1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/drivers/mmc/core/core.c
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS (250)
54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it it to be disabled.
62 module_param(use_spi_crc, bool, 0);
64 static int mmc_schedule_delayed_work(struct delayed_work *work,
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
73 return queue_delayed_work(system_freezable_wq, work, delay);
76 #ifdef CONFIG_FAIL_MMC_REQUEST
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
82 static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
100 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
101 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
104 #else /* CONFIG_FAIL_MMC_REQUEST */
106 static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
111 #endif /* CONFIG_FAIL_MMC_REQUEST */
113 static inline void mmc_complete_cmd(struct mmc_request *mrq)
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
121 if (!mrq->cap_cmd_during_tfr)
124 mmc_complete_cmd(mrq);
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
129 EXPORT_SYMBOL(mmc_command_done);
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
144 /* Flag re-tuning needed on CRC errors */
145 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
147 !host->retune_crc_disable &&
148 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
149 (mrq->data && mrq->data->error == -EILSEQ) ||
150 (mrq->stop && mrq->stop->error == -EILSEQ)))
151 mmc_retune_needed(host);
153 if (err && cmd->retries && mmc_host_is_spi(host)) {
154 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
158 if (host->ongoing_mrq == mrq)
159 host->ongoing_mrq = NULL;
161 mmc_complete_cmd(mrq);
163 trace_mmc_request_done(host, mrq);
166 * We list various conditions for the command to be considered
169 * - There was no error, OK fine then
170 * - We are not doing some kind of retry
171 * - The card was removed (...so just complete everything no matter
172 * if there are errors or retries)
174 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
175 mmc_should_fail_request(host, mrq);
177 if (!host->ongoing_mrq)
178 led_trigger_event(host->led, LED_OFF);
181 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182 mmc_hostname(host), mrq->sbc->opcode,
184 mrq->sbc->resp[0], mrq->sbc->resp[1],
185 mrq->sbc->resp[2], mrq->sbc->resp[3]);
188 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host), cmd->opcode, err,
190 cmd->resp[0], cmd->resp[1],
191 cmd->resp[2], cmd->resp[3]);
194 pr_debug("%s: %d bytes transferred: %d\n",
196 mrq->data->bytes_xfered, mrq->data->error);
200 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
201 mmc_hostname(host), mrq->stop->opcode,
203 mrq->stop->resp[0], mrq->stop->resp[1],
204 mrq->stop->resp[2], mrq->stop->resp[3]);
208 * Request starter must handle retries - see
209 * mmc_wait_for_req_done().
215 EXPORT_SYMBOL(mmc_request_done);
217 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
221 /* Assumes host controller has been runtime resumed by mmc_claim_host */
222 err = mmc_retune(host);
224 mrq->cmd->error = err;
225 mmc_request_done(host, mrq);
230 * For sdio rw commands we must wait for card busy otherwise some
231 * sdio devices won't work properly.
232 * And bypass I/O abort, reset and bus suspend operations.
234 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
235 host->ops->card_busy) {
236 int tries = 500; /* Wait aprox 500ms at maximum */
238 while (host->ops->card_busy(host) && --tries)
242 mrq->cmd->error = -EBUSY;
243 mmc_request_done(host, mrq);
248 if (mrq->cap_cmd_during_tfr) {
249 host->ongoing_mrq = mrq;
251 * Retry path could come through here without having waiting on
252 * cmd_completion, so ensure it is reinitialised.
254 reinit_completion(&mrq->cmd_completion);
257 trace_mmc_request_start(host, mrq);
260 host->cqe_ops->cqe_off(host);
262 host->ops->request(host, mrq);
265 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 mmc_hostname(host), mrq->sbc->opcode,
271 mrq->sbc->arg, mrq->sbc->flags);
275 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276 mmc_hostname(host), cqe ? "CQE direct " : "",
277 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
279 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
284 pr_debug("%s: blksz %d blocks %d flags %08x "
285 "tsac %d ms nsac %d\n",
286 mmc_hostname(host), mrq->data->blksz,
287 mrq->data->blocks, mrq->data->flags,
288 mrq->data->timeout_ns / 1000000,
289 mrq->data->timeout_clks);
293 pr_debug("%s: CMD%u arg %08x flags %08x\n",
294 mmc_hostname(host), mrq->stop->opcode,
295 mrq->stop->arg, mrq->stop->flags);
299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
301 unsigned int i, sz = 0;
302 struct scatterlist *sg;
307 mrq->cmd->data = mrq->data;
314 if (mrq->data->blksz > host->max_blk_size ||
315 mrq->data->blocks > host->max_blk_count ||
316 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
321 if (sz != mrq->data->blocks * mrq->data->blksz)
324 mrq->data->error = 0;
325 mrq->data->mrq = mrq;
327 mrq->data->stop = mrq->stop;
328 mrq->stop->error = 0;
329 mrq->stop->mrq = mrq;
336 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
340 init_completion(&mrq->cmd_completion);
342 mmc_retune_hold(host);
344 if (mmc_card_removed(host->card))
347 mmc_mrq_pr_debug(host, mrq, false);
349 WARN_ON(!host->claimed);
351 err = mmc_mrq_prep(host, mrq);
355 led_trigger_event(host->led, LED_FULL);
356 __mmc_start_request(host, mrq);
360 EXPORT_SYMBOL(mmc_start_request);
362 static void mmc_wait_done(struct mmc_request *mrq)
364 complete(&mrq->completion);
367 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
369 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
372 * If there is an ongoing transfer, wait for the command line to become
375 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
376 wait_for_completion(&ongoing_mrq->cmd_completion);
379 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
383 mmc_wait_ongoing_tfr_cmd(host);
385 init_completion(&mrq->completion);
386 mrq->done = mmc_wait_done;
388 err = mmc_start_request(host, mrq);
390 mrq->cmd->error = err;
391 mmc_complete_cmd(mrq);
392 complete(&mrq->completion);
398 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
400 struct mmc_command *cmd;
403 wait_for_completion(&mrq->completion);
407 if (!cmd->error || !cmd->retries ||
408 mmc_card_removed(host->card))
411 mmc_retune_recheck(host);
413 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
414 mmc_hostname(host), cmd->opcode, cmd->error);
417 __mmc_start_request(host, mrq);
420 mmc_retune_release(host);
422 EXPORT_SYMBOL(mmc_wait_for_req_done);
425 * mmc_cqe_start_req - Start a CQE request.
