1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2015 Broadcom
9 * The Hardware Video Scaler (HVS) is the piece of hardware that does
10 * translation, scaling, colorspace conversion, and compositing of
11 * pixels stored in framebuffers into a FIFO of pixels going out to
12 * the Pixel Valve (CRTC). It operates at the system clock rate (the
13 * system audio clock gate, specifically), which is much higher than
14 * the pixel clock rate.
16 * There is a single global HVS, with multiple output FIFOs that can
17 * be consumed by the PVs. This file just manages the resources for
18 * the HVS, while the vc4_crtc.c code actually drives HVS setup for
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_vblank.h>
33 static const struct debugfs_reg32 hvs_regs[] = {
34 VC4_REG32(SCALER_DISPCTRL),
35 VC4_REG32(SCALER_DISPSTAT),
36 VC4_REG32(SCALER_DISPID),
37 VC4_REG32(SCALER_DISPECTRL),
38 VC4_REG32(SCALER_DISPPROF),
39 VC4_REG32(SCALER_DISPDITHER),
40 VC4_REG32(SCALER_DISPEOLN),
41 VC4_REG32(SCALER_DISPLIST0),
42 VC4_REG32(SCALER_DISPLIST1),
43 VC4_REG32(SCALER_DISPLIST2),
44 VC4_REG32(SCALER_DISPLSTAT),
45 VC4_REG32(SCALER_DISPLACT0),
46 VC4_REG32(SCALER_DISPLACT1),
47 VC4_REG32(SCALER_DISPLACT2),
48 VC4_REG32(SCALER_DISPCTRL0),
49 VC4_REG32(SCALER_DISPBKGND0),
50 VC4_REG32(SCALER_DISPSTAT0),
51 VC4_REG32(SCALER_DISPBASE0),
52 VC4_REG32(SCALER_DISPCTRL1),
53 VC4_REG32(SCALER_DISPBKGND1),
54 VC4_REG32(SCALER_DISPSTAT1),
55 VC4_REG32(SCALER_DISPBASE1),
56 VC4_REG32(SCALER_DISPCTRL2),
57 VC4_REG32(SCALER_DISPBKGND2),
58 VC4_REG32(SCALER_DISPSTAT2),
59 VC4_REG32(SCALER_DISPBASE2),
60 VC4_REG32(SCALER_DISPALPHA2),
61 VC4_REG32(SCALER_OLEDOFFS),
62 VC4_REG32(SCALER_OLEDCOEF0),
63 VC4_REG32(SCALER_OLEDCOEF1),
64 VC4_REG32(SCALER_OLEDCOEF2),
67 void vc4_hvs_dump_state(struct vc4_hvs *hvs)
69 struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
72 drm_print_regset32(&p, &hvs->regset);
74 DRM_INFO("HVS ctx:\n");
75 for (i = 0; i < 64; i += 4) {
76 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
77 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
78 readl((u32 __iomem *)hvs->dlist + i + 0),
79 readl((u32 __iomem *)hvs->dlist + i + 1),
80 readl((u32 __iomem *)hvs->dlist + i + 2),
81 readl((u32 __iomem *)hvs->dlist + i + 3));
85 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
87 struct drm_info_node *node = m->private;
88 struct drm_device *dev = node->minor->dev;
89 struct vc4_dev *vc4 = to_vc4_dev(dev);
90 struct drm_printer p = drm_seq_file_printer(m);
92 drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
97 static int vc4_hvs_debugfs_dlist(struct seq_file *m, void *data)
99 struct drm_info_node *node = m->private;
100 struct drm_device *dev = node->minor->dev;
101 struct vc4_dev *vc4 = to_vc4_dev(dev);
102 struct vc4_hvs *hvs = vc4->hvs;
103 struct drm_printer p = drm_seq_file_printer(m);
104 unsigned int next_entry_start = 0;
106 u32 dlist_word, dispstat;
108 for (i = 0; i < SCALER_CHANNELS_COUNT; i++) {
109 dispstat = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(i)),
110 SCALER_DISPSTATX_MODE);
111 if (dispstat == SCALER_DISPSTATX_MODE_DISABLED ||
112 dispstat == SCALER_DISPSTATX_MODE_EOF) {
113 drm_printf(&p, "HVS chan %u disabled\n", i);
117 drm_printf(&p, "HVS chan %u:\n", i);
119 for (j = HVS_READ(SCALER_DISPLISTX(i)); j < 256; j++) {
120 dlist_word = readl((u32 __iomem *)vc4->hvs->dlist + j);
121 drm_printf(&p, "dlist: %02d: 0x%08x\n", j,
123 if (!next_entry_start ||
124 next_entry_start == j) {
125 if (dlist_word & SCALER_CTL0_END)
127 next_entry_start = j +
128 VC4_GET_FIELD(dlist_word,
137 /* The filter kernel is composed of dwords each containing 3 9-bit
138 * signed integers packed next to each other.
