]> Git Repo - linux.git/blob - drivers/gpu/drm/display/drm_dp_helper.c
Merge tag 'cxl-for-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl
[linux.git] / drivers / gpu / drm / display / drm_dp_helper.c
1 /*
2  * Copyright © 2009 Keith Packard
3  *
4  * Permission to use, copy, modify, distribute, and sell this software and its
5  * documentation for any purpose is hereby granted without fee, provided that
6  * the above copyright notice appear in all copies and that both that copyright
7  * notice and this permission notice appear in supporting documentation, and
8  * that the name of the copyright holders not be used in advertising or
9  * publicity pertaining to distribution of the software without specific,
10  * written prior permission.  The copyright holders make no representations
11  * about the suitability of this software for any purpose.  It is provided "as
12  * is" without express or implied warranty.
13  *
14  * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15  * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16  * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17  * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19  * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20  * OF THIS SOFTWARE.
21  */
22
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/i2c.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/string_helpers.h>
33
34 #include <drm/display/drm_dp_helper.h>
35 #include <drm/display/drm_dp_mst_helper.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_print.h>
38 #include <drm/drm_vblank.h>
39 #include <drm/drm_panel.h>
40
41 #include "drm_dp_helper_internal.h"
42
43 struct dp_aux_backlight {
44         struct backlight_device *base;
45         struct drm_dp_aux *aux;
46         struct drm_edp_backlight_info info;
47         bool enabled;
48 };
49
50 /**
51  * DOC: dp helpers
52  *
53  * These functions contain some common logic and helpers at various abstraction
54  * levels to deal with Display Port sink devices and related things like DP aux
55  * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
56  * blocks, ...
57  */
58
59 /* Helpers for DP link training */
60 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
61 {
62         return link_status[r - DP_LANE0_1_STATUS];
63 }
64
65 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
66                              int lane)
67 {
68         int i = DP_LANE0_1_STATUS + (lane >> 1);
69         int s = (lane & 1) * 4;
70         u8 l = dp_link_status(link_status, i);
71
72         return (l >> s) & 0xf;
73 }
74
75 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
76                           int lane_count)
77 {
78         u8 lane_align;
79         u8 lane_status;
80         int lane;
81
82         lane_align = dp_link_status(link_status,
83                                     DP_LANE_ALIGN_STATUS_UPDATED);
84         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
85                 return false;
86         for (lane = 0; lane < lane_count; lane++) {
87                 lane_status = dp_get_lane_status(link_status, lane);
88                 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
89                         return false;
90         }
91         return true;
92 }
93 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
94
95 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
96                               int lane_count)
97 {
98         int lane;
99         u8 lane_status;
100
101         for (lane = 0; lane < lane_count; lane++) {
102                 lane_status = dp_get_lane_status(link_status, lane);
103                 if ((lane_status & DP_LANE_CR_DONE) == 0)
104                         return false;
105         }
106         return true;
107 }
108 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
109
110 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
111                                      int lane)
112 {
113         int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
114         int s = ((lane & 1) ?
115                  DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
116                  DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
117         u8 l = dp_link_status(link_status, i);
118
119         return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
120 }
121 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
122
123 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
124                                           int lane)
125 {
126         int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
127         int s = ((lane & 1) ?
128                  DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
129                  DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
130         u8 l = dp_link_status(link_status, i);
131
132         return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
133 }
134 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
135
136 /* DP 2.0 128b/132b */
137 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
138                                    int lane)
139 {
140         int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
141         int s = ((lane & 1) ?
142                  DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
143                  DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
144         u8 l = dp_link_status(link_status, i);
145
146         return (l >> s) & 0xf;
147 }
148 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
149
150 /* DP 2.0 errata for 128b/132b */
151 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
152                                           int lane_count)
153 {
154         u8 lane_align, lane_status;
155         int lane;
156
157         lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
158         if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
159                 return false;
160
161         for (lane = 0; lane < lane_count; lane++) {
162                 lane_status = dp_get_lane_status(link_status, lane);
163                 if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
164                         return false;
165         }
166         return true;
167 }
168 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
169
170 /* DP 2.0 errata for 128b/132b */
171 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
172                                         int lane_count)
173 {
174         u8 lane_status;
175         int lane;
176
177         for (lane = 0; lane < lane_count; lane++) {
178                 lane_status = dp_get_lane_status(link_status, lane);
179                 if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
180                         return false;
181         }
182         return true;
183 }
184 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
185
186 /* DP 2.0 errata for 128b/132b */
187 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
188 {
189         u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
190
191         return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
192 }
193 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
194
195 /* DP 2.0 errata for 128b/132b */
196 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
197 {
198         u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
199
200         return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
201 }
202 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
203
204 /* DP 2.0 errata for 128b/132b */
205 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
206 {
207         u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
208
209         return status & DP_128B132B_LT_FAILED;
210 }
211 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
212
213 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
214 {
215         if (rd_interval > 4)
216                 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
217                             aux->name, rd_interval);
218
219         if (rd_interval == 0)
220                 return 100;
221
222         return rd_interval * 4 * USEC_PER_MSEC;
223 }
224
225 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
226 {
227         if (rd_interval > 4)
228                 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
229                             aux->name, rd_interval);
230
231         if (rd_interval == 0)
232                 return 400;
233
234         return rd_interval * 4 * USEC_PER_MSEC;
235 }
236
237 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
238 {
239         switch (rd_interval) {
240         default:
241                 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
242                             aux->name, rd_interval);
243                 fallthrough;
244         case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
245                 return 400;
246         case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
247                 return 4000;
248         case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
249                 return 8000;
250         case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
251                 return 12000;
252         case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
253                 return 16000;
254         case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
255                 return 32000;
256         case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
257                 return 64000;
258         }
259 }
260
261 /*
262  * The link training delays are different for:
263  *
264  *  - Clock recovery vs. channel equalization
265  *  - DPRX vs. LTTPR
266  *  - 128b/132b vs. 8b/10b
267  *  - DPCD rev 1.3 vs. later
268  *
269  * Get the correct delay in us, reading DPCD if necessary.
270  */
271 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
272                         enum drm_dp_phy dp_phy, bool uhbr, bool cr)
273 {
274         int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
275         unsigned int offset;
276         u8 rd_interval, mask;
277
278         if (dp_phy == DP_PHY_DPRX) {
279                 if (uhbr) {
280                         if (cr)
281                                 return 100;
282
283                         offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
284                         mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
285                         parse = __128b132b_channel_eq_delay_us;
286                 } else {
287                         if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
288                                 return 100;
289
290                         offset = DP_TRAINING_AUX_RD_INTERVAL;
291                         mask = DP_TRAINING_AUX_RD_MASK;
292                         if (cr)
293                                 parse = __8b10b_clock_recovery_delay_us;
294                         else
295                                 parse = __8b10b_channel_eq_delay_us;
296                 }
297         } else {
298                 if (uhbr) {
299                         offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
300                         mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
301                         parse = __128b132b_channel_eq_delay_us;
302                 } else {
303                         if (cr)
304                                 return 100;
305
306                         offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
307                         mask = DP_TRAINING_AUX_RD_MASK;
308                         parse = __8b10b_channel_eq_delay_us;
309                 }
310         }
311
312         if (offset < DP_RECEIVER_CAP_SIZE) {
313                 rd_interval = dpcd[offset];
314         } else {
315                 if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
316                         drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
317                                     aux->name);
318                         /* arbitrary default delay */
319                         return 400;
320                 }
321         }
322
323         return parse(aux, rd_interval & mask);
324 }
325
326 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
327                                      enum drm_dp_phy dp_phy, bool uhbr)
328 {
329         return __read_delay(aux, dpcd, dp_phy, uhbr, true);
330 }
331 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
332
333 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
334                                  enum drm_dp_phy dp_phy, bool uhbr)
335 {
336         return __read_delay(aux, dpcd, dp_phy, uhbr, false);
337 }
338 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
339
340 /* Per DP 2.0 Errata */
341 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
342 {
343         int unit;
344         u8 val;
345
346         if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
347                 drm_err(aux->drm_dev, "%s: failed rd interval read\n",
348                         aux->name);
349                 /* default to max */
350                 val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
351         }
352
353         unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
354         val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
355
356         return (val + 1) * unit * 1000;
357 }
358 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
359
360 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
361                                             const u8 dpcd[DP_RECEIVER_CAP_SIZE])
362 {
363         u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
364                 DP_TRAINING_AUX_RD_MASK;
365         int delay_us;
366
367         if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
368                 delay_us = 100;
369         else
370                 delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
371
372         usleep_range(delay_us, delay_us * 2);
373 }
374 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
375
376 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
377                                                  u8 rd_interval)
378 {
379         int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
380
381         usleep_range(delay_us, delay_us * 2);
382 }
383
384 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
385                                         const u8 dpcd[DP_RECEIVER_CAP_SIZE])
386 {
387         __drm_dp_link_train_channel_eq_delay(aux,
388                                              dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
389                                              DP_TRAINING_AUX_RD_MASK);
390 }
391 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
392
393 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
394 {
395         usleep_range(100, 200);
396 }
397 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
398
399 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
400 {
401         return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
402 }
403
404 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
405                                               const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
406 {
407         u8 interval = dp_lttpr_phy_cap(phy_cap,
408                                        DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
409                       DP_TRAINING_AUX_RD_MASK;
410
411         __drm_dp_link_train_channel_eq_delay(aux, interval);
412 }
413 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
414
415 u8 drm_dp_link_rate_to_bw_code(int link_rate)
416 {
417         switch (link_rate) {
418         case 1000000:
419                 return DP_LINK_BW_10;
420         case 1350000:
421                 return DP_LINK_BW_13_5;
422         case 2000000:
423                 return DP_LINK_BW_20;
424         default:
425                 /* Spec says link_bw = link_rate / 0.27Gbps */
426                 return link_rate / 27000;
427         }
428 }
429 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
430
431 int drm_dp_bw_code_to_link_rate(u8 link_bw)
432 {
433         switch (link_bw) {
434         case DP_LINK_BW_10:
435                 return 1000000;
436         case DP_LINK_BW_13_5:
437                 return 1350000;
438         case DP_LINK_BW_20:
439                 return 2000000;
440         default:
441                 /* Spec says link_rate = link_bw * 0.27Gbps */
442                 return link_bw * 27000;
443         }
444 }
445 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
446
447 #define AUX_RETRY_INTERVAL 500 /* us */
448
449 static inline void
450 drm_dp_dump_access(const struct drm_dp_aux *aux,
451                    u8 request, uint offset, void *buffer, int ret)
452 {
453         const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
454
455         if (ret > 0)
456                 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
457                            aux->name, offset, arrow, ret, min(ret, 20), buffer);
458         else
459                 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
460                            aux->name, offset, arrow, ret);
461 }
462
463 /**
464  * DOC: dp helpers
465  *
466  * The DisplayPort AUX channel is an abstraction to allow generic, driver-
467  * independent access to AUX functionality. Drivers can take advantage of
468  * this by filling in the fields of the drm_dp_aux structure.
469  *
470  * Transactions are described using a hardware-independent drm_dp_aux_msg
471  * structure, which is passed into a driver's .transfer() implementation.
472  * Both native and I2C-over-AUX transactions are supported.
473  */
474
475 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
476                               unsigned int offset, void *buffer, size_t size)
477 {
478         struct drm_dp_aux_msg msg;
479         unsigned int retry, native_reply;
480         int err = 0, ret = 0;
481
482         memset(&msg, 0, sizeof(msg));
483         msg.address = offset;
484         msg.request = request;
485         msg.buffer = buffer;
486         msg.size = size;
487
488         mutex_lock(&aux->hw_mutex);
489
490         /*
491          * The specification doesn't give any recommendation on how often to
492          * retry native transactions. We used to retry 7 times like for
493          * aux i2c transactions but real world devices this wasn't
494          * sufficient, bump to 32 which makes Dell 4k monitors happier.
495          */
496         for (retry = 0; retry < 32; retry++) {
497                 if (ret != 0 && ret != -ETIMEDOUT) {
498                         usleep_range(AUX_RETRY_INTERVAL,
499                                      AUX_RETRY_INTERVAL + 100);
500                 }
501
502                 ret = aux->transfer(aux, &msg);
503                 if (ret >= 0) {
504                         native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
505                         if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
506                                 if (ret == size)
507                                         goto unlock;
508
509                                 ret = -EPROTO;
510                         } else
511                                 ret = -EIO;
512                 }
513
514                 /*
515                  * We want the error we return to be the error we received on
516                  * the first transaction, since we may get a different error the
517                  * next time we retry
518                  */
519                 if (!err)
520                         err = ret;
521         }
522
523         drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
524                     aux->name, err);
525         ret = err;
526
527 unlock:
528         mutex_unlock(&aux->hw_mutex);
529         return ret;
530 }
531
532 /**
533  * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
534  * @aux: DisplayPort AUX channel (SST)
535  * @offset: address of the register to probe
536  *
537  * Probe the provided DPCD address by reading 1 byte from it. The function can
538  * be used to trigger some side-effect the read access has, like waking up the
539  * sink, without the need for the read-out value.
