1 // SPDX-License-Identifier: MIT
3 * Copyright © 2016 Intel Corporation
6 #include <linux/string_helpers.h>
8 #include <drm/drm_print.h>
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_regs.h"
14 #include "i915_cmd_parser.h"
16 #include "intel_breadcrumbs.h"
17 #include "intel_context.h"
18 #include "intel_engine.h"
19 #include "intel_engine_pm.h"
20 #include "intel_engine_regs.h"
21 #include "intel_engine_user.h"
22 #include "intel_execlists_submission.h"
24 #include "intel_gt_mcr.h"
25 #include "intel_gt_pm.h"
26 #include "intel_gt_requests.h"
27 #include "intel_lrc.h"
28 #include "intel_lrc_reg.h"
29 #include "intel_reset.h"
30 #include "intel_ring.h"
31 #include "uc/intel_guc_submission.h"
33 /* Haswell does have the CXT_SIZE register however it does not appear to be
34 * valid. Now, docs explain in dwords what is in the context object. The full
35 * size is 70720 bytes, however, the power context and execlist context will
36 * never be saved (power context is stored elsewhere, and execlists don't work
37 * on HSW) - so the final size, including the extra state required for the
38 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
40 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
42 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
43 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
44 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
45 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
47 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
49 #define MAX_MMIO_BASES 3
53 /* mmio bases table *must* be sorted in reverse graphics_ver order */
54 struct engine_mmio_base {
57 } mmio_bases[MAX_MMIO_BASES];
60 static const struct engine_info intel_engines[] = {
62 .class = RENDER_CLASS,
65 { .graphics_ver = 1, .base = RENDER_RING_BASE }
69 .class = COPY_ENGINE_CLASS,
72 { .graphics_ver = 6, .base = BLT_RING_BASE }
76 .class = COPY_ENGINE_CLASS,
79 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83 .class = COPY_ENGINE_CLASS,
86 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90 .class = COPY_ENGINE_CLASS,
93 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97 .class = COPY_ENGINE_CLASS,
100 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104 .class = COPY_ENGINE_CLASS,
107 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111 .class = COPY_ENGINE_CLASS,
114 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118 .class = COPY_ENGINE_CLASS,
121 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125 .class = COPY_ENGINE_CLASS,
128 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132 .class = VIDEO_DECODE_CLASS,
135 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
136 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
137 { .graphics_ver = 4, .base = BSD_RING_BASE }
141 .class = VIDEO_DECODE_CLASS,
144 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
145 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149 .class = VIDEO_DECODE_CLASS,
152 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156 .class = VIDEO_DECODE_CLASS,
159 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163 .class = VIDEO_DECODE_CLASS,
166 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170 .class = VIDEO_DECODE_CLASS,
173 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177 .class = VIDEO_DECODE_CLASS,
180 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184 .class = VIDEO_DECODE_CLASS,
187 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191 .class = VIDEO_ENHANCEMENT_CLASS,
194 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
195 { .graphics_ver = 7, .base = VEBOX_RING_BASE }
199 .class = VIDEO_ENHANCEMENT_CLASS,
202 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206 .class = VIDEO_ENHANCEMENT_CLASS,
209 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213 .class = VIDEO_ENHANCEMENT_CLASS,
216 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220 .class = COMPUTE_CLASS,
223 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227 .class = COMPUTE_CLASS,
230 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234 .class = COMPUTE_CLASS,
237 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241 .class = COMPUTE_CLASS,
244 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
250 * intel_engine_context_size() - return the size of the context for an engine
252 * @class: engine class
254 * Each engine class may require a different amount of space for a context
257 * Return: size (in bytes) of an engine class specific context image
259 * Note: this size includes the HWSP, which is part of the context image
260 * in LRC mode, but does not include the "shared data page" used with
261 * GuC submission. The caller should account for this if using the GuC.
263 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
265 struct intel_uncore *uncore = gt->uncore;
268 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
274 switch (GRAPHICS_VER(gt->i915)) {
276 MISSING_CASE(GRAPHICS_VER(gt->i915));
277 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
280 return GEN11_LR_CONTEXT_RENDER_SIZE;
282 return GEN9_LR_CONTEXT_RENDER_SIZE;
284 return GEN8_LR_CONTEXT_RENDER_SIZE;
286 if (IS_HASWELL(gt->i915))
287 return HSW_CXT_TOTAL_SIZE;
289 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
290 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
293 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
294 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
299 * There is a discrepancy here between the size reported
300 * by the register and the size of the context layout
301 * in the docs. Both are described as authorative!
303 * The discrepancy is on the order of a few cachelines,
304 * but the total is under one page (4k), which is our
305 * minimum allocation anyway so it should all come
308 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
309 drm_dbg(>->i915->drm,
310 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
311 GRAPHICS_VER(gt->i915), cxt_size * 64,
313 return round_up(cxt_size * 64, PAGE_SIZE);
316 /* For the special day when i810 gets merged. */
324 case VIDEO_DECODE_CLASS:
325 case VIDEO_ENHANCEMENT_CLASS:
326 case COPY_ENGINE_CLASS:
327 if (GRAPHICS_VER(gt->i915) < 8)
329 return GEN8_LR_CONTEXT_OTHER_SIZE;
333 static u32 __engine_mmio_base(struct drm_i915_private *i915,
334 const struct engine_mmio_base *bases)
338 for (i = 0; i < MAX_MMIO_BASES; i++)
339 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
342 GEM_BUG_ON(i == MAX_MMIO_BASES);
343 GEM_BUG_ON(!bases[i].base);
345 return bases[i].base;
348 static void __sprint_engine_name(struct intel_engine_cs *engine)
351 * Before we know what the uABI name for this engine will be,
352 * we still would like to keep track of this engine in the debug logs.
353 * We throw in a ' here as a reminder that this isn't its final name.
355 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
356 intel_engine_class_repr(engine->class),
357 engine->instance) >= sizeof(engine->name));
360 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
363 * Though they added more rings on g4x/ilk, they did not add
364 * per-engine HWSTAM until gen6.