140 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
141 #define VC4_PPF_FILTER_WORD(c0, c1, c2) \
142 ((((c0) & 0x1ff) << 0) | \
143 (((c1) & 0x1ff) << 9) | \
144 (((c2) & 0x1ff) << 18))
146 /* The whole filter kernel is arranged as the coefficients 0-16 going
147 * up, then a pad, then 17-31 going down and reversed within the
148 * dwords. This means that a linear phase kernel (where it's
149 * symmetrical at the boundary between 15 and 16) has the last 5
150 * dwords matching the first 5, but reversed.
152 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8, \
153 c9, c10, c11, c12, c13, c14, c15) \
154 {VC4_PPF_FILTER_WORD(c0, c1, c2), \
155 VC4_PPF_FILTER_WORD(c3, c4, c5), \
156 VC4_PPF_FILTER_WORD(c6, c7, c8), \
157 VC4_PPF_FILTER_WORD(c9, c10, c11), \
158 VC4_PPF_FILTER_WORD(c12, c13, c14), \
159 VC4_PPF_FILTER_WORD(c15, c15, 0)}
161 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
162 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
164 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
165 * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
167 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
168 VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
169 50, 82, 119, 155, 187, 213, 227);
171 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
172 struct drm_mm_node *space,
176 u32 __iomem *dst_kernel;
178 ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
180 DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
185 dst_kernel = hvs->dlist + space->start;
187 for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
188 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
189 writel(kernel[i], &dst_kernel[i]);
191 writel(kernel[VC4_KERNEL_DWORDS - i - 1],
199 static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
200 struct vc4_crtc *vc4_crtc)
202 struct drm_crtc *crtc = &vc4_crtc->base;
203 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
206 /* The LUT memory is laid out with each HVS channel in order,
207 * each of which takes 256 writes for R, 256 for G, then 256
210 HVS_WRITE(SCALER_GAMADDR,
211 SCALER_GAMADDR_AUTOINC |
212 (vc4_state->assigned_channel * 3 * crtc->gamma_size));
214 for (i = 0; i < crtc->gamma_size; i++)
215 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
216 for (i = 0; i < crtc->gamma_size; i++)
217 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
218 for (i = 0; i < crtc->gamma_size; i++)
219 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
222 static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
223 struct vc4_crtc *vc4_crtc)
225 struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
226 struct drm_color_lut *lut = crtc_state->gamma_lut->data;
227 u32 length = drm_color_lut_size(crtc_state->gamma_lut);
230 for (i = 0; i < length; i++) {
231 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
232 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
233 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
236 vc4_hvs_lut_load(hvs, vc4_crtc);
239 u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
245 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
246 SCALER_DISPSTAT1_FRCNT0);
249 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
250 SCALER_DISPSTAT1_FRCNT1);
253 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
254 SCALER_DISPSTAT2_FRCNT2);
261 int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
263 struct vc4_dev *vc4 = hvs->vc4;
278 reg = HVS_READ(SCALER_DISPECTRL);
279 ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
286 reg = HVS_READ(SCALER_DISPCTRL);
287 ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
294 reg = HVS_READ(SCALER_DISPEOLN);
295 ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
302 reg = HVS_READ(SCALER_DISPDITHER);
303 ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
314 static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
315 struct drm_display_mode *mode, bool oneshot)
317 struct vc4_dev *vc4 = hvs->vc4;
318 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
319 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
320 unsigned int chan = vc4_crtc_state->assigned_channel;
321 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
325 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
326 HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
327 HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
329 /* Turn on the scaler, which will wait for vstart to start
331 * When feeding the transposer, we should operate in oneshot
334 dispctrl = SCALER_DISPCTRLX_ENABLE;
337 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
338 SCALER_DISPCTRLX_WIDTH) |
339 VC4_SET_FIELD(mode->vdisplay,
340 SCALER_DISPCTRLX_HEIGHT) |
341 (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
343 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
344 SCALER5_DISPCTRLX_WIDTH) |
345 VC4_SET_FIELD(mode->vdisplay,
346 SCALER5_DISPCTRLX_HEIGHT) |
347 (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
349 HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
351 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
352 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
353 dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
355 HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
356 SCALER_DISPBKGND_AUTOHS |
