]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/intel_engine_cs.c
Merge tag 'cxl-for-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl
[linux.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/drm_print.h>
9
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_regs.h"
13
14 #include "i915_cmd_parser.h"
15 #include "i915_drv.h"
16 #include "intel_breadcrumbs.h"
17 #include "intel_context.h"
18 #include "intel_engine.h"
19 #include "intel_engine_pm.h"
20 #include "intel_engine_regs.h"
21 #include "intel_engine_user.h"
22 #include "intel_execlists_submission.h"
23 #include "intel_gt.h"
24 #include "intel_gt_mcr.h"
25 #include "intel_gt_pm.h"
26 #include "intel_gt_requests.h"
27 #include "intel_lrc.h"
28 #include "intel_lrc_reg.h"
29 #include "intel_reset.h"
30 #include "intel_ring.h"
31 #include "uc/intel_guc_submission.h"
32
33 /* Haswell does have the CXT_SIZE register however it does not appear to be
34  * valid. Now, docs explain in dwords what is in the context object. The full
35  * size is 70720 bytes, however, the power context and execlist context will
36  * never be saved (power context is stored elsewhere, and execlists don't work
37  * on HSW) - so the final size, including the extra state required for the
38  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
39  */
40 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
41
42 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
43 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
44 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
45 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
46
47 #define GEN8_LR_CONTEXT_OTHER_SIZE      ( 2 * PAGE_SIZE)
48
49 #define MAX_MMIO_BASES 3
50 struct engine_info {
51         u8 class;
52         u8 instance;
53         /* mmio bases table *must* be sorted in reverse graphics_ver order */
54         struct engine_mmio_base {
55                 u32 graphics_ver : 8;
56                 u32 base : 24;
57         } mmio_bases[MAX_MMIO_BASES];
58 };
59
60 static const struct engine_info intel_engines[] = {
61         [RCS0] = {
62                 .class = RENDER_CLASS,
63                 .instance = 0,
64                 .mmio_bases = {
65                         { .graphics_ver = 1, .base = RENDER_RING_BASE }
66                 },
67         },
68         [BCS0] = {
69                 .class = COPY_ENGINE_CLASS,
70                 .instance = 0,
71                 .mmio_bases = {
72                         { .graphics_ver = 6, .base = BLT_RING_BASE }
73                 },
74         },
75         [BCS1] = {
76                 .class = COPY_ENGINE_CLASS,
77                 .instance = 1,
78                 .mmio_bases = {
79                         { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
80                 },
81         },
82         [BCS2] = {
83                 .class = COPY_ENGINE_CLASS,
84                 .instance = 2,
85                 .mmio_bases = {
86                         { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
87                 },
88         },
89         [BCS3] = {
90                 .class = COPY_ENGINE_CLASS,
91                 .instance = 3,
92                 .mmio_bases = {
93                         { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
94                 },
95         },
96         [BCS4] = {
97                 .class = COPY_ENGINE_CLASS,
98                 .instance = 4,
99                 .mmio_bases = {
100                         { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
101                 },
102         },
103         [BCS5] = {
104                 .class = COPY_ENGINE_CLASS,
105                 .instance = 5,
106                 .mmio_bases = {
107                         { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
108                 },
109         },
110         [BCS6] = {
111                 .class = COPY_ENGINE_CLASS,
112                 .instance = 6,
113                 .mmio_bases = {
114                         { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
115                 },
116         },
117         [BCS7] = {
118                 .class = COPY_ENGINE_CLASS,
119                 .instance = 7,
120                 .mmio_bases = {
121                         { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
122                 },
123         },
124         [BCS8] = {
125                 .class = COPY_ENGINE_CLASS,
126                 .instance = 8,
127                 .mmio_bases = {
128                         { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
129                 },
130         },
131         [VCS0] = {
132                 .class = VIDEO_DECODE_CLASS,
133                 .instance = 0,
134                 .mmio_bases = {
135                         { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
136                         { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
137                         { .graphics_ver = 4, .base = BSD_RING_BASE }
138                 },
139         },
140         [VCS1] = {
141                 .class = VIDEO_DECODE_CLASS,
142                 .instance = 1,
143                 .mmio_bases = {
144                         { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
145                         { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
146                 },
147         },
148         [VCS2] = {
149                 .class = VIDEO_DECODE_CLASS,
150                 .instance = 2,
151                 .mmio_bases = {
152                         { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
153                 },
154         },
155         [VCS3] = {
156                 .class = VIDEO_DECODE_CLASS,
157                 .instance = 3,
158                 .mmio_bases = {
159                         { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
160                 },
161         },
162         [VCS4] = {
163                 .class = VIDEO_DECODE_CLASS,
164                 .instance = 4,
165                 .mmio_bases = {
166                         { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
167                 },
168         },
169         [VCS5] = {
170                 .class = VIDEO_DECODE_CLASS,
171                 .instance = 5,
172                 .mmio_bases = {
173                         { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
174                 },
175         },
176         [VCS6] = {
177                 .class = VIDEO_DECODE_CLASS,
178                 .instance = 6,
179                 .mmio_bases = {
180                         { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
181                 },
182         },
183         [VCS7] = {
184                 .class = VIDEO_DECODE_CLASS,
185                 .instance = 7,
186                 .mmio_bases = {
187                         { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
188                 },
189         },
190         [VECS0] = {
191                 .class = VIDEO_ENHANCEMENT_CLASS,
192                 .instance = 0,
193                 .mmio_bases = {
194                         { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
195                         { .graphics_ver = 7, .base = VEBOX_RING_BASE }
196                 },
197         },
198         [VECS1] = {
199                 .class = VIDEO_ENHANCEMENT_CLASS,
200                 .instance = 1,
201                 .mmio_bases = {
202                         { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
203                 },
204         },
205         [VECS2] = {
206                 .class = VIDEO_ENHANCEMENT_CLASS,
207                 .instance = 2,
208                 .mmio_bases = {
209                         { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
210                 },
211         },
212         [VECS3] = {
213                 .class = VIDEO_ENHANCEMENT_CLASS,
214                 .instance = 3,
215                 .mmio_bases = {
216                         { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
217                 },
218         },
219         [CCS0] = {
220                 .class = COMPUTE_CLASS,
221                 .instance = 0,
222                 .mmio_bases = {
223                         { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
224                 }
225         },
226         [CCS1] = {
227                 .class = COMPUTE_CLASS,
228                 .instance = 1,
229                 .mmio_bases = {
230                         { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
231                 }
232         },
233         [CCS2] = {
234                 .class = COMPUTE_CLASS,
235                 .instance = 2,
236                 .mmio_bases = {
237                         { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
238                 }
239         },
240         [CCS3] = {
241                 .class = COMPUTE_CLASS,
242                 .instance = 3,
243                 .mmio_bases = {
244                         { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
245                 }
246         },
247 };
248
249 /**
250  * intel_engine_context_size() - return the size of the context for an engine
251  * @gt: the gt
252  * @class: engine class
253  *
254  * Each engine class may require a different amount of space for a context
255  * image.
256  *
257  * Return: size (in bytes) of an engine class specific context image
258  *
259  * Note: this size includes the HWSP, which is part of the context image
260  * in LRC mode, but does not include the "shared data page" used with
261  * GuC submission. The caller should account for this if using the GuC.
262  */
263 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
264 {
265         struct intel_uncore *uncore = gt->uncore;
266         u32 cxt_size;
267
268         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
269
270         switch (class) {
271         case COMPUTE_CLASS:
272                 fallthrough;
273         case RENDER_CLASS:
274                 switch (GRAPHICS_VER(gt->i915)) {
275                 default:
276                         MISSING_CASE(GRAPHICS_VER(gt->i915));
277                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
278                 case 12:
279                 case 11:
280                         return GEN11_LR_CONTEXT_RENDER_SIZE;
281                 case 9:
282                         return GEN9_LR_CONTEXT_RENDER_SIZE;
283                 case 8:
284                         return GEN8_LR_CONTEXT_RENDER_SIZE;
285                 case 7:
286                         if (IS_HASWELL(gt->i915))
287                                 return HSW_CXT_TOTAL_SIZE;
288
289                         cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
290                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
291                                         PAGE_SIZE);
292                 case 6:
293                         cxt_size = intel_uncore_read(uncore, CXT_SIZE);
294                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
295                                         PAGE_SIZE);
296                 case 5:
297                 case 4:
298                         /*
299                          * There is a discrepancy here between the size reported
300                          * by the register and the size of the context layout
301                          * in the docs. Both are described as authorative!
302                          *
303                          * The discrepancy is on the order of a few cachelines,
304                          * but the total is under one page (4k), which is our
305                          * minimum allocation anyway so it should all come
306                          * out in the wash.