366 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
369 if (GRAPHICS_VER(engine->i915) >= 3)
370 ENGINE_WRITE(engine, RING_HWSTAM, mask);
372 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
375 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
377 /* Mask off all writes into the unknown HWSP */
378 intel_engine_set_hwsp_writemask(engine, ~0u);
381 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
383 GEM_DEBUG_WARN_ON(iir);
386 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
391 static const u32 engine_reset_domains[] = {
392 [RCS0] = GEN11_GRDOM_RENDER,
393 [BCS0] = GEN11_GRDOM_BLT,
394 [BCS1] = XEHPC_GRDOM_BLT1,
395 [BCS2] = XEHPC_GRDOM_BLT2,
396 [BCS3] = XEHPC_GRDOM_BLT3,
397 [BCS4] = XEHPC_GRDOM_BLT4,
398 [BCS5] = XEHPC_GRDOM_BLT5,
399 [BCS6] = XEHPC_GRDOM_BLT6,
400 [BCS7] = XEHPC_GRDOM_BLT7,
401 [BCS8] = XEHPC_GRDOM_BLT8,
402 [VCS0] = GEN11_GRDOM_MEDIA,
403 [VCS1] = GEN11_GRDOM_MEDIA2,
404 [VCS2] = GEN11_GRDOM_MEDIA3,
405 [VCS3] = GEN11_GRDOM_MEDIA4,
406 [VCS4] = GEN11_GRDOM_MEDIA5,
407 [VCS5] = GEN11_GRDOM_MEDIA6,
408 [VCS6] = GEN11_GRDOM_MEDIA7,
409 [VCS7] = GEN11_GRDOM_MEDIA8,
410 [VECS0] = GEN11_GRDOM_VECS,
411 [VECS1] = GEN11_GRDOM_VECS2,
412 [VECS2] = GEN11_GRDOM_VECS3,
413 [VECS3] = GEN11_GRDOM_VECS4,
414 [CCS0] = GEN11_GRDOM_RENDER,
415 [CCS1] = GEN11_GRDOM_RENDER,
416 [CCS2] = GEN11_GRDOM_RENDER,
417 [CCS3] = GEN11_GRDOM_RENDER,
419 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
420 !engine_reset_domains[id]);
421 reset_domain = engine_reset_domains[id];
423 static const u32 engine_reset_domains[] = {
424 [RCS0] = GEN6_GRDOM_RENDER,
425 [BCS0] = GEN6_GRDOM_BLT,
426 [VCS0] = GEN6_GRDOM_MEDIA,
427 [VCS1] = GEN8_GRDOM_MEDIA2,
428 [VECS0] = GEN6_GRDOM_VECS,
430 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 !engine_reset_domains[id]);
432 reset_domain = engine_reset_domains[id];
438 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
441 const struct engine_info *info = &intel_engines[id];
442 struct drm_i915_private *i915 = gt->i915;
443 struct intel_engine_cs *engine;
446 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
447 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
448 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
449 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
451 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
454 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
457 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
460 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
463 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
467 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
469 INIT_LIST_HEAD(&engine->pinned_contexts_list);
471 engine->legacy_idx = INVALID_ENGINE;
472 engine->mask = BIT(id);
473 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
477 engine->uncore = gt->uncore;
478 guc_class = engine_class_to_guc_class(info->class);
479 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
480 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
482 engine->irq_handler = nop_irq_handler;
484 engine->class = info->class;
485 engine->instance = info->instance;
486 engine->logical_mask = BIT(logical_instance);
487 __sprint_engine_name(engine);
489 engine->props.heartbeat_interval_ms =
490 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
491 engine->props.max_busywait_duration_ns =
492 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
493 engine->props.preempt_timeout_ms =
494 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
495 engine->props.stop_timeout_ms =
496 CONFIG_DRM_I915_STOP_TIMEOUT;
497 engine->props.timeslice_duration_ms =
498 CONFIG_DRM_I915_TIMESLICE_DURATION;
500 /* Override to uninterruptible for OpenCL workloads. */
501 if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
502 engine->props.preempt_timeout_ms = 0;
504 if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
505 __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
506 engine->class == RENDER_CLASS)
507 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
509 /* features common between engines sharing EUs */
510 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
511 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
512 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
515 engine->defaults = engine->props; /* never to change again */
517 engine->context_size = intel_engine_context_size(gt, engine->class);
518 if (WARN_ON(engine->context_size > BIT(20)))
519 engine->context_size = 0;
520 if (engine->context_size)
521 DRIVER_CAPS(i915)->has_logical_contexts = true;
523 ewma__engine_latency_init(&engine->latency);
524 seqcount_init(&engine->stats.execlists.lock);
526 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
528 /* Scrub mmio state on takeover */
529 intel_engine_sanitize_mmio(engine);
531 gt->engine_class[info->class][info->instance] = engine;
532 gt->engine[id] = engine;
537 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
539 struct drm_i915_private *i915 = engine->i915;
541 if (engine->class == VIDEO_DECODE_CLASS) {
543 * HEVC support is present on first engine instance
544 * before Gen11 and on all instances afterwards.
546 if (GRAPHICS_VER(i915) >= 11 ||
547 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
548 engine->uabi_capabilities |=
549 I915_VIDEO_CLASS_CAPABILITY_HEVC;
552 * SFC block is present only on even logical engine
555 if ((GRAPHICS_VER(i915) >= 11 &&
556 (engine->gt->info.vdbox_sfc_access &
557 BIT(engine->instance))) ||
558 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
559 engine->uabi_capabilities |=
560 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
561 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
562 if (GRAPHICS_VER(i915) >= 9 &&
563 engine->gt->info.sfc_mask & BIT(engine->instance))
564 engine->uabi_capabilities |=
565 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
569 static void intel_setup_engine_capabilities(struct intel_gt *gt)
571 struct intel_engine_cs *engine;
572 enum intel_engine_id id;
574 for_each_engine(engine, gt, id)
575 __setup_engine_capabilities(engine);
579 * intel_engines_release() - free the resources allocated for Command Streamers
580 * @gt: pointer to struct intel_gt
582 void intel_engines_release(struct intel_gt *gt)
584 struct intel_engine_cs *engine;
585 enum intel_engine_id id;
588 * Before we release the resources held by engine, we must be certain
589 * that the HW is no longer accessing them -- having the GPU scribble
590 * to or read from a page being used for something else causes no end
593 * The GPU should be reset by this point, but assume the worst just
594 * in case we aborted before completely initialising the engines.
596 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
597 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
598 __intel_gt_reset(gt, ALL_ENGINES);
600 /* Decouple the backend; but keep the layout for late GPU resets */
601 for_each_engine(engine, gt, id) {
602 if (!engine->release)
605 intel_wakeref_wait_for_idle(&engine->wakeref);
606 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
608 engine->release(engine);
609 engine->release = NULL;
611 memset(&engine->reset, 0, sizeof(engine->reset));
615 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
617 if (!engine->request_pool)
620 kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
623 void intel_engines_free(struct intel_gt *gt)
625 struct intel_engine_cs *engine;
626 enum intel_engine_id id;
628 /* Free the requests! dma-resv keeps fences around for an eternity */
631 for_each_engine(engine, gt, id) {
632 intel_engine_free_request_pool(engine);
634 gt->engine[id] = NULL;
639 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
640 unsigned int physical_vdbox,
641 unsigned int logical_vdbox, u16 vdbox_mask)
643 struct drm_i915_private *i915 = gt->i915;
646 * In Gen11, only even numbered logical VDBOXes are hooked
647 * up to an SFC (Scaler & Format Converter) unit.