357 ((!vc4->is_vc5) ? SCALER_DISPBKGND_GAMMA : 0) |
358 (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
360 /* Reload the LUT, since the SRAMs would have been disabled if
361 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
363 vc4_hvs_lut_load(hvs, vc4_crtc);
368 void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
370 if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
373 HVS_WRITE(SCALER_DISPCTRLX(chan),
374 HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
375 HVS_WRITE(SCALER_DISPCTRLX(chan),
376 HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
378 /* Once we leave, the scaler should be disabled and its fifo empty. */
379 WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
381 WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
382 SCALER_DISPSTATX_MODE) !=
383 SCALER_DISPSTATX_MODE_DISABLED);
385 WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
386 (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
387 SCALER_DISPSTATX_EMPTY);
390 int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
392 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
393 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
394 struct drm_device *dev = crtc->dev;
395 struct vc4_dev *vc4 = to_vc4_dev(dev);
396 struct drm_plane *plane;
398 const struct drm_plane_state *plane_state;
402 /* The pixelvalve can only feed one encoder (and encoders are
403 * 1:1 with connectors.)
405 if (hweight32(crtc_state->connector_mask) > 1)
408 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
409 dlist_count += vc4_plane_dlist_size(plane_state);
411 dlist_count++; /* Account for SCALER_CTL0_END. */
413 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
414 ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
416 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
423 static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
425 struct drm_device *dev = crtc->dev;
426 struct vc4_dev *vc4 = to_vc4_dev(dev);
427 struct vc4_hvs *hvs = vc4->hvs;
428 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
430 HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
431 vc4_state->mm.start);
434 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
436 struct drm_device *dev = crtc->dev;
437 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
438 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
441 if (crtc->state->event) {
442 crtc->state->event->pipe = drm_crtc_index(crtc);
444 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
446 spin_lock_irqsave(&dev->event_lock, flags);
448 if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
449 vc4_crtc->event = crtc->state->event;
450 crtc->state->event = NULL;
453 spin_unlock_irqrestore(&dev->event_lock, flags);
456 spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
457 vc4_crtc->current_dlist = vc4_state->mm.start;
458 spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
461 void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
462 struct drm_atomic_state *state)
464 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
465 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
468 spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
469 vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
470 spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
473 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
474 struct drm_atomic_state *state)
476 struct drm_device *dev = crtc->dev;
477 struct vc4_dev *vc4 = to_vc4_dev(dev);
478 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
479 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
480 bool oneshot = vc4_crtc->feeds_txp;
482 vc4_hvs_install_dlist(crtc);
483 vc4_hvs_update_dlist(crtc);
484 vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
487 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
488 struct drm_atomic_state *state)
490 struct drm_device *dev = crtc->dev;
491 struct vc4_dev *vc4 = to_vc4_dev(dev);
492 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
493 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
494 unsigned int chan = vc4_state->assigned_channel;
496 vc4_hvs_stop_channel(vc4->hvs, chan);
499 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
500 struct drm_atomic_state *state)
502 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
504 struct drm_device *dev = crtc->dev;
505 struct vc4_dev *vc4 = to_vc4_dev(dev);
506 struct vc4_hvs *hvs = vc4->hvs;
507 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
508 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
509 unsigned int channel = vc4_state->assigned_channel;
510 struct drm_plane *plane;
511 struct vc4_plane_state *vc4_plane_state;
512 bool debug_dump_regs = false;
513 bool enable_bg_fill = false;
514 u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
515 u32 __iomem *dlist_next = dlist_start;
517 if (debug_dump_regs) {
518 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
519 vc4_hvs_dump_state(hvs);
522 /* Copy all the active planes' dlist contents to the hardware dlist. */
523 drm_atomic_crtc_for_each_plane(plane, crtc) {
524 /* Is this the first active plane? */
525 if (dlist_next == dlist_start) {
526 /* We need to enable background fill when a plane
527 * could be alpha blending from the background, i.e.
