1 // SPDX-License-Identifier: GPL-2.0
3 // Register map access API
5 // Copyright 2011 Wolfson Microelectronics plc
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
22 #define CREATE_TRACE_POINTS
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
36 static inline bool regmap_should_log(struct regmap *map)
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
51 static int _regmap_bus_read(void *context, unsigned int reg,
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
64 const struct regmap_range *r;
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
92 if (map->max_register && reg > map->max_register)
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
99 return regmap_check_range_table(map, reg, map->wr_table);
104 bool regmap_cached(struct regmap *map, unsigned int reg)
109 if (map->cache_type == REGCACHE_NONE)
115 if (map->max_register && reg > map->max_register)
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
127 bool regmap_readable(struct regmap *map, unsigned int reg)
132 if (map->max_register && reg > map->max_register)
135 if (map->format.format_write)
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
142 return regmap_check_range_table(map, reg, map->rd_table);
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
149 if (!map->format.format_write && !regmap_readable(map, reg))
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
164 bool regmap_precious(struct regmap *map, unsigned int reg)
166 if (!regmap_readable(map, reg))
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
215 u8 *out = map->work_buf;
218 out[1] = (reg << 4) | (val >> 16);
224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
227 u8 *out = map->work_buf;
229 *out = (reg << 6) | val;
232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
249 u8 *out = map->work_buf;
253 out[0] = (val >> 16) | (reg << 1);
256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
259 u8 *out = map->work_buf;
262 out[1] = (val >> 8) | (reg << 6);
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
275 put_unaligned_be16(val << shift, buf);
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
280 put_unaligned_le16(val << shift, buf);
283 static void regmap_format_16_native(void *buf, unsigned int val,
286 u16 v = val << shift;
288 memcpy(buf, &v, sizeof(v));
291 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
302 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
304 put_unaligned_be32(val << shift, buf);
307 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
309 put_unaligned_le32(val << shift, buf);
312 static void regmap_format_32_native(void *buf, unsigned int val,
315 u32 v = val << shift;
317 memcpy(buf, &v, sizeof(v));
321 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
323 put_unaligned_be64((u64) val << shift, buf);
326 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
328 put_unaligned_le64((u64) val << shift, buf);
331 static void regmap_format_64_native(void *buf, unsigned int val,
334 u64 v = (u64) val << shift;
336 memcpy(buf, &v, sizeof(v));
340 static void regmap_parse_inplace_noop(void *buf)
344 static unsigned int regmap_parse_8(const void *buf)
351 static unsigned int regmap_parse_16_be(const void *buf)
353 return get_unaligned_be16(buf);
356 static unsigned int regmap_parse_16_le(const void *buf)
358 return get_unaligned_le16(buf);
361 static void regmap_parse_16_be_inplace(void *buf)
363 u16 v = get_unaligned_be16(buf);
365 memcpy(buf, &v, sizeof(v));
368 static void regmap_parse_16_le_inplace(void *buf)
370 u16 v = get_unaligned_le16(buf);
372 memcpy(buf, &v, sizeof(v));
375 static unsigned int regmap_parse_16_native(const void *buf)
379 memcpy(&v, buf, sizeof(v));
383 static unsigned int regmap_parse_24(const void *buf)
386 unsigned int ret = b[2];
387 ret |= ((unsigned int)b[1]) << 8;
388 ret |= ((unsigned int)b[0]) << 16;
393 static unsigned int regmap_parse_32_be(const void *buf)
395 return get_unaligned_be32(buf);
398 static unsigned int regmap_parse_32_le(const void *buf)
400 return get_unaligned_le32(buf);
403 static void regmap_parse_32_be_inplace(void *buf)
405 u32 v = get_unaligned_be32(buf);
407 memcpy(buf, &v, sizeof(v));
410 static void regmap_parse_32_le_inplace(void *buf)