540  *
541  * Returns 0 if the read access suceeded, or a negative error code on failure.
542  */
543 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
544 {
545         u8 buffer;
546         int ret;
547
548         ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
549         WARN_ON(ret == 0);
550
551         drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
552
553         return ret < 0 ? ret : 0;
554 }
555 EXPORT_SYMBOL(drm_dp_dpcd_probe);
556
557 /**
558  * drm_dp_dpcd_read() - read a series of bytes from the DPCD
559  * @aux: DisplayPort AUX channel (SST or MST)
560  * @offset: address of the (first) register to read
561  * @buffer: buffer to store the register values
562  * @size: number of bytes in @buffer
563  *
564  * Returns the number of bytes transferred on success, or a negative error
565  * code on failure. -EIO is returned if the request was NAKed by the sink or
566  * if the retry count was exceeded. If not all bytes were transferred, this
567  * function returns -EPROTO. Errors from the underlying AUX channel transfer
568  * function, with the exception of -EBUSY (which causes the transaction to
569  * be retried), are propagated to the caller.
570  */
571 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
572                          void *buffer, size_t size)
573 {
574         int ret;
575
576         /*
577          * HP ZR24w corrupts the first DPCD access after entering power save
578          * mode. Eg. on a read, the entire buffer will be filled with the same
579          * byte. Do a throw away read to avoid corrupting anything we care
580          * about. Afterwards things will work correctly until the monitor
581          * gets woken up and subsequently re-enters power save mode.
582          *
583          * The user pressing any button on the monitor is enough to wake it
584          * up, so there is no particularly good place to do the workaround.
585          * We just have to do it before any DPCD access and hope that the
586          * monitor doesn't power down exactly after the throw away read.
587          */
588         if (!aux->is_remote) {
589                 ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
590                 if (ret < 0)
591                         return ret;
592         }
593
594         if (aux->is_remote)
595                 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
596         else
597                 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
598                                          buffer, size);
599
600         drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
601         return ret;
602 }
603 EXPORT_SYMBOL(drm_dp_dpcd_read);
604
605 /**
606  * drm_dp_dpcd_write() - write a series of bytes to the DPCD
607  * @aux: DisplayPort AUX channel (SST or MST)
608  * @offset: address of the (first) register to write
609  * @buffer: buffer containing the values to write
610  * @size: number of bytes in @buffer
611  *
612  * Returns the number of bytes transferred on success, or a negative error
613  * code on failure. -EIO is returned if the request was NAKed by the sink or
614  * if the retry count was exceeded. If not all bytes were transferred, this
615  * function returns -EPROTO. Errors from the underlying AUX channel transfer
616  * function, with the exception of -EBUSY (which causes the transaction to
617  * be retried), are propagated to the caller.
618  */
619 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
620                           void *buffer, size_t size)
621 {
622         int ret;
623
624         if (aux->is_remote)
625                 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
626         else
627                 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
628                                          buffer, size);
629
630         drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
631         return ret;
632 }
633 EXPORT_SYMBOL(drm_dp_dpcd_write);
634
635 /**
636  * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
637  * @aux: DisplayPort AUX channel
638  * @status: buffer to store the link status in (must be at least 6 bytes)
639  *
640  * Returns the number of bytes transferred on success or a negative error
641  * code on failure.
642  */
643 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
644                                  u8 status[DP_LINK_STATUS_SIZE])
645 {
646         return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
647                                 DP_LINK_STATUS_SIZE);
648 }
649 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
650
651 /**
652  * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
653  * @aux: DisplayPort AUX channel
654  * @dp_phy: the DP PHY to get the link status for
655  * @link_status: buffer to return the status in
656  *
657  * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
658  * layout of the returned @link_status matches the DPCD register layout of the
659  * DPRX PHY link status.
660  *
661  * Returns 0 if the information was read successfully or a negative error code
662  * on failure.
663  */
664 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
665                                      enum drm_dp_phy dp_phy,
666                                      u8 link_status[DP_LINK_STATUS_SIZE])
667 {
668         int ret;
669
670         if (dp_phy == DP_PHY_DPRX) {
671                 ret = drm_dp_dpcd_read(aux,
672                                        DP_LANE0_1_STATUS,
673                                        link_status,
674                                        DP_LINK_STATUS_SIZE);
675
676                 if (ret < 0)
677                         return ret;
678
679                 WARN_ON(ret != DP_LINK_STATUS_SIZE);
680
681                 return 0;
682         }
683
684         ret = drm_dp_dpcd_read(aux,
685                                DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
686                                link_status,
687                                DP_LINK_STATUS_SIZE - 1);
688
689         if (ret < 0)
690                 return ret;
691
692         WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
693
694         /* Convert the LTTPR to the sink PHY link status layout */
695         memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
696                 &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
697                 DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
698         link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
699
700         return 0;
701 }
702 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
703
704 static bool is_edid_digital_input_dp(const struct edid *edid)
705 {
706         return edid && edid->revision >= 4 &&
707                 edid->input & DRM_EDID_INPUT_DIGITAL &&
708                 (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
709 }
710
711 /**
712  * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
713  * @dpcd: DisplayPort configuration data
714  * @port_cap: port capabilities
715  * @type: port type to be checked. Can be:
716  *        %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
717  *        %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
718  *        %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
719  *
720  * Caveat: Only works with DPCD 1.1+ port caps.
721  *
722  * Returns: whether the downstream facing port matches the type.
723  */
724 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
725                                const u8 port_cap[4], u8 type)
726 {
727         return drm_dp_is_branch(dpcd) &&
728                 dpcd[DP_DPCD_REV] >= 0x11 &&
729                 (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
730 }
731 EXPORT_SYMBOL(drm_dp_downstream_is_type);
732
733 /**
734  * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
735  * @dpcd: DisplayPort configuration data
736  * @port_cap: port capabilities
737  * @edid: EDID
738  *
739  * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
740  */
741 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
742                                const u8 port_cap[4],
743                                const struct edid *edid)
744 {
745         if (dpcd[DP_DPCD_REV] < 0x11) {
746                 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
747                 case DP_DWN_STRM_PORT_TYPE_TMDS:
748                         return true;
749                 default:
750                         return false;
751                 }
752         }
753
754         switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
755         case DP_DS_PORT_TYPE_DP_DUALMODE:
756                 if (is_edid_digital_input_dp(edid))
757                         return false;
758                 fallthrough;
759         case DP_DS_PORT_TYPE_DVI:
760         case DP_DS_PORT_TYPE_HDMI:
761                 return true;
762         default:
763                 return false;
764         }
765 }
766 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
767
768 /**
769  * drm_dp_send_real_edid_checksum() - send back real edid checksum value
770  * @aux: DisplayPort AUX channel
771  * @real_edid_checksum: real edid checksum for the last block
772  *
773  * Returns:
774  * True on success
775  */
776 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
777                                     u8 real_edid_checksum)
778 {
779         u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
780
781         if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
782                              &auto_test_req, 1) < 1) {
783                 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
784                         aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
785                 return false;
786         }
787         auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
788
789         if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
790                 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
791                         aux->name, DP_TEST_REQUEST);
792                 return false;
793         }
794         link_edid_read &= DP_TEST_LINK_EDID_READ;
795
796         if (!auto_test_req || !link_edid_read) {
797                 drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
798                             aux->name);
799                 return false;
800         }
801
802         if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
803                               &auto_test_req, 1) < 1) {
804                 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
805                         aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
806                 return false;
807         }
808
809         /* send back checksum for the last edid extension block data */
810         if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
811                               &real_edid_checksum, 1) < 1) {
812                 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
813                         aux->name, DP_TEST_EDID_CHECKSUM);
814                 return false;
815         }
816
817         test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
818         if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
819                 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
820                         aux->name, DP_TEST_RESPONSE);
821                 return false;
822         }
823
824         return true;
825 }
826 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
827
828 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
829 {
830         u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
831
832         if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
833                 port_count = 4;
834
835         return port_count;
836 }
837
838 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
839                                           u8 dpcd[DP_RECEIVER_CAP_SIZE])
840 {
841         u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
842         int ret;
843
844         /*
845          * Prior to DP1.3 the bit represented by
846          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
847          * If it is set DP_DPCD_REV at 0000h could be at a value less than
848          * the true capability of the panel. The only way to check is to
849          * then compare 0000h and 2200h.
850          */
851         if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
852               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
853                 return 0;
854
855         ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
856                                sizeof(dpcd_ext));
857         if (ret < 0)
858                 return ret;
859         if (ret != sizeof(dpcd_ext))
860                 return -EIO;
861
862         if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
863                 drm_dbg_kms(aux->drm_dev,
864                             "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
865                             aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
866                 return 0;
867         }
868
869         if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
870                 return 0;
871
872         drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
873
874         memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
875
876         return 0;
877 }
878
879 /**
880  * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
881  * available
882  * @aux: DisplayPort AUX channel
883  * @dpcd: Buffer to store the resulting DPCD in
884  *
885  * Attempts to read the base DPCD caps for @aux. Additionally, this function
886  * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
887  * present.
888  *
889  * Returns: %0 if the DPCD was read successfully, negative error code
890  * otherwise.
891  */
892 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
893                           u8 dpcd[DP_RECEIVER_CAP_SIZE])
894 {
895         int ret;
896
897         ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
898         if (ret < 0)
899                 return ret;
900         if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
901                 return -EIO;
902
903         ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
904         if (ret < 0)
905                 return ret;
906
907         drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
908
909         return ret;
910 }
911 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
912
913 /**
914  * drm_dp_read_downstream_info() - read DPCD downstream port info if available
915  * @aux: DisplayPort AUX channel
916  * @dpcd: A cached copy of the port's DPCD
917  * @downstream_ports: buffer to store the downstream port info in
918  *
919  * See also:
920  * drm_dp_downstream_max_clock()
921  * drm_dp_downstream_max_bpc()
922  *
923  * Returns: 0 if either the downstream port info was read successfully or
924  * there was no downstream info to read, or a negative error code otherwise.
925  */
926 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
927                                 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
928                                 u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
929 {
930         int ret;
931         u8 len;
932
933         memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
934
935         /* No downstream info to read */
936         if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
937                 return 0;
938
939         /* Some branches advertise having 0 downstream ports, despite also advertising they have a
940          * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
941          * some branches do it we need to handle it regardless.
942          */
943         len = drm_dp_downstream_port_count(dpcd);
944         if (!len)
945                 return 0;
946
947         if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
948                 len *= 4;
949
950         ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
951         if (ret < 0)
952                 return ret;
953         if (ret != len)
954                 return -EIO;
955
956         drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
957
958         return 0;
959 }
960 EXPORT_SYMBOL(drm_dp_read_downstream_info);
961
962 /**
963  * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
964  * @dpcd: DisplayPort configuration data
965  * @port_cap: port capabilities
966  *
967  * Returns: Downstream facing port max dot clock in kHz on success,
968  * or 0 if max clock not defined
969  */
970 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
971                                    const u8 port_cap[4])
972 {
973         if (!drm_dp_is_branch(dpcd))
974                 return 0;
975
976         if (dpcd[DP_DPCD_REV] < 0x11)
977                 return 0;
978
979         switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
980         case DP_DS_PORT_TYPE_VGA:
981                 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
982                         return 0;
983                 return port_cap[1] * 8000;
984         default:
985                 return 0;
986         }
987 }
988 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
989
990 /**
991  * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
992  * @dpcd: DisplayPort configuration data
993  * @port_cap: port capabilities
994  * @edid: EDID
995  *
996  * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
997  * or 0 if max TMDS clock not defined
998  */
999 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1000                                      const u8 port_cap[4],
1001                                      const struct edid *edid)
1002 {
1003         if (!drm_dp_is_branch(dpcd))
1004                 return 0;
1005
1006         if (dpcd[DP_DPCD_REV] < 0x11) {
1007                 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1008                 case DP_DWN_STRM_PORT_TYPE_TMDS:
1009                         return 165000;
1010                 default:
1011                         return 0;
1012                 }
1013         }
1014
1015         switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1016         case DP_DS_PORT_TYPE_DP_DUALMODE:
1017                 if (is_edid_digital_input_dp(edid))
1018                         return 0;
1019                 /*
1020                  * It's left up to the driver to check the
1021                  * DP dual mode adapter's max TMDS clock.
1022                  *
1023                  * Unfortunately it looks like branch devices
1024                  * may not fordward that the DP dual mode i2c
1025                  * access so we just usually get i2c nak :(
1026                  */
1027                 fallthrough;
1028         case DP_DS_PORT_TYPE_HDMI:
1029                  /*
1030                   * We should perhaps assume 165 MHz when detailed cap
1031                   * info is not available. But looks like many typical
1032                   * branch devices fall into that category and so we'd
1033                   * probably end up with users complaining that they can't
1034                   * get high resolution modes with their favorite dongle.