307                          */
308                         cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
309                         drm_dbg(&gt->i915->drm,
310                                 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
311                                 GRAPHICS_VER(gt->i915), cxt_size * 64,
312                                 cxt_size - 1);
313                         return round_up(cxt_size * 64, PAGE_SIZE);
314                 case 3:
315                 case 2:
316                 /* For the special day when i810 gets merged. */
317                 case 1:
318                         return 0;
319                 }
320                 break;
321         default:
322                 MISSING_CASE(class);
323                 fallthrough;
324         case VIDEO_DECODE_CLASS:
325         case VIDEO_ENHANCEMENT_CLASS:
326         case COPY_ENGINE_CLASS:
327                 if (GRAPHICS_VER(gt->i915) < 8)
328                         return 0;
329                 return GEN8_LR_CONTEXT_OTHER_SIZE;
330         }
331 }
332
333 static u32 __engine_mmio_base(struct drm_i915_private *i915,
334                               const struct engine_mmio_base *bases)
335 {
336         int i;
337
338         for (i = 0; i < MAX_MMIO_BASES; i++)
339                 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
340                         break;
341
342         GEM_BUG_ON(i == MAX_MMIO_BASES);
343         GEM_BUG_ON(!bases[i].base);
344
345         return bases[i].base;
346 }
347
348 static void __sprint_engine_name(struct intel_engine_cs *engine)
349 {
350         /*
351          * Before we know what the uABI name for this engine will be,
352          * we still would like to keep track of this engine in the debug logs.
353          * We throw in a ' here as a reminder that this isn't its final name.
354          */
355         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
356                              intel_engine_class_repr(engine->class),
357                              engine->instance) >= sizeof(engine->name));
358 }
359
360 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
361 {
362         /*
363          * Though they added more rings on g4x/ilk, they did not add
364          * per-engine HWSTAM until gen6.
365          */
366         if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
367                 return;
368
369         if (GRAPHICS_VER(engine->i915) >= 3)
370                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
371         else
372                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
373 }
374
375 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
376 {
377         /* Mask off all writes into the unknown HWSP */
378         intel_engine_set_hwsp_writemask(engine, ~0u);
379 }
380
381 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
382 {
383         GEM_DEBUG_WARN_ON(iir);
384 }
385
386 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
387 {
388         u32 reset_domain;
389
390         if (ver >= 11) {
391                 static const u32 engine_reset_domains[] = {
392                         [RCS0]  = GEN11_GRDOM_RENDER,
393                         [BCS0]  = GEN11_GRDOM_BLT,
394                         [BCS1]  = XEHPC_GRDOM_BLT1,
395                         [BCS2]  = XEHPC_GRDOM_BLT2,
396                         [BCS3]  = XEHPC_GRDOM_BLT3,
397                         [BCS4]  = XEHPC_GRDOM_BLT4,
398                         [BCS5]  = XEHPC_GRDOM_BLT5,
399                         [BCS6]  = XEHPC_GRDOM_BLT6,
400                         [BCS7]  = XEHPC_GRDOM_BLT7,
401                         [BCS8]  = XEHPC_GRDOM_BLT8,
402                         [VCS0]  = GEN11_GRDOM_MEDIA,
403                         [VCS1]  = GEN11_GRDOM_MEDIA2,
404                         [VCS2]  = GEN11_GRDOM_MEDIA3,
405                         [VCS3]  = GEN11_GRDOM_MEDIA4,
406                         [VCS4]  = GEN11_GRDOM_MEDIA5,
407                         [VCS5]  = GEN11_GRDOM_MEDIA6,
408                         [VCS6]  = GEN11_GRDOM_MEDIA7,
409                         [VCS7]  = GEN11_GRDOM_MEDIA8,
410                         [VECS0] = GEN11_GRDOM_VECS,
411                         [VECS1] = GEN11_GRDOM_VECS2,
412                         [VECS2] = GEN11_GRDOM_VECS3,
413                         [VECS3] = GEN11_GRDOM_VECS4,
414                         [CCS0]  = GEN11_GRDOM_RENDER,
415                         [CCS1]  = GEN11_GRDOM_RENDER,
416                         [CCS2]  = GEN11_GRDOM_RENDER,
417                         [CCS3]  = GEN11_GRDOM_RENDER,
418                 };
419                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
420                            !engine_reset_domains[id]);
421                 reset_domain = engine_reset_domains[id];
422         } else {
423                 static const u32 engine_reset_domains[] = {
424                         [RCS0]  = GEN6_GRDOM_RENDER,
425                         [BCS0]  = GEN6_GRDOM_BLT,
426                         [VCS0]  = GEN6_GRDOM_MEDIA,
427                         [VCS1]  = GEN8_GRDOM_MEDIA2,
428                         [VECS0] = GEN6_GRDOM_VECS,
429                 };
430                 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431                            !engine_reset_domains[id]);
432                 reset_domain = engine_reset_domains[id];
433         }
434
435         return reset_domain;
436 }
437
438 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
439                               u8 logical_instance)
440 {
441         const struct engine_info *info = &intel_engines[id];
442         struct drm_i915_private *i915 = gt->i915;
443         struct intel_engine_cs *engine;
444         u8 guc_class;
445
446         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
447         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
448         BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
449         BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
450
451         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
452                 return -EINVAL;
453
454         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
455                 return -EINVAL;
456
457         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
458                 return -EINVAL;
459
460         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
461                 return -EINVAL;
462
463         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
464         if (!engine)
465                 return -ENOMEM;
466
467         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
468
469         INIT_LIST_HEAD(&engine->pinned_contexts_list);
470         engine->id = id;
471         engine->legacy_idx = INVALID_ENGINE;
472         engine->mask = BIT(id);
473         engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
474                                                 id);
475         engine->i915 = i915;
476         engine->gt = gt;
477         engine->uncore = gt->uncore;
478         guc_class = engine_class_to_guc_class(info->class);
479         engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
480         engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
481
482         engine->irq_handler = nop_irq_handler;
483
484         engine->class = info->class;
485         engine->instance = info->instance;
486         engine->logical_mask = BIT(logical_instance);
487         __sprint_engine_name(engine);
488
489         engine->props.heartbeat_interval_ms =
490                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
491         engine->props.max_busywait_duration_ns =
492                 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
493         engine->props.preempt_timeout_ms =
494                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
495         engine->props.stop_timeout_ms =
496                 CONFIG_DRM_I915_STOP_TIMEOUT;
497         engine->props.timeslice_duration_ms =
498                 CONFIG_DRM_I915_TIMESLICE_DURATION;
499
500         /* Override to uninterruptible for OpenCL workloads. */
501         if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
502                 engine->props.preempt_timeout_ms = 0;
503
504         if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
505              __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
506              engine->class == RENDER_CLASS)
507                 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
508
509         /* features common between engines sharing EUs */
510         if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
511                 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
512                 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
513         }
514
515         engine->defaults = engine->props; /* never to change again */
516
517         engine->context_size = intel_engine_context_size(gt, engine->class);
518         if (WARN_ON(engine->context_size > BIT(20)))
519                 engine->context_size = 0;
520         if (engine->context_size)
521                 DRIVER_CAPS(i915)->has_logical_contexts = true;
522
523         ewma__engine_latency_init(&engine->latency);
524         seqcount_init(&engine->stats.execlists.lock);
525
526         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
527
528         /* Scrub mmio state on takeover */
529         intel_engine_sanitize_mmio(engine);
530
531         gt->engine_class[info->class][info->instance] = engine;
532         gt->engine[id] = engine;
533
534         return 0;
535 }
536
537 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
538 {
539         struct drm_i915_private *i915 = engine->i915;
540
541         if (engine->class == VIDEO_DECODE_CLASS) {
542                 /*
543                  * HEVC support is present on first engine instance
544                  * before Gen11 and on all instances afterwards.
545                  */
546                 if (GRAPHICS_VER(i915) >= 11 ||
547                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
548                         engine->uabi_capabilities |=
549                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
550
551                 /*
552                  * SFC block is present only on even logical engine
553                  * instances.
554                  */
555                 if ((GRAPHICS_VER(i915) >= 11 &&
556                      (engine->gt->info.vdbox_sfc_access &
557                       BIT(engine->instance))) ||
558                     (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
559                         engine->uabi_capabilities |=
560                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
561         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
562                 if (GRAPHICS_VER(i915) >= 9 &&
563                     engine->gt->info.sfc_mask & BIT(engine->instance))
564                         engine->uabi_capabilities |=
565                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
566         }
567 }
568
569 static void intel_setup_engine_capabilities(struct intel_gt *gt)
570 {
571         struct intel_engine_cs *engine;
572         enum intel_engine_id id;
573
574         for_each_engine(engine, gt, id)
575                 __setup_engine_capabilities(engine);
576 }
577
578 /**
579  * intel_engines_release() - free the resources allocated for Command Streamers
580  * @gt: pointer to struct intel_gt
581  */
582 void intel_engines_release(struct intel_gt *gt)
583 {
584         struct intel_engine_cs *engine;
585         enum intel_engine_id id;
586
587         /*
588          * Before we release the resources held by engine, we must be certain
589          * that the HW is no longer accessing them -- having the GPU scribble
590          * to or read from a page being used for something else causes no end
591          * of fun.