426 * @host: MMC host to start the request
427 * @mrq: request to start
429 * Start the request, re-tuning if needed and it is possible. Returns an error
430 * code if the request fails to start or -EBUSY if CQE is busy.
432 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
437 * CQE cannot process re-tuning commands. Caller must hold retuning
438 * while CQE is in use. Re-tuning can happen here only when CQE has no
439 * active requests i.e. this is the first. Note, re-tuning will call
442 err = mmc_retune(host);
448 mmc_mrq_pr_debug(host, mrq, true);
450 err = mmc_mrq_prep(host, mrq);
454 err = host->cqe_ops->cqe_request(host, mrq);
458 trace_mmc_request_start(host, mrq);
464 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
465 mmc_hostname(host), mrq->cmd->opcode, err);
467 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
468 mmc_hostname(host), mrq->tag, err);
472 EXPORT_SYMBOL(mmc_cqe_start_req);
475 * mmc_cqe_request_done - CQE has finished processing an MMC request
476 * @host: MMC host which completed request
477 * @mrq: MMC request which completed
479 * CQE drivers should call this function when they have completed
480 * their processing of a request.
482 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
484 mmc_should_fail_request(host, mrq);
486 /* Flag re-tuning needed on CRC errors */
487 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
488 (mrq->data && mrq->data->error == -EILSEQ))
489 mmc_retune_needed(host);
491 trace_mmc_request_done(host, mrq);
494 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
495 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
497 pr_debug("%s: CQE transfer done tag %d\n",
498 mmc_hostname(host), mrq->tag);
502 pr_debug("%s: %d bytes transferred: %d\n",
504 mrq->data->bytes_xfered, mrq->data->error);
509 EXPORT_SYMBOL(mmc_cqe_request_done);
512 * mmc_cqe_post_req - CQE post process of a completed MMC request
514 * @mrq: MMC request to be processed
516 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
518 if (host->cqe_ops->cqe_post_req)
519 host->cqe_ops->cqe_post_req(host, mrq);
521 EXPORT_SYMBOL(mmc_cqe_post_req);
523 /* Arbitrary 1 second timeout */
524 #define MMC_CQE_RECOVERY_TIMEOUT 1000
527 * mmc_cqe_recovery - Recover from CQE errors.
528 * @host: MMC host to recover
530 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
531 * in eMMC, and discarding the queue in CQE. CQE must call
532 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
533 * fails to discard its queue.
535 int mmc_cqe_recovery(struct mmc_host *host)
537 struct mmc_command cmd;
540 mmc_retune_hold_now(host);
543 * Recovery is expected seldom, if at all, but it reduces performance,
544 * so make sure it is not completely silent.
546 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
548 host->cqe_ops->cqe_recovery_start(host);
550 memset(&cmd, 0, sizeof(cmd));
551 cmd.opcode = MMC_STOP_TRANSMISSION;
552 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
553 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
554 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
555 mmc_wait_for_cmd(host, &cmd, 0);
557 memset(&cmd, 0, sizeof(cmd));
558 cmd.opcode = MMC_CMDQ_TASK_MGMT;
559 cmd.arg = 1; /* Discard entire queue */
560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
563 err = mmc_wait_for_cmd(host, &cmd, 0);
565 host->cqe_ops->cqe_recovery_finish(host);
567 mmc_retune_release(host);
571 EXPORT_SYMBOL(mmc_cqe_recovery);
574 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
578 * mmc_is_req_done() is used with requests that have
579 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
580 * starting a request and before waiting for it to complete. That is,
581 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
582 * and before mmc_wait_for_req_done(). If it is called at other times the
583 * result is not meaningful.
585 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
587 return completion_done(&mrq->completion);
589 EXPORT_SYMBOL(mmc_is_req_done);
592 * mmc_wait_for_req - start a request and wait for completion
593 * @host: MMC host to start command
594 * @mrq: MMC request to start
596 * Start a new MMC custom command request for a host, and wait
597 * for the command to complete. In the case of 'cap_cmd_during_tfr'
598 * requests, the transfer is ongoing and the caller can issue further
599 * commands that do not use the data lines, and then wait by calling
600 * mmc_wait_for_req_done().
601 * Does not attempt to parse the response.
603 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
605 __mmc_start_req(host, mrq);
607 if (!mrq->cap_cmd_during_tfr)
608 mmc_wait_for_req_done(host, mrq);
610 EXPORT_SYMBOL(mmc_wait_for_req);
613 * mmc_wait_for_cmd - start a command and wait for completion
614 * @host: MMC host to start command
615 * @cmd: MMC command to start
616 * @retries: maximum number of retries
618 * Start a new MMC command for a host, and wait for the command
619 * to complete. Return any error that occurred while the command
620 * was executing. Do not attempt to parse the response.
622 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
624 struct mmc_request mrq = {};
626 WARN_ON(!host->claimed);
628 memset(cmd->resp, 0, sizeof(cmd->resp));
629 cmd->retries = retries;
634 mmc_wait_for_req(host, &mrq);
639 EXPORT_SYMBOL(mmc_wait_for_cmd);
642 * mmc_set_data_timeout - set the timeout for a data command
643 * @data: data phase for command
644 * @card: the MMC card associated with the data transfer
646 * Computes the data timeout parameters according to the
647 * correct algorithm given the card type.
649 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
654 * SDIO cards only define an upper 1 s limit on access.
656 if (mmc_card_sdio(card)) {
657 data->timeout_ns = 1000000000;
658 data->timeout_clks = 0;
663 * SD cards use a 100 multiplier rather than 10
665 mult = mmc_card_sd(card) ? 100 : 10;
668 * Scale up the multiplier (and therefore the timeout) by
669 * the r2w factor for writes.
671 if (data->flags & MMC_DATA_WRITE)
672 mult <<= card->csd.r2w_factor;
674 data->timeout_ns = card->csd.taac_ns * mult;
675 data->timeout_clks = card->csd.taac_clks * mult;
678 * SD cards also have an upper limit on the timeout.