1035                   *
1036                   * So let's limit to 300 MHz instead since DPCD 1.4
1037                   * HDMI 2.0 DFPs are required to have the detailed cap
1038                   * info. So it's more likely we're dealing with a HDMI 1.4
1039                   * compatible* device here.
1040                   */
1041                 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1042                         return 300000;
1043                 return port_cap[1] * 2500;
1044         case DP_DS_PORT_TYPE_DVI:
1045                 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1046                         return 165000;
1047                 /* FIXME what to do about DVI dual link? */
1048                 return port_cap[1] * 2500;
1049         default:
1050                 return 0;
1051         }
1052 }
1053 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1054
1055 /**
1056  * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1057  * @dpcd: DisplayPort configuration data
1058  * @port_cap: port capabilities
1059  * @edid: EDID
1060  *
1061  * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1062  * or 0 if max TMDS clock not defined
1063  */
1064 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1065                                      const u8 port_cap[4],
1066                                      const struct edid *edid)
1067 {
1068         if (!drm_dp_is_branch(dpcd))
1069                 return 0;
1070
1071         if (dpcd[DP_DPCD_REV] < 0x11) {
1072                 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1073                 case DP_DWN_STRM_PORT_TYPE_TMDS:
1074                         return 25000;
1075                 default:
1076                         return 0;
1077                 }
1078         }
1079
1080         switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1081         case DP_DS_PORT_TYPE_DP_DUALMODE:
1082                 if (is_edid_digital_input_dp(edid))
1083                         return 0;
1084                 fallthrough;
1085         case DP_DS_PORT_TYPE_DVI:
1086         case DP_DS_PORT_TYPE_HDMI:
1087                 /*
1088                  * Unclear whether the protocol converter could
1089                  * utilize pixel replication. Assume it won't.
1090                  */
1091                 return 25000;
1092         default:
1093                 return 0;
1094         }
1095 }
1096 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1097
1098 /**
1099  * drm_dp_downstream_max_bpc() - extract downstream facing port max
1100  *                               bits per component
1101  * @dpcd: DisplayPort configuration data
1102  * @port_cap: downstream facing port capabilities
1103  * @edid: EDID
1104  *
1105  * Returns: Max bpc on success or 0 if max bpc not defined
1106  */
1107 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1108                               const u8 port_cap[4],
1109                               const struct edid *edid)
1110 {
1111         if (!drm_dp_is_branch(dpcd))
1112                 return 0;
1113
1114         if (dpcd[DP_DPCD_REV] < 0x11) {
1115                 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1116                 case DP_DWN_STRM_PORT_TYPE_DP:
1117                         return 0;
1118                 default:
1119                         return 8;
1120                 }
1121         }
1122
1123         switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1124         case DP_DS_PORT_TYPE_DP:
1125                 return 0;
1126         case DP_DS_PORT_TYPE_DP_DUALMODE:
1127                 if (is_edid_digital_input_dp(edid))
1128                         return 0;
1129                 fallthrough;
1130         case DP_DS_PORT_TYPE_HDMI:
1131         case DP_DS_PORT_TYPE_DVI:
1132         case DP_DS_PORT_TYPE_VGA:
1133                 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1134                         return 8;
1135
1136                 switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1137                 case DP_DS_8BPC:
1138                         return 8;
1139                 case DP_DS_10BPC:
1140                         return 10;
1141                 case DP_DS_12BPC:
1142                         return 12;
1143                 case DP_DS_16BPC:
1144                         return 16;
1145                 default:
1146                         return 8;
1147                 }
1148                 break;
1149         default:
1150                 return 8;
1151         }
1152 }
1153 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1154
1155 /**
1156  * drm_dp_downstream_420_passthrough() - determine downstream facing port
1157  *                                       YCbCr 4:2:0 pass-through capability
1158  * @dpcd: DisplayPort configuration data
1159  * @port_cap: downstream facing port capabilities
1160  *
1161  * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1162  */
1163 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1164                                        const u8 port_cap[4])
1165 {
1166         if (!drm_dp_is_branch(dpcd))
1167                 return false;
1168
1169         if (dpcd[DP_DPCD_REV] < 0x13)
1170                 return false;
1171
1172         switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1173         case DP_DS_PORT_TYPE_DP:
1174                 return true;
1175         case DP_DS_PORT_TYPE_HDMI:
1176                 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1177                         return false;
1178
1179                 return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1180         default:
1181                 return false;
1182         }
1183 }
1184 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1185
1186 /**
1187  * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1188  *                                             YCbCr 4:4:4->4:2:0 conversion capability
1189  * @dpcd: DisplayPort configuration data
1190  * @port_cap: downstream facing port capabilities
1191  *
1192  * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1193  */
1194 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1195                                              const u8 port_cap[4])
1196 {
1197         if (!drm_dp_is_branch(dpcd))
1198                 return false;
1199
1200         if (dpcd[DP_DPCD_REV] < 0x13)
1201                 return false;
1202
1203         switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1204         case DP_DS_PORT_TYPE_HDMI:
1205                 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1206                         return false;
1207
1208                 return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1209         default:
1210                 return false;
1211         }
1212 }
1213 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1214
1215 /**
1216  * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1217  *                                               RGB->YCbCr conversion capability
1218  * @dpcd: DisplayPort configuration data
1219  * @port_cap: downstream facing port capabilities
1220  * @color_spc: Colorspace for which conversion cap is sought
1221  *
1222  * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1223  * colorspace.
1224  */
1225 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1226                                                const u8 port_cap[4],
1227                                                u8 color_spc)
1228 {
1229         if (!drm_dp_is_branch(dpcd))
1230                 return false;
1231
1232         if (dpcd[DP_DPCD_REV] < 0x13)
1233                 return false;
1234
1235         switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1236         case DP_DS_PORT_TYPE_HDMI:
1237                 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1238                         return false;
1239
1240                 return port_cap[3] & color_spc;
1241         default:
1242                 return false;
1243         }
1244 }
1245 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1246
1247 /**
1248  * drm_dp_downstream_mode() - return a mode for downstream facing port
1249  * @dev: DRM device
1250  * @dpcd: DisplayPort configuration data
1251  * @port_cap: port capabilities
1252  *
1253  * Provides a suitable mode for downstream facing ports without EDID.
1254  *
1255  * Returns: A new drm_display_mode on success or NULL on failure
1256  */
1257 struct drm_display_mode *
1258 drm_dp_downstream_mode(struct drm_device *dev,
1259                        const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1260                        const u8 port_cap[4])
1261
1262 {
1263         u8 vic;
1264
1265         if (!drm_dp_is_branch(dpcd))
1266                 return NULL;
1267
1268         if (dpcd[DP_DPCD_REV] < 0x11)
1269                 return NULL;
1270
1271         switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1272         case DP_DS_PORT_TYPE_NON_EDID:
1273                 switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1274                 case DP_DS_NON_EDID_720x480i_60:
1275                         vic = 6;
1276                         break;
1277                 case DP_DS_NON_EDID_720x480i_50:
1278                         vic = 21;
1279                         break;
1280                 case DP_DS_NON_EDID_1920x1080i_60:
1281                         vic = 5;
1282                         break;
1283                 case DP_DS_NON_EDID_1920x1080i_50:
1284                         vic = 20;
1285                         break;
1286                 case DP_DS_NON_EDID_1280x720_60:
1287                         vic = 4;
1288                         break;
1289                 case DP_DS_NON_EDID_1280x720_50:
1290                         vic = 19;
1291                         break;
1292                 default:
1293                         return NULL;
1294                 }
1295                 return drm_display_mode_from_cea_vic(dev, vic);
1296         default:
1297                 return NULL;
1298         }
1299 }
1300 EXPORT_SYMBOL(drm_dp_downstream_mode);
1301
1302 /**
1303  * drm_dp_downstream_id() - identify branch device
1304  * @aux: DisplayPort AUX channel
1305  * @id: DisplayPort branch device id
1306  *
1307  * Returns branch device id on success or NULL on failure
1308  */
1309 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1310 {
1311         return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1312 }
1313 EXPORT_SYMBOL(drm_dp_downstream_id);
1314
1315 /**
1316  * drm_dp_downstream_debug() - debug DP branch devices
1317  * @m: pointer for debugfs file
1318  * @dpcd: DisplayPort configuration data
1319  * @port_cap: port capabilities
1320  * @edid: EDID
1321  * @aux: DisplayPort AUX channel
1322  *
1323  */
1324 void drm_dp_downstream_debug(struct seq_file *m,
1325                              const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1326                              const u8 port_cap[4],
1327                              const struct edid *edid,
1328                              struct drm_dp_aux *aux)
1329 {
1330         bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1331                                  DP_DETAILED_CAP_INFO_AVAILABLE;
1332         int clk;
1333         int bpc;
1334         char id[7];
1335         int len;
1336         uint8_t rev[2];
1337         int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1338         bool branch_device = drm_dp_is_branch(dpcd);
1339
1340         seq_printf(m, "\tDP branch device present: %s\n",
1341                    str_yes_no(branch_device));
1342
1343         if (!branch_device)
1344                 return;
1345
1346         switch (type) {
1347         case DP_DS_PORT_TYPE_DP:
1348                 seq_puts(m, "\t\tType: DisplayPort\n");
1349                 break;
1350         case DP_DS_PORT_TYPE_VGA:
1351                 seq_puts(m, "\t\tType: VGA\n");
1352                 break;
1353         case DP_DS_PORT_TYPE_DVI:
1354                 seq_puts(m, "\t\tType: DVI\n");
1355                 break;
1356         case DP_DS_PORT_TYPE_HDMI:
1357                 seq_puts(m, "\t\tType: HDMI\n");
1358                 break;
1359         case DP_DS_PORT_TYPE_NON_EDID:
1360                 seq_puts(m, "\t\tType: others without EDID support\n");
1361                 break;
1362         case DP_DS_PORT_TYPE_DP_DUALMODE:
1363                 seq_puts(m, "\t\tType: DP++\n");
1364                 break;
1365         case DP_DS_PORT_TYPE_WIRELESS:
1366                 seq_puts(m, "\t\tType: Wireless\n");
1367                 break;
1368         default:
1369                 seq_puts(m, "\t\tType: N/A\n");
1370         }
1371
1372         memset(id, 0, sizeof(id));
1373         drm_dp_downstream_id(aux, id);
1374         seq_printf(m, "\t\tID: %s\n", id);
1375
1376         len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1377         if (len > 0)
1378                 seq_printf(m, "\t\tHW: %d.%d\n",
1379                            (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1380
1381         len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1382         if (len > 0)
1383                 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1384
1385         if (detailed_cap_info) {
1386                 clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1387                 if (clk > 0)
1388                         seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1389
1390                 clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, edid);
1391                 if (clk > 0)
1392                         seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1393
1394                 clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, edid);
1395                 if (clk > 0)
1396                         seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1397
1398                 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, edid);
1399
1400                 if (bpc > 0)
1401                         seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1402         }
1403 }
1404 EXPORT_SYMBOL(drm_dp_downstream_debug);
1405
1406 /**
1407  * drm_dp_subconnector_type() - get DP branch device type
1408  * @dpcd: DisplayPort configuration data
1409  * @port_cap: port capabilities
1410  */
1411 enum drm_mode_subconnector
1412 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1413                          const u8 port_cap[4])
1414 {
1415         int type;
1416         if (!drm_dp_is_branch(dpcd))
1417                 return DRM_MODE_SUBCONNECTOR_Native;
1418         /* DP 1.0 approach */
1419         if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1420                 type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1421                        DP_DWN_STRM_PORT_TYPE_MASK;
1422
1423                 switch (type) {
1424                 case DP_DWN_STRM_PORT_TYPE_TMDS:
1425                         /* Can be HDMI or DVI-D, DVI-D is a safer option */
1426                         return DRM_MODE_SUBCONNECTOR_DVID;
1427                 case DP_DWN_STRM_PORT_TYPE_ANALOG:
1428                         /* Can be VGA or DVI-A, VGA is more popular */
1429                         return DRM_MODE_SUBCONNECTOR_VGA;
1430                 case DP_DWN_STRM_PORT_TYPE_DP:
1431                         return DRM_MODE_SUBCONNECTOR_DisplayPort;
1432                 case DP_DWN_STRM_PORT_TYPE_OTHER:
1433                 default:
1434                         return DRM_MODE_SUBCONNECTOR_Unknown;
1435                 }
1436         }
1437         type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1438
1439         switch (type) {
1440         case DP_DS_PORT_TYPE_DP:
1441         case DP_DS_PORT_TYPE_DP_DUALMODE:
1442                 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1443         case DP_DS_PORT_TYPE_VGA:
1444                 return DRM_MODE_SUBCONNECTOR_VGA;
1445         case DP_DS_PORT_TYPE_DVI:
1446                 return DRM_MODE_SUBCONNECTOR_DVID;
1447         case DP_DS_PORT_TYPE_HDMI:
1448                 return DRM_MODE_SUBCONNECTOR_HDMIA;
1449         case DP_DS_PORT_TYPE_WIRELESS:
1450                 return DRM_MODE_SUBCONNECTOR_Wireless;
1451         case DP_DS_PORT_TYPE_NON_EDID:
1452         default:
1453                 return DRM_MODE_SUBCONNECTOR_Unknown;
1454         }
1455 }
1456 EXPORT_SYMBOL(drm_dp_subconnector_type);
1457
1458 /**
1459  * drm_dp_set_subconnector_property - set subconnector for DP connector
1460  * @connector: connector to set property on
1461  * @status: connector status
1462  * @dpcd: DisplayPort configuration data
1463  * @port_cap: port capabilities
1464  *
1465  * Called by a driver on every detect event.