412 u32 v = get_unaligned_le32(buf);
414 memcpy(buf, &v, sizeof(v));
417 static unsigned int regmap_parse_32_native(const void *buf)
421 memcpy(&v, buf, sizeof(v));
426 static unsigned int regmap_parse_64_be(const void *buf)
428 return get_unaligned_be64(buf);
431 static unsigned int regmap_parse_64_le(const void *buf)
433 return get_unaligned_le64(buf);
436 static void regmap_parse_64_be_inplace(void *buf)
438 u64 v = get_unaligned_be64(buf);
440 memcpy(buf, &v, sizeof(v));
443 static void regmap_parse_64_le_inplace(void *buf)
445 u64 v = get_unaligned_le64(buf);
447 memcpy(buf, &v, sizeof(v));
450 static unsigned int regmap_parse_64_native(const void *buf)
454 memcpy(&v, buf, sizeof(v));
459 static void regmap_lock_hwlock(void *__map)
461 struct regmap *map = __map;
463 hwspin_lock_timeout(map->hwlock, UINT_MAX);
466 static void regmap_lock_hwlock_irq(void *__map)
468 struct regmap *map = __map;
470 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
473 static void regmap_lock_hwlock_irqsave(void *__map)
475 struct regmap *map = __map;
477 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 &map->spinlock_flags);
481 static void regmap_unlock_hwlock(void *__map)
483 struct regmap *map = __map;
485 hwspin_unlock(map->hwlock);
488 static void regmap_unlock_hwlock_irq(void *__map)
490 struct regmap *map = __map;
492 hwspin_unlock_irq(map->hwlock);
495 static void regmap_unlock_hwlock_irqrestore(void *__map)
497 struct regmap *map = __map;
499 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
502 static void regmap_lock_unlock_none(void *__map)
507 static void regmap_lock_mutex(void *__map)
509 struct regmap *map = __map;
510 mutex_lock(&map->mutex);
513 static void regmap_unlock_mutex(void *__map)
515 struct regmap *map = __map;
516 mutex_unlock(&map->mutex);
519 static void regmap_lock_spinlock(void *__map)
520 __acquires(&map->spinlock)
522 struct regmap *map = __map;
525 spin_lock_irqsave(&map->spinlock, flags);
526 map->spinlock_flags = flags;
529 static void regmap_unlock_spinlock(void *__map)
530 __releases(&map->spinlock)
532 struct regmap *map = __map;
533 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
536 static void regmap_lock_raw_spinlock(void *__map)
537 __acquires(&map->raw_spinlock)
539 struct regmap *map = __map;
542 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 map->raw_spinlock_flags = flags;
546 static void regmap_unlock_raw_spinlock(void *__map)
547 __releases(&map->raw_spinlock)
549 struct regmap *map = __map;
550 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
553 static void dev_get_regmap_release(struct device *dev, void *res)
556 * We don't actually have anything to do here; the goal here
557 * is not to manage the regmap but to provide a simple way to
558 * get the regmap back given a struct device.
562 static bool _regmap_range_add(struct regmap *map,
563 struct regmap_range_node *data)
565 struct rb_root *root = &map->range_tree;
566 struct rb_node **new = &(root->rb_node), *parent = NULL;
569 struct regmap_range_node *this =
570 rb_entry(*new, struct regmap_range_node, node);
573 if (data->range_max < this->range_min)
574 new = &((*new)->rb_left);
575 else if (data->range_min > this->range_max)
576 new = &((*new)->rb_right);
581 rb_link_node(&data->node, parent, new);
582 rb_insert_color(&data->node, root);
587 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
590 struct rb_node *node = map->range_tree.rb_node;
593 struct regmap_range_node *this =
594 rb_entry(node, struct regmap_range_node, node);
596 if (reg < this->range_min)
597 node = node->rb_left;
598 else if (reg > this->range_max)
599 node = node->rb_right;
607 static void regmap_range_exit(struct regmap *map)
609 struct rb_node *next;
610 struct regmap_range_node *range_node;
612 next = rb_first(&map->range_tree);
614 range_node = rb_entry(next, struct regmap_range_node, node);
615 next = rb_next(&range_node->node);
616 rb_erase(&range_node->node, &map->range_tree);
620 kfree(map->selector_work_buf);
623 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
626 const char *name = kstrdup_const(config->name, GFP_KERNEL);
631 kfree_const(map->name);
638 int regmap_attach_dev(struct device *dev, struct regmap *map,
639 const struct regmap_config *config)