648 * In Gen12, Even numbered physical instance always are connected
649 * to an SFC. Odd numbered physical instances have SFC only if
650 * previous even instance is fused off.
652 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
653 * in the fuse register that tells us whether a specific SFC is present.
655 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
657 else if (GRAPHICS_VER(i915) == 12)
658 return (physical_vdbox % 2 == 0) ||
659 !(BIT(physical_vdbox - 1) & vdbox_mask);
660 else if (GRAPHICS_VER(i915) == 11)
661 return logical_vdbox % 2 == 0;
663 MISSING_CASE(GRAPHICS_VER(i915));
667 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
669 struct drm_i915_private *i915 = gt->i915;
670 struct intel_gt_info *info = >->info;
671 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
672 unsigned long ccs_mask;
675 if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
678 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
681 * If all DSS in a quadrant are fused off, the corresponding CCS
682 * engine is not available for use.
684 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
685 info->engine_mask &= ~BIT(_CCS(i));
686 drm_dbg(&i915->drm, "ccs%u fused off\n", i);
690 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
692 struct drm_i915_private *i915 = gt->i915;
693 struct intel_gt_info *info = >->info;
694 unsigned long meml3_mask;
697 meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
698 meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
701 * Link Copy engines may be fused off according to meml3_mask. Each
702 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
704 for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
705 unsigned int instance = quad * 2 + 1;
706 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
709 if (mask & info->engine_mask) {
710 drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
711 drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
713 info->engine_mask &= ~mask;
719 * Determine which engines are fused off in our particular hardware.
720 * Note that we have a catch-22 situation where we need to be able to access
721 * the blitter forcewake domain to read the engine fuses, but at the same time
722 * we need to know which engines are available on the system to know which
723 * forcewake domains are present. We solve this by intializing the forcewake
724 * domains based on the full engine mask in the platform capabilities before
725 * calling this function and pruning the domains for fused-off engines
728 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
730 struct drm_i915_private *i915 = gt->i915;
731 struct intel_gt_info *info = >->info;
732 struct intel_uncore *uncore = gt->uncore;
733 unsigned int logical_vdbox = 0;
735 u32 media_fuse, fuse1;
739 info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
741 if (GRAPHICS_VER(i915) < 11)
742 return info->engine_mask;
745 * On newer platforms the fusing register is called 'enable' and has
746 * enable semantics, while on older platforms it is called 'disable'
747 * and bits have disable semantices.
749 media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
750 if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
751 media_fuse = ~media_fuse;
753 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
754 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
755 GEN11_GT_VEBOX_DISABLE_SHIFT;
757 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
758 fuse1 = intel_uncore_read(uncore, HSW_PAVP_FUSE1);
759 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
761 gt->info.sfc_mask = ~0;
764 for (i = 0; i < I915_MAX_VCS; i++) {
765 if (!HAS_ENGINE(gt, _VCS(i))) {
766 vdbox_mask &= ~BIT(i);
770 if (!(BIT(i) & vdbox_mask)) {
771 info->engine_mask &= ~BIT(_VCS(i));
772 drm_dbg(&i915->drm, "vcs%u fused off\n", i);
776 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
777 gt->info.vdbox_sfc_access |= BIT(i);
780 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
781 vdbox_mask, VDBOX_MASK(gt));
782 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
784 for (i = 0; i < I915_MAX_VECS; i++) {
785 if (!HAS_ENGINE(gt, _VECS(i))) {
786 vebox_mask &= ~BIT(i);
790 if (!(BIT(i) & vebox_mask)) {
791 info->engine_mask &= ~BIT(_VECS(i));
792 drm_dbg(&i915->drm, "vecs%u fused off\n", i);
795 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
796 vebox_mask, VEBOX_MASK(gt));
797 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
799 engine_mask_apply_compute_fuses(gt);
800 engine_mask_apply_copy_fuses(gt);
802 return info->engine_mask;
805 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
806 u8 class, const u8 *map, u8 num_instances)
809 u8 current_logical_id = 0;
811 for (j = 0; j < num_instances; ++j) {
812 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
813 if (!HAS_ENGINE(gt, i) ||
814 intel_engines[i].class != class)
817 if (intel_engines[i].instance == map[j]) {
818 logical_ids[intel_engines[i].instance] =
819 current_logical_id++;
826 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
829 * Logical to physical mapping is needed for proper support
830 * to split-frame feature.
832 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
833 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
835 populate_logical_ids(gt, logical_ids, class,
836 map, ARRAY_SIZE(map));
839 u8 map[MAX_ENGINE_INSTANCE + 1];
841 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
843 populate_logical_ids(gt, logical_ids, class,
844 map, ARRAY_SIZE(map));
849 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
850 * @gt: pointer to struct intel_gt
852 * Return: non-zero if the initialization failed.
854 int intel_engines_init_mmio(struct intel_gt *gt)
856 struct drm_i915_private *i915 = gt->i915;
857 const unsigned int engine_mask = init_engine_mask(gt);
858 unsigned int mask = 0;
859 unsigned int i, class;
860 u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
863 drm_WARN_ON(&i915->drm, engine_mask == 0);
864 drm_WARN_ON(&i915->drm, engine_mask &
865 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
867 if (i915_inject_probe_failure(i915))
870 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
871 setup_logical_ids(gt, logical_ids, class);
873 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
874 u8 instance = intel_engines[i].instance;
876 if (intel_engines[i].class != class ||
880 err = intel_engine_setup(gt, i,
881 logical_ids[instance]);
890 * Catch failures to update intel_engines table when the new engines
891 * are added to the driver by a warning and disabling the forgotten
894 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
895 gt->info.engine_mask = mask;
897 gt->info.num_engines = hweight32(mask);
899 intel_gt_check_and_clear_faults(gt);
901 intel_setup_engine_capabilities(gt);
903 intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
908 intel_engines_free(gt);
912 void intel_engine_init_execlists(struct intel_engine_cs *engine)
914 struct intel_engine_execlists * const execlists = &engine->execlists;
916 execlists->port_mask = 1;
917 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
918 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
920 memset(execlists->pending, 0, sizeof(execlists->pending));
922 memset(execlists->inflight, 0, sizeof(execlists->inflight));
925 static void cleanup_status_page(struct intel_engine_cs *engine)
927 struct i915_vma *vma;
929 /* Prevent writes into HWSP after returning the page to the system */
930 intel_engine_set_hwsp_writemask(engine, ~0u);
932 vma = fetch_and_zero(&engine->status_page.vma);
936 if (!HWS_NEEDS_PHYSICAL(engine->i915))
939 i915_gem_object_unpin_map(vma->obj);
940 i915_gem_object_put(vma->obj);
943 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
944 struct i915_gem_ww_ctx *ww,
945 struct i915_vma *vma)
949 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
951 * On g33, we cannot place HWS above 256MiB, so
952 * restrict its pinning to the low mappable arena.