1466  */
1467 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1468                                       enum drm_connector_status status,
1469                                       const u8 *dpcd,
1470                                       const u8 port_cap[4])
1471 {
1472         enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1473
1474         if (status == connector_status_connected)
1475                 subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1476         drm_object_property_set_value(&connector->base,
1477                         connector->dev->mode_config.dp_subconnector_property,
1478                         subconnector);
1479 }
1480 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1481
1482 /**
1483  * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1484  * count
1485  * @connector: The DRM connector to check
1486  * @dpcd: A cached copy of the connector's DPCD RX capabilities
1487  * @desc: A cached copy of the connector's DP descriptor
1488  *
1489  * See also: drm_dp_read_sink_count()
1490  *
1491  * Returns: %True if the (e)DP connector has a valid sink count that should
1492  * be probed, %false otherwise.
1493  */
1494 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1495                                 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1496                                 const struct drm_dp_desc *desc)
1497 {
1498         /* Some eDP panels don't set a valid value for the sink count */
1499         return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1500                 dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1501                 dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1502                 !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1503 }
1504 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1505
1506 /**
1507  * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1508  * @aux: The DP AUX channel to use
1509  *
1510  * See also: drm_dp_read_sink_count_cap()
1511  *
1512  * Returns: The current sink count reported by @aux, or a negative error code
1513  * otherwise.
1514  */
1515 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1516 {
1517         u8 count;
1518         int ret;
1519
1520         ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1521         if (ret < 0)
1522                 return ret;
1523         if (ret != 1)
1524                 return -EIO;
1525
1526         return DP_GET_SINK_COUNT(count);
1527 }
1528 EXPORT_SYMBOL(drm_dp_read_sink_count);
1529
1530 /*
1531  * I2C-over-AUX implementation
1532  */
1533
1534 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1535 {
1536         return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1537                I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1538                I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1539                I2C_FUNC_10BIT_ADDR;
1540 }
1541
1542 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1543 {
1544         /*
1545          * In case of i2c defer or short i2c ack reply to a write,
1546          * we need to switch to WRITE_STATUS_UPDATE to drain the
1547          * rest of the message
1548          */
1549         if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1550                 msg->request &= DP_AUX_I2C_MOT;
1551                 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1552         }
1553 }
1554
1555 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1556 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1557 #define AUX_STOP_LEN 4
1558 #define AUX_CMD_LEN 4
1559 #define AUX_ADDRESS_LEN 20
1560 #define AUX_REPLY_PAD_LEN 4
1561 #define AUX_LENGTH_LEN 8
1562
1563 /*
1564  * Calculate the duration of the AUX request/reply in usec. Gives the
1565  * "best" case estimate, ie. successful while as short as possible.
1566  */
1567 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1568 {
1569         int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1570                 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1571
1572         if ((msg->request & DP_AUX_I2C_READ) == 0)
1573                 len += msg->size * 8;
1574
1575         return len;
1576 }
1577
1578 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1579 {
1580         int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1581                 AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1582
1583         /*
1584          * For read we expect what was asked. For writes there will
1585          * be 0 or 1 data bytes. Assume 0 for the "best" case.
1586          */
1587         if (msg->request & DP_AUX_I2C_READ)
1588                 len += msg->size * 8;
1589
1590         return len;
1591 }
1592
1593 #define I2C_START_LEN 1
1594 #define I2C_STOP_LEN 1
1595 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1596 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1597
1598 /*
1599  * Calculate the length of the i2c transfer in usec, assuming
1600  * the i2c bus speed is as specified. Gives the the "worst"
1601  * case estimate, ie. successful while as long as possible.
1602  * Doesn't account the "MOT" bit, and instead assumes each
1603  * message includes a START, ADDRESS and STOP. Neither does it
1604  * account for additional random variables such as clock stretching.
1605  */
1606 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1607                                    int i2c_speed_khz)
1608 {
1609         /* AUX bitrate is 1MHz, i2c bitrate as specified */
1610         return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1611                              msg->size * I2C_DATA_LEN +
1612                              I2C_STOP_LEN) * 1000, i2c_speed_khz);
1613 }
1614
1615 /*
1616  * Determine how many retries should be attempted to successfully transfer
1617  * the specified message, based on the estimated durations of the
1618  * i2c and AUX transfers.
1619  */
1620 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1621                               int i2c_speed_khz)
1622 {
1623         int aux_time_us = drm_dp_aux_req_duration(msg) +
1624                 drm_dp_aux_reply_duration(msg);
1625         int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1626
1627         return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1628 }
1629
1630 /*
1631  * FIXME currently assumes 10 kHz as some real world devices seem
1632  * to require it. We should query/set the speed via DPCD if supported.
1633  */
1634 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1635 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1636 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1637                  "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1638
1639 /*
1640  * Transfer a single I2C-over-AUX message and handle various error conditions,
1641  * retrying the transaction as appropriate.  It is assumed that the
1642  * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1643  * reply field.
1644  *
1645  * Returns bytes transferred on success, or a negative error code on failure.
1646  */
1647 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1648 {
1649         unsigned int retry, defer_i2c;
1650         int ret;
1651         /*
1652          * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1653          * is required to retry at least seven times upon receiving AUX_DEFER
1654          * before giving up the AUX transaction.
1655          *
1656          * We also try to account for the i2c bus speed.
1657          */
1658         int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1659
1660         for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1661                 ret = aux->transfer(aux, msg);
1662                 if (ret < 0) {
1663                         if (ret == -EBUSY)
1664                                 continue;
1665
1666                         /*
1667                          * While timeouts can be errors, they're usually normal
1668                          * behavior (for instance, when a driver tries to
1669                          * communicate with a non-existent DisplayPort device).
1670                          * Avoid spamming the kernel log with timeout errors.
1671                          */
1672                         if (ret == -ETIMEDOUT)
1673                                 drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1674                                                         aux->name);
1675                         else
1676                                 drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1677                                             aux->name, ret);
1678                         return ret;
1679                 }
1680
1681
1682                 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1683                 case DP_AUX_NATIVE_REPLY_ACK:
1684                         /*
1685                          * For I2C-over-AUX transactions this isn't enough, we
1686                          * need to check for the I2C ACK reply.
1687                          */
1688                         break;
1689
1690                 case DP_AUX_NATIVE_REPLY_NACK:
1691                         drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1692                                     aux->name, ret, msg->size);
1693                         return -EREMOTEIO;
1694
1695                 case DP_AUX_NATIVE_REPLY_DEFER:
1696                         drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1697                         /*
1698                          * We could check for I2C bit rate capabilities and if
1699                          * available adjust this interval. We could also be
1700                          * more careful with DP-to-legacy adapters where a
1701                          * long legacy cable may force very low I2C bit rates.
1702                          *
1703                          * For now just defer for long enough to hopefully be
1704                          * safe for all use-cases.
1705                          */
1706                         usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1707                         continue;
1708
1709                 default:
1710                         drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1711                                 aux->name, msg->reply);
1712                         return -EREMOTEIO;
1713                 }
1714
1715                 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1716                 case DP_AUX_I2C_REPLY_ACK:
1717                         /*
1718                          * Both native ACK and I2C ACK replies received. We
1719                          * can assume the transfer was successful.
1720                          */
1721                         if (ret != msg->size)
1722                                 drm_dp_i2c_msg_write_status_update(msg);
1723                         return ret;
1724
1725                 case DP_AUX_I2C_REPLY_NACK:
1726                         drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1727                                     aux->name, ret, msg->size);
1728                         aux->i2c_nack_count++;
1729                         return -EREMOTEIO;
1730
1731                 case DP_AUX_I2C_REPLY_DEFER:
1732                         drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1733                         /* DP Compliance Test 4.2.2.5 Requirement:
1734                          * Must have at least 7 retries for I2C defers on the
1735                          * transaction to pass this test
1736                          */
1737                         aux->i2c_defer_count++;
1738                         if (defer_i2c < 7)
1739                                 defer_i2c++;
1740                         usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1741                         drm_dp_i2c_msg_write_status_update(msg);
1742
1743                         continue;
1744
1745                 default:
1746                         drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1747                                 aux->name, msg->reply);
1748                         return -EREMOTEIO;
1749                 }
1750         }
1751
1752         drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1753         return -EREMOTEIO;
1754 }
1755
1756 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1757                                        const struct i2c_msg *i2c_msg)
1758 {
1759         msg->request = (i2c_msg->flags & I2C_M_RD) ?
1760                 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1761         if (!(i2c_msg->flags & I2C_M_STOP))
1762                 msg->request |= DP_AUX_I2C_MOT;
1763 }
1764
1765 /*
1766  * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1767  *
1768  * Returns an error code on failure, or a recommended transfer size on success.
1769  */
1770 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1771 {
1772         int err, ret = orig_msg->size;
1773         struct drm_dp_aux_msg msg = *orig_msg;
1774
1775         while (msg.size > 0) {
1776                 err = drm_dp_i2c_do_msg(aux, &msg);
1777                 if (err <= 0)
1778                         return err == 0 ? -EPROTO : err;
1779
1780                 if (err < msg.size && err < ret) {
1781                         drm_dbg_kms(aux->drm_dev,
1782                                     "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1783                                     aux->name, msg.size, err);
1784                         ret = err;
1785                 }
1786
1787                 msg.size -= err;
1788                 msg.buffer += err;
1789         }
1790
1791         return ret;
1792 }
1793
1794 /*
1795  * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1796  * packets to be as large as possible. If not, the I2C transactions never
1797  * succeed. Hence the default is maximum.
1798  */
1799 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1800 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1801 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1802                  "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1803
1804 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1805                            int num)
1806 {
1807         struct drm_dp_aux *aux = adapter->algo_data;
1808         unsigned int i, j;
1809         unsigned transfer_size;
1810         struct drm_dp_aux_msg msg;
1811         int err = 0;
1812
1813         dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1814
1815         memset(&msg, 0, sizeof(msg));
1816
1817         for (i = 0; i < num; i++) {
1818                 msg.address = msgs[i].addr;
1819                 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1820                 /* Send a bare address packet to start the transaction.
1821                  * Zero sized messages specify an address only (bare
1822                  * address) transaction.
1823                  */
1824                 msg.buffer = NULL;
1825                 msg.size = 0;
1826                 err = drm_dp_i2c_do_msg(aux, &msg);
1827
1828                 /*
1829                  * Reset msg.request in case in case it got
1830                  * changed into a WRITE_STATUS_UPDATE.
1831                  */
1832                 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1833
1834                 if (err < 0)
1835                         break;
1836                 /* We want each transaction to be as large as possible, but
1837                  * we'll go to smaller sizes if the hardware gives us a
1838                  * short reply.
1839                  */
1840                 transfer_size = dp_aux_i2c_transfer_size;
1841                 for (j = 0; j < msgs[i].len; j += msg.size) {
1842                         msg.buffer = msgs[i].buf + j;
1843                         msg.size = min(transfer_size, msgs[i].len - j);
1844
1845                         err = drm_dp_i2c_drain_msg(aux, &msg);
1846
1847                         /*
1848                          * Reset msg.request in case in case it got
1849                          * changed into a WRITE_STATUS_UPDATE.
1850                          */
1851                         drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1852
1853                         if (err < 0)
1854                                 break;
1855                         transfer_size = err;
1856                 }
1857                 if (err < 0)
1858                         break;
1859         }
1860         if (err >= 0)
1861                 err = num;
1862         /* Send a bare address packet to close out the transaction.
1863          * Zero sized messages specify an address only (bare
1864          * address) transaction.