646 ret = regmap_set_name(map, config);
650 regmap_debugfs_exit(map);
651 regmap_debugfs_init(map);
653 /* Add a devres resource for dev_get_regmap() */
654 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
656 regmap_debugfs_exit(map);
664 EXPORT_SYMBOL_GPL(regmap_attach_dev);
666 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
667 const struct regmap_config *config)
669 enum regmap_endian endian;
671 /* Retrieve the endianness specification from the regmap config */
672 endian = config->reg_format_endian;
674 /* If the regmap config specified a non-default value, use that */
675 if (endian != REGMAP_ENDIAN_DEFAULT)
678 /* Retrieve the endianness specification from the bus config */
679 if (bus && bus->reg_format_endian_default)
680 endian = bus->reg_format_endian_default;
682 /* If the bus specified a non-default value, use that */
683 if (endian != REGMAP_ENDIAN_DEFAULT)
686 /* Use this if no other value was found */
687 return REGMAP_ENDIAN_BIG;
690 enum regmap_endian regmap_get_val_endian(struct device *dev,
691 const struct regmap_bus *bus,
692 const struct regmap_config *config)
694 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695 enum regmap_endian endian;
697 /* Retrieve the endianness specification from the regmap config */
698 endian = config->val_format_endian;
700 /* If the regmap config specified a non-default value, use that */
701 if (endian != REGMAP_ENDIAN_DEFAULT)
704 /* If the firmware node exist try to get endianness from it */
705 if (fwnode_property_read_bool(fwnode, "big-endian"))
706 endian = REGMAP_ENDIAN_BIG;
707 else if (fwnode_property_read_bool(fwnode, "little-endian"))
708 endian = REGMAP_ENDIAN_LITTLE;
709 else if (fwnode_property_read_bool(fwnode, "native-endian"))
710 endian = REGMAP_ENDIAN_NATIVE;
712 /* If the endianness was specified in fwnode, use that */
713 if (endian != REGMAP_ENDIAN_DEFAULT)
716 /* Retrieve the endianness specification from the bus config */
717 if (bus && bus->val_format_endian_default)
718 endian = bus->val_format_endian_default;
720 /* If the bus specified a non-default value, use that */
721 if (endian != REGMAP_ENDIAN_DEFAULT)
724 /* Use this if no other value was found */
725 return REGMAP_ENDIAN_BIG;
727 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
729 struct regmap *__regmap_init(struct device *dev,
730 const struct regmap_bus *bus,
732 const struct regmap_config *config,
733 struct lock_class_key *lock_key,
734 const char *lock_name)
738 enum regmap_endian reg_endian, val_endian;
744 map = kzalloc(sizeof(*map), GFP_KERNEL);
750 ret = regmap_set_name(map, config);
754 ret = -EINVAL; /* Later error paths rely on this */
756 if (config->disable_locking) {
757 map->lock = map->unlock = regmap_lock_unlock_none;
758 map->can_sleep = config->can_sleep;
759 regmap_debugfs_disable(map);
760 } else if (config->lock && config->unlock) {
761 map->lock = config->lock;
762 map->unlock = config->unlock;
763 map->lock_arg = config->lock_arg;
764 map->can_sleep = config->can_sleep;
765 } else if (config->use_hwlock) {
766 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
772 switch (config->hwlock_mode) {
773 case HWLOCK_IRQSTATE:
774 map->lock = regmap_lock_hwlock_irqsave;
775 map->unlock = regmap_unlock_hwlock_irqrestore;
778 map->lock = regmap_lock_hwlock_irq;
779 map->unlock = regmap_unlock_hwlock_irq;
782 map->lock = regmap_lock_hwlock;
783 map->unlock = regmap_unlock_hwlock;
789 if ((bus && bus->fast_io) ||
791 if (config->use_raw_spinlock) {
792 raw_spin_lock_init(&map->raw_spinlock);
793 map->lock = regmap_lock_raw_spinlock;
794 map->unlock = regmap_unlock_raw_spinlock;
795 lockdep_set_class_and_name(&map->raw_spinlock,
796 lock_key, lock_name);
798 spin_lock_init(&map->spinlock);
799 map->lock = regmap_lock_spinlock;
800 map->unlock = regmap_unlock_spinlock;
801 lockdep_set_class_and_name(&map->spinlock,
802 lock_key, lock_name);
805 mutex_init(&map->mutex);
806 map->lock = regmap_lock_mutex;
807 map->unlock = regmap_unlock_mutex;
808 map->can_sleep = true;
809 lockdep_set_class_and_name(&map->mutex,
810 lock_key, lock_name);
816 * When we write in fast-paths with regmap_bulk_write() don't allocate
817 * scratch buffers with sleeping allocations.
