851                                 etlv->num_rxqs_full++;
2852                 }
2853         }
2854         __qede_unlock(edev);
2855
2856         etlv->txqs_empty_set = true;
2857         etlv->rxqs_empty_set = true;
2858         etlv->num_txqs_full_set = true;
2859         etlv->num_rxqs_full_set = true;
2860 }
2861
2862 /**
2863  * qede_io_error_detected(): Called when PCI error is detected
2864  *
2865  * @pdev: Pointer to PCI device
2866  * @state: The current pci connection state
2867  *
2868  *Return: pci_ers_result_t.
2869  *
2870  * This function is called after a PCI bus error affecting
2871  * this device has been detected.
2872  */
2873 static pci_ers_result_t
2874 qede_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
2875 {
2876         struct net_device *dev = pci_get_drvdata(pdev);
2877         struct qede_dev *edev = netdev_priv(dev);
2878
2879         if (!edev)
2880                 return PCI_ERS_RESULT_NONE;
2881
2882         DP_NOTICE(edev, "IO error detected [%d]\n", state);
2883
2884         __qede_lock(edev);
2885         if (edev->state == QEDE_STATE_RECOVERY) {
2886                 DP_NOTICE(edev, "Device already in the recovery state\n");
2887                 __qede_unlock(edev);
2888                 return PCI_ERS_RESULT_NONE;
2889         }
2890
2891         /* PF handles the recovery of its VFs */
2892         if (IS_VF(edev)) {
2893                 DP_VERBOSE(edev, QED_MSG_IOV,
2894                            "VF recovery is handled by its PF\n");
2895                 __qede_unlock(edev);
2896                 return PCI_ERS_RESULT_RECOVERED;
2897         }
2898
2899         /* Close OS Tx */
2900         netif_tx_disable(edev->ndev);
2901         netif_carrier_off(edev->ndev);
2902
2903         set_bit(QEDE_SP_AER, &edev->sp_flags);
2904         schedule_delayed_work(&edev->sp_task, 0);
2905
2906         __qede_unlock(edev);
2907
2908         return PCI_ERS_RESULT_CAN_RECOVER;
2909 }
This page took 0.214244 seconds and 4 git commands to generate.