1865          */
1866         msg.request &= ~DP_AUX_I2C_MOT;
1867         msg.buffer = NULL;
1868         msg.size = 0;
1869         (void)drm_dp_i2c_do_msg(aux, &msg);
1870
1871         return err;
1872 }
1873
1874 static const struct i2c_algorithm drm_dp_i2c_algo = {
1875         .functionality = drm_dp_i2c_functionality,
1876         .master_xfer = drm_dp_i2c_xfer,
1877 };
1878
1879 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1880 {
1881         return container_of(i2c, struct drm_dp_aux, ddc);
1882 }
1883
1884 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1885 {
1886         mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1887 }
1888
1889 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1890 {
1891         return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1892 }
1893
1894 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1895 {
1896         mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1897 }
1898
1899 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1900         .lock_bus = lock_bus,
1901         .trylock_bus = trylock_bus,
1902         .unlock_bus = unlock_bus,
1903 };
1904
1905 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1906 {
1907         u8 buf, count;
1908         int ret;
1909
1910         ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1911         if (ret < 0)
1912                 return ret;
1913
1914         WARN_ON(!(buf & DP_TEST_SINK_START));
1915
1916         ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
1917         if (ret < 0)
1918                 return ret;
1919
1920         count = buf & DP_TEST_COUNT_MASK;
1921         if (count == aux->crc_count)
1922                 return -EAGAIN; /* No CRC yet */
1923
1924         aux->crc_count = count;
1925
1926         /*
1927          * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
1928          * per component (RGB or CrYCb).
1929          */
1930         ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
1931         if (ret < 0)
1932                 return ret;
1933
1934         return 0;
1935 }
1936
1937 static void drm_dp_aux_crc_work(struct work_struct *work)
1938 {
1939         struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
1940                                               crc_work);
1941         struct drm_crtc *crtc;
1942         u8 crc_bytes[6];
1943         uint32_t crcs[3];
1944         int ret;
1945
1946         if (WARN_ON(!aux->crtc))
1947                 return;
1948
1949         crtc = aux->crtc;
1950         while (crtc->crc.opened) {
1951                 drm_crtc_wait_one_vblank(crtc);
1952                 if (!crtc->crc.opened)
1953                         break;
1954
1955                 ret = drm_dp_aux_get_crc(aux, crc_bytes);
1956                 if (ret == -EAGAIN) {
1957                         usleep_range(1000, 2000);
1958                         ret = drm_dp_aux_get_crc(aux, crc_bytes);
1959                 }
1960
1961                 if (ret == -EAGAIN) {
1962                         drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
1963                                     aux->name, ret);
1964                         continue;
1965                 } else if (ret) {
1966                         drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
1967                         continue;
1968                 }
1969
1970                 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
1971                 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
1972                 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
1973                 drm_crtc_add_crc_entry(crtc, false, 0, crcs);
1974         }
1975 }
1976
1977 /**
1978  * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
1979  * @aux: DisplayPort AUX channel
1980  *
1981  * Used for remote aux channel in general. Merely initialize the crc work
1982  * struct.
1983  */
1984 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
1985 {
1986         INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
1987 }
1988 EXPORT_SYMBOL(drm_dp_remote_aux_init);
1989
1990 /**
1991  * drm_dp_aux_init() - minimally initialise an aux channel
1992  * @aux: DisplayPort AUX channel
1993  *
1994  * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
1995  * the outside world, call drm_dp_aux_init() first. For drivers which are
1996  * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
1997  * &drm_connector), you must still call drm_dp_aux_register() once the connector
1998  * has been registered to allow userspace access to the auxiliary DP channel.
1999  * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2000  * early as possible so that the &drm_device that corresponds to the AUX adapter
2001  * may be mentioned in debugging output from the DRM DP helpers.
2002  *
2003  * For devices which use a separate platform device for their AUX adapters, this
2004  * may be called as early as required by the driver.
2005  *
2006  */
2007 void drm_dp_aux_init(struct drm_dp_aux *aux)
2008 {
2009         mutex_init(&aux->hw_mutex);
2010         mutex_init(&aux->cec.lock);
2011         INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2012
2013         aux->ddc.algo = &drm_dp_i2c_algo;
2014         aux->ddc.algo_data = aux;
2015         aux->ddc.retries = 3;
2016
2017         aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2018 }
2019 EXPORT_SYMBOL(drm_dp_aux_init);
2020
2021 /**
2022  * drm_dp_aux_register() - initialise and register aux channel
2023  * @aux: DisplayPort AUX channel
2024  *
2025  * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2026  * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2027  * initialized. For devices which are grandparents of their AUX channels,
2028  * &drm_dp_aux.dev will typically be the &drm_connector &device which
2029  * corresponds to @aux. For these devices, it's advised to call
2030  * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2031  * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2032  * Functions which don't follow this will likely Oops when
2033  * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2034  *
2035  * For devices where the AUX channel is a device that exists independently of
2036  * the &drm_device that uses it, such as SoCs and bridge devices, it is
2037  * recommended to call drm_dp_aux_register() after a &drm_device has been
2038  * assigned to &drm_dp_aux.drm_dev, and likewise to call
2039  * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2040  * with the AUX channel (e.g. on bridge detach).
2041  *
2042  * Drivers which need to use the aux channel before either of the two points
2043  * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2044  * channel before registration.
2045  *
2046  * Returns 0 on success or a negative error code on failure.
2047  */
2048 int drm_dp_aux_register(struct drm_dp_aux *aux)
2049 {
2050         int ret;
2051
2052         WARN_ON_ONCE(!aux->drm_dev);
2053
2054         if (!aux->ddc.algo)
2055                 drm_dp_aux_init(aux);
2056
2057         aux->ddc.class = I2C_CLASS_DDC;
2058         aux->ddc.owner = THIS_MODULE;
2059         aux->ddc.dev.parent = aux->dev;
2060
2061         strlcpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2062                 sizeof(aux->ddc.name));
2063
2064         ret = drm_dp_aux_register_devnode(aux);
2065         if (ret)
2066                 return ret;
2067
2068         ret = i2c_add_adapter(&aux->ddc);
2069         if (ret) {
2070                 drm_dp_aux_unregister_devnode(aux);
2071                 return ret;
2072         }
2073
2074         return 0;
2075 }
2076 EXPORT_SYMBOL(drm_dp_aux_register);
2077
2078 /**
2079  * drm_dp_aux_unregister() - unregister an AUX adapter
2080  * @aux: DisplayPort AUX channel
2081  */
2082 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2083 {
2084         drm_dp_aux_unregister_devnode(aux);
2085         i2c_del_adapter(&aux->ddc);
2086 }
2087 EXPORT_SYMBOL(drm_dp_aux_unregister);
2088
2089 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2090
2091 /**
2092  * drm_dp_psr_setup_time() - PSR setup in time usec
2093  * @psr_cap: PSR capabilities from DPCD
2094  *
2095  * Returns:
2096  * PSR setup time for the panel in microseconds,  negative
2097  * error code on failure.
2098  */
2099 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2100 {
2101         static const u16 psr_setup_time_us[] = {
2102                 PSR_SETUP_TIME(330),
2103                 PSR_SETUP_TIME(275),
2104                 PSR_SETUP_TIME(220),
2105                 PSR_SETUP_TIME(165),
2106                 PSR_SETUP_TIME(110),
2107                 PSR_SETUP_TIME(55),
2108                 PSR_SETUP_TIME(0),
2109         };
2110         int i;
2111
2112         i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2113         if (i >= ARRAY_SIZE(psr_setup_time_us))
2114                 return -EINVAL;
2115
2116         return psr_setup_time_us[i];
2117 }
2118 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2119
2120 #undef PSR_SETUP_TIME
2121
2122 /**
2123  * drm_dp_start_crc() - start capture of frame CRCs
2124  * @aux: DisplayPort AUX channel
2125  * @crtc: CRTC displaying the frames whose CRCs are to be captured
2126  *
2127  * Returns 0 on success or a negative error code on failure.
2128  */
2129 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2130 {
2131         u8 buf;
2132         int ret;
2133
2134         ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2135         if (ret < 0)
2136                 return ret;
2137
2138         ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2139         if (ret < 0)
2140                 return ret;
2141
2142         aux->crc_count = 0;
2143         aux->crtc = crtc;
2144         schedule_work(&aux->crc_work);
2145
2146         return 0;
2147 }
2148 EXPORT_SYMBOL(drm_dp_start_crc);
2149
2150 /**
2151  * drm_dp_stop_crc() - stop capture of frame CRCs
2152  * @aux: DisplayPort AUX channel
2153  *
2154  * Returns 0 on success or a negative error code on failure.
2155  */
2156 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2157 {
2158         u8 buf;
2159         int ret;
2160
2161         ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2162         if (ret < 0)
2163                 return ret;
2164
2165         ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2166         if (ret < 0)
2167                 return ret;
2168
2169         flush_work(&aux->crc_work);
2170         aux->crtc = NULL;
2171
2172         return 0;
2173 }
2174 EXPORT_SYMBOL(drm_dp_stop_crc);
2175
2176 struct dpcd_quirk {
2177         u8 oui[3];
2178         u8 device_id[6];
2179         bool is_branch;
2180         u32 quirks;
2181 };
2182
2183 #define OUI(first, second, third) { (first), (second), (third) }
2184 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2185         { (first), (second), (third), (fourth), (fifth), (sixth) }
2186
2187 #define DEVICE_ID_ANY   DEVICE_ID(0, 0, 0, 0, 0, 0)
2188
2189 static const struct dpcd_quirk dpcd_quirk_list[] = {
2190         /* Analogix 7737 needs reduced M and N at HBR2 link rates */
2191         { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2192         /* LG LP140WF6-SPM1 eDP panel */
2193         { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2194         /* Apple panels need some additional handling to support PSR */
2195         { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2196         /* CH7511 seems to leave SINK_COUNT zeroed */
2197         { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2198         /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2199         { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2200         /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2201         { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2202 };
2203
2204 #undef OUI
2205
2206 /*
2207  * Get a bit mask of DPCD quirks for the sink/branch device identified by
2208  * ident. The quirk data is shared but it's up to the drivers to act on the
2209  * data.
2210  *
2211  * For now, only the OUI (first three bytes) is used, but this may be extended
2212  * to device identification string and hardware/firmware revisions later.
2213  */
2214 static u32
2215 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2216 {
2217         const struct dpcd_quirk *quirk;
2218         u32 quirks = 0;
2219         int i;
2220         u8 any_device[] = DEVICE_ID_ANY;
2221
2222         for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2223                 quirk = &dpcd_quirk_list[i];
2224
2225                 if (quirk->is_branch != is_branch)
2226                         continue;
2227
2228                 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2229                         continue;
2230
2231                 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2232                     memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2233                         continue;
2234
2235                 quirks |= quirk->quirks;
2236         }
2237
2238         return quirks;
2239 }
2240
2241 #undef DEVICE_ID_ANY
2242 #undef DEVICE_ID
2243
2244 /**
2245  * drm_dp_read_desc - read sink/branch descriptor from DPCD
2246  * @aux: DisplayPort AUX channel
2247  * @desc: Device descriptor to fill from DPCD
2248  * @is_branch: true for branch devices, false for sink devices
2249  *
2250  * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2251  * identification.
2252  *
2253  * Returns 0 on success or a negative error code on failure.
2254  */
2255 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2256                      bool is_branch)
2257 {
2258         struct drm_dp_dpcd_ident *ident = &desc->ident;
2259         unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2260         int ret, dev_id_len;
2261
2262         ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2263         if (ret < 0)
2264                 return ret;
2265
2266         desc->quirks = drm_dp_get_quirks(ident, is_branch);
2267
2268         dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2269
2270         drm_dbg_kms(aux->drm_dev,
2271                     "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2272                     aux->name, is_branch ? "branch" : "sink",
2273                     (int)sizeof(ident->oui), ident->oui, dev_id_len,
2274                     ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2275                     ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2276
2277         return 0;
2278 }
2279 EXPORT_SYMBOL(drm_dp_read_desc);
2280
2281 /**
2282  * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2283  * supported by the DSC sink.
2284  * @dsc_dpcd: DSC capabilities from DPCD
2285  * @is_edp: true if its eDP, false for DP
2286  *
2287  * Read the slice capabilities DPCD register from DSC sink to get
2288  * the maximum slice count supported. This is used to populate
2289  * the DSC parameters in the &struct drm_dsc_config by the driver.
2290  * Driver creates an infoframe using these parameters to populate
2291  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2292  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2293  *
2294  * Returns:
2295  * Maximum slice count supported by DSC sink or 0 its invalid
2296  */
2297 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2298                                    bool is_edp)
2299 {
2300         u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2301
2302         if (is_edp) {
2303                 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2304                 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2305                         return 4;
2306                 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2307                         return 2;
2308                 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2309                         return 1;
2310         } else {
2311                 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2312                 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2313
2314                 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2315                         return 24;
2316                 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2317                         return 20;
2318                 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2319                         return 16;
2320                 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2321                         return 12;
2322                 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2323                         return 10;
2324                 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2325                         return 8;
2326                 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2327                         return 6;
2328                 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2329                         return 4;
2330                 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2331                         return 2;
2332                 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2333                         return 1;
2334         }
2335
2336         return 0;
2337 }
2338 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2339
2340 /**
2341  * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2342  * @dsc_dpcd: DSC capabilities from DPCD
2343  *
2344  * Read the DSC DPCD register to parse the line buffer depth in bits which is
2345  * number of bits of precision within the decoder line buffer supported by
2346  * the DSC sink. This is used to populate the DSC parameters in the
2347  * &struct drm_dsc_config by the driver.