953 * Though this restriction is not documented for
954 * gen4, gen5, or byt, they also behave similarly
955 * and hang if the HWS is placed at the top of the
956 * GTT. To generalise, it appears that all !llc
957 * platforms have issues with us placing the HWS
958 * above the mappable region (even though we never
961 flags = PIN_MAPPABLE;
965 return i915_ggtt_pin(vma, ww, 0, flags);
968 static int init_status_page(struct intel_engine_cs *engine)
970 struct drm_i915_gem_object *obj;
971 struct i915_gem_ww_ctx ww;
972 struct i915_vma *vma;
976 INIT_LIST_HEAD(&engine->status_page.timelines);
979 * Though the HWS register does support 36bit addresses, historically
980 * we have had hangs and corruption reported due to wild writes if
981 * the HWS is placed above 4G. We only allow objects to be allocated
982 * in GFP_DMA32 for i965, and no earlier physical address users had
983 * access to more than 4G.
985 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
987 drm_err(&engine->i915->drm,
988 "Failed to allocate status page\n");
992 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
994 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1000 i915_gem_ww_ctx_init(&ww, true);
1002 ret = i915_gem_object_lock(obj, &ww);
1003 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1004 ret = pin_ggtt_status_page(engine, &ww, vma);
1008 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1009 if (IS_ERR(vaddr)) {
1010 ret = PTR_ERR(vaddr);
1014 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1015 engine->status_page.vma = vma;
1019 i915_vma_unpin(vma);
1021 if (ret == -EDEADLK) {
1022 ret = i915_gem_ww_ctx_backoff(&ww);
1026 i915_gem_ww_ctx_fini(&ww);
1029 i915_gem_object_put(obj);
1033 static int engine_setup_common(struct intel_engine_cs *engine)
1037 init_llist_head(&engine->barrier_tasks);
1039 err = init_status_page(engine);
1043 engine->breadcrumbs = intel_breadcrumbs_create(engine);
1044 if (!engine->breadcrumbs) {
1049 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1050 if (!engine->sched_engine) {
1052 goto err_sched_engine;
1054 engine->sched_engine->private_data = engine;
1056 err = intel_engine_init_cmd_parser(engine);
1058 goto err_cmd_parser;
1060 intel_engine_init_execlists(engine);
1061 intel_engine_init__pm(engine);
1062 intel_engine_init_retire(engine);
1064 /* Use the whole device by default */
1066 intel_sseu_from_device_info(&engine->gt->info.sseu);
1068 intel_engine_init_workarounds(engine);
1069 intel_engine_init_whitelist(engine);
1070 intel_engine_init_ctx_wa(engine);
1072 if (GRAPHICS_VER(engine->i915) >= 12)
1073 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1078 i915_sched_engine_put(engine->sched_engine);
1080 intel_breadcrumbs_put(engine->breadcrumbs);
1082 cleanup_status_page(engine);
1086 struct measure_breadcrumb {
1087 struct i915_request rq;
1088 struct intel_ring ring;
1092 static int measure_breadcrumb_dw(struct intel_context *ce)
1094 struct intel_engine_cs *engine = ce->engine;
1095 struct measure_breadcrumb *frame;
1098 GEM_BUG_ON(!engine->gt->scratch);
1100 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1104 frame->rq.engine = engine;
1105 frame->rq.context = ce;
1106 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1107 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1109 frame->ring.vaddr = frame->cs;
1110 frame->ring.size = sizeof(frame->cs);
1112 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1113 frame->ring.effective_size = frame->ring.size;
1114 intel_ring_update_space(&frame->ring);
1115 frame->rq.ring = &frame->ring;
1117 mutex_lock(&ce->timeline->mutex);
1118 spin_lock_irq(&engine->sched_engine->lock);
1120 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1122 spin_unlock_irq(&engine->sched_engine->lock);
1123 mutex_unlock(&ce->timeline->mutex);
1125 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1131 struct intel_context *
1132 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1133 struct i915_address_space *vm,
1134 unsigned int ring_size,
1136 struct lock_class_key *key,
1139 struct intel_context *ce;
1142 ce = intel_context_create(engine);
1146 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1147 ce->timeline = page_pack_bits(NULL, hwsp);
1149 ce->ring_size = ring_size;
1151 i915_vm_put(ce->vm);
1152 ce->vm = i915_vm_get(vm);
1154 err = intel_context_pin(ce); /* perma-pin so it is always available */
1156 intel_context_put(ce);
1157 return ERR_PTR(err);
1160 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1163 * Give our perma-pinned kernel timelines a separate lockdep class,
1164 * so that we can use them from within the normal user timelines
1165 * should we need to inject GPU operations during their request
1168 lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1173 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1175 struct intel_engine_cs *engine = ce->engine;
1176 struct i915_vma *hwsp = engine->status_page.vma;
1178 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1180 mutex_lock(&hwsp->vm->mutex);
1181 list_del(&ce->timeline->engine_link);
1182 mutex_unlock(&hwsp->vm->mutex);
1184 list_del(&ce->pinned_contexts_link);
1185 intel_context_unpin(ce);
1186 intel_context_put(ce);
1189 static struct intel_context *
1190 create_kernel_context(struct intel_engine_cs *engine)
1192 static struct lock_class_key kernel;
1194 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1195 I915_GEM_HWS_SEQNO_ADDR,
1196 &kernel, "kernel_context");
1200 * intel_engines_init_common - initialize cengine state which might require hw access
1201 * @engine: Engine to initialize.
1203 * Initializes @engine@ structure members shared between legacy and execlists
1204 * submission modes which do require hardware access.
1206 * Typcally done at later stages of submission mode specific engine setup.
1208 * Returns zero on success or an error code on failure.