592          *
593          * The GPU should be reset by this point, but assume the worst just
594          * in case we aborted before completely initialising the engines.
595          */
596         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
597         if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
598                 __intel_gt_reset(gt, ALL_ENGINES);
599
600         /* Decouple the backend; but keep the layout for late GPU resets */
601         for_each_engine(engine, gt, id) {
602                 if (!engine->release)
603                         continue;
604
605                 intel_wakeref_wait_for_idle(&engine->wakeref);
606                 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
607
608                 engine->release(engine);
609                 engine->release = NULL;
610
611                 memset(&engine->reset, 0, sizeof(engine->reset));
612         }
613 }
614
615 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
616 {
617         if (!engine->request_pool)
618                 return;
619
620         kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
621 }
622
623 void intel_engines_free(struct intel_gt *gt)
624 {
625         struct intel_engine_cs *engine;
626         enum intel_engine_id id;
627
628         /* Free the requests! dma-resv keeps fences around for an eternity */
629         rcu_barrier();
630
631         for_each_engine(engine, gt, id) {
632                 intel_engine_free_request_pool(engine);
633                 kfree(engine);
634                 gt->engine[id] = NULL;
635         }
636 }
637
638 static
639 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
640                          unsigned int physical_vdbox,
641                          unsigned int logical_vdbox, u16 vdbox_mask)
642 {
643         struct drm_i915_private *i915 = gt->i915;
644
645         /*
646          * In Gen11, only even numbered logical VDBOXes are hooked
647          * up to an SFC (Scaler & Format Converter) unit.
648          * In Gen12, Even numbered physical instance always are connected
649          * to an SFC. Odd numbered physical instances have SFC only if
650          * previous even instance is fused off.
651          *
652          * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
653          * in the fuse register that tells us whether a specific SFC is present.
654          */
655         if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
656                 return false;
657         else if (GRAPHICS_VER(i915) == 12)
658                 return (physical_vdbox % 2 == 0) ||
659                         !(BIT(physical_vdbox - 1) & vdbox_mask);
660         else if (GRAPHICS_VER(i915) == 11)
661                 return logical_vdbox % 2 == 0;
662
663         MISSING_CASE(GRAPHICS_VER(i915));
664         return false;
665 }
666
667 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
668 {
669         struct drm_i915_private *i915 = gt->i915;
670         struct intel_gt_info *info = &gt->info;
671         int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
672         unsigned long ccs_mask;
673         unsigned int i;
674
675         if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
676                 return;
677
678         ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
679                                                      ss_per_ccs);
680         /*
681          * If all DSS in a quadrant are fused off, the corresponding CCS
682          * engine is not available for use.
683          */
684         for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
685                 info->engine_mask &= ~BIT(_CCS(i));
686                 drm_dbg(&i915->drm, "ccs%u fused off\n", i);
687         }
688 }
689
690 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
691 {
692         struct drm_i915_private *i915 = gt->i915;
693         struct intel_gt_info *info = &gt->info;
694         unsigned long meml3_mask;
695         unsigned long quad;
696
697         meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
698         meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
699
700         /*
701          * Link Copy engines may be fused off according to meml3_mask. Each
702          * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
703          */
704         for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
705                 unsigned int instance = quad * 2 + 1;
706                 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
707                                                    _BCS(instance));
708
709                 if (mask & info->engine_mask) {
710                         drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
711                         drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
712
713                         info->engine_mask &= ~mask;
714                 }
715         }
716 }
717
718 /*
719  * Determine which engines are fused off in our particular hardware.
720  * Note that we have a catch-22 situation where we need to be able to access
721  * the blitter forcewake domain to read the engine fuses, but at the same time
722  * we need to know which engines are available on the system to know which
723  * forcewake domains are present. We solve this by intializing the forcewake
724  * domains based on the full engine mask in the platform capabilities before
725  * calling this function and pruning the domains for fused-off engines
726  * afterwards.
727  */
728 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
729 {
730         struct drm_i915_private *i915 = gt->i915;
731         struct intel_gt_info *info = &gt->info;
732         struct intel_uncore *uncore = gt->uncore;
733         unsigned int logical_vdbox = 0;
734         unsigned int i;
735         u32 media_fuse, fuse1;
736         u16 vdbox_mask;
737         u16 vebox_mask;
738
739         info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
740
741         if (GRAPHICS_VER(i915) < 11)
742                 return info->engine_mask;
743
744         /*
745          * On newer platforms the fusing register is called 'enable' and has
746          * enable semantics, while on older platforms it is called 'disable'
747          * and bits have disable semantices.
748          */
749         media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
750         if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
751                 media_fuse = ~media_fuse;
752
753         vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
754         vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
755                       GEN11_GT_VEBOX_DISABLE_SHIFT;
756
757         if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
758                 fuse1 = intel_uncore_read(uncore, HSW_PAVP_FUSE1);
759                 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
760         } else {
761                 gt->info.sfc_mask = ~0;
762         }
763
764         for (i = 0; i < I915_MAX_VCS; i++) {
765                 if (!HAS_ENGINE(gt, _VCS(i))) {
766                         vdbox_mask &= ~BIT(i);
767                         continue;
768                 }
769
770                 if (!(BIT(i) & vdbox_mask)) {
771                         info->engine_mask &= ~BIT(_VCS(i));
772                         drm_dbg(&i915->drm, "vcs%u fused off\n", i);
773                         continue;
774                 }
775
776                 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
777                         gt->info.vdbox_sfc_access |= BIT(i);
778                 logical_vdbox++;
779         }
780         drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
781                 vdbox_mask, VDBOX_MASK(gt));
782         GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
783
784         for (i = 0; i < I915_MAX_VECS; i++) {
785                 if (!HAS_ENGINE(gt, _VECS(i))) {
786                         vebox_mask &= ~BIT(i);
787                         continue;
788                 }
789
790                 if (!(BIT(i) & vebox_mask)) {
791                         info->engine_mask &= ~BIT(_VECS(i));
792                         drm_dbg(&i915->drm, "vecs%u fused off\n", i);
793                 }
794         }
795         drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
796                 vebox_mask, VEBOX_MASK(gt));
797         GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
798
799         engine_mask_apply_compute_fuses(gt);
800         engine_mask_apply_copy_fuses(gt);
801
802         return info->engine_mask;
803 }
804
805 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
806                                  u8 class, const u8 *map, u8 num_instances)
807 {
808         int i, j;
809         u8 current_logical_id = 0;
810
811         for (j = 0; j < num_instances; ++j) {
812                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
813                         if (!HAS_ENGINE(gt, i) ||
814                             intel_engines[i].class != class)
815                                 continue;
816
817                         if (intel_engines[i].instance == map[j]) {
818                                 logical_ids[intel_engines[i].instance] =
819                                         current_logical_id++;
820                                 break;
821                         }
822                 }
823         }
824 }
825
826 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
827 {
828         /*
829          * Logical to physical mapping is needed for proper support
830          * to split-frame feature.
831          */
832         if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
833                 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
834
835                 populate_logical_ids(gt, logical_ids, class,
836                                      map, ARRAY_SIZE(map));
837         } else {
838                 int i;
839                 u8 map[MAX_ENGINE_INSTANCE + 1];
840
841                 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
842                         map[i] = i;
843                 populate_logical_ids(gt, logical_ids, class,
844                                      map, ARRAY_SIZE(map));
845         }
846 }
847
848 /**
849  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
850  * @gt: pointer to struct intel_gt
851  *
852  * Return: non-zero if the initialization failed.
853  */
854 int intel_engines_init_mmio(struct intel_gt *gt)
855 {
856         struct drm_i915_private *i915 = gt->i915;
857         const unsigned int engine_mask = init_engine_mask(gt);
858         unsigned int mask = 0;
859         unsigned int i, class;
860         u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
861         int err;
862
863         drm_WARN_ON(&i915->drm, engine_mask == 0);
864         drm_WARN_ON(&i915->drm, engine_mask &
865                     GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
866
867         if (i915_inject_probe_failure(i915))
868                 return -ENODEV;
869
870         for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
871                 setup_logical_ids(gt, logical_ids, class);
872
873                 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
874                         u8 instance = intel_engines[i].instance;
875
876                         if (intel_engines[i].class != class ||
877                             !HAS_ENGINE(gt, i))
878                                 continue;
879
880                         err = intel_engine_setup(gt, i,
881                                                  logical_ids[instance]);
882                         if (err)
883                                 goto cleanup;
884
885                         mask |= BIT(i);
886                 }
887         }
888
889         /*
890          * Catch failures to update intel_engines table when the new engines
891          * are added to the driver by a warning and disabling the forgotten
892          * engines.