2348  * Driver creates an infoframe using these parameters to populate
2349  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2350  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2351  *
2352  * Returns:
2353  * Line buffer depth supported by DSC panel or 0 its invalid
2354  */
2355 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2356 {
2357         u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2358
2359         switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2360         case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2361                 return 9;
2362         case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2363                 return 10;
2364         case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2365                 return 11;
2366         case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2367                 return 12;
2368         case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2369                 return 13;
2370         case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2371                 return 14;
2372         case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2373                 return 15;
2374         case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2375                 return 16;
2376         case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2377                 return 8;
2378         }
2379
2380         return 0;
2381 }
2382 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2383
2384 /**
2385  * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2386  * values supported by the DSC sink.
2387  * @dsc_dpcd: DSC capabilities from DPCD
2388  * @dsc_bpc: An array to be filled by this helper with supported
2389  *           input bpcs.
2390  *
2391  * Read the DSC DPCD from the sink device to parse the supported bits per
2392  * component values. This is used to populate the DSC parameters
2393  * in the &struct drm_dsc_config by the driver.
2394  * Driver creates an infoframe using these parameters to populate
2395  * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2396  * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2397  *
2398  * Returns:
2399  * Number of input BPC values parsed from the DPCD
2400  */
2401 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2402                                          u8 dsc_bpc[3])
2403 {
2404         int num_bpc = 0;
2405         u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2406
2407         if (color_depth & DP_DSC_12_BPC)
2408                 dsc_bpc[num_bpc++] = 12;
2409         if (color_depth & DP_DSC_10_BPC)
2410                 dsc_bpc[num_bpc++] = 10;
2411         if (color_depth & DP_DSC_8_BPC)
2412                 dsc_bpc[num_bpc++] = 8;
2413
2414         return num_bpc;
2415 }
2416 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2417
2418 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2419                                   const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2420                                   u8 *buf, int buf_size)
2421 {
2422         /*
2423          * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2424          * corrupted values when reading from the 0xF0000- range with a block
2425          * size bigger than 1.
2426          */
2427         int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2428         int offset;
2429         int ret;
2430
2431         for (offset = 0; offset < buf_size; offset += block_size) {
2432                 ret = drm_dp_dpcd_read(aux,
2433                                        address + offset,
2434                                        &buf[offset], block_size);
2435                 if (ret < 0)
2436                         return ret;
2437
2438                 WARN_ON(ret != block_size);
2439         }
2440
2441         return 0;
2442 }
2443
2444 /**
2445  * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2446  * @aux: DisplayPort AUX channel
2447  * @dpcd: DisplayPort configuration data
2448  * @caps: buffer to return the capability info in
2449  *
2450  * Read capabilities common to all LTTPRs.
2451  *
2452  * Returns 0 on success or a negative error code on failure.
2453  */
2454 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2455                                   const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2456                                   u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2457 {
2458         return drm_dp_read_lttpr_regs(aux, dpcd,
2459                                       DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2460                                       caps, DP_LTTPR_COMMON_CAP_SIZE);
2461 }
2462 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2463
2464 /**
2465  * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2466  * @aux: DisplayPort AUX channel
2467  * @dpcd: DisplayPort configuration data
2468  * @dp_phy: LTTPR PHY to read the capabilities for
2469  * @caps: buffer to return the capability info in
2470  *
2471  * Read the capabilities for the given LTTPR PHY.
2472  *
2473  * Returns 0 on success or a negative error code on failure.
2474  */
2475 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2476                                const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2477                                enum drm_dp_phy dp_phy,
2478                                u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2479 {
2480         return drm_dp_read_lttpr_regs(aux, dpcd,
2481                                       DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2482                                       caps, DP_LTTPR_PHY_CAP_SIZE);
2483 }
2484 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2485
2486 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2487 {
2488         return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2489 }
2490
2491 /**
2492  * drm_dp_lttpr_count - get the number of detected LTTPRs
2493  * @caps: LTTPR common capabilities
2494  *
2495  * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2496  *
2497  * Returns:
2498  *   -ERANGE if more than supported number (8) of LTTPRs are detected
2499  *   -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2500  *   otherwise the number of detected LTTPRs
2501  */
2502 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2503 {
2504         u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2505
2506         switch (hweight8(count)) {
2507         case 0:
2508                 return 0;
2509         case 1:
2510                 return 8 - ilog2(count);
2511         case 8:
2512                 return -ERANGE;
2513         default:
2514                 return -EINVAL;
2515         }
2516 }
2517 EXPORT_SYMBOL(drm_dp_lttpr_count);
2518
2519 /**
2520  * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2521  * @caps: LTTPR common capabilities
2522  *
2523  * Returns the maximum link rate supported by all detected LTTPRs.
2524  */
2525 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2526 {
2527         u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2528
2529         return drm_dp_bw_code_to_link_rate(rate);
2530 }
2531 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2532
2533 /**
2534  * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2535  * @caps: LTTPR common capabilities
2536  *
2537  * Returns the maximum lane count supported by all detected LTTPRs.
2538  */
2539 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2540 {
2541         u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2542
2543         return max_lanes & DP_MAX_LANE_COUNT_MASK;
2544 }
2545 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2546
2547 /**
2548  * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2549  * @caps: LTTPR PHY capabilities
2550  *
2551  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2552  * voltage swing level 3.
2553  */
2554 bool
2555 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2556 {
2557         u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2558
2559         return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2560 }
2561 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2562
2563 /**
2564  * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2565  * @caps: LTTPR PHY capabilities
2566  *
2567  * Returns true if the @caps for an LTTPR TX PHY indicate support for
2568  * pre-emphasis level 3.
2569  */
2570 bool
2571 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2572 {
2573         u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2574
2575         return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2576 }
2577 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2578
2579 /**
2580  * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2581  * @aux: DisplayPort AUX channel
2582  * @data: DP phy compliance test parameters.
2583  *
2584  * Returns 0 on success or a negative error code on failure.
2585  */
2586 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2587                                 struct drm_dp_phy_test_params *data)
2588 {
2589         int err;
2590         u8 rate, lanes;
2591
2592         err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2593         if (err < 0)
2594                 return err;
2595         data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2596
2597         err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2598         if (err < 0)
2599                 return err;
2600         data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2601
2602         if (lanes & DP_ENHANCED_FRAME_CAP)
2603                 data->enhanced_frame_cap = true;
2604
2605         err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2606         if (err < 0)
2607                 return err;
2608
2609         switch (data->phy_pattern) {
2610         case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2611                 err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2612                                        &data->custom80, sizeof(data->custom80));
2613                 if (err < 0)
2614                         return err;
2615
2616                 break;
2617         case DP_PHY_TEST_PATTERN_CP2520:
2618                 err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2619                                        &data->hbr2_reset,
2620                                        sizeof(data->hbr2_reset));
2621                 if (err < 0)
2622                         return err;
2623         }
2624
2625         return 0;
2626 }
2627 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2628
2629 /**
2630  * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2631  * @aux: DisplayPort AUX channel
2632  * @data: DP phy compliance test parameters.
2633  * @dp_rev: DP revision to use for compliance testing
2634  *
2635  * Returns 0 on success or a negative error code on failure.
2636  */
2637 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2638                                 struct drm_dp_phy_test_params *data, u8 dp_rev)
2639 {
2640         int err, i;
2641         u8 link_config[2];
2642         u8 test_pattern;
2643
2644         link_config[0] = drm_dp_link_rate_to_bw_code(data->link_rate);
2645         link_config[1] = data->num_lanes;
2646         if (data->enhanced_frame_cap)
2647                 link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
2648         err = drm_dp_dpcd_write(aux, DP_LINK_BW_SET, link_config, 2);
2649         if (err < 0)
2650                 return err;
2651
2652         test_pattern = data->phy_pattern;
2653         if (dp_rev < 0x12) {
2654                 test_pattern = (test_pattern << 2) &
2655                                DP_LINK_QUAL_PATTERN_11_MASK;
2656                 err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2657                                          test_pattern);
2658                 if (err < 0)
2659                         return err;
2660         } else {
2661                 for (i = 0; i < data->num_lanes; i++) {
2662                         err = drm_dp_dpcd_writeb(aux,
2663                                                  DP_LINK_QUAL_LANE0_SET + i,
2664                                                  test_pattern);
2665                         if (err < 0)
2666                                 return err;
2667                 }
2668         }
2669
2670         return 0;
2671 }
2672 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2673
2674 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2675 {
2676         if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2677                 return "Invalid";
2678
2679         switch (pixelformat) {
2680         case DP_PIXELFORMAT_RGB:
2681                 return "RGB";
2682         case DP_PIXELFORMAT_YUV444:
2683                 return "YUV444";
2684         case DP_PIXELFORMAT_YUV422:
2685                 return "YUV422";
2686         case DP_PIXELFORMAT_YUV420:
2687                 return "YUV420";
2688         case DP_PIXELFORMAT_Y_ONLY:
2689                 return "Y_ONLY";
2690         case DP_PIXELFORMAT_RAW:
2691                 return "RAW";
2692         default:
2693                 return "Reserved";
2694         }
2695 }
2696
2697 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2698                                            enum dp_colorimetry colorimetry)
2699 {
2700         if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2701                 return "Invalid";
2702
2703         switch (colorimetry) {
2704         case DP_COLORIMETRY_DEFAULT:
2705                 switch (pixelformat) {
2706                 case DP_PIXELFORMAT_RGB:
2707                         return "sRGB";
2708                 case DP_PIXELFORMAT_YUV444:
2709                 case DP_PIXELFORMAT_YUV422:
2710                 case DP_PIXELFORMAT_YUV420:
2711                         return "BT.601";
2712                 case DP_PIXELFORMAT_Y_ONLY:
2713                         return "DICOM PS3.14";
2714                 case DP_PIXELFORMAT_RAW:
2715                         return "Custom Color Profile";
2716                 default:
2717                         return "Reserved";
2718                 }
2719         case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2720                 switch (pixelformat) {
2721                 case DP_PIXELFORMAT_RGB:
2722                         return "Wide Fixed";
2723                 case DP_PIXELFORMAT_YUV444:
2724                 case DP_PIXELFORMAT_YUV422:
2725                 case DP_PIXELFORMAT_YUV420:
2726                         return "BT.709";
2727                 default:
2728                         return "Reserved";
2729                 }
2730         case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2731                 switch (pixelformat) {
2732                 case DP_PIXELFORMAT_RGB:
2733                         return "Wide Float";
2734                 case DP_PIXELFORMAT_YUV444:
2735                 case DP_PIXELFORMAT_YUV422:
2736                 case DP_PIXELFORMAT_YUV420:
2737                         return "xvYCC 601";
2738                 default:
2739                         return "Reserved";
2740                 }
2741         case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2742                 switch (pixelformat) {
2743                 case DP_PIXELFORMAT_RGB:
2744                         return "OpRGB";
2745                 case DP_PIXELFORMAT_YUV444:
2746                 case DP_PIXELFORMAT_YUV422:
2747                 case DP_PIXELFORMAT_YUV420:
2748                         return "xvYCC 709";
2749                 default:
2750                         return "Reserved";
2751                 }
2752         case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2753                 switch (pixelformat) {
2754                 case DP_PIXELFORMAT_RGB:
2755                         return "DCI-P3";
2756                 case DP_PIXELFORMAT_YUV444:
2757                 case DP_PIXELFORMAT_YUV422:
2758                 case DP_PIXELFORMAT_YUV420:
2759                         return "sYCC 601";
2760                 default:
2761                         return "Reserved";
2762                 }
2763         case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2764                 switch (pixelformat) {
2765                 case DP_PIXELFORMAT_RGB:
2766                         return "Custom Profile";
2767                 case DP_PIXELFORMAT_YUV444:
2768                 case DP_PIXELFORMAT_YUV422:
2769                 case DP_PIXELFORMAT_YUV420:
2770                         return "OpYCC 601";
2771                 default:
2772                         return "Reserved";
2773                 }
2774         case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2775                 switch (pixelformat) {
2776                 case DP_PIXELFORMAT_RGB:
2777                         return "BT.2020 RGB";
2778                 case DP_PIXELFORMAT_YUV444:
2779                 case DP_PIXELFORMAT_YUV422:
2780                 case DP_PIXELFORMAT_YUV420:
2781                         return "BT.2020 CYCC";
2782                 default:
2783                         return "Reserved";
2784                 }
2785         case DP_COLORIMETRY_BT2020_YCC:
2786                 switch (pixelformat) {
2787                 case DP_PIXELFORMAT_YUV444:
2788                 case DP_PIXELFORMAT_YUV422:
2789                 case DP_PIXELFORMAT_YUV420:
2790                         return "BT.2020 YCC";
2791                 default:
2792                         return "Reserved";
2793                 }
2794         default:
2795                 return "Invalid";
2796         }
2797 }
2798
2799 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2800 {
2801         switch (dynamic_range) {
2802         case DP_DYNAMIC_RANGE_VESA:
2803                 return "VESA range";
2804         case DP_DYNAMIC_RANGE_CTA:
2805                 return "CTA range";
2806         default:
2807                 return "Invalid";
2808         }
2809 }
2810
2811 static const char *dp_content_type_get_name(enum dp_content_type content_type)
2812 {
2813         switch (content_type) {
2814         case DP_CONTENT_TYPE_NOT_DEFINED:
2815                 return "Not defined";
2816         case DP_CONTENT_TYPE_GRAPHICS:
2817                 return "Graphics";
2818         case DP_CONTENT_TYPE_PHOTO:
2819                 return "Photo";
2820         case DP_CONTENT_TYPE_VIDEO:
2821                 return "Video";
2822         case DP_CONTENT_TYPE_GAME:
2823                 return "Game";
2824         default:
2825                 return "Reserved";
2826         }
2827 }
2828
2829 void drm_dp_vsc_sdp_log(const char *level, struct device *dev,
2830                         const struct drm_dp_vsc_sdp *vsc)
2831 {
2832 #define DP_SDP_LOG(fmt, ...) dev_printk(level, dev, fmt, ##__VA_ARGS__)
2833         DP_SDP_LOG("DP SDP: %s, revision %u, length %u\n", "VSC",
2834                    vsc->revision, vsc->length);
2835         DP_SDP_LOG("    pixelformat: %s\n",
2836                    dp_pixelformat_get_name(vsc->pixelformat));
2837         DP_SDP_LOG("    colorimetry: %s\n",
2838                    dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2839         DP_SDP_LOG("    bpc: %u\n", vsc->bpc);
2840         DP_SDP_LOG("    dynamic range: %s\n",
2841                    dp_dynamic_range_get_name(vsc->dynamic_range));
2842         DP_SDP_LOG("    content type: %s\n",
2843                    dp_content_type_get_name(vsc->content_type));
2844 #undef DP_SDP_LOG
2845 }
2846 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2847
2848 /**
2849  * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
2850  * @dpcd: DisplayPort configuration data
2851  * @port_cap: port capabilities
2852  *
2853  * Returns maximum frl bandwidth supported by PCON in GBPS,
2854  * returns 0 if not supported.