1210 static int engine_init_common(struct intel_engine_cs *engine)
1212 struct intel_context *ce;
1215 engine->set_default_submission(engine);
1218 * We may need to do things with the shrinker which
1219 * require us to immediately switch back to the default
1220 * context. This can cause a problem as pinning the
1221 * default context also requires GTT space which may not
1222 * be available. To avoid this we always pin the default
1225 ce = create_kernel_context(engine);
1229 ret = measure_breadcrumb_dw(ce);
1233 engine->emit_fini_breadcrumb_dw = ret;
1234 engine->kernel_context = ce;
1239 intel_engine_destroy_pinned_context(ce);
1243 int intel_engines_init(struct intel_gt *gt)
1245 int (*setup)(struct intel_engine_cs *engine);
1246 struct intel_engine_cs *engine;
1247 enum intel_engine_id id;
1250 if (intel_uc_uses_guc_submission(>->uc)) {
1251 gt->submission_method = INTEL_SUBMISSION_GUC;
1252 setup = intel_guc_submission_setup;
1253 } else if (HAS_EXECLISTS(gt->i915)) {
1254 gt->submission_method = INTEL_SUBMISSION_ELSP;
1255 setup = intel_execlists_submission_setup;
1257 gt->submission_method = INTEL_SUBMISSION_RING;
1258 setup = intel_ring_submission_setup;
1261 for_each_engine(engine, gt, id) {
1262 err = engine_setup_common(engine);
1266 err = setup(engine);
1270 err = engine_init_common(engine);
1274 intel_engine_add_user(engine);
1281 * intel_engines_cleanup_common - cleans up the engine state created by
1282 * the common initiailizers.
1283 * @engine: Engine to cleanup.
1285 * This cleans up everything created by the common helpers.
1287 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1289 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1291 i915_sched_engine_put(engine->sched_engine);
1292 intel_breadcrumbs_put(engine->breadcrumbs);
1294 intel_engine_fini_retire(engine);
1295 intel_engine_cleanup_cmd_parser(engine);
1297 if (engine->default_state)
1298 fput(engine->default_state);
1300 if (engine->kernel_context)
1301 intel_engine_destroy_pinned_context(engine->kernel_context);
1303 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1304 cleanup_status_page(engine);
1306 intel_wa_list_free(&engine->ctx_wa_list);
1307 intel_wa_list_free(&engine->wa_list);
1308 intel_wa_list_free(&engine->whitelist);
1312 * intel_engine_resume - re-initializes the HW state of the engine
1313 * @engine: Engine to resume.
1315 * Returns zero on success or an error code on failure.
1317 int intel_engine_resume(struct intel_engine_cs *engine)
1319 intel_engine_apply_workarounds(engine);
1320 intel_engine_apply_whitelist(engine);
1322 return engine->resume(engine);
1325 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1327 struct drm_i915_private *i915 = engine->i915;
1331 if (GRAPHICS_VER(i915) >= 8)
1332 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1333 else if (GRAPHICS_VER(i915) >= 4)
1334 acthd = ENGINE_READ(engine, RING_ACTHD);
1336 acthd = ENGINE_READ(engine, ACTHD);
1341 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1345 if (GRAPHICS_VER(engine->i915) >= 8)
1346 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1348 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1353 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1355 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1359 * If we are doing a normal GPU reset, we can take our time and allow
1360 * the engine to quiesce. We've stopped submission to the engine, and
1361 * if we wait long enough an innocent context should complete and
1362 * leave the engine idle. So they should not be caught unaware by
1363 * the forthcoming GPU reset (which usually follows the stop_cs)!
1365 return READ_ONCE(engine->props.stop_timeout_ms);
1368 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1369 int fast_timeout_us,
1370 int slow_timeout_ms)
1372 struct intel_uncore *uncore = engine->uncore;
1373 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1376 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1379 * Wa_22011802037 : gen11, gen12, Prior to doing a reset, ensure CS is
1380 * stopped, set ring stop bit and prefetch disable bit to halt CS
1382 if (IS_GRAPHICS_VER(engine->i915, 11, 12))
1383 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1384 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1386 err = __intel_wait_for_register_fw(engine->uncore, mode,
1387 MODE_IDLE, MODE_IDLE,
1392 /* A final mmio read to let GPU writes be hopefully flushed to memory */
1393 intel_uncore_posting_read_fw(uncore, mode);
1397 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1401 if (GRAPHICS_VER(engine->i915) < 3)
1404 ENGINE_TRACE(engine, "\n");
1406 * TODO: Find out why occasionally stopping the CS times out. Seen
1407 * especially with gem_eio tests.
1409 * Occasionally trying to stop the cs times out, but does not adversely
1410 * affect functionality. The timeout is set as a config parameter that
1411 * defaults to 100ms. In most cases the follow up operation is to wait
1412 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1413 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1414 * caused, the caller must check and handle the return from this
1417 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1418 ENGINE_TRACE(engine,
1419 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1420 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1421 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1424 * Sometimes we observe that the idle flag is not
1425 * set even though the ring is empty. So double
1426 * check before giving up.
1428 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1429 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1436 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1438 ENGINE_TRACE(engine, "\n");
1440 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1443 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1445 static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1446 [RCS0] = MSG_IDLE_CS,
1447 [BCS0] = MSG_IDLE_BCS,
1448 [VCS0] = MSG_IDLE_VCS0,
1449 [VCS1] = MSG_IDLE_VCS1,
1450 [VCS2] = MSG_IDLE_VCS2,
1451 [VCS3] = MSG_IDLE_VCS3,
1452 [VCS4] = MSG_IDLE_VCS4,
1453 [VCS5] = MSG_IDLE_VCS5,
1454 [VCS6] = MSG_IDLE_VCS6,
1455 [VCS7] = MSG_IDLE_VCS7,
1456 [VECS0] = MSG_IDLE_VECS0,
1457 [VECS1] = MSG_IDLE_VECS1,
1458 [VECS2] = MSG_IDLE_VECS2,
1459 [VECS3] = MSG_IDLE_VECS3,
1460 [CCS0] = MSG_IDLE_CS,
1461 [CCS1] = MSG_IDLE_CS,
1462 [CCS2] = MSG_IDLE_CS,
1463 [CCS3] = MSG_IDLE_CS,
1467 if (!_reg[engine->id].reg) {
1468 drm_err(&engine->i915->drm,
1469 "MSG IDLE undefined for engine id %u\n", engine->id);
1473 val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1475 /* bits[29:25] & bits[13:9] >> shift */
1476 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1479 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1483 /* Ensure GPM receives fw up/down after CS is stopped */
1486 /* Wait for forcewake request to complete in GPM */
1487 ret = __intel_wait_for_register_fw(gt->uncore,
1488 GEN9_PWRGT_DOMAIN_STATUS,
1489 fw_mask, fw_mask, 5000, 0, NULL);
1491 /* Ensure CS receives fw ack from GPM */
1495 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1499 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1500 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1501 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1502 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1503 * are concerned only with the gt reset here, we use a logical OR of pending
1504 * forcewakeups from all reset domains and then wait for them to complete by
1505 * querying PWRGT_DOMAIN_STATUS.