680 if (mmc_card_sd(card)) {
681 unsigned int timeout_us, limit_us;
683 timeout_us = data->timeout_ns / 1000;
684 if (card->host->ios.clock)
685 timeout_us += data->timeout_clks * 1000 /
686 (card->host->ios.clock / 1000);
688 if (data->flags & MMC_DATA_WRITE)
690 * The MMC spec "It is strongly recommended
691 * for hosts to implement more than 500ms
692 * timeout value even if the card indicates
693 * the 250ms maximum busy length." Even the
694 * previous value of 300ms is known to be
695 * insufficient for some cards.
702 * SDHC cards always use these fixed values.
704 if (timeout_us > limit_us) {
705 data->timeout_ns = limit_us * 1000;
706 data->timeout_clks = 0;
709 /* assign limit value if invalid */
711 data->timeout_ns = limit_us * 1000;
715 * Some cards require longer data read timeout than indicated in CSD.
716 * Address this by setting the read timeout to a "reasonably high"
717 * value. For the cards tested, 600ms has proven enough. If necessary,
718 * this value can be increased if other problematic cards require this.
720 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
721 data->timeout_ns = 600000000;
722 data->timeout_clks = 0;
726 * Some cards need very high timeouts if driven in SPI mode.
727 * The worst observed timeout was 900ms after writing a
728 * continuous stream of data until the internal logic
731 if (mmc_host_is_spi(card->host)) {
732 if (data->flags & MMC_DATA_WRITE) {
733 if (data->timeout_ns < 1000000000)
734 data->timeout_ns = 1000000000; /* 1s */
736 if (data->timeout_ns < 100000000)
737 data->timeout_ns = 100000000; /* 100ms */
741 EXPORT_SYMBOL(mmc_set_data_timeout);
744 * Allow claiming an already claimed host if the context is the same or there is
745 * no context but the task is the same.
747 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
748 struct task_struct *task)
750 return host->claimer == ctx ||
751 (!ctx && task && host->claimer->task == task);
754 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
756 struct task_struct *task)
758 if (!host->claimer) {
762 host->claimer = &host->default_ctx;
765 host->claimer->task = task;
769 * __mmc_claim_host - exclusively claim a host
770 * @host: mmc host to claim
771 * @ctx: context that claims the host or NULL in which case the default
772 * context will be used
773 * @abort: whether or not the operation should be aborted
775 * Claim a host for a set of operations. If @abort is non null and
776 * dereference a non-zero value then this will return prematurely with
777 * that non-zero value without acquiring the lock. Returns zero
778 * with the lock held otherwise.
780 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
783 struct task_struct *task = ctx ? NULL : current;
784 DECLARE_WAITQUEUE(wait, current);
791 add_wait_queue(&host->wq, &wait);
792 spin_lock_irqsave(&host->lock, flags);
794 set_current_state(TASK_UNINTERRUPTIBLE);
795 stop = abort ? atomic_read(abort) : 0;
796 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
798 spin_unlock_irqrestore(&host->lock, flags);
800 spin_lock_irqsave(&host->lock, flags);
802 set_current_state(TASK_RUNNING);
805 mmc_ctx_set_claimer(host, ctx, task);
806 host->claim_cnt += 1;
807 if (host->claim_cnt == 1)
811 spin_unlock_irqrestore(&host->lock, flags);
812 remove_wait_queue(&host->wq, &wait);
815 pm_runtime_get_sync(mmc_dev(host));
819 EXPORT_SYMBOL(__mmc_claim_host);
822 * mmc_release_host - release a host
823 * @host: mmc host to release
825 * Release a MMC host, allowing others to claim the host
826 * for their operations.
828 void mmc_release_host(struct mmc_host *host)
832 WARN_ON(!host->claimed);
834 spin_lock_irqsave(&host->lock, flags);
835 if (--host->claim_cnt) {
836 /* Release for nested claim */
837 spin_unlock_irqrestore(&host->lock, flags);
840 host->claimer->task = NULL;
841 host->claimer = NULL;
842 spin_unlock_irqrestore(&host->lock, flags);
844 pm_runtime_mark_last_busy(mmc_dev(host));
845 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
846 pm_runtime_put_sync_suspend(mmc_dev(host));
848 pm_runtime_put_autosuspend(mmc_dev(host));
851 EXPORT_SYMBOL(mmc_release_host);
854 * This is a helper function, which fetches a runtime pm reference for the
855 * card device and also claims the host.
857 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
859 pm_runtime_get_sync(&card->dev);
860 __mmc_claim_host(card->host, ctx, NULL);
862 EXPORT_SYMBOL(mmc_get_card);
865 * This is a helper function, which releases the host and drops the runtime
866 * pm reference for the card device.
868 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
870 struct mmc_host *host = card->host;
872 WARN_ON(ctx && host->claimer != ctx);
874 mmc_release_host(host);
875 pm_runtime_mark_last_busy(&card->dev);
876 pm_runtime_put_autosuspend(&card->dev);
878 EXPORT_SYMBOL(mmc_put_card);
881 * Internal function that does the actual ios call to the host driver,
882 * optionally printing some debug output.
884 static inline void mmc_set_ios(struct mmc_host *host)
886 struct mmc_ios *ios = &host->ios;
888 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
889 "width %u timing %u\n",
890 mmc_hostname(host), ios->clock, ios->bus_mode,
891 ios->power_mode, ios->chip_select, ios->vdd,
892 1 << ios->bus_width, ios->timing);
894 host->ops->set_ios(host, ios);
898 * Control chip select pin on a host.
900 void mmc_set_chip_select(struct mmc_host *host, int mode)
902 host->ios.chip_select = mode;
907 * Sets the host clock to the highest possible frequency that
910 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
912 WARN_ON(hz && hz < host->f_min);
914 if (hz > host->f_max)
917 host->ios.clock = hz;
921 int mmc_execute_tuning(struct mmc_card *card)
923 struct mmc_host *host = card->host;
927 if (!host->ops->execute_tuning)
931 host->cqe_ops->cqe_off(host);
933 if (mmc_card_mmc(card))
934 opcode = MMC_SEND_TUNING_BLOCK_HS200;
936 opcode = MMC_SEND_TUNING_BLOCK;
938 err = host->ops->execute_tuning(host, opcode);
940 mmc_retune_clear(host);
941 mmc_retune_enable(host);
945 /* Only print error when we don't check for card removal */
946 if (!host->detect_change) {
947 pr_err("%s: tuning execution failed: %d\n",
948 mmc_hostname(host), err);
949 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
956 * Change the bus mode (open drain/push-pull) of a host.