2855  */
2856 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2857                                const u8 port_cap[4])
2858 {
2859         int bw;
2860         u8 buf;
2861
2862         buf = port_cap[2];
2863         bw = buf & DP_PCON_MAX_FRL_BW;
2864
2865         switch (bw) {
2866         case DP_PCON_MAX_9GBPS:
2867                 return 9;
2868         case DP_PCON_MAX_18GBPS:
2869                 return 18;
2870         case DP_PCON_MAX_24GBPS:
2871                 return 24;
2872         case DP_PCON_MAX_32GBPS:
2873                 return 32;
2874         case DP_PCON_MAX_40GBPS:
2875                 return 40;
2876         case DP_PCON_MAX_48GBPS:
2877                 return 48;
2878         case DP_PCON_MAX_0GBPS:
2879         default:
2880                 return 0;
2881         }
2882
2883         return 0;
2884 }
2885 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
2886
2887 /**
2888  * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
2889  * @aux: DisplayPort AUX channel
2890  * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
2891  *
2892  * Returns 0 if success, else returns negative error code.
2893  */
2894 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
2895 {
2896         int ret;
2897         u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
2898                  DP_PCON_ENABLE_LINK_FRL_MODE;
2899
2900         if (enable_frl_ready_hpd)
2901                 buf |= DP_PCON_ENABLE_HPD_READY;
2902
2903         ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2904
2905         return ret;
2906 }
2907 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
2908
2909 /**
2910  * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
2911  * @aux: DisplayPort AUX channel
2912  *
2913  * Returns true if success, else returns false.
2914  */
2915 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
2916 {
2917         int ret;
2918         u8 buf;
2919
2920         ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
2921         if (ret < 0)
2922                 return false;
2923
2924         if (buf & DP_PCON_FRL_READY)
2925                 return true;
2926
2927         return false;
2928 }
2929 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
2930
2931 /**
2932  * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
2933  * @aux: DisplayPort AUX channel
2934  * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
2935  * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
2936  * In Concurrent Mode, the FRL link bring up can be done along with
2937  * DP Link training. In Sequential mode, the FRL link bring up is done prior to
2938  * the DP Link training.
2939  *
2940  * Returns 0 if success, else returns negative error code.
2941  */
2942
2943 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
2944                                 u8 frl_mode)
2945 {
2946         int ret;
2947         u8 buf;
2948
2949         ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
2950         if (ret < 0)
2951                 return ret;
2952
2953         if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
2954                 buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
2955         else
2956                 buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
2957
2958         switch (max_frl_gbps) {
2959         case 9:
2960                 buf |=  DP_PCON_ENABLE_MAX_BW_9GBPS;
2961                 break;
2962         case 18:
2963                 buf |=  DP_PCON_ENABLE_MAX_BW_18GBPS;
2964                 break;
2965         case 24:
2966                 buf |=  DP_PCON_ENABLE_MAX_BW_24GBPS;
2967                 break;
2968         case 32:
2969                 buf |=  DP_PCON_ENABLE_MAX_BW_32GBPS;
2970                 break;
2971         case 40:
2972                 buf |=  DP_PCON_ENABLE_MAX_BW_40GBPS;
2973                 break;
2974         case 48:
2975                 buf |=  DP_PCON_ENABLE_MAX_BW_48GBPS;
2976                 break;
2977         case 0:
2978                 buf |=  DP_PCON_ENABLE_MAX_BW_0GBPS;
2979                 break;
2980         default:
2981                 return -EINVAL;
2982         }
2983
2984         ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2985         if (ret < 0)
2986                 return ret;
2987
2988         return 0;
2989 }
2990 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
2991
2992 /**
2993  * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
2994  * @aux: DisplayPort AUX channel
2995  * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
2996  * @frl_type : FRL training type, can be Extended, or Normal.
2997  * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
2998  * starting from min, and stops when link training is successful. In Extended
2999  * FRL training, all frl bw selected in the mask are trained by the PCON.
3000  *
3001  * Returns 0 if success, else returns negative error code.
3002  */
3003 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3004                                 u8 frl_type)
3005 {
3006         int ret;
3007         u8 buf = max_frl_mask;
3008
3009         if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3010                 buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3011         else
3012                 buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3013
3014         ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3015         if (ret < 0)
3016                 return ret;
3017
3018         return 0;
3019 }
3020 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3021
3022 /**
3023  * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3024  * @aux: DisplayPort AUX channel
3025  *
3026  * Returns 0 if success, else returns negative error code.
3027  */
3028 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3029 {
3030         int ret;
3031
3032         ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3033         if (ret < 0)
3034                 return ret;
3035
3036         return 0;
3037 }
3038 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3039
3040 /**
3041  * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3042  * @aux: DisplayPort AUX channel
3043  *
3044  * Returns 0 if success, else returns negative error code.
3045  */
3046 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3047 {
3048         int ret;
3049         u8 buf = 0;
3050
3051         ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3052         if (ret < 0)
3053                 return ret;
3054         if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3055                 drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3056                             aux->name);
3057                 return -EINVAL;
3058         }
3059         buf |= DP_PCON_ENABLE_HDMI_LINK;
3060         ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3061         if (ret < 0)
3062                 return ret;
3063
3064         return 0;
3065 }
3066 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3067
3068 /**
3069  * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3070  * @aux: DisplayPort AUX channel
3071  *
3072  * Returns true if link is active else returns false.
3073  */
3074 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3075 {
3076         u8 buf;
3077         int ret;
3078
3079         ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3080         if (ret < 0)
3081                 return false;
3082
3083         return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3084 }
3085 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3086
3087 /**
3088  * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3089  * @aux: DisplayPort AUX channel
3090  * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3091  * Valid only if the MODE returned is FRL. For Normal Link training mode
3092  * only 1 of the bits will be set, but in case of Extended mode, more than
3093  * one bits can be set.
3094  *
3095  * Returns the link mode : TMDS or FRL on success, else returns negative error
3096  * code.
3097  */
3098 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3099 {
3100         u8 buf;
3101         int mode;
3102         int ret;
3103
3104         ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3105         if (ret < 0)
3106                 return ret;
3107
3108         mode = buf & DP_PCON_HDMI_LINK_MODE;
3109
3110         if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3111                 *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3112
3113         return mode;
3114 }
3115 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3116
3117 /**
3118  * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3119  * during link failure between PCON and HDMI sink
3120  * @aux: DisplayPort AUX channel
3121  * @connector: DRM connector
3122  * code.
3123  **/
3124
3125 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3126                                            struct drm_connector *connector)
3127 {
3128         u8 buf, error_count;
3129         int i, num_error;
3130         struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3131
3132         for (i = 0; i < hdmi->max_lanes; i++) {
3133                 if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3134                         return;
3135
3136                 error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3137                 switch (error_count) {
3138                 case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3139                         num_error = 100;
3140                         break;
3141                 case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3142                         num_error = 10;
3143                         break;
3144                 case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3145                         num_error = 3;
3146                         break;
3147                 default:
3148                         num_error = 0;
3149                 }
3150
3151                 drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3152                         aux->name, num_error, i);
3153         }
3154 }
3155 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3156
3157 /*
3158  * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3159  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3160  *
3161  * Returns true is PCON encoder is DSC 1.2 else returns false.
3162  */
3163 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3164 {
3165         u8 buf;
3166         u8 major_v, minor_v;
3167
3168         buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3169         major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3170         minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3171
3172         if (major_v == 1 && minor_v == 2)
3173                 return true;
3174
3175         return false;
3176 }
3177 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3178
3179 /*
3180  * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3181  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3182  *
3183  * Returns maximum no. of slices supported by the PCON DSC Encoder.
3184  */
3185 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3186 {
3187         u8 slice_cap1, slice_cap2;
3188
3189         slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3190         slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3191
3192         if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3193                 return 24;
3194         if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3195                 return 20;
3196         if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3197                 return 16;
3198         if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3199                 return 12;
3200         if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3201                 return 10;
3202         if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3203                 return 8;
3204         if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3205                 return 6;
3206         if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3207                 return 4;
3208         if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3209                 return 2;
3210         if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3211                 return 1;
3212
3213         return 0;
3214 }
3215 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3216
3217 /*
3218  * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3219  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3220  *
3221  * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3222  */
3223 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3224 {
3225         u8 buf;
3226
3227         buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3228
3229         return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3230 }
3231 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3232
3233 /*
3234  * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3235  * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3236  *
3237  * Returns the bpp precision supported by the PCON encoder.
3238  */
3239 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3240 {
3241         u8 buf;
3242
3243         buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3244
3245         switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3246         case DP_PCON_DSC_ONE_16TH_BPP:
3247                 return 16;
3248         case DP_PCON_DSC_ONE_8TH_BPP:
3249                 return 8;
3250         case DP_PCON_DSC_ONE_4TH_BPP:
3251                 return 4;
3252         case DP_PCON_DSC_ONE_HALF_BPP:
3253                 return 2;
3254         case DP_PCON_DSC_ONE_BPP:
3255                 return 1;
3256         }
3257
3258         return 0;
3259 }
3260 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3261
3262 static
3263 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3264 {
3265         u8 buf;
3266         int ret;
3267
3268         ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3269         if (ret < 0)
3270                 return ret;
3271
3272         buf |= DP_PCON_ENABLE_DSC_ENCODER;
3273
3274         if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3275                 buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3276                 buf |= pps_buf_config << 2;
3277         }
3278
3279         ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3280         if (ret < 0)
3281                 return ret;
3282
3283         return 0;
3284 }
3285
3286 /**
3287  * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3288  * for DSC1.2 between PCON & HDMI2.1 sink
3289  * @aux: DisplayPort AUX channel
3290  *
3291  * Returns 0 on success, else returns negative error code.
3292  */
3293 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3294 {
3295         int ret;
3296
3297         ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3298         if (ret < 0)
3299                 return ret;
3300
3301         return 0;
3302 }
3303 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3304
3305 /**
3306  * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3307  * HDMI sink
3308  * @aux: DisplayPort AUX channel
3309  * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3310  *
3311  * Returns 0 on success, else returns negative error code.
3312  */
3313 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3314 {
3315         int ret;
3316
3317         ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3318         if (ret < 0)
3319                 return ret;
3320
3321         ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3322         if (ret < 0)
3323                 return ret;
3324
3325         return 0;
3326 }
3327 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3328
3329 /*
3330  * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3331  * override registers
3332  * @aux: DisplayPort AUX channel
3333  * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3334  * bits_per_pixel.
3335  *
3336  * Returns 0 on success, else returns negative error code.
3337  */
3338 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3339 {
3340         int ret;
3341
3342         ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3343         if (ret < 0)
3344                 return ret;
3345         ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3346         if (ret < 0)
3347                 return ret;
3348         ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3349         if (ret < 0)
3350                 return ret;
3351
3352         ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3353         if (ret < 0)
3354                 return ret;
3355
3356         return 0;
3357 }
3358 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3359
3360 /*
3361  * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3362  * @aux: displayPort AUX channel
3363  * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3364  *
3365  * Returns 0 on success, else returns negative error code.