893          */
894         if (drm_WARN_ON(&i915->drm, mask != engine_mask))
895                 gt->info.engine_mask = mask;
896
897         gt->info.num_engines = hweight32(mask);
898
899         intel_gt_check_and_clear_faults(gt);
900
901         intel_setup_engine_capabilities(gt);
902
903         intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
904
905         return 0;
906
907 cleanup:
908         intel_engines_free(gt);
909         return err;
910 }
911
912 void intel_engine_init_execlists(struct intel_engine_cs *engine)
913 {
914         struct intel_engine_execlists * const execlists = &engine->execlists;
915
916         execlists->port_mask = 1;
917         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
918         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
919
920         memset(execlists->pending, 0, sizeof(execlists->pending));
921         execlists->active =
922                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
923 }
924
925 static void cleanup_status_page(struct intel_engine_cs *engine)
926 {
927         struct i915_vma *vma;
928
929         /* Prevent writes into HWSP after returning the page to the system */
930         intel_engine_set_hwsp_writemask(engine, ~0u);
931
932         vma = fetch_and_zero(&engine->status_page.vma);
933         if (!vma)
934                 return;
935
936         if (!HWS_NEEDS_PHYSICAL(engine->i915))
937                 i915_vma_unpin(vma);
938
939         i915_gem_object_unpin_map(vma->obj);
940         i915_gem_object_put(vma->obj);
941 }
942
943 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
944                                 struct i915_gem_ww_ctx *ww,
945                                 struct i915_vma *vma)
946 {
947         unsigned int flags;
948
949         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
950                 /*
951                  * On g33, we cannot place HWS above 256MiB, so
952                  * restrict its pinning to the low mappable arena.
953                  * Though this restriction is not documented for
954                  * gen4, gen5, or byt, they also behave similarly
955                  * and hang if the HWS is placed at the top of the
956                  * GTT. To generalise, it appears that all !llc
957                  * platforms have issues with us placing the HWS
958                  * above the mappable region (even though we never
959                  * actually map it).
960                  */
961                 flags = PIN_MAPPABLE;
962         else
963                 flags = PIN_HIGH;
964
965         return i915_ggtt_pin(vma, ww, 0, flags);
966 }
967
968 static int init_status_page(struct intel_engine_cs *engine)
969 {
970         struct drm_i915_gem_object *obj;
971         struct i915_gem_ww_ctx ww;
972         struct i915_vma *vma;
973         void *vaddr;
974         int ret;
975
976         INIT_LIST_HEAD(&engine->status_page.timelines);
977
978         /*
979          * Though the HWS register does support 36bit addresses, historically
980          * we have had hangs and corruption reported due to wild writes if
981          * the HWS is placed above 4G. We only allow objects to be allocated
982          * in GFP_DMA32 for i965, and no earlier physical address users had
983          * access to more than 4G.
984          */
985         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
986         if (IS_ERR(obj)) {
987                 drm_err(&engine->i915->drm,
988                         "Failed to allocate status page\n");
989                 return PTR_ERR(obj);
990         }
991
992         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
993
994         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
995         if (IS_ERR(vma)) {
996                 ret = PTR_ERR(vma);
997                 goto err_put;
998         }
999
1000         i915_gem_ww_ctx_init(&ww, true);
1001 retry:
1002         ret = i915_gem_object_lock(obj, &ww);
1003         if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1004                 ret = pin_ggtt_status_page(engine, &ww, vma);
1005         if (ret)
1006                 goto err;
1007
1008         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1009         if (IS_ERR(vaddr)) {
1010                 ret = PTR_ERR(vaddr);
1011                 goto err_unpin;
1012         }
1013
1014         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1015         engine->status_page.vma = vma;
1016
1017 err_unpin:
1018         if (ret)
1019                 i915_vma_unpin(vma);
1020 err:
1021         if (ret == -EDEADLK) {
1022                 ret = i915_gem_ww_ctx_backoff(&ww);
1023                 if (!ret)
1024                         goto retry;
1025         }
1026         i915_gem_ww_ctx_fini(&ww);
1027 err_put:
1028         if (ret)
1029                 i915_gem_object_put(obj);
1030         return ret;
1031 }
1032
1033 static int engine_setup_common(struct intel_engine_cs *engine)
1034 {
1035         int err;
1036
1037         init_llist_head(&engine->barrier_tasks);
1038
1039         err = init_status_page(engine);
1040         if (err)
1041                 return err;
1042
1043         engine->breadcrumbs = intel_breadcrumbs_create(engine);
1044         if (!engine->breadcrumbs) {
1045                 err = -ENOMEM;
1046                 goto err_status;
1047         }
1048
1049         engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1050         if (!engine->sched_engine) {
1051                 err = -ENOMEM;
1052                 goto err_sched_engine;
1053         }
1054         engine->sched_engine->private_data = engine;
1055
1056         err = intel_engine_init_cmd_parser(engine);
1057         if (err)
1058                 goto err_cmd_parser;
1059
1060         intel_engine_init_execlists(engine);
1061         intel_engine_init__pm(engine);
1062         intel_engine_init_retire(engine);
1063
1064         /* Use the whole device by default */
1065         engine->sseu =
1066                 intel_sseu_from_device_info(&engine->gt->info.sseu);
1067
1068         intel_engine_init_workarounds(engine);
1069         intel_engine_init_whitelist(engine);
1070         intel_engine_init_ctx_wa(engine);
1071
1072         if (GRAPHICS_VER(engine->i915) >= 12)
1073                 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1074
1075         return 0;
1076
1077 err_cmd_parser:
1078         i915_sched_engine_put(engine->sched_engine);
1079 err_sched_engine:
1080         intel_breadcrumbs_put(engine->breadcrumbs);
1081 err_status:
1082         cleanup_status_page(engine);
1083         return err;
1084 }
1085
1086 struct measure_breadcrumb {
1087         struct i915_request rq;
1088         struct intel_ring ring;
1089         u32 cs[2048];
1090 };
1091
1092 static int measure_breadcrumb_dw(struct intel_context *ce)
1093 {
1094         struct intel_engine_cs *engine = ce->engine;
1095         struct measure_breadcrumb *frame;
1096         int dw;
1097
1098         GEM_BUG_ON(!engine->gt->scratch);
1099
1100         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1101         if (!frame)
1102                 return -ENOMEM;
1103
1104         frame->rq.engine = engine;
1105         frame->rq.context = ce;
1106         rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1107         frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1108
1109         frame->ring.vaddr = frame->cs;
1110         frame->ring.size = sizeof(frame->cs);
1111         frame->ring.wrap =
1112                 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1113         frame->ring.effective_size = frame->ring.size;
1114         intel_ring_update_space(&frame->ring);
1115         frame->rq.ring = &frame->ring;
1116
1117         mutex_lock(&ce->timeline->mutex);
1118         spin_lock_irq(&engine->sched_engine->lock);
1119
1120         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1121
1122         spin_unlock_irq(&engine->sched_engine->lock);
1123         mutex_unlock(&ce->timeline->mutex);
1124
1125         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1126
1127         kfree(frame);
1128         return dw;
1129 }
1130
1131 struct intel_context *
1132 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1133                                    struct i915_address_space *vm,
1134                                    unsigned int ring_size,
1135                                    unsigned int hwsp,
1136                                    struct lock_class_key *key,
1137                                    const char *name)
1138 {
1139         struct intel_context *ce;
1140         int err;
1141
1142         ce = intel_context_create(engine);
1143         if (IS_ERR(ce))
1144                 return ce;
1145
1146         __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1147         ce->timeline = page_pack_bits(NULL, hwsp);
1148         ce->ring = NULL;
1149         ce->ring_size = ring_size;
1150
1151         i915_vm_put(ce->vm);
1152         ce->vm = i915_vm_get(vm);
1153
1154         err = intel_context_pin(ce); /* perma-pin so it is always available */
1155         if (err) {
1156                 intel_context_put(ce);
1157                 return ERR_PTR(err);
1158         }
1159
1160         list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1161
1162         /*
1163          * Give our perma-pinned kernel timelines a separate lockdep class,
1164          * so that we can use them from within the normal user timelines
1165          * should we need to inject GPU operations during their request
1166          * construction.
1167          */
1168         lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1169
1170         return ce;
1171 }
1172
1173 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1174 {
1175         struct intel_engine_cs *engine = ce->engine;
1176         struct i915_vma *hwsp = engine->status_page.vma;
1177
1178         GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1179
1180         mutex_lock(&hwsp->vm->mutex);
1181         list_del(&ce->timeline->engine_link);
1182         mutex_unlock(&hwsp->vm->mutex);
1183
1184         list_del(&ce->pinned_contexts_link);
1185         intel_context_unpin(ce);
1186         intel_context_put(ce);
1187 }
1188
1189 static struct intel_context *
1190 create_kernel_context(struct intel_engine_cs *engine)
1191 {
1192         static struct lock_class_key kernel;
1193
1194         return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1195                                                   I915_GEM_HWS_SEQNO_ADDR,
1196                                                   &kernel, "kernel_context");
1197 }
1198
1199 /**
1200  * intel_engines_init_common - initialize cengine state which might require hw access
1201  * @engine: Engine to initialize.