819 if ((bus && bus->fast_io) || config->fast_io)
820 map->alloc_flags = GFP_ATOMIC;
822 map->alloc_flags = GFP_KERNEL;
824 map->reg_base = config->reg_base;
826 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
827 map->format.pad_bytes = config->pad_bits / 8;
828 map->format.reg_downshift = config->reg_downshift;
829 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
830 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
831 config->val_bits + config->pad_bits, 8);
832 map->reg_shift = config->pad_bits % 8;
833 if (config->reg_stride)
834 map->reg_stride = config->reg_stride;
837 if (is_power_of_2(map->reg_stride))
838 map->reg_stride_order = ilog2(map->reg_stride);
840 map->reg_stride_order = -1;
841 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
842 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
843 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
845 map->max_raw_read = bus->max_raw_read;
846 map->max_raw_write = bus->max_raw_write;
847 } else if (config->max_raw_read && config->max_raw_write) {
848 map->max_raw_read = config->max_raw_read;
849 map->max_raw_write = config->max_raw_write;
853 map->bus_context = bus_context;
854 map->max_register = config->max_register;
855 map->wr_table = config->wr_table;
856 map->rd_table = config->rd_table;
857 map->volatile_table = config->volatile_table;
858 map->precious_table = config->precious_table;
859 map->wr_noinc_table = config->wr_noinc_table;
860 map->rd_noinc_table = config->rd_noinc_table;
861 map->writeable_reg = config->writeable_reg;
862 map->readable_reg = config->readable_reg;
863 map->volatile_reg = config->volatile_reg;
864 map->precious_reg = config->precious_reg;
865 map->writeable_noinc_reg = config->writeable_noinc_reg;
866 map->readable_noinc_reg = config->readable_noinc_reg;
867 map->cache_type = config->cache_type;
869 spin_lock_init(&map->async_lock);
870 INIT_LIST_HEAD(&map->async_list);
871 INIT_LIST_HEAD(&map->async_free);
872 init_waitqueue_head(&map->async_waitq);
874 if (config->read_flag_mask ||
875 config->write_flag_mask ||
876 config->zero_flag_mask) {
877 map->read_flag_mask = config->read_flag_mask;
878 map->write_flag_mask = config->write_flag_mask;
880 map->read_flag_mask = bus->read_flag_mask;
883 if (config && config->read && config->write) {
884 map->reg_read = _regmap_bus_read;
885 if (config->reg_update_bits)
886 map->reg_update_bits = config->reg_update_bits;
888 /* Bulk read/write */
889 map->read = config->read;
890 map->write = config->write;
892 reg_endian = REGMAP_ENDIAN_NATIVE;
893 val_endian = REGMAP_ENDIAN_NATIVE;
895 map->reg_read = config->reg_read;
896 map->reg_write = config->reg_write;
897 map->reg_update_bits = config->reg_update_bits;
899 map->defer_caching = false;
900 goto skip_format_initialization;
901 } else if (!bus->read || !bus->write) {
902 map->reg_read = _regmap_bus_reg_read;
903 map->reg_write = _regmap_bus_reg_write;
904 map->reg_update_bits = bus->reg_update_bits;
906 map->defer_caching = false;
907 goto skip_format_initialization;
909 map->reg_read = _regmap_bus_read;
910 map->reg_update_bits = bus->reg_update_bits;
911 /* Bulk read/write */
912 map->read = bus->read;
913 map->write = bus->write;
915 reg_endian = regmap_get_reg_endian(bus, config);
916 val_endian = regmap_get_val_endian(dev, bus, config);
919 switch (config->reg_bits + map->reg_shift) {
921 switch (config->val_bits) {
923 map->format.format_write = regmap_format_2_6_write;
931 switch (config->val_bits) {