3366  */
3367 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3368 {
3369         int ret;
3370         u8 buf;
3371
3372         ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3373         if (ret < 0)
3374                 return ret;
3375
3376         if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3377                 buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3378         else
3379                 buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3380
3381         ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3382         if (ret < 0)
3383                 return ret;
3384
3385         return 0;
3386 }
3387 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3388
3389 /**
3390  * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3391  * @aux: The DP AUX channel to use
3392  * @bl: Backlight capability info from drm_edp_backlight_init()
3393  * @level: The brightness level to set
3394  *
3395  * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3396  * already have been enabled by the driver by calling drm_edp_backlight_enable().
3397  *
3398  * Returns: %0 on success, negative error code on failure
3399  */
3400 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3401                                 u16 level)
3402 {
3403         int ret;
3404         u8 buf[2] = { 0 };
3405
3406         /* The panel uses the PWM for controlling brightness levels */
3407         if (!bl->aux_set)
3408                 return 0;
3409
3410         if (bl->lsb_reg_used) {
3411                 buf[0] = (level & 0xff00) >> 8;
3412                 buf[1] = (level & 0x00ff);
3413         } else {
3414                 buf[0] = level;
3415         }
3416
3417         ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3418         if (ret != sizeof(buf)) {
3419                 drm_err(aux->drm_dev,
3420                         "%s: Failed to write aux backlight level: %d\n",
3421                         aux->name, ret);
3422                 return ret < 0 ? ret : -EIO;
3423         }
3424
3425         return 0;
3426 }
3427 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3428
3429 static int
3430 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3431                              bool enable)
3432 {
3433         int ret;
3434         u8 buf;
3435
3436         /* This panel uses the EDP_BL_PWR GPIO for enablement */
3437         if (!bl->aux_enable)
3438                 return 0;
3439
3440         ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3441         if (ret != 1) {
3442                 drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3443                         aux->name, ret);
3444                 return ret < 0 ? ret : -EIO;
3445         }
3446         if (enable)
3447                 buf |= DP_EDP_BACKLIGHT_ENABLE;
3448         else
3449                 buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3450
3451         ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3452         if (ret != 1) {
3453                 drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3454                         aux->name, ret);
3455                 return ret < 0 ? ret : -EIO;
3456         }
3457
3458         return 0;
3459 }
3460
3461 /**
3462  * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3463  * @aux: The DP AUX channel to use
3464  * @bl: Backlight capability info from drm_edp_backlight_init()
3465  * @level: The initial backlight level to set via AUX, if there is one
3466  *
3467  * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3468  * restoring any important backlight state such as the given backlight level, the brightness byte
3469  * count, backlight frequency, etc.
3470  *
3471  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3472  * that the driver handle enabling/disabling the panel through implementation-specific means using
3473  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3474  * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3475  * the EDP_BL_PWR GPIO.
3476  *
3477  * Returns: %0 on success, negative error code on failure.
3478  */
3479 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3480                              const u16 level)
3481 {
3482         int ret;
3483         u8 dpcd_buf;
3484
3485         if (bl->aux_set)
3486                 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3487         else
3488                 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3489
3490         if (bl->pwmgen_bit_count) {
3491                 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3492                 if (ret != 1)
3493                         drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3494                                     aux->name, ret);
3495         }
3496
3497         if (bl->pwm_freq_pre_divider) {
3498                 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3499                 if (ret != 1)
3500                         drm_dbg_kms(aux->drm_dev,
3501                                     "%s: Failed to write aux backlight frequency: %d\n",
3502                                     aux->name, ret);
3503                 else
3504                         dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3505         }
3506
3507         ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3508         if (ret != 1) {
3509                 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3510                             aux->name, ret);
3511                 return ret < 0 ? ret : -EIO;
3512         }
3513
3514         ret = drm_edp_backlight_set_level(aux, bl, level);
3515         if (ret < 0)
3516                 return ret;
3517         ret = drm_edp_backlight_set_enable(aux, bl, true);
3518         if (ret < 0)
3519                 return ret;
3520
3521         return 0;
3522 }
3523 EXPORT_SYMBOL(drm_edp_backlight_enable);
3524
3525 /**
3526  * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3527  * @aux: The DP AUX channel to use
3528  * @bl: Backlight capability info from drm_edp_backlight_init()
3529  *
3530  * This function handles disabling DPCD backlight controls on a panel over AUX.
3531  *
3532  * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3533  * that the driver handle enabling/disabling the panel through implementation-specific means using
3534  * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3535  * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3536  * the EDP_BL_PWR GPIO.
3537  *
3538  * Returns: %0 on success or no-op, negative error code on failure.
3539  */
3540 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3541 {
3542         int ret;
3543
3544         ret = drm_edp_backlight_set_enable(aux, bl, false);
3545         if (ret < 0)
3546                 return ret;
3547
3548         return 0;
3549 }
3550 EXPORT_SYMBOL(drm_edp_backlight_disable);
3551
3552 static inline int
3553 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3554                             u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3555 {
3556         int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3557         int ret;
3558         u8 pn, pn_min, pn_max;
3559
3560         if (!bl->aux_set)
3561                 return 0;
3562
3563         ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3564         if (ret != 1) {
3565                 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3566                             aux->name, ret);
3567                 return -ENODEV;
3568         }
3569
3570         pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3571         bl->max = (1 << pn) - 1;
3572         if (!driver_pwm_freq_hz)
3573                 return 0;
3574
3575         /*
3576          * Set PWM Frequency divider to match desired frequency provided by the driver.
3577          * The PWM Frequency is calculated as 27Mhz / (F x P).
3578          * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3579          *             EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3580          * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3581          *             EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3582          */
3583
3584         /* Find desired value of (F x P)
3585          * Note that, if F x P is out of supported range, the maximum value or minimum value will
3586          * applied automatically. So no need to check that.
3587          */
3588         fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3589
3590         /* Use highest possible value of Pn for more granularity of brightness adjustment while
3591          * satisfying the conditions below.
3592          * - Pn is in the range of Pn_min and Pn_max
3593          * - F is in the range of 1 and 255
3594          * - FxP is within 25% of desired value.
3595          *   Note: 25% is arbitrary value and may need some tweak.
3596          */
3597         ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3598         if (ret != 1) {
3599                 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3600                             aux->name, ret);
3601                 return 0;
3602         }
3603         ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3604         if (ret != 1) {
3605                 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3606                             aux->name, ret);
3607                 return 0;
3608         }
3609         pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3610         pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3611
3612         /* Ensure frequency is within 25% of desired value */
3613         fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3614         fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3615         if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3616                 drm_dbg_kms(aux->drm_dev,
3617                             "%s: Driver defined backlight frequency (%d) out of range\n",
3618                             aux->name, driver_pwm_freq_hz);
3619                 return 0;
3620         }
3621
3622         for (pn = pn_max; pn >= pn_min; pn--) {
3623                 f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3624                 fxp_actual = f << pn;
3625                 if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3626                         break;
3627         }
3628
3629         ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3630         if (ret != 1) {
3631                 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3632                             aux->name, ret);
3633                 return 0;
3634         }
3635         bl->pwmgen_bit_count = pn;
3636         bl->max = (1 << pn) - 1;
3637
3638         if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3639                 bl->pwm_freq_pre_divider = f;
3640                 drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3641                             aux->name, driver_pwm_freq_hz);
3642         }
3643
3644         return 0;
3645 }
3646
3647 static inline int
3648 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3649                               u8 *current_mode)
3650 {
3651         int ret;
3652         u8 buf[2];
3653         u8 mode_reg;
3654
3655         ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3656         if (ret != 1) {
3657                 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3658                             aux->name, ret);
3659                 return ret < 0 ? ret : -EIO;
3660         }
3661
3662         *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3663         if (!bl->aux_set)
3664                 return 0;
3665
3666         if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3667                 int size = 1 + bl->lsb_reg_used;
3668
3669                 ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3670                 if (ret != size) {
3671                         drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3672                                     aux->name, ret);
3673                         return ret < 0 ? ret : -EIO;
3674                 }
3675
3676                 if (bl->lsb_reg_used)
3677                         return (buf[0] << 8) | buf[1];
3678                 else
3679                         return buf[0];
3680         }
3681
3682         /*
3683          * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3684          * the driver should assume max brightness
3685          */
3686         return bl->max;
3687 }
3688
3689 /**
3690  * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3691  * interface.
3692  * @aux: The DP aux device to use for probing
3693  * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3694  * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3695  * @edp_dpcd: A cached copy of the eDP DPCD
3696  * @current_level: Where to store the probed brightness level, if any
3697  * @current_mode: Where to store the currently set backlight control mode
3698  *
3699  * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3700  * along with also probing the current and maximum supported brightness levels.
3701  *
3702  * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3703  * default frequency from the panel is used.
3704  *
3705  * Returns: %0 on success, negative error code on failure.
3706  */
3707 int
3708 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3709                        u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3710                        u16 *current_level, u8 *current_mode)
3711 {
3712         int ret;
3713
3714         if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3715                 bl->aux_enable = true;
3716         if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3717                 bl->aux_set = true;
3718         if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3719                 bl->lsb_reg_used = true;
3720
3721         /* Sanity check caps */
3722         if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3723                 drm_dbg_kms(aux->drm_dev,
3724                             "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3725                             aux->name);
3726                 return -EINVAL;
3727         }
3728
3729         ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3730         if (ret < 0)
3731                 return ret;
3732
3733         ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3734         if (ret < 0)
3735                 return ret;
3736         *current_level = ret;
3737
3738         drm_dbg_kms(aux->drm_dev,
3739                     "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3740                     aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3741         if (bl->aux_set) {
3742                 drm_dbg_kms(aux->drm_dev,
3743                             "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3744                             aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3745                             bl->lsb_reg_used);
3746         }
3747
3748         return 0;
3749 }
3750 EXPORT_SYMBOL(drm_edp_backlight_init);
3751
3752 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3753         (IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3754
3755 static int dp_aux_backlight_update_status(struct backlight_device *bd)
3756 {
3757         struct dp_aux_backlight *bl = bl_get_data(bd);
3758         u16 brightness = backlight_get_brightness(bd);
3759         int ret = 0;
3760
3761         if (!backlight_is_blank(bd)) {
3762                 if (!bl->enabled) {
3763                         drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3764                         bl->enabled = true;
3765                         return 0;
3766                 }
3767                 ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3768         } else {
3769                 if (bl->enabled) {
3770                         drm_edp_backlight_disable(bl->aux, &bl->info);
3771                         bl->enabled = false;
3772                 }
3773         }
3774
3775         return ret;
3776 }
3777
3778 static const struct backlight_ops dp_aux_bl_ops = {
3779         .update_status = dp_aux_backlight_update_status,
3780 };
3781
3782 /**
3783  * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3784  * @panel: DRM panel
3785  * @aux: The DP AUX channel to use
3786  *
3787  * Use this function to create and handle backlight if your panel
3788  * supports backlight control over DP AUX channel using DPCD
3789  * registers as per VESA's standard backlight control interface.
3790  *
3791  * When the panel is enabled backlight will be enabled after a
3792  * successful call to &drm_panel_funcs.enable()
3793  *
3794  * When the panel is disabled backlight will be disabled before the
3795  * call to &drm_panel_funcs.disable().
3796  *
3797  * A typical implementation for a panel driver supporting backlight
3798  * control over DP AUX will call this function at probe time.
3799  * Backlight will then be handled transparently without requiring
3800  * any intervention from the driver.
3801  *
3802  * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
3803  *
3804  * Return: 0 on success or a negative error code on failure.
3805  */
3806 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
3807 {
3808         struct dp_aux_backlight *bl;
3809         struct backlight_properties props = { 0 };
3810         u16 current_level;
3811         u8 current_mode;
3812         u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
3813         int ret;
3814
3815         if (!panel || !panel->dev || !aux)
3816                 return -EINVAL;
3817
3818         ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
3819                                EDP_DISPLAY_CTL_CAP_SIZE);
3820         if (ret < 0)
3821                 return ret;
3822
3823         if (!drm_edp_backlight_supported(edp_dpcd)) {
3824                 DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
3825                 return 0;
3826         }
3827
3828         bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
3829         if (!bl)
3830                 return -ENOMEM;
3831
3832         bl->aux = aux;
3833
3834         ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
3835                                      &current_level, &current_mode);
3836         if (ret < 0)
3837                 return ret;
3838
3839         props.type = BACKLIGHT_RAW;
3840         props.brightness = current_level;
3841         props.max_brightness = bl->info.max;
3842
3843         bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
3844                                                   panel->dev, bl,
3845                                                   &dp_aux_bl_ops, &props);
3846         if (IS_ERR(bl->base))
3847                 return PTR_ERR(bl->base);
3848
3849         backlight_disable(bl->base);
3850
3851         panel->backlight = bl->base;
3852
3853         return 0;
3854 }
3855 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
3856
3857 #endif
This page took 0.259098 seconds and 4 git commands to generate.