958 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
960 host->ios.bus_mode = mode;
965 * Change data bus width of a host.
967 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
969 host->ios.bus_width = width;
974 * Set initial state after a power cycle or a hw_reset.
976 void mmc_set_initial_state(struct mmc_host *host)
979 host->cqe_ops->cqe_off(host);
981 mmc_retune_disable(host);
983 if (mmc_host_is_spi(host))
984 host->ios.chip_select = MMC_CS_HIGH;
986 host->ios.chip_select = MMC_CS_DONTCARE;
987 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
988 host->ios.bus_width = MMC_BUS_WIDTH_1;
989 host->ios.timing = MMC_TIMING_LEGACY;
990 host->ios.drv_type = 0;
991 host->ios.enhanced_strobe = false;
994 * Make sure we are in non-enhanced strobe mode before we
995 * actually enable it in ext_csd.
997 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
998 host->ops->hs400_enhanced_strobe)
999 host->ops->hs400_enhanced_strobe(host, &host->ios);
1003 mmc_crypto_set_initial_state(host);
1007 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1008 * @vdd: voltage (mV)
1009 * @low_bits: prefer low bits in boundary cases
1011 * This function returns the OCR bit number according to the provided @vdd
1012 * value. If conversion is not possible a negative errno value returned.
1014 * Depending on the @low_bits flag the function prefers low or high OCR bits
1015 * on boundary voltages. For example,
1016 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1017 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1019 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1021 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1023 const int max_bit = ilog2(MMC_VDD_35_36);
1026 if (vdd < 1650 || vdd > 3600)
1029 if (vdd >= 1650 && vdd <= 1950)
1030 return ilog2(MMC_VDD_165_195);
1035 /* Base 2000 mV, step 100 mV, bit's base 8. */
1036 bit = (vdd - 2000) / 100 + 8;
1043 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1044 * @vdd_min: minimum voltage value (mV)
1045 * @vdd_max: maximum voltage value (mV)
1047 * This function returns the OCR mask bits according to the provided @vdd_min
1048 * and @vdd_max values. If conversion is not possible the function returns 0.
1050 * Notes wrt boundary cases:
1051 * This function sets the OCR bits for all boundary voltages, for example
1052 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1053 * MMC_VDD_34_35 mask.
1055 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1059 if (vdd_max < vdd_min)
1062 /* Prefer high bits for the boundary vdd_max values. */
1063 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1067 /* Prefer low bits for the boundary vdd_min values. */
1068 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1072 /* Fill the mask, from max bit to min bit. */
1073 while (vdd_max >= vdd_min)
1074 mask |= 1 << vdd_max--;
1079 static int mmc_of_get_func_num(struct device_node *node)
1084 ret = of_property_read_u32(node, "reg", ®);
1091 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1094 struct device_node *node;
1096 if (!host->parent || !host->parent->of_node)
1099 for_each_child_of_node(host->parent->of_node, node) {
1100 if (mmc_of_get_func_num(node) == func_num)
1108 * Mask off any voltages we don't support and select
1109 * the lowest voltage
1111 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1116 * Sanity check the voltages that the card claims to
1120 dev_warn(mmc_dev(host),
1121 "card claims to support voltages below defined range\n");
1125 ocr &= host->ocr_avail;
1127 dev_warn(mmc_dev(host), "no support for card's volts\n");
1131 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1134 mmc_power_cycle(host, ocr);
1138 if (bit != host->ios.vdd)
1139 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1145 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1148 int old_signal_voltage = host->ios.signal_voltage;
1150 host->ios.signal_voltage = signal_voltage;
1151 if (host->ops->start_signal_voltage_switch)
1152 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1155 host->ios.signal_voltage = old_signal_voltage;
1161 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1163 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1164 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1165 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1166 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1167 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1168 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1169 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1172 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1177 * During a signal voltage level switch, the clock must be gated
1178 * for 5 ms according to the SD spec
1180 clock = host->ios.clock;
1181 host->ios.clock = 0;
1184 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1187 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1189 host->ios.clock = clock;
1195 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1197 struct mmc_command cmd = {};
1201 * If we cannot switch voltages, return failure so the caller
1202 * can continue without UHS mode
1204 if (!host->ops->start_signal_voltage_switch)
1206 if (!host->ops->card_busy)
1207 pr_warn("%s: cannot verify signal voltage switch\n",
1208 mmc_hostname(host));
1210 cmd.opcode = SD_SWITCH_VOLTAGE;
1212 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1214 err = mmc_wait_for_cmd(host, &cmd, 0);
1218 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1222 * The card should drive cmd and dat[0:3] low immediately
1223 * after the response of cmd11, but wait 1 ms to be sure
1226 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1231 if (mmc_host_set_uhs_voltage(host)) {
1233 * Voltages may not have been switched, but we've already
1234 * sent CMD11, so a power cycle is required anyway
1240 /* Wait for at least 1 ms according to spec */
1244 * Failure to switch is indicated by the card holding
1247 if (host->ops->card_busy && host->ops->card_busy(host))
1252 pr_debug("%s: Signal voltage switch failed, "
1253 "power cycling card\n", mmc_hostname(host));
1254 mmc_power_cycle(host, ocr);
1261 * Select timing parameters for host.
1263 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1265 host->ios.timing = timing;
1270 * Select appropriate driver type for host.
1272 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1274 host->ios.drv_type = drv_type;
1278 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1279 int card_drv_type, int *drv_type)
1281 struct mmc_host *host = card->host;
1282 int host_drv_type = SD_DRIVER_TYPE_B;
1286 if (!host->ops->select_drive_strength)
1289 /* Use SD definition of driver strength for hosts */
1290 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1291 host_drv_type |= SD_DRIVER_TYPE_A;
1293 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1294 host_drv_type |= SD_DRIVER_TYPE_C;
1296 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1297 host_drv_type |= SD_DRIVER_TYPE_D;
1300 * The drive strength that the hardware can support
1301 * depends on the board design. Pass the appropriate
1302 * information and let the hardware specific code
1303 * return what is possible given the options
1305 return host->ops->select_drive_strength(card, max_dtr,
1312 * Apply power to the MMC stack. This is a two-stage process.