528 * where no other plane is underneath. It suffices to
529 * consider the first active plane here since we set
530 * needs_bg_fill such that either the first plane
531 * already needs it or all planes on top blend from
532 * the first or a lower plane.
534 vc4_plane_state = to_vc4_plane_state(plane->state);
535 enable_bg_fill = vc4_plane_state->needs_bg_fill;
538 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
541 writel(SCALER_CTL0_END, dlist_next);
544 WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
547 /* This sets a black background color fill, as is the case
548 * with other DRM drivers.
550 HVS_WRITE(SCALER_DISPBKGNDX(channel),
551 HVS_READ(SCALER_DISPBKGNDX(channel)) |
552 SCALER_DISPBKGND_FILL);
554 /* Only update DISPLIST if the CRTC was already running and is not
556 * vc4_crtc_enable() takes care of updating the dlist just after
557 * re-enabling VBLANK interrupts and before enabling the engine.
558 * If the CRTC is being disabled, there's no point in updating this
561 if (crtc->state->active && old_state->active) {
562 vc4_hvs_install_dlist(crtc);
563 vc4_hvs_update_dlist(crtc);
566 if (crtc->state->color_mgmt_changed) {
567 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
569 if (crtc->state->gamma_lut) {
570 vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
571 dispbkgndx |= SCALER_DISPBKGND_GAMMA;
573 /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
574 * in hardware, which is the same as a linear lut that
575 * DRM expects us to use in absence of a user lut.
577 dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
579 HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
582 if (debug_dump_regs) {
583 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
584 vc4_hvs_dump_state(hvs);
588 void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
590 u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
592 dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
594 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
597 void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
599 u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
601 dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
603 HVS_WRITE(SCALER_DISPSTAT,
604 SCALER_DISPSTAT_EUFLOW(channel));
605 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
608 static void vc4_hvs_report_underrun(struct drm_device *dev)
610 struct vc4_dev *vc4 = to_vc4_dev(dev);
612 atomic_inc(&vc4->underrun);
613 DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
616 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
618 struct drm_device *dev = data;
619 struct vc4_dev *vc4 = to_vc4_dev(dev);
620 struct vc4_hvs *hvs = vc4->hvs;
621 irqreturn_t irqret = IRQ_NONE;
626 status = HVS_READ(SCALER_DISPSTAT);
627 control = HVS_READ(SCALER_DISPCTRL);
629 for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
630 /* Interrupt masking is not always honored, so check it here. */
631 if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
632 control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
633 vc4_hvs_mask_underrun(hvs, channel);
634 vc4_hvs_report_underrun(dev);
636 irqret = IRQ_HANDLED;
640 /* Clear every per-channel interrupt flag. */
641 HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
642 SCALER_DISPSTAT_IRQMASK(1) |
643 SCALER_DISPSTAT_IRQMASK(2));
648 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
650 struct platform_device *pdev = to_platform_device(dev);
651 struct drm_device *drm = dev_get_drvdata(master);
652 struct vc4_dev *vc4 = to_vc4_dev(drm);
653 struct vc4_hvs *hvs = NULL;
658 hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
665 hvs->regs = vc4_ioremap_regs(pdev, 0);
666 if (IS_ERR(hvs->regs))
667 return PTR_ERR(hvs->regs);
669 hvs->regset.base = hvs->regs;
670 hvs->regset.regs = hvs_regs;
671 hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
674 hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
675 if (IS_ERR(hvs->core_clk)) {
676 dev_err(&pdev->dev, "Couldn't get core clock\n");
677 return PTR_ERR(hvs->core_clk);
680 ret = clk_prepare_enable(hvs->core_clk);
682 dev_err(&pdev->dev, "Couldn't enable the core clock\n");
688 hvs->dlist = hvs->regs + SCALER_DLIST_START;
690 hvs->dlist = hvs->regs + SCALER5_DLIST_START;
692 spin_lock_init(&hvs->mm_lock);
694 /* Set up the HVS display list memory manager. We never
695 * overwrite the setup from the bootloader (just 128b out of
696 * our 16K), since we don't want to scramble the screen when
697 * transitioning from the firmware's boot setup to runtime.