1507 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1509 u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1512 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1515 /* NB: please notice the memset */
1516 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1517 struct intel_instdone *instdone)
1519 struct drm_i915_private *i915 = engine->i915;
1520 struct intel_uncore *uncore = engine->uncore;
1521 u32 mmio_base = engine->mmio_base;
1526 memset(instdone, 0, sizeof(*instdone));
1528 if (GRAPHICS_VER(i915) >= 8) {
1529 instdone->instdone =
1530 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1532 if (engine->id != RCS0)
1535 instdone->slice_common =
1536 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1537 if (GRAPHICS_VER(i915) >= 12) {
1538 instdone->slice_common_extra[0] =
1539 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1540 instdone->slice_common_extra[1] =
1541 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1544 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1545 instdone->sampler[slice][subslice] =
1546 intel_gt_mcr_read(engine->gt,
1547 GEN7_SAMPLER_INSTDONE,
1549 instdone->row[slice][subslice] =
1550 intel_gt_mcr_read(engine->gt,
1555 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1556 for_each_ss_steering(iter, engine->gt, slice, subslice)
1557 instdone->geom_svg[slice][subslice] =
1558 intel_gt_mcr_read(engine->gt,
1559 XEHPG_INSTDONE_GEOM_SVG,
1562 } else if (GRAPHICS_VER(i915) >= 7) {
1563 instdone->instdone =
1564 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1566 if (engine->id != RCS0)
1569 instdone->slice_common =
1570 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1571 instdone->sampler[0][0] =
1572 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1573 instdone->row[0][0] =
1574 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1575 } else if (GRAPHICS_VER(i915) >= 4) {
1576 instdone->instdone =
1577 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1578 if (engine->id == RCS0)
1579 /* HACK: Using the wrong struct member */
1580 instdone->slice_common =
1581 intel_uncore_read(uncore, GEN4_INSTDONE1);
1583 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1587 static bool ring_is_idle(struct intel_engine_cs *engine)
1591 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1594 if (!intel_engine_pm_get_if_awake(engine))
1597 /* First check that no commands are left in the ring */
1598 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1599 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1602 /* No bit for gen2, so assume the CS parser is idle */
1603 if (GRAPHICS_VER(engine->i915) > 2 &&
1604 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1607 intel_engine_pm_put(engine);
1612 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1614 struct tasklet_struct *t = &engine->sched_engine->tasklet;
1620 if (tasklet_trylock(t)) {
1621 /* Must wait for any GPU reset in progress. */
1622 if (__tasklet_is_enabled(t))
1628 /* Synchronise and wait for the tasklet on another CPU */
1630 tasklet_unlock_wait(t);
1634 * intel_engine_is_idle() - Report if the engine has finished process all work
1635 * @engine: the intel_engine_cs
1637 * Return true if there are no requests pending, nothing left to be submitted
1638 * to hardware, and that the engine is idle.
1640 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1642 /* More white lies, if wedged, hw state is inconsistent */
1643 if (intel_gt_is_wedged(engine->gt))
1646 if (!intel_engine_pm_is_awake(engine))
1649 /* Waiting to drain ELSP? */
1650 intel_synchronize_hardirq(engine->i915);
1651 intel_engine_flush_submission(engine);
1653 /* ELSP is empty, but there are ready requests? E.g. after reset */
1654 if (!i915_sched_engine_is_empty(engine->sched_engine))
1658 return ring_is_idle(engine);
1661 bool intel_engines_are_idle(struct intel_gt *gt)
1663 struct intel_engine_cs *engine;
1664 enum intel_engine_id id;
1667 * If the driver is wedged, HW state may be very inconsistent and
1668 * report that it is still busy, even though we have stopped using it.
1670 if (intel_gt_is_wedged(gt))
1673 /* Already parked (and passed an idleness test); must still be idle */
1674 if (!READ_ONCE(gt->awake))
1677 for_each_engine(engine, gt, id) {
1678 if (!intel_engine_is_idle(engine))
1685 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1687 if (!engine->irq_enable)
1690 /* Caller disables interrupts */
1691 spin_lock(&engine->gt->irq_lock);
1692 engine->irq_enable(engine);
1693 spin_unlock(&engine->gt->irq_lock);
1698 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1700 if (!engine->irq_disable)
1703 /* Caller disables interrupts */
1704 spin_lock(&engine->gt->irq_lock);
1705 engine->irq_disable(engine);
1706 spin_unlock(&engine->gt->irq_lock);
1709 void intel_engines_reset_default_submission(struct intel_gt *gt)
1711 struct intel_engine_cs *engine;
1712 enum intel_engine_id id;
1714 for_each_engine(engine, gt, id) {
1715 if (engine->sanitize)
1716 engine->sanitize(engine);
1718 engine->set_default_submission(engine);
1722 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1724 switch (GRAPHICS_VER(engine->i915)) {
1726 return false; /* uses physical not virtual addresses */
1728 /* maybe only uses physical not virtual addresses */
1729 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1731 return !IS_I965G(engine->i915); /* who knows! */
1733 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1739 static struct intel_timeline *get_timeline(struct i915_request *rq)
1741 struct intel_timeline *tl;
1744 * Even though we are holding the engine->sched_engine->lock here, there
1745 * is no control over the submission queue per-se and we are
1746 * inspecting the active state at a random point in time, with an
1747 * unknown queue. Play safe and make sure the timeline remains valid.
1748 * (Only being used for pretty printing, one extra kref shouldn't
1749 * cause a camel stampede!)