1313 * First, we enable power to the card without the clock running.
1314 * We then wait a bit for the power to stabilise. Finally,
1315 * enable the bus drivers and clock to the card.
1317 * We must _NOT_ enable the clock prior to power stablising.
1319 * If a host does all the power sequencing itself, ignore the
1320 * initial MMC_POWER_UP stage.
1322 void mmc_power_up(struct mmc_host *host, u32 ocr)
1324 if (host->ios.power_mode == MMC_POWER_ON)
1327 mmc_pwrseq_pre_power_on(host);
1329 host->ios.vdd = fls(ocr) - 1;
1330 host->ios.power_mode = MMC_POWER_UP;
1331 /* Set initial state and call mmc_set_ios */
1332 mmc_set_initial_state(host);
1334 mmc_set_initial_signal_voltage(host);
1337 * This delay should be sufficient to allow the power supply
1338 * to reach the minimum voltage.
1340 mmc_delay(host->ios.power_delay_ms);
1342 mmc_pwrseq_post_power_on(host);
1344 host->ios.clock = host->f_init;
1346 host->ios.power_mode = MMC_POWER_ON;
1350 * This delay must be at least 74 clock sizes, or 1 ms, or the
1351 * time required to reach a stable voltage.
1353 mmc_delay(host->ios.power_delay_ms);
1356 void mmc_power_off(struct mmc_host *host)
1358 if (host->ios.power_mode == MMC_POWER_OFF)
1361 mmc_pwrseq_power_off(host);
1363 host->ios.clock = 0;
1366 host->ios.power_mode = MMC_POWER_OFF;
1367 /* Set initial state and call mmc_set_ios */
1368 mmc_set_initial_state(host);
1371 * Some configurations, such as the 802.11 SDIO card in the OLPC
1372 * XO-1.5, require a short delay after poweroff before the card
1373 * can be successfully turned on again.
1378 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1380 mmc_power_off(host);
1381 /* Wait at least 1 ms according to SD spec */
1383 mmc_power_up(host, ocr);
1387 * Assign a mmc bus handler to a host. Only one bus handler may control a
1388 * host at any given time.
1390 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1392 host->bus_ops = ops;
1396 * Remove the current bus handler from a host.
1398 void mmc_detach_bus(struct mmc_host *host)
1400 host->bus_ops = NULL;
1403 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1406 * Prevent system sleep for 5s to allow user space to consume the
1407 * corresponding uevent. This is especially useful, when CD irq is used
1408 * as a system wakeup, but doesn't hurt in other cases.
1410 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1411 __pm_wakeup_event(host->ws, 5000);
1413 host->detect_change = 1;
1414 mmc_schedule_delayed_work(&host->detect, delay);
1418 * mmc_detect_change - process change of state on a MMC socket
1419 * @host: host which changed state.
1420 * @delay: optional delay to wait before detection (jiffies)
1422 * MMC drivers should call this when they detect a card has been
1423 * inserted or removed. The MMC layer will confirm that any
1424 * present card is still functional, and initialize any newly
1427 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1429 _mmc_detect_change(host, delay, true);
1431 EXPORT_SYMBOL(mmc_detect_change);
1433 void mmc_init_erase(struct mmc_card *card)
1437 if (is_power_of_2(card->erase_size))
1438 card->erase_shift = ffs(card->erase_size) - 1;
1440 card->erase_shift = 0;
1443 * It is possible to erase an arbitrarily large area of an SD or MMC
1444 * card. That is not desirable because it can take a long time
1445 * (minutes) potentially delaying more important I/O, and also the
1446 * timeout calculations become increasingly hugely over-estimated.
1447 * Consequently, 'pref_erase' is defined as a guide to limit erases
1448 * to that size and alignment.
1450 * For SD cards that define Allocation Unit size, limit erases to one
1451 * Allocation Unit at a time.
1452 * For MMC, have a stab at ai good value and for modern cards it will
1453 * end up being 4MiB. Note that if the value is too small, it can end
1454 * up taking longer to erase. Also note, erase_size is already set to
1455 * High Capacity Erase Size if available when this function is called.
1457 if (mmc_card_sd(card) && card->ssr.au) {
1458 card->pref_erase = card->ssr.au;
1459 card->erase_shift = ffs(card->ssr.au) - 1;
1460 } else if (card->erase_size) {
1461 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1463 card->pref_erase = 512 * 1024 / 512;
1465 card->pref_erase = 1024 * 1024 / 512;
1467 card->pref_erase = 2 * 1024 * 1024 / 512;
1469 card->pref_erase = 4 * 1024 * 1024 / 512;
1470 if (card->pref_erase < card->erase_size)
1471 card->pref_erase = card->erase_size;
1473 sz = card->pref_erase % card->erase_size;
1475 card->pref_erase += card->erase_size - sz;
1478 card->pref_erase = 0;
1481 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1482 unsigned int arg, unsigned int qty)
1484 unsigned int erase_timeout;
1486 if (arg == MMC_DISCARD_ARG ||
1487 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1488 erase_timeout = card->ext_csd.trim_timeout;
1489 } else if (card->ext_csd.erase_group_def & 1) {
1490 /* High Capacity Erase Group Size uses HC timeouts */
1491 if (arg == MMC_TRIM_ARG)
1492 erase_timeout = card->ext_csd.trim_timeout;
1494 erase_timeout = card->ext_csd.hc_erase_timeout;
1496 /* CSD Erase Group Size uses write timeout */
1497 unsigned int mult = (10 << card->csd.r2w_factor);
1498 unsigned int timeout_clks = card->csd.taac_clks * mult;
1499 unsigned int timeout_us;
1501 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1502 if (card->csd.taac_ns < 1000000)
1503 timeout_us = (card->csd.taac_ns * mult) / 1000;
1505 timeout_us = (card->csd.taac_ns / 1000) * mult;
1508 * ios.clock is only a target. The real clock rate might be
1509 * less but not that much less, so fudge it by multiplying by 2.