933 map->format.format_write = regmap_format_4_12_write;
941 switch (config->val_bits) {
943 map->format.format_write = regmap_format_7_9_write;
946 map->format.format_write = regmap_format_7_17_write;
954 switch (config->val_bits) {
956 map->format.format_write = regmap_format_10_14_write;
964 switch (config->val_bits) {
966 map->format.format_write = regmap_format_12_20_write;
974 map->format.format_reg = regmap_format_8;
978 switch (reg_endian) {
979 case REGMAP_ENDIAN_BIG:
980 map->format.format_reg = regmap_format_16_be;
982 case REGMAP_ENDIAN_LITTLE:
983 map->format.format_reg = regmap_format_16_le;
985 case REGMAP_ENDIAN_NATIVE:
986 map->format.format_reg = regmap_format_16_native;
994 if (reg_endian != REGMAP_ENDIAN_BIG)
996 map->format.format_reg = regmap_format_24;
1000 switch (reg_endian) {
1001 case REGMAP_ENDIAN_BIG:
1002 map->format.format_reg = regmap_format_32_be;
1004 case REGMAP_ENDIAN_LITTLE:
1005 map->format.format_reg = regmap_format_32_le;
1007 case REGMAP_ENDIAN_NATIVE:
1008 map->format.format_reg = regmap_format_32_native;
1017 switch (reg_endian) {
1018 case REGMAP_ENDIAN_BIG:
1019 map->format.format_reg = regmap_format_64_be;
1021 case REGMAP_ENDIAN_LITTLE:
1022 map->format.format_reg = regmap_format_64_le;
1024 case REGMAP_ENDIAN_NATIVE:
1025 map->format.format_reg = regmap_format_64_native;
1037 if (val_endian == REGMAP_ENDIAN_NATIVE)
1038 map->format.parse_inplace = regmap_parse_inplace_noop;
1040 switch (config->val_bits) {
1042 map->format.format_val = regmap_format_8;
1043 map->format.parse_val = regmap_parse_8;
1044 map->format.parse_inplace = regmap_parse_inplace_noop;
1047 switch (val_endian) {
1048 case REGMAP_ENDIAN_BIG:
1049 map->format.format_val = regmap_format_16_be;
1050 map->format.parse_val = regmap_parse_16_be;
1051 map->format.parse_inplace = regmap_parse_16_be_inplace;
1053 case REGMAP_ENDIAN_LITTLE:
1054 map->format.format_val = regmap_format_16_le;
1055 map->format.parse_val = regmap_parse_16_le;
1056 map->format.parse_inplace = regmap_parse_16_le_inplace;
1058 case REGMAP_ENDIAN_NATIVE:
1059 map->format.format_val = regmap_format_16_native;
1060 map->format.parse_val = regmap_parse_16_native;
1067 if (val_endian != REGMAP_ENDIAN_BIG)
1069 map->format.format_val = regmap_format_24;
1070 map->format.parse_val = regmap_parse_24;
1073 switch (val_endian) {
1074 case REGMAP_ENDIAN_BIG:
1075 map->format.format_val = regmap_format_32_be;
1076 map->format.parse_val = regmap_parse_32_be;
1077 map->format.parse_inplace = regmap_parse_32_be_inplace;
1079 case REGMAP_ENDIAN_LITTLE:
1080 map->format.format_val = regmap_format_32_le;
1081 map->format.parse_val = regmap_parse_32_le;
1082 map->format.parse_inplace = regmap_parse_32_le_inplace;
1084 case REGMAP_ENDIAN_NATIVE:
1085 map->format.format_val = regmap_format_32_native;
1086 map->format.parse_val = regmap_parse_32_native;
1094 switch (val_endian) {
1095 case REGMAP_ENDIAN_BIG:
1096 map->format.format_val = regmap_format_64_be;
1097 map->format.parse_val = regmap_parse_64_be;
1098 map->format.parse_inplace = regmap_parse_64_be_inplace;
1100 case REGMAP_ENDIAN_LITTLE:
1101 map->format.format_val = regmap_format_64_le;
1102 map->format.parse_val = regmap_parse_64_le;
1103 map->format.parse_inplace = regmap_parse_64_le_inplace;
1105 case REGMAP_ENDIAN_NATIVE:
1106 map->format.format_val = regmap_format_64_native;
1107 map->format.parse_val = regmap_parse_64_native;
1116 if (map->format.format_write) {