1202  *
1203  * Initializes @engine@ structure members shared between legacy and execlists
1204  * submission modes which do require hardware access.
1205  *
1206  * Typcally done at later stages of submission mode specific engine setup.
1207  *
1208  * Returns zero on success or an error code on failure.
1209  */
1210 static int engine_init_common(struct intel_engine_cs *engine)
1211 {
1212         struct intel_context *ce;
1213         int ret;
1214
1215         engine->set_default_submission(engine);
1216
1217         /*
1218          * We may need to do things with the shrinker which
1219          * require us to immediately switch back to the default
1220          * context. This can cause a problem as pinning the
1221          * default context also requires GTT space which may not
1222          * be available. To avoid this we always pin the default
1223          * context.
1224          */
1225         ce = create_kernel_context(engine);
1226         if (IS_ERR(ce))
1227                 return PTR_ERR(ce);
1228
1229         ret = measure_breadcrumb_dw(ce);
1230         if (ret < 0)
1231                 goto err_context;
1232
1233         engine->emit_fini_breadcrumb_dw = ret;
1234         engine->kernel_context = ce;
1235
1236         return 0;
1237
1238 err_context:
1239         intel_engine_destroy_pinned_context(ce);
1240         return ret;
1241 }
1242
1243 int intel_engines_init(struct intel_gt *gt)
1244 {
1245         int (*setup)(struct intel_engine_cs *engine);
1246         struct intel_engine_cs *engine;
1247         enum intel_engine_id id;
1248         int err;
1249
1250         if (intel_uc_uses_guc_submission(&gt->uc)) {
1251                 gt->submission_method = INTEL_SUBMISSION_GUC;
1252                 setup = intel_guc_submission_setup;
1253         } else if (HAS_EXECLISTS(gt->i915)) {
1254                 gt->submission_method = INTEL_SUBMISSION_ELSP;
1255                 setup = intel_execlists_submission_setup;
1256         } else {
1257                 gt->submission_method = INTEL_SUBMISSION_RING;
1258                 setup = intel_ring_submission_setup;
1259         }
1260
1261         for_each_engine(engine, gt, id) {
1262                 err = engine_setup_common(engine);
1263                 if (err)
1264                         return err;
1265
1266                 err = setup(engine);
1267                 if (err)
1268                         return err;
1269
1270                 err = engine_init_common(engine);
1271                 if (err)
1272                         return err;
1273
1274                 intel_engine_add_user(engine);
1275         }
1276
1277         return 0;
1278 }
1279
1280 /**
1281  * intel_engines_cleanup_common - cleans up the engine state created by
1282  *                                the common initiailizers.
1283  * @engine: Engine to cleanup.
1284  *
1285  * This cleans up everything created by the common helpers.
1286  */
1287 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1288 {
1289         GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1290
1291         i915_sched_engine_put(engine->sched_engine);
1292         intel_breadcrumbs_put(engine->breadcrumbs);
1293
1294         intel_engine_fini_retire(engine);
1295         intel_engine_cleanup_cmd_parser(engine);
1296
1297         if (engine->default_state)
1298                 fput(engine->default_state);
1299
1300         if (engine->kernel_context)
1301                 intel_engine_destroy_pinned_context(engine->kernel_context);
1302
1303         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1304         cleanup_status_page(engine);
1305
1306         intel_wa_list_free(&engine->ctx_wa_list);
1307         intel_wa_list_free(&engine->wa_list);
1308         intel_wa_list_free(&engine->whitelist);
1309 }
1310
1311 /**
1312  * intel_engine_resume - re-initializes the HW state of the engine
1313  * @engine: Engine to resume.
1314  *
1315  * Returns zero on success or an error code on failure.
1316  */
1317 int intel_engine_resume(struct intel_engine_cs *engine)
1318 {
1319         intel_engine_apply_workarounds(engine);
1320         intel_engine_apply_whitelist(engine);
1321
1322         return engine->resume(engine);
1323 }
1324
1325 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1326 {
1327         struct drm_i915_private *i915 = engine->i915;
1328
1329         u64 acthd;
1330
1331         if (GRAPHICS_VER(i915) >= 8)
1332                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1333         else if (GRAPHICS_VER(i915) >= 4)
1334                 acthd = ENGINE_READ(engine, RING_ACTHD);
1335         else
1336                 acthd = ENGINE_READ(engine, ACTHD);
1337
1338         return acthd;
1339 }
1340
1341 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1342 {
1343         u64 bbaddr;
1344
1345         if (GRAPHICS_VER(engine->i915) >= 8)
1346                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1347         else
1348                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1349
1350         return bbaddr;
1351 }
1352
1353 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1354 {
1355         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1356                 return 0;
1357
1358         /*
1359          * If we are doing a normal GPU reset, we can take our time and allow
1360          * the engine to quiesce. We've stopped submission to the engine, and
1361          * if we wait long enough an innocent context should complete and
1362          * leave the engine idle. So they should not be caught unaware by
1363          * the forthcoming GPU reset (which usually follows the stop_cs)!
1364          */
1365         return READ_ONCE(engine->props.stop_timeout_ms);
1366 }
1367
1368 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1369                                   int fast_timeout_us,
1370                                   int slow_timeout_ms)
1371 {
1372         struct intel_uncore *uncore = engine->uncore;
1373         const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1374         int err;
1375
1376         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1377
1378         /*
1379          * Wa_22011802037 : gen11, gen12, Prior to doing a reset, ensure CS is
1380          * stopped, set ring stop bit and prefetch disable bit to halt CS
1381          */
1382         if (IS_GRAPHICS_VER(engine->i915, 11, 12))
1383                 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1384                                       _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1385
1386         err = __intel_wait_for_register_fw(engine->uncore, mode,
1387                                            MODE_IDLE, MODE_IDLE,
1388                                            fast_timeout_us,
1389                                            slow_timeout_ms,
1390                                            NULL);
1391
1392         /* A final mmio read to let GPU writes be hopefully flushed to memory */
1393         intel_uncore_posting_read_fw(uncore, mode);
1394         return err;
1395 }
1396
1397 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1398 {
1399         int err = 0;
1400
1401         if (GRAPHICS_VER(engine->i915) < 3)
1402                 return -ENODEV;
1403
1404         ENGINE_TRACE(engine, "\n");
1405         /*
1406          * TODO: Find out why occasionally stopping the CS times out. Seen
1407          * especially with gem_eio tests.
1408          *
1409          * Occasionally trying to stop the cs times out, but does not adversely
1410          * affect functionality. The timeout is set as a config parameter that
1411          * defaults to 100ms. In most cases the follow up operation is to wait
1412          * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1413          * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1414          * caused, the caller must check and handle the return from this
1415          * function.
1416          */
1417         if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1418                 ENGINE_TRACE(engine,
1419                              "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1420                              ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1421                              ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1422
1423                 /*
1424                  * Sometimes we observe that the idle flag is not
1425                  * set even though the ring is empty. So double
1426                  * check before giving up.
1427                  */
1428                 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1429                     (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1430                         err = -ETIMEDOUT;
1431         }
1432
1433         return err;
1434 }
1435
1436 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1437 {
1438         ENGINE_TRACE(engine, "\n");
1439
1440         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1441 }
1442
1443 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1444 {
1445         static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1446                 [RCS0] = MSG_IDLE_CS,
1447                 [BCS0] = MSG_IDLE_BCS,
1448                 [VCS0] = MSG_IDLE_VCS0,
1449                 [VCS1] = MSG_IDLE_VCS1,
1450                 [VCS2] = MSG_IDLE_VCS2,
1451                 [VCS3] = MSG_IDLE_VCS3,
1452                 [VCS4] = MSG_IDLE_VCS4,
1453                 [VCS5] = MSG_IDLE_VCS5,
1454                 [VCS6] = MSG_IDLE_VCS6,
1455                 [VCS7] = MSG_IDLE_VCS7,
1456                 [VECS0] = MSG_IDLE_VECS0,
1457                 [VECS1] = MSG_IDLE_VECS1,
1458                 [VECS2] = MSG_IDLE_VECS2,
1459                 [VECS3] = MSG_IDLE_VECS3,
1460                 [CCS0] = MSG_IDLE_CS,
1461                 [CCS1] = MSG_IDLE_CS,
1462                 [CCS2] = MSG_IDLE_CS,
1463                 [CCS3] = MSG_IDLE_CS,
1464         };
1465         u32 val;
1466
1467         if (!_reg[engine->id].reg) {
1468                 drm_err(&engine->i915->drm,
1469                         "MSG IDLE undefined for engine id %u\n", engine->id);
1470                 return 0;
1471         }
1472
1473         val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1474
1475         /* bits[29:25] & bits[13:9] >> shift */
1476         return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1477 }
1478
1479 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1480 {
1481         int ret;
1482
1483         /* Ensure GPM receives fw up/down after CS is stopped */
1484         udelay(1);
1485
1486         /* Wait for forcewake request to complete in GPM */
1487         ret =  __intel_wait_for_register_fw(gt->uncore,
1488                                             GEN9_PWRGT_DOMAIN_STATUS,
1489                                             fw_mask, fw_mask, 5000, 0, NULL);
1490
1491         /* Ensure CS receives fw ack from GPM */
1492         udelay(1);
1493
1494         if (ret)
1495                 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1496 }
1497
1498 /*
1499  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1500  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1501  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1502  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1503  * are concerned only with the gt reset here, we use a logical OR of pending
1504  * forcewakeups from all reset domains and then wait for them to complete by
1505  * querying PWRGT_DOMAIN_STATUS.