1512 timeout_us += (timeout_clks * 1000) /
1513 (card->host->ios.clock / 1000);
1515 erase_timeout = timeout_us / 1000;
1518 * Theoretically, the calculation could underflow so round up
1519 * to 1ms in that case.
1525 /* Multiplier for secure operations */
1526 if (arg & MMC_SECURE_ARGS) {
1527 if (arg == MMC_SECURE_ERASE_ARG)
1528 erase_timeout *= card->ext_csd.sec_erase_mult;
1530 erase_timeout *= card->ext_csd.sec_trim_mult;
1533 erase_timeout *= qty;
1536 * Ensure at least a 1 second timeout for SPI as per
1537 * 'mmc_set_data_timeout()'
1539 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1540 erase_timeout = 1000;
1542 return erase_timeout;
1545 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1549 unsigned int erase_timeout;
1551 /* for DISCARD none of the below calculation applies.
1552 * the busy timeout is 250msec per discard command.
1554 if (arg == SD_DISCARD_ARG)
1555 return SD_DISCARD_TIMEOUT_MS;
1557 if (card->ssr.erase_timeout) {
1558 /* Erase timeout specified in SD Status Register (SSR) */
1559 erase_timeout = card->ssr.erase_timeout * qty +
1560 card->ssr.erase_offset;
1563 * Erase timeout not specified in SD Status Register (SSR) so
1564 * use 250ms per write block.
1566 erase_timeout = 250 * qty;
1569 /* Must not be less than 1 second */
1570 if (erase_timeout < 1000)
1571 erase_timeout = 1000;
1573 return erase_timeout;
1576 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1580 if (mmc_card_sd(card))
1581 return mmc_sd_erase_timeout(card, arg, qty);
1583 return mmc_mmc_erase_timeout(card, arg, qty);
1586 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1587 unsigned int to, unsigned int arg)
1589 struct mmc_command cmd = {};
1590 unsigned int qty = 0, busy_timeout = 0;
1594 mmc_retune_hold(card->host);
1597 * qty is used to calculate the erase timeout which depends on how many
1598 * erase groups (or allocation units in SD terminology) are affected.
1599 * We count erasing part of an erase group as one erase group.
1600 * For SD, the allocation units are always a power of 2. For MMC, the
1601 * erase group size is almost certainly also power of 2, but it does not
1602 * seem to insist on that in the JEDEC standard, so we fall back to
1603 * division in that case. SD may not specify an allocation unit size,
1604 * in which case the timeout is based on the number of write blocks.
1606 * Note that the timeout for secure trim 2 will only be correct if the
1607 * number of erase groups specified is the same as the total of all
1608 * preceding secure trim 1 commands. Since the power may have been
1609 * lost since the secure trim 1 commands occurred, it is generally
1610 * impossible to calculate the secure trim 2 timeout correctly.
1612 if (card->erase_shift)
1613 qty += ((to >> card->erase_shift) -
1614 (from >> card->erase_shift)) + 1;
1615 else if (mmc_card_sd(card))
1616 qty += to - from + 1;
1618 qty += ((to / card->erase_size) -
1619 (from / card->erase_size)) + 1;
1621 if (!mmc_card_blockaddr(card)) {
1626 if (mmc_card_sd(card))
1627 cmd.opcode = SD_ERASE_WR_BLK_START;
1629 cmd.opcode = MMC_ERASE_GROUP_START;
1631 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1632 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1634 pr_err("mmc_erase: group start error %d, "
1635 "status %#x\n", err, cmd.resp[0]);
1640 memset(&cmd, 0, sizeof(struct mmc_command));
1641 if (mmc_card_sd(card))
1642 cmd.opcode = SD_ERASE_WR_BLK_END;
1644 cmd.opcode = MMC_ERASE_GROUP_END;
1646 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1647 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1649 pr_err("mmc_erase: group end error %d, status %#x\n",
1655 memset(&cmd, 0, sizeof(struct mmc_command));
1656 cmd.opcode = MMC_ERASE;
1658 busy_timeout = mmc_erase_timeout(card, arg, qty);
1659 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1661 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1663 pr_err("mmc_erase: erase error %d, status %#x\n",
1669 if (mmc_host_is_spi(card->host))
1673 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1676 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1679 /* Let's poll to find out when the erase operation completes. */
1680 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1683 mmc_retune_release(card->host);
1687 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1692 unsigned int from_new = *from, nr_new = nr, rem;
1695 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1696 * to align the erase size efficiently.
1698 if (is_power_of_2(card->erase_size)) {
1699 unsigned int temp = from_new;
1701 from_new = round_up(temp, card->erase_size);
1702 rem = from_new - temp;
1709 nr_new = round_down(nr_new, card->erase_size);
1711 rem = from_new % card->erase_size;
1713 rem = card->erase_size - rem;
1721 rem = nr_new % card->erase_size;
1729 *to = from_new + nr_new;
1736 * mmc_erase - erase sectors.
1737 * @card: card to erase
1738 * @from: first sector to erase
1739 * @nr: number of sectors to erase
1740 * @arg: erase command argument
1742 * Caller must claim host before calling this function.
1744 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1747 unsigned int rem, to = from + nr;
1750 if (!(card->csd.cmdclass & CCC_ERASE))
1753 if (!card->erase_size)
1756 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1759 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1760 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1763 if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1764 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1767 if (arg == MMC_SECURE_ERASE_ARG) {
1768 if (from % card->erase_size || nr % card->erase_size)
1772 if (arg == MMC_ERASE_ARG)
1773 nr = mmc_align_erase_size(card, &from, &to, nr);
1781 /* 'from' and 'to' are inclusive */
1785 * Special case where only one erase-group fits in the timeout budget:
1786 * If the region crosses an erase-group boundary on this particular
1787 * case, we will be trimming more than one erase-group which, does not
1788 * fit in the timeout budget of the controller, so we need to split it
1789 * and call mmc_do_erase() twice if necessary. This special case is
1790 * identified by the card->eg_boundary flag.