699 drm_mm_init(&hvs->dlist_mm,
700 HVS_BOOTLOADER_DLIST_END,
701 (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
703 /* Set up the HVS LBM memory manager. We could have some more
704 * complicated data structure that allowed reuse of LBM areas
705 * between planes when they don't overlap on the screen, but
706 * for now we just allocate globally.
709 /* 48k words of 2x12-bit pixels */
710 drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
712 /* 60k words of 4x12-bit pixels */
713 drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
715 /* Upload filter kernels. We only have the one for now, so we
716 * keep it around for the lifetime of the driver.
718 ret = vc4_hvs_upload_linear_kernel(hvs,
719 &hvs->mitchell_netravali_filter,
720 mitchell_netravali_1_3_1_3_kernel);
726 reg = HVS_READ(SCALER_DISPECTRL);
727 reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
728 HVS_WRITE(SCALER_DISPECTRL,
729 reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
731 reg = HVS_READ(SCALER_DISPCTRL);
732 reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
733 HVS_WRITE(SCALER_DISPCTRL,
734 reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
736 reg = HVS_READ(SCALER_DISPEOLN);
737 reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
738 HVS_WRITE(SCALER_DISPEOLN,
739 reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
741 reg = HVS_READ(SCALER_DISPDITHER);
742 reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
743 HVS_WRITE(SCALER_DISPDITHER,
744 reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
746 dispctrl = HVS_READ(SCALER_DISPCTRL);
748 dispctrl |= SCALER_DISPCTRL_ENABLE;
749 dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
750 SCALER_DISPCTRL_DISPEIRQ(1) |
751 SCALER_DISPCTRL_DISPEIRQ(2);
753 dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
754 SCALER_DISPCTRL_SLVWREIRQ |
755 SCALER_DISPCTRL_SLVRDEIRQ |
756 SCALER_DISPCTRL_DSPEIEOF(0) |
757 SCALER_DISPCTRL_DSPEIEOF(1) |
758 SCALER_DISPCTRL_DSPEIEOF(2) |
759 SCALER_DISPCTRL_DSPEIEOLN(0) |
760 SCALER_DISPCTRL_DSPEIEOLN(1) |
761 SCALER_DISPCTRL_DSPEIEOLN(2) |
762 SCALER_DISPCTRL_DSPEISLUR(0) |
763 SCALER_DISPCTRL_DSPEISLUR(1) |
764 SCALER_DISPCTRL_DSPEISLUR(2) |
765 SCALER_DISPCTRL_SCLEIRQ);
767 HVS_WRITE(SCALER_DISPCTRL, dispctrl);
769 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
770 vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
774 vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
775 vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
777 vc4_debugfs_add_file(drm, "hvs_dlists", vc4_hvs_debugfs_dlist,
783 static void vc4_hvs_unbind(struct device *dev, struct device *master,
786 struct drm_device *drm = dev_get_drvdata(master);
787 struct vc4_dev *vc4 = to_vc4_dev(drm);
788 struct vc4_hvs *hvs = vc4->hvs;
790 if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
791 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
793 drm_mm_takedown(&vc4->hvs->dlist_mm);
794 drm_mm_takedown(&vc4->hvs->lbm_mm);
796 clk_disable_unprepare(hvs->core_clk);
801 static const struct component_ops vc4_hvs_ops = {
802 .bind = vc4_hvs_bind,
803 .unbind = vc4_hvs_unbind,
806 static int vc4_hvs_dev_probe(struct platform_device *pdev)
808 return component_add(&pdev->dev, &vc4_hvs_ops);
811 static int vc4_hvs_dev_remove(struct platform_device *pdev)
813 component_del(&pdev->dev, &vc4_hvs_ops);
817 static const struct of_device_id vc4_hvs_dt_match[] = {
818 { .compatible = "brcm,bcm2711-hvs" },
819 { .compatible = "brcm,bcm2835-hvs" },
823 struct platform_driver vc4_hvs_driver = {
824 .probe = vc4_hvs_dev_probe,
825 .remove = vc4_hvs_dev_remove,
828 .of_match_table = vc4_hvs_dt_match,