1506  */
1507 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1508 {
1509         u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1510
1511         if (fw_pending)
1512                 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1513 }
1514
1515 /* NB: please notice the memset */
1516 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1517                                struct intel_instdone *instdone)
1518 {
1519         struct drm_i915_private *i915 = engine->i915;
1520         struct intel_uncore *uncore = engine->uncore;
1521         u32 mmio_base = engine->mmio_base;
1522         int slice;
1523         int subslice;
1524         int iter;
1525
1526         memset(instdone, 0, sizeof(*instdone));
1527
1528         if (GRAPHICS_VER(i915) >= 8) {
1529                 instdone->instdone =
1530                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1531
1532                 if (engine->id != RCS0)
1533                         return;
1534
1535                 instdone->slice_common =
1536                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1537                 if (GRAPHICS_VER(i915) >= 12) {
1538                         instdone->slice_common_extra[0] =
1539                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1540                         instdone->slice_common_extra[1] =
1541                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1542                 }
1543
1544                 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1545                         instdone->sampler[slice][subslice] =
1546                                 intel_gt_mcr_read(engine->gt,
1547                                                   GEN7_SAMPLER_INSTDONE,
1548                                                   slice, subslice);
1549                         instdone->row[slice][subslice] =
1550                                 intel_gt_mcr_read(engine->gt,
1551                                                   GEN7_ROW_INSTDONE,
1552                                                   slice, subslice);
1553                 }
1554
1555                 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1556                         for_each_ss_steering(iter, engine->gt, slice, subslice)
1557                                 instdone->geom_svg[slice][subslice] =
1558                                         intel_gt_mcr_read(engine->gt,
1559                                                           XEHPG_INSTDONE_GEOM_SVG,
1560                                                           slice, subslice);
1561                 }
1562         } else if (GRAPHICS_VER(i915) >= 7) {
1563                 instdone->instdone =
1564                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1565
1566                 if (engine->id != RCS0)
1567                         return;
1568
1569                 instdone->slice_common =
1570                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1571                 instdone->sampler[0][0] =
1572                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1573                 instdone->row[0][0] =
1574                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1575         } else if (GRAPHICS_VER(i915) >= 4) {
1576                 instdone->instdone =
1577                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1578                 if (engine->id == RCS0)
1579                         /* HACK: Using the wrong struct member */
1580                         instdone->slice_common =
1581                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1582         } else {
1583                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1584         }
1585 }
1586
1587 static bool ring_is_idle(struct intel_engine_cs *engine)
1588 {
1589         bool idle = true;
1590
1591         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1592                 return true;
1593
1594         if (!intel_engine_pm_get_if_awake(engine))
1595                 return true;
1596
1597         /* First check that no commands are left in the ring */
1598         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1599             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1600                 idle = false;
1601
1602         /* No bit for gen2, so assume the CS parser is idle */
1603         if (GRAPHICS_VER(engine->i915) > 2 &&
1604             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1605                 idle = false;
1606
1607         intel_engine_pm_put(engine);
1608
1609         return idle;
1610 }
1611
1612 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1613 {
1614         struct tasklet_struct *t = &engine->sched_engine->tasklet;
1615
1616         if (!t->callback)
1617                 return;
1618
1619         local_bh_disable();
1620         if (tasklet_trylock(t)) {
1621                 /* Must wait for any GPU reset in progress. */
1622                 if (__tasklet_is_enabled(t))
1623                         t->callback(t);
1624                 tasklet_unlock(t);
1625         }
1626         local_bh_enable();
1627
1628         /* Synchronise and wait for the tasklet on another CPU */
1629         if (sync)
1630                 tasklet_unlock_wait(t);
1631 }
1632
1633 /**
1634  * intel_engine_is_idle() - Report if the engine has finished process all work
1635  * @engine: the intel_engine_cs
1636  *
1637  * Return true if there are no requests pending, nothing left to be submitted
1638  * to hardware, and that the engine is idle.
1639  */
1640 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1641 {
1642         /* More white lies, if wedged, hw state is inconsistent */
1643         if (intel_gt_is_wedged(engine->gt))
1644                 return true;
1645
1646         if (!intel_engine_pm_is_awake(engine))
1647                 return true;
1648
1649         /* Waiting to drain ELSP? */
1650         intel_synchronize_hardirq(engine->i915);
1651         intel_engine_flush_submission(engine);
1652
1653         /* ELSP is empty, but there are ready requests? E.g. after reset */
1654         if (!i915_sched_engine_is_empty(engine->sched_engine))
1655                 return false;
1656
1657         /* Ring stopped? */
1658         return ring_is_idle(engine);
1659 }
1660
1661 bool intel_engines_are_idle(struct intel_gt *gt)
1662 {
1663         struct intel_engine_cs *engine;
1664         enum intel_engine_id id;
1665
1666         /*
1667          * If the driver is wedged, HW state may be very inconsistent and
1668          * report that it is still busy, even though we have stopped using it.
1669          */
1670         if (intel_gt_is_wedged(gt))
1671                 return true;
1672
1673         /* Already parked (and passed an idleness test); must still be idle */
1674         if (!READ_ONCE(gt->awake))
1675                 return true;
1676
1677         for_each_engine(engine, gt, id) {
1678                 if (!intel_engine_is_idle(engine))
1679                         return false;
1680         }
1681
1682         return true;
1683 }
1684
1685 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1686 {
1687         if (!engine->irq_enable)
1688                 return false;
1689
1690         /* Caller disables interrupts */
1691         spin_lock(&engine->gt->irq_lock);
1692         engine->irq_enable(engine);
1693         spin_unlock(&engine->gt->irq_lock);
1694
1695         return true;
1696 }
1697
1698 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1699 {
1700         if (!engine->irq_disable)
1701                 return;
1702
1703         /* Caller disables interrupts */
1704         spin_lock(&engine->gt->irq_lock);
1705         engine->irq_disable(engine);
1706         spin_unlock(&engine->gt->irq_lock);
1707 }
1708
1709 void intel_engines_reset_default_submission(struct intel_gt *gt)
1710 {
1711         struct intel_engine_cs *engine;
1712         enum intel_engine_id id;
1713
1714         for_each_engine(engine, gt, id) {
1715                 if (engine->sanitize)
1716                         engine->sanitize(engine);
1717
1718                 engine->set_default_submission(engine);
1719         }
1720 }
1721
1722 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1723 {
1724         switch (GRAPHICS_VER(engine->i915)) {
1725         case 2:
1726                 return false; /* uses physical not virtual addresses */
1727         case 3:
1728                 /* maybe only uses physical not virtual addresses */
1729                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1730         case 4:
1731                 return !IS_I965G(engine->i915); /* who knows! */
1732         case 6:
1733                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1734         default:
1735                 return true;
1736         }
1737 }
1738
1739 static struct intel_timeline *get_timeline(struct i915_request *rq)
1740 {
1741         struct intel_timeline *tl;
1742
1743         /*
1744          * Even though we are holding the engine->sched_engine->lock here, there
1745          * is no control over the submission queue per-se and we are
1746          * inspecting the active state at a random point in time, with an
1747          * unknown queue. Play safe and make sure the timeline remains valid.
1748          * (Only being used for pretty printing, one extra kref shouldn't
1749          * cause a camel stampede!)