1792 rem = card->erase_size - (from % card->erase_size);
1793 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1794 err = mmc_do_erase(card, from, from + rem - 1, arg);
1796 if ((err) || (to <= from))
1800 return mmc_do_erase(card, from, to, arg);
1802 EXPORT_SYMBOL(mmc_erase);
1804 int mmc_can_erase(struct mmc_card *card)
1806 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1810 EXPORT_SYMBOL(mmc_can_erase);
1812 int mmc_can_trim(struct mmc_card *card)
1814 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1815 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1819 EXPORT_SYMBOL(mmc_can_trim);
1821 int mmc_can_discard(struct mmc_card *card)
1824 * As there's no way to detect the discard support bit at v4.5
1825 * use the s/w feature support filed.
1827 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1831 EXPORT_SYMBOL(mmc_can_discard);
1833 int mmc_can_sanitize(struct mmc_card *card)
1835 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1837 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1842 int mmc_can_secure_erase_trim(struct mmc_card *card)
1844 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1845 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1849 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1851 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1854 if (!card->erase_size)
1856 if (from % card->erase_size || nr % card->erase_size)
1860 EXPORT_SYMBOL(mmc_erase_group_aligned);
1862 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1865 struct mmc_host *host = card->host;
1866 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1867 unsigned int last_timeout = 0;
1868 unsigned int max_busy_timeout = host->max_busy_timeout ?
1869 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1871 if (card->erase_shift) {
1872 max_qty = UINT_MAX >> card->erase_shift;
1873 min_qty = card->pref_erase >> card->erase_shift;
1874 } else if (mmc_card_sd(card)) {
1876 min_qty = card->pref_erase;
1878 max_qty = UINT_MAX / card->erase_size;
1879 min_qty = card->pref_erase / card->erase_size;
1883 * We should not only use 'host->max_busy_timeout' as the limitation
1884 * when deciding the max discard sectors. We should set a balance value
1885 * to improve the erase speed, and it can not get too long timeout at
1888 * Here we set 'card->pref_erase' as the minimal discard sectors no
1889 * matter what size of 'host->max_busy_timeout', but if the
1890 * 'host->max_busy_timeout' is large enough for more discard sectors,
1891 * then we can continue to increase the max discard sectors until we
1892 * get a balance value. In cases when the 'host->max_busy_timeout'
1893 * isn't specified, use the default max erase timeout.
1897 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1898 timeout = mmc_erase_timeout(card, arg, qty + x);
1900 if (qty + x > min_qty && timeout > max_busy_timeout)
1903 if (timeout < last_timeout)
1905 last_timeout = timeout;
1915 * When specifying a sector range to trim, chances are we might cross
1916 * an erase-group boundary even if the amount of sectors is less than
1918 * If we can only fit one erase-group in the controller timeout budget,
1919 * we have to care that erase-group boundaries are not crossed by a
1920 * single trim operation. We flag that special case with "eg_boundary".
1921 * In all other cases we can just decrement qty and pretend that we
1922 * always touch (qty + 1) erase-groups as a simple optimization.
1925 card->eg_boundary = 1;
1929 /* Convert qty to sectors */
1930 if (card->erase_shift)
1931 max_discard = qty << card->erase_shift;
1932 else if (mmc_card_sd(card))
1933 max_discard = qty + 1;
1935 max_discard = qty * card->erase_size;
1940 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1942 struct mmc_host *host = card->host;
1943 unsigned int max_discard, max_trim;
1946 * Without erase_group_def set, MMC erase timeout depends on clock
1947 * frequence which can change. In that case, the best choice is
1948 * just the preferred erase size.
1950 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1951 return card->pref_erase;
1953 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1954 if (mmc_can_trim(card)) {
1955 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1956 if (max_trim < max_discard || max_discard == 0)
1957 max_discard = max_trim;
1958 } else if (max_discard < card->erase_size) {
1961 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1962 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1963 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1966 EXPORT_SYMBOL(mmc_calc_max_discard);
1968 bool mmc_card_is_blockaddr(struct mmc_card *card)
1970 return card ? mmc_card_blockaddr(card) : false;
1972 EXPORT_SYMBOL(mmc_card_is_blockaddr);
1974 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1976 struct mmc_command cmd = {};
1978 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1979 mmc_card_hs400(card) || mmc_card_hs400es(card))
1982 cmd.opcode = MMC_SET_BLOCKLEN;
1984 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1985 return mmc_wait_for_cmd(card->host, &cmd, 5);
1987 EXPORT_SYMBOL(mmc_set_blocklen);
1989 static void mmc_hw_reset_for_init(struct mmc_host *host)
1991 mmc_pwrseq_reset(host);
1993 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
1995 host->ops->card_hw_reset(host);
1999 * mmc_hw_reset - reset the card in hardware
2000 * @card: card to be reset
2002 * Hard reset the card. This function is only for upper layers, like the
2003 * block layer or card drivers. You cannot use it in host drivers (struct
2004 * mmc_card might be gone then).
2006 * Return: 0 on success, -errno on failure
2008 int mmc_hw_reset(struct mmc_card *card)
2010 struct mmc_host *host = card->host;
2013 ret = host->bus_ops->hw_reset(host);
2015 pr_warn("%s: tried to HW reset card, got error %d\n",
2016 mmc_hostname(host), ret);
2020 EXPORT_SYMBOL(mmc_hw_reset);
2022 int mmc_sw_reset(struct mmc_card *card)
2024 struct mmc_host *host = card->host;
2027 if (!host->bus_ops->sw_reset)
2030 ret = host->bus_ops->sw_reset(host);
2032 pr_warn("%s: tried to SW reset card, got error %d\n",
2033 mmc_hostname(host), ret);
2037 EXPORT_SYMBOL(mmc_sw_reset);
2039 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2041 host->f_init = freq;
2043 pr_debug("%s: %s: trying to init card at %u Hz\n",
2044 mmc_hostname(host), __func__, host->f_init);
2046 mmc_power_up(host, host->ocr_avail);
2049 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2050 * do a hardware reset if possible.
2052 mmc_hw_reset_for_init(host);
2055 * sdio_reset sends CMD52 to reset card. Since we do not know
2056 * if the card is being re-initialized, just send it. CMD52
2057 * should be ignored by SD/eMMC cards.