1752 tl = rcu_dereference(rq->timeline);
1753 if (!kref_get_unless_zero(&tl->kref))
1760 static int print_ring(char *buf, int sz, struct i915_request *rq)
1764 if (!i915_request_signaled(rq)) {
1765 struct intel_timeline *tl = get_timeline(rq);
1767 len = scnprintf(buf, sz,
1768 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1769 i915_ggtt_offset(rq->ring->vma),
1770 tl ? tl->hwsp_offset : 0,
1772 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1776 intel_timeline_put(tl);
1782 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1784 const size_t rowsize = 8 * sizeof(u32);
1785 const void *prev = NULL;
1789 for (pos = 0; pos < len; pos += rowsize) {
1792 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1794 drm_printf(m, "*\n");
1800 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1801 rowsize, sizeof(u32),
1803 false) >= sizeof(line));
1804 drm_printf(m, "[%04zx] %s\n", pos, line);
1811 static const char *repr_timer(const struct timer_list *t)
1813 if (!READ_ONCE(t->expires))
1816 if (timer_pending(t))
1822 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1823 struct drm_printer *m)
1825 struct drm_i915_private *dev_priv = engine->i915;
1826 struct intel_engine_execlists * const execlists = &engine->execlists;
1829 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1830 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1831 if (HAS_EXECLISTS(dev_priv)) {
1832 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1833 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1834 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1835 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1837 drm_printf(m, "\tRING_START: 0x%08x\n",
1838 ENGINE_READ(engine, RING_START));
1839 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
1840 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1841 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
1842 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1843 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
1844 ENGINE_READ(engine, RING_CTL),
1845 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1846 if (GRAPHICS_VER(engine->i915) > 2) {
1847 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
1848 ENGINE_READ(engine, RING_MI_MODE),
1849 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1852 if (GRAPHICS_VER(dev_priv) >= 6) {
1853 drm_printf(m, "\tRING_IMR: 0x%08x\n",
1854 ENGINE_READ(engine, RING_IMR));
1855 drm_printf(m, "\tRING_ESR: 0x%08x\n",
1856 ENGINE_READ(engine, RING_ESR));
1857 drm_printf(m, "\tRING_EMR: 0x%08x\n",
1858 ENGINE_READ(engine, RING_EMR));
1859 drm_printf(m, "\tRING_EIR: 0x%08x\n",
1860 ENGINE_READ(engine, RING_EIR));
1863 addr = intel_engine_get_active_head(engine);
1864 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
1865 upper_32_bits(addr), lower_32_bits(addr));
1866 addr = intel_engine_get_last_batch_head(engine);
1867 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1868 upper_32_bits(addr), lower_32_bits(addr));
1869 if (GRAPHICS_VER(dev_priv) >= 8)
1870 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1871 else if (GRAPHICS_VER(dev_priv) >= 4)
1872 addr = ENGINE_READ(engine, RING_DMA_FADD);
1874 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1875 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1876 upper_32_bits(addr), lower_32_bits(addr));
1877 if (GRAPHICS_VER(dev_priv) >= 4) {
1878 drm_printf(m, "\tIPEIR: 0x%08x\n",
1879 ENGINE_READ(engine, RING_IPEIR));
1880 drm_printf(m, "\tIPEHR: 0x%08x\n",
1881 ENGINE_READ(engine, RING_IPEHR));
1883 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1884 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1887 if (HAS_EXECLISTS(dev_priv) && !intel_engine_uses_guc(engine)) {
1888 struct i915_request * const *port, *rq;
1890 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1891 const u8 num_entries = execlists->csb_size;
1895 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1896 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
1897 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1898 repr_timer(&engine->execlists.preempt),
1899 repr_timer(&engine->execlists.timer));
1901 read = execlists->csb_head;
1902 write = READ_ONCE(*execlists->csb_write);
1904 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1905 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1906 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1907 read, write, num_entries);
1909 if (read >= num_entries)
1911 if (write >= num_entries)
1914 write += num_entries;
1915 while (read < write) {
1916 idx = ++read % num_entries;
1917 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1918 idx, hws[idx * 2], hws[idx * 2 + 1]);
1921 i915_sched_engine_active_lock_bh(engine->sched_engine);
1923 for (port = execlists->active; (rq = *port); port++) {
1927 len = scnprintf(hdr, sizeof(hdr),
1928 "\t\tActive[%d]: ccid:%08x%s%s, ",
1929 (int)(port - execlists->active),
1930 rq->context->lrc.ccid,
1931 intel_context_is_closed(rq->context) ? "!" : "",
1932 intel_context_is_banned(rq->context) ? "*" : "");
1933 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1934 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1935 i915_request_show(m, rq, hdr, 0);
1937 for (port = execlists->pending; (rq = *port); port++) {
1941 len = scnprintf(hdr, sizeof(hdr),
1942 "\t\tPending[%d]: ccid:%08x%s%s, ",
1943 (int)(port - execlists->pending),
1944 rq->context->lrc.ccid,
1945 intel_context_is_closed(rq->context) ? "!" : "",
1946 intel_context_is_banned(rq->context) ? "*" : "");
1947 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1948 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1949 i915_request_show(m, rq, hdr, 0);
1952 i915_sched_engine_active_unlock_bh(engine->sched_engine);
1953 } else if (GRAPHICS_VER(dev_priv) > 6) {
1954 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1955 ENGINE_READ(engine, RING_PP_DIR_BASE));
1956 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1957 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1958 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1959 ENGINE_READ(engine, RING_PP_DIR_DCLV));
1963 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1965 struct i915_vma_resource *vma_res = rq->batch_res;
1970 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1971 rq->head, rq->postfix, rq->tail,
1972 vma_res ? upper_32_bits(vma_res->start) : ~0u,
1973 vma_res ? lower_32_bits(vma_res->start) : ~0u);
1975 size = rq->tail - rq->head;
1976 if (rq->tail < rq->head)
1977 size += rq->ring->size;
1979 ring = kmalloc(size, GFP_ATOMIC);
1981 const void *vaddr = rq->ring->vaddr;
1982 unsigned int head = rq->head;
1983 unsigned int len = 0;
1985 if (rq->tail < head) {
1986 len = rq->ring->size - head;
1987 memcpy(ring, vaddr + head, len);
1990 memcpy(ring + len, vaddr + head, size - len);
1992 hexdump(m, ring, size);
1997 static unsigned long list_count(struct list_head *list)
1999 struct list_head *pos;
2000 unsigned long count = 0;
2002 list_for_each(pos, list)
2008 static unsigned long read_ul(void *p, size_t x)
2010 return *(unsigned long *)(p + x);
2013 static void print_properties(struct intel_engine_cs *engine,
2014 struct drm_printer *m)
2016 static const struct pmap {
2021 .offset = offsetof(typeof(engine->props), x), \
2024 P(heartbeat_interval_ms),
2025 P(max_busywait_duration_ns),
2026 P(preempt_timeout_ms),
2028 P(timeslice_duration_ms),
2033 const struct pmap *p;
2035 drm_printf(m, "\tProperties:\n");
2036 for (p = props; p->name; p++)
2037 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2039 read_ul(&engine->props, p->offset),
2040 read_ul(&engine->defaults, p->offset));
2043 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2045 struct intel_timeline *tl = get_timeline(rq);
2047 i915_request_show(m, rq, msg, 0);
2049 drm_printf(m, "\t\tring->start: 0x%08x\n",
2050 i915_ggtt_offset(rq->ring->vma));
2051 drm_printf(m, "\t\tring->head: 0x%08x\n",
2053 drm_printf(m, "\t\tring->tail: 0x%08x\n",
2055 drm_printf(m, "\t\tring->emit: 0x%08x\n",
2057 drm_printf(m, "\t\tring->space: 0x%08x\n",
2061 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
2063 intel_timeline_put(tl);
2066 print_request_ring(m, rq);
2068 if (rq->context->lrc_reg_state) {
2069 drm_printf(m, "Logical Ring Context:\n");
2070 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2074 void intel_engine_dump_active_requests(struct list_head *requests,
2075 struct i915_request *hung_rq,
2076 struct drm_printer *m)
2078 struct i915_request *rq;
2080 enum i915_request_state state;
2082 list_for_each_entry(rq, requests, sched.link) {
2086 state = i915_test_request_state(rq);
2087 if (state < I915_REQUEST_QUEUED)
2090 if (state == I915_REQUEST_ACTIVE)
2091 msg = "\t\tactive on engine";
2093 msg = "\t\tactive in queue";
2095 engine_dump_request(rq, m, msg);
2099 static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
2101 struct i915_request *hung_rq = NULL;
2102 struct intel_context *ce;
2106 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2107 * The GPU is still running so requests are still executing and any
2108 * hardware reads will be out of date by the time they are reported.