1750          */
1751         rcu_read_lock();
1752         tl = rcu_dereference(rq->timeline);
1753         if (!kref_get_unless_zero(&tl->kref))
1754                 tl = NULL;
1755         rcu_read_unlock();
1756
1757         return tl;
1758 }
1759
1760 static int print_ring(char *buf, int sz, struct i915_request *rq)
1761 {
1762         int len = 0;
1763
1764         if (!i915_request_signaled(rq)) {
1765                 struct intel_timeline *tl = get_timeline(rq);
1766
1767                 len = scnprintf(buf, sz,
1768                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1769                                 i915_ggtt_offset(rq->ring->vma),
1770                                 tl ? tl->hwsp_offset : 0,
1771                                 hwsp_seqno(rq),
1772                                 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1773                                                       1000 * 1000));
1774
1775                 if (tl)
1776                         intel_timeline_put(tl);
1777         }
1778
1779         return len;
1780 }
1781
1782 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1783 {
1784         const size_t rowsize = 8 * sizeof(u32);
1785         const void *prev = NULL;
1786         bool skip = false;
1787         size_t pos;
1788
1789         for (pos = 0; pos < len; pos += rowsize) {
1790                 char line[128];
1791
1792                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1793                         if (!skip) {
1794                                 drm_printf(m, "*\n");
1795                                 skip = true;
1796                         }
1797                         continue;
1798                 }
1799
1800                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1801                                                 rowsize, sizeof(u32),
1802                                                 line, sizeof(line),
1803                                                 false) >= sizeof(line));
1804                 drm_printf(m, "[%04zx] %s\n", pos, line);
1805
1806                 prev = buf + pos;
1807                 skip = false;
1808         }
1809 }
1810
1811 static const char *repr_timer(const struct timer_list *t)
1812 {
1813         if (!READ_ONCE(t->expires))
1814                 return "inactive";
1815
1816         if (timer_pending(t))
1817                 return "active";
1818
1819         return "expired";
1820 }
1821
1822 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1823                                          struct drm_printer *m)
1824 {
1825         struct drm_i915_private *dev_priv = engine->i915;
1826         struct intel_engine_execlists * const execlists = &engine->execlists;
1827         u64 addr;
1828
1829         if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1830                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1831         if (HAS_EXECLISTS(dev_priv)) {
1832                 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1833                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1834                 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1835                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1836         }
1837         drm_printf(m, "\tRING_START: 0x%08x\n",
1838                    ENGINE_READ(engine, RING_START));
1839         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1840                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1841         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1842                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1843         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1844                    ENGINE_READ(engine, RING_CTL),
1845                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1846         if (GRAPHICS_VER(engine->i915) > 2) {
1847                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1848                            ENGINE_READ(engine, RING_MI_MODE),
1849                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1850         }
1851
1852         if (GRAPHICS_VER(dev_priv) >= 6) {
1853                 drm_printf(m, "\tRING_IMR:   0x%08x\n",
1854                            ENGINE_READ(engine, RING_IMR));
1855                 drm_printf(m, "\tRING_ESR:   0x%08x\n",
1856                            ENGINE_READ(engine, RING_ESR));
1857                 drm_printf(m, "\tRING_EMR:   0x%08x\n",
1858                            ENGINE_READ(engine, RING_EMR));
1859                 drm_printf(m, "\tRING_EIR:   0x%08x\n",
1860                            ENGINE_READ(engine, RING_EIR));
1861         }
1862
1863         addr = intel_engine_get_active_head(engine);
1864         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1865                    upper_32_bits(addr), lower_32_bits(addr));
1866         addr = intel_engine_get_last_batch_head(engine);
1867         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1868                    upper_32_bits(addr), lower_32_bits(addr));
1869         if (GRAPHICS_VER(dev_priv) >= 8)
1870                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1871         else if (GRAPHICS_VER(dev_priv) >= 4)
1872                 addr = ENGINE_READ(engine, RING_DMA_FADD);
1873         else
1874                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1875         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1876                    upper_32_bits(addr), lower_32_bits(addr));
1877         if (GRAPHICS_VER(dev_priv) >= 4) {
1878                 drm_printf(m, "\tIPEIR: 0x%08x\n",
1879                            ENGINE_READ(engine, RING_IPEIR));
1880                 drm_printf(m, "\tIPEHR: 0x%08x\n",
1881                            ENGINE_READ(engine, RING_IPEHR));
1882         } else {
1883                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1884                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1885         }
1886
1887         if (HAS_EXECLISTS(dev_priv) && !intel_engine_uses_guc(engine)) {
1888                 struct i915_request * const *port, *rq;
1889                 const u32 *hws =
1890                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1891                 const u8 num_entries = execlists->csb_size;
1892                 unsigned int idx;
1893                 u8 read, write;
1894
1895                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1896                            str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
1897                            str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1898                            repr_timer(&engine->execlists.preempt),
1899                            repr_timer(&engine->execlists.timer));
1900
1901                 read = execlists->csb_head;
1902                 write = READ_ONCE(*execlists->csb_write);
1903
1904                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1905                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1906                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1907                            read, write, num_entries);
1908
1909                 if (read >= num_entries)
1910                         read = 0;
1911                 if (write >= num_entries)
1912                         write = 0;
1913                 if (read > write)
1914                         write += num_entries;
1915                 while (read < write) {
1916                         idx = ++read % num_entries;
1917                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1918                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
1919                 }
1920
1921                 i915_sched_engine_active_lock_bh(engine->sched_engine);
1922                 rcu_read_lock();
1923                 for (port = execlists->active; (rq = *port); port++) {
1924                         char hdr[160];
1925                         int len;
1926
1927                         len = scnprintf(hdr, sizeof(hdr),
1928                                         "\t\tActive[%d]:  ccid:%08x%s%s, ",
1929                                         (int)(port - execlists->active),
1930                                         rq->context->lrc.ccid,
1931                                         intel_context_is_closed(rq->context) ? "!" : "",
1932                                         intel_context_is_banned(rq->context) ? "*" : "");
1933                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1934                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1935                         i915_request_show(m, rq, hdr, 0);
1936                 }
1937                 for (port = execlists->pending; (rq = *port); port++) {
1938                         char hdr[160];
1939                         int len;
1940
1941                         len = scnprintf(hdr, sizeof(hdr),
1942                                         "\t\tPending[%d]: ccid:%08x%s%s, ",
1943                                         (int)(port - execlists->pending),
1944                                         rq->context->lrc.ccid,
1945                                         intel_context_is_closed(rq->context) ? "!" : "",
1946                                         intel_context_is_banned(rq->context) ? "*" : "");
1947                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1948                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1949                         i915_request_show(m, rq, hdr, 0);
1950                 }
1951                 rcu_read_unlock();
1952                 i915_sched_engine_active_unlock_bh(engine->sched_engine);
1953         } else if (GRAPHICS_VER(dev_priv) > 6) {
1954                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1955                            ENGINE_READ(engine, RING_PP_DIR_BASE));
1956                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1957                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1958                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1959                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
1960         }
1961 }
1962
1963 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1964 {
1965         struct i915_vma_resource *vma_res = rq->batch_res;
1966         void *ring;
1967         int size;
1968
1969         drm_printf(m,
1970                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1971                    rq->head, rq->postfix, rq->tail,
1972                    vma_res ? upper_32_bits(vma_res->start) : ~0u,
1973                    vma_res ? lower_32_bits(vma_res->start) : ~0u);
1974
1975         size = rq->tail - rq->head;
1976         if (rq->tail < rq->head)
1977                 size += rq->ring->size;
1978
1979         ring = kmalloc(size, GFP_ATOMIC);
1980         if (ring) {
1981                 const void *vaddr = rq->ring->vaddr;
1982                 unsigned int head = rq->head;
1983                 unsigned int len = 0;
1984
1985                 if (rq->tail < head) {
1986                         len = rq->ring->size - head;
1987                         memcpy(ring, vaddr + head, len);
1988                         head = 0;
1989                 }
1990                 memcpy(ring + len, vaddr + head, size - len);
1991
1992                 hexdump(m, ring, size);
1993                 kfree(ring);
1994         }
1995 }
1996
1997 static unsigned long list_count(struct list_head *list)
1998 {
1999         struct list_head *pos;
2000         unsigned long count = 0;
2001
2002         list_for_each(pos, list)
2003                 count++;
2004
2005         return count;
2006 }
2007
2008 static unsigned long read_ul(void *p, size_t x)
2009 {
2010         return *(unsigned long *)(p + x);
2011 }
2012
2013 static void print_properties(struct intel_engine_cs *engine,
2014                              struct drm_printer *m)
2015 {
2016         static const struct pmap {
2017                 size_t offset;
2018                 const char *name;
2019         } props[] = {
2020 #define P(x) { \
2021         .offset = offsetof(typeof(engine->props), x), \
2022         .name = #x \
2023 }
2024                 P(heartbeat_interval_ms),
2025                 P(max_busywait_duration_ns),
2026                 P(preempt_timeout_ms),
2027                 P(stop_timeout_ms),
2028                 P(timeslice_duration_ms),
2029
2030                 {},
2031 #undef P
2032         };
2033         const struct pmap *p;
2034
2035         drm_printf(m, "\tProperties:\n");
2036         for (p = props; p->name; p++)
2037                 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2038                            p->name,
2039                            read_ul(&engine->props, p->offset),
2040                            read_ul(&engine->defaults, p->offset));
2041 }
2042
2043 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2044 {
2045         struct intel_timeline *tl = get_timeline(rq);
2046
2047         i915_request_show(m, rq, msg, 0);
2048
2049         drm_printf(m, "\t\tring->start:  0x%08x\n",
2050                    i915_ggtt_offset(rq->ring->vma));
2051         drm_printf(m, "\t\tring->head:   0x%08x\n",
2052                    rq->ring->head);
2053         drm_printf(m, "\t\tring->tail:   0x%08x\n",
2054                    rq->ring->tail);
2055         drm_printf(m, "\t\tring->emit:   0x%08x\n",
2056                    rq->ring->emit);
2057         drm_printf(m, "\t\tring->space:  0x%08x\n",
2058                    rq->ring->space);
2059
2060         if (tl) {
2061                 drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2062                            tl->hwsp_offset);
2063                 intel_timeline_put(tl);
2064         }
2065
2066         print_request_ring(m, rq);
2067
2068         if (rq->context->lrc_reg_state) {
2069                 drm_printf(m, "Logical Ring Context:\n");
2070                 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2071         }
2072 }
2073
2074 void intel_engine_dump_active_requests(struct list_head *requests,
2075                                        struct i915_request *hung_rq,
2076                                        struct drm_printer *m)
2077 {
2078         struct i915_request *rq;
2079         const char *msg;
2080         enum i915_request_state state;
2081
2082         list_for_each_entry(rq, requests, sched.link) {
2083                 if (rq == hung_rq)
2084                         continue;
2085
2086                 state = i915_test_request_state(rq);
2087                 if (state < I915_REQUEST_QUEUED)
2088                         continue;
2089
2090                 if (state == I915_REQUEST_ACTIVE)
2091                         msg = "\t\tactive on engine";
2092                 else
2093                         msg = "\t\tactive in queue";
2094
2095                 engine_dump_request(rq, m, msg);
2096         }
2097 }
2098
2099 static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
2100 {
2101         struct i915_request *hung_rq = NULL;
2102         struct intel_context *ce;
2103         bool guc;
2104
2105         /*
2106          * No need for an engine->irq_seqno_barrier() before the seqno reads.