2058 * Skip it if we already know that we do not support SDIO commands
2060 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2065 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2066 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2068 if (mmc_card_sd_express(host))
2072 /* Order's important: probe SDIO, then SD, then MMC */
2073 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2074 if (!mmc_attach_sdio(host))
2077 if (!(host->caps2 & MMC_CAP2_NO_SD))
2078 if (!mmc_attach_sd(host))
2081 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2082 if (!mmc_attach_mmc(host))
2086 mmc_power_off(host);
2090 int _mmc_detect_card_removed(struct mmc_host *host)
2094 if (!host->card || mmc_card_removed(host->card))
2097 ret = host->bus_ops->alive(host);
2100 * Card detect status and alive check may be out of sync if card is
2101 * removed slowly, when card detect switch changes while card/slot
2102 * pads are still contacted in hardware (refer to "SD Card Mechanical
2103 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2104 * detect work 200ms later for this case.
2106 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2107 mmc_detect_change(host, msecs_to_jiffies(200));
2108 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2112 mmc_card_set_removed(host->card);
2113 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2119 int mmc_detect_card_removed(struct mmc_host *host)
2121 struct mmc_card *card = host->card;
2124 WARN_ON(!host->claimed);
2129 if (!mmc_card_is_removable(host))
2132 ret = mmc_card_removed(card);
2134 * The card will be considered unchanged unless we have been asked to
2135 * detect a change or host requires polling to provide card detection.
2137 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2140 host->detect_change = 0;
2142 ret = _mmc_detect_card_removed(host);
2143 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2145 * Schedule a detect work as soon as possible to let a
2146 * rescan handle the card removal.
2148 cancel_delayed_work(&host->detect);
2149 _mmc_detect_change(host, 0, false);
2155 EXPORT_SYMBOL(mmc_detect_card_removed);
2157 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2159 unsigned int boot_sectors_num;
2161 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2164 /* filter out unrelated cards */
2165 if (card->ext_csd.rev < 3 ||
2166 !mmc_card_mmc(card) ||
2167 !mmc_card_is_blockaddr(card) ||
2168 mmc_card_is_removable(card->host))
2172 * eMMC storage has two special boot partitions in addition to the
2173 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2174 * accesses, this means that the partition table addresses are shifted
2175 * by the size of boot partitions. In accordance with the eMMC
2176 * specification, the boot partition size is calculated as follows:
2178 * boot partition size = 128K byte x BOOT_SIZE_MULT
2180 * Calculate number of sectors occupied by the both boot partitions.
2182 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2183 SZ_512 * MMC_NUM_BOOT_PARTITION;
2185 /* Defined by NVIDIA and used by Android devices. */
2186 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2190 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2192 void mmc_rescan(struct work_struct *work)
2194 struct mmc_host *host =
2195 container_of(work, struct mmc_host, detect.work);
2198 if (host->rescan_disable)
2201 /* If there is a non-removable card registered, only scan once */
2202 if (!mmc_card_is_removable(host) && host->rescan_entered)
2204 host->rescan_entered = 1;
2206 if (host->trigger_card_event && host->ops->card_event) {
2207 mmc_claim_host(host);
2208 host->ops->card_event(host);
2209 mmc_release_host(host);
2210 host->trigger_card_event = false;
2213 /* Verify a registered card to be functional, else remove it. */
2215 host->bus_ops->detect(host);
2217 host->detect_change = 0;
2219 /* if there still is a card present, stop here */
2220 if (host->bus_ops != NULL)
2223 mmc_claim_host(host);
2224 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2225 host->ops->get_cd(host) == 0) {
2226 mmc_power_off(host);
2227 mmc_release_host(host);
2231 /* If an SD express card is present, then leave it as is. */
2232 if (mmc_card_sd_express(host)) {
2233 mmc_release_host(host);
2237 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2238 unsigned int freq = freqs[i];
2239 if (freq > host->f_max) {
2240 if (i + 1 < ARRAY_SIZE(freqs))
2244 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2246 if (freqs[i] <= host->f_min)
2251 * Ignore the command timeout errors observed during
2252 * the card init as those are excepted.
2254 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2255 mmc_release_host(host);
2258 if (host->caps & MMC_CAP_NEEDS_POLL)
2259 mmc_schedule_delayed_work(&host->detect, HZ);
2262 void mmc_start_host(struct mmc_host *host)
2264 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2265 host->rescan_disable = 0;
2267 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2268 mmc_claim_host(host);
2269 mmc_power_up(host, host->ocr_avail);
2270 mmc_release_host(host);
2273 mmc_gpiod_request_cd_irq(host);
2274 _mmc_detect_change(host, 0, false);
2277 void __mmc_stop_host(struct mmc_host *host)
2279 if (host->slot.cd_irq >= 0) {
2280 mmc_gpio_set_cd_wake(host, false);
2281 disable_irq(host->slot.cd_irq);
2284 host->rescan_disable = 1;
2285 cancel_delayed_work_sync(&host->detect);
2288 void mmc_stop_host(struct mmc_host *host)
2290 __mmc_stop_host(host);
2292 /* clear pm flags now and let card drivers set them as needed */
2295 if (host->bus_ops) {
2296 /* Calling bus_ops->remove() with a claimed host can deadlock */
2297 host->bus_ops->remove(host);
2298 mmc_claim_host(host);
2299 mmc_detach_bus(host);
2300 mmc_power_off(host);
2301 mmc_release_host(host);
2305 mmc_claim_host(host);
2306 mmc_power_off(host);
2307 mmc_release_host(host);
2310 static int __init mmc_init(void)
2314 ret = mmc_register_bus();
2318 ret = mmc_register_host_class();
2320 goto unregister_bus;
2322 ret = sdio_register_bus();
2324 goto unregister_host_class;
2328 unregister_host_class:
2329 mmc_unregister_host_class();
2331 mmc_unregister_bus();
2335 static void __exit mmc_exit(void)
2337 sdio_unregister_bus();
2338 mmc_unregister_host_class();
2339 mmc_unregister_bus();
2342 subsys_initcall(mmc_init);
2343 module_exit(mmc_exit);
2345 MODULE_LICENSE("GPL");