2109 * But the intention here is just to report an instantaneous snapshot
2112 lockdep_assert_held(&engine->sched_engine->lock);
2114 drm_printf(m, "\tRequests:\n");
2116 guc = intel_uc_uses_guc_submission(&engine->gt->uc);
2118 ce = intel_engine_get_hung_context(engine);
2120 hung_rq = intel_context_find_active_request(ce);
2122 hung_rq = intel_engine_execlist_find_hung_request(engine);
2126 engine_dump_request(hung_rq, m, "\t\thung");
2129 intel_guc_dump_active_requests(engine, hung_rq, m);
2131 intel_engine_dump_active_requests(&engine->sched_engine->requests,
2135 void intel_engine_dump(struct intel_engine_cs *engine,
2136 struct drm_printer *m,
2137 const char *header, ...)
2139 struct i915_gpu_error * const error = &engine->i915->gpu_error;
2140 struct i915_request *rq;
2141 intel_wakeref_t wakeref;
2142 unsigned long flags;
2148 va_start(ap, header);
2149 drm_vprintf(m, header, &ap);
2153 if (intel_gt_is_wedged(engine->gt))
2154 drm_printf(m, "*** WEDGED ***\n");
2156 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2157 drm_printf(m, "\tBarriers?: %s\n",
2158 str_yes_no(!llist_empty(&engine->barrier_tasks)));
2159 drm_printf(m, "\tLatency: %luus\n",
2160 ewma__engine_latency_read(&engine->latency));
2161 if (intel_engine_supports_stats(engine))
2162 drm_printf(m, "\tRuntime: %llums\n",
2163 ktime_to_ms(intel_engine_get_busy_time(engine,
2165 drm_printf(m, "\tForcewake: %x domains, %d active\n",
2166 engine->fw_domain, READ_ONCE(engine->fw_active));
2169 rq = READ_ONCE(engine->heartbeat.systole);
2171 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2172 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2174 drm_printf(m, "\tReset count: %d (global %d)\n",
2175 i915_reset_engine_count(error, engine),
2176 i915_reset_count(error));
2177 print_properties(engine, m);
2179 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2180 engine_dump_active_requests(engine, m);
2182 drm_printf(m, "\tOn hold?: %lu\n",
2183 list_count(&engine->sched_engine->hold));
2184 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2186 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
2187 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2189 intel_engine_print_registers(engine, m);
2190 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2192 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2195 intel_execlists_show_requests(engine, m, i915_request_show, 8);
2197 drm_printf(m, "HWSP:\n");
2198 hexdump(m, engine->status_page.addr, PAGE_SIZE);
2200 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2202 intel_engine_print_breadcrumbs(engine, m);
2206 * intel_engine_get_busy_time() - Return current accumulated engine busyness
2207 * @engine: engine to report on
2208 * @now: monotonic timestamp of sampling
2210 * Returns accumulated time @engine was busy since engine stats were enabled.
2212 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2214 return engine->busyness(engine, now);
2217 struct intel_context *
2218 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2219 unsigned int count, unsigned long flags)
2222 return ERR_PTR(-EINVAL);
2224 if (count == 1 && !(flags & FORCE_VIRTUAL))
2225 return intel_context_create(siblings[0]);
2227 GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2228 return siblings[0]->cops->create_virtual(siblings, count, flags);
2231 struct i915_request *
2232 intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2234 struct i915_request *request, *active = NULL;
2237 * This search does not work in GuC submission mode. However, the GuC
2238 * will report the hanging context directly to the driver itself. So
2239 * the driver should never get here when in GuC mode.
2241 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2244 * We are called by the error capture, reset and to dump engine
2245 * state at random points in time. In particular, note that neither is
2246 * crucially ordered with an interrupt. After a hang, the GPU is dead
2247 * and we assume that no more writes can happen (we waited long enough
2248 * for all writes that were in transaction to be flushed) - adding an
2249 * extra delay for a recent interrupt is pointless. Hence, we do
2250 * not need an engine->irq_seqno_barrier() before the seqno reads.
2251 * At all other times, we must assume the GPU is still running, but
2252 * we only care about the snapshot of this moment.
2254 lockdep_assert_held(&engine->sched_engine->lock);
2257 request = execlists_active(&engine->execlists);
2259 struct intel_timeline *tl = request->context->timeline;
2261 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2262 if (__i915_request_is_complete(request))
2272 list_for_each_entry(request, &engine->sched_engine->requests,
2274 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2284 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2287 * If there are any non-fused-off CCS engines, we need to enable CCS
2288 * support in the RCU_MODE register. This only needs to be done once,
2289 * so for simplicity we'll take care of this in the RCS engine's
2290 * resume handler; since the RCS and all CCS engines belong to the
2291 * same reset domain and are reset together, this will also take care
2292 * of re-applying the setting after i915-triggered resets.
2294 if (!CCS_MASK(engine->gt))
2297 intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2298 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2301 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2302 #include "mock_engine.c"
2303 #include "selftest_engine.c"
2304 #include "selftest_engine_cs.c"