2107          * The GPU is still running so requests are still executing and any
2108          * hardware reads will be out of date by the time they are reported.
2109          * But the intention here is just to report an instantaneous snapshot
2110          * so that's fine.
2111          */
2112         lockdep_assert_held(&engine->sched_engine->lock);
2113
2114         drm_printf(m, "\tRequests:\n");
2115
2116         guc = intel_uc_uses_guc_submission(&engine->gt->uc);
2117         if (guc) {
2118                 ce = intel_engine_get_hung_context(engine);
2119                 if (ce)
2120                         hung_rq = intel_context_find_active_request(ce);
2121         } else {
2122                 hung_rq = intel_engine_execlist_find_hung_request(engine);
2123         }
2124
2125         if (hung_rq)
2126                 engine_dump_request(hung_rq, m, "\t\thung");
2127
2128         if (guc)
2129                 intel_guc_dump_active_requests(engine, hung_rq, m);
2130         else
2131                 intel_engine_dump_active_requests(&engine->sched_engine->requests,
2132                                                   hung_rq, m);
2133 }
2134
2135 void intel_engine_dump(struct intel_engine_cs *engine,
2136                        struct drm_printer *m,
2137                        const char *header, ...)
2138 {
2139         struct i915_gpu_error * const error = &engine->i915->gpu_error;
2140         struct i915_request *rq;
2141         intel_wakeref_t wakeref;
2142         unsigned long flags;
2143         ktime_t dummy;
2144
2145         if (header) {
2146                 va_list ap;
2147
2148                 va_start(ap, header);
2149                 drm_vprintf(m, header, &ap);
2150                 va_end(ap);
2151         }
2152
2153         if (intel_gt_is_wedged(engine->gt))
2154                 drm_printf(m, "*** WEDGED ***\n");
2155
2156         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2157         drm_printf(m, "\tBarriers?: %s\n",
2158                    str_yes_no(!llist_empty(&engine->barrier_tasks)));
2159         drm_printf(m, "\tLatency: %luus\n",
2160                    ewma__engine_latency_read(&engine->latency));
2161         if (intel_engine_supports_stats(engine))
2162                 drm_printf(m, "\tRuntime: %llums\n",
2163                            ktime_to_ms(intel_engine_get_busy_time(engine,
2164                                                                   &dummy)));
2165         drm_printf(m, "\tForcewake: %x domains, %d active\n",
2166                    engine->fw_domain, READ_ONCE(engine->fw_active));
2167
2168         rcu_read_lock();
2169         rq = READ_ONCE(engine->heartbeat.systole);
2170         if (rq)
2171                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2172                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2173         rcu_read_unlock();
2174         drm_printf(m, "\tReset count: %d (global %d)\n",
2175                    i915_reset_engine_count(error, engine),
2176                    i915_reset_count(error));
2177         print_properties(engine, m);
2178
2179         spin_lock_irqsave(&engine->sched_engine->lock, flags);
2180         engine_dump_active_requests(engine, m);
2181
2182         drm_printf(m, "\tOn hold?: %lu\n",
2183                    list_count(&engine->sched_engine->hold));
2184         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2185
2186         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2187         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2188         if (wakeref) {
2189                 intel_engine_print_registers(engine, m);
2190                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2191         } else {
2192                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2193         }
2194
2195         intel_execlists_show_requests(engine, m, i915_request_show, 8);
2196
2197         drm_printf(m, "HWSP:\n");
2198         hexdump(m, engine->status_page.addr, PAGE_SIZE);
2199
2200         drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2201
2202         intel_engine_print_breadcrumbs(engine, m);
2203 }
2204
2205 /**
2206  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2207  * @engine: engine to report on
2208  * @now: monotonic timestamp of sampling
2209  *
2210  * Returns accumulated time @engine was busy since engine stats were enabled.
2211  */
2212 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2213 {
2214         return engine->busyness(engine, now);
2215 }
2216
2217 struct intel_context *
2218 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2219                             unsigned int count, unsigned long flags)
2220 {
2221         if (count == 0)
2222                 return ERR_PTR(-EINVAL);
2223
2224         if (count == 1 && !(flags & FORCE_VIRTUAL))
2225                 return intel_context_create(siblings[0]);
2226
2227         GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2228         return siblings[0]->cops->create_virtual(siblings, count, flags);
2229 }
2230
2231 struct i915_request *
2232 intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2233 {
2234         struct i915_request *request, *active = NULL;
2235
2236         /*
2237          * This search does not work in GuC submission mode. However, the GuC
2238          * will report the hanging context directly to the driver itself. So
2239          * the driver should never get here when in GuC mode.
2240          */
2241         GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2242
2243         /*
2244          * We are called by the error capture, reset and to dump engine
2245          * state at random points in time. In particular, note that neither is
2246          * crucially ordered with an interrupt. After a hang, the GPU is dead
2247          * and we assume that no more writes can happen (we waited long enough
2248          * for all writes that were in transaction to be flushed) - adding an
2249          * extra delay for a recent interrupt is pointless. Hence, we do
2250          * not need an engine->irq_seqno_barrier() before the seqno reads.
2251          * At all other times, we must assume the GPU is still running, but
2252          * we only care about the snapshot of this moment.
2253          */
2254         lockdep_assert_held(&engine->sched_engine->lock);
2255
2256         rcu_read_lock();
2257         request = execlists_active(&engine->execlists);
2258         if (request) {
2259                 struct intel_timeline *tl = request->context->timeline;
2260
2261                 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2262                         if (__i915_request_is_complete(request))
2263                                 break;
2264
2265                         active = request;
2266                 }
2267         }
2268         rcu_read_unlock();
2269         if (active)
2270                 return active;
2271
2272         list_for_each_entry(request, &engine->sched_engine->requests,
2273                             sched.link) {
2274                 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2275                         continue;
2276
2277                 active = request;
2278                 break;
2279         }
2280
2281         return active;
2282 }
2283
2284 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2285 {
2286         /*
2287          * If there are any non-fused-off CCS engines, we need to enable CCS
2288          * support in the RCU_MODE register.  This only needs to be done once,
2289          * so for simplicity we'll take care of this in the RCS engine's
2290          * resume handler; since the RCS and all CCS engines belong to the
2291          * same reset domain and are reset together, this will also take care
2292          * of re-applying the setting after i915-triggered resets.
2293          */
2294         if (!CCS_MASK(engine->gt))
2295                 return;
2296
2297         intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2298                            _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2299 }
2300
2301 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2302 #include "mock_engine.c"
2303 #include "selftest_engine.c"
2304 #include "selftest_engine_cs.c"
2305 #endif
This page took 0.177144 seconds and 4 git commands to generate.