1117 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1118 (val_endian != REGMAP_ENDIAN_BIG))
1120 map->use_single_write = true;
1123 if (!map->format.format_write &&
1124 !(map->format.format_reg && map->format.format_val))
1127 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1128 if (map->work_buf == NULL) {
1133 if (map->format.format_write) {
1134 map->defer_caching = false;
1135 map->reg_write = _regmap_bus_formatted_write;
1136 } else if (map->format.format_val) {
1137 map->defer_caching = true;
1138 map->reg_write = _regmap_bus_raw_write;
1141 skip_format_initialization:
1143 map->range_tree = RB_ROOT;
1144 for (i = 0; i < config->num_ranges; i++) {
1145 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1146 struct regmap_range_node *new;
1149 if (range_cfg->range_max < range_cfg->range_min) {
1150 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1151 range_cfg->range_max, range_cfg->range_min);
1155 if (range_cfg->range_max > map->max_register) {
1156 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1157 range_cfg->range_max, map->max_register);
1161 if (range_cfg->selector_reg > map->max_register) {
1163 "Invalid range %d: selector out of map\n", i);
1167 if (range_cfg->window_len == 0) {
1168 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1173 /* Make sure, that this register range has no selector
1174 or data window within its boundary */
1175 for (j = 0; j < config->num_ranges; j++) {
1176 unsigned int sel_reg = config->ranges[j].selector_reg;
1177 unsigned int win_min = config->ranges[j].window_start;
1178 unsigned int win_max = win_min +
1179 config->ranges[j].window_len - 1;
1181 /* Allow data window inside its own virtual range */
1185 if (range_cfg->range_min <= sel_reg &&
1186 sel_reg <= range_cfg->range_max) {
1188 "Range %d: selector for %d in window\n",
1193 if (!(win_max < range_cfg->range_min ||
1194 win_min > range_cfg->range_max)) {
1196 "Range %d: window for %d in window\n",
1202 new = kzalloc(sizeof(*new), GFP_KERNEL);
1209 new->name = range_cfg->name;
1210 new->range_min = range_cfg->range_min;
1211 new->range_max = range_cfg->range_max;
1212 new->selector_reg = range_cfg->selector_reg;
1213 new->selector_mask = range_cfg->selector_mask;
1214 new->selector_shift = range_cfg->selector_shift;
1215 new->window_start = range_cfg->window_start;
1216 new->window_len = range_cfg->window_len;
1218 if (!_regmap_range_add(map, new)) {
1219 dev_err(map->dev, "Failed to add range %d\n", i);
1224 if (map->selector_work_buf == NULL) {
1225 map->selector_work_buf =
1226 kzalloc(map->format.buf_size, GFP_KERNEL);
1227 if (map->selector_work_buf == NULL) {
1234 ret = regcache_init(map, config);
1239 ret = regmap_attach_dev(dev, map, config);
1243 regmap_debugfs_init(map);
1251 regmap_range_exit(map);
1252 kfree(map->work_buf);
1255 hwspin_lock_free(map->hwlock);
1257 kfree_const(map->name);
1261 return ERR_PTR(ret);
1263 EXPORT_SYMBOL_GPL(__regmap_init);
1265 static void devm_regmap_release(struct device *dev, void *res)
1267 regmap_exit(*(struct regmap **)res);
1270 struct regmap *__devm_regmap_init(struct device *dev,
1271 const struct regmap_bus *bus,
1273 const struct regmap_config *config,
1274 struct lock_class_key *lock_key,
1275 const char *lock_name)
1277 struct regmap **ptr, *regmap;
1279 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1281 return ERR_PTR(-ENOMEM);
1283 regmap = __regmap_init(dev, bus, bus_context, config,
1284 lock_key, lock_name);
1285 if (!IS_ERR(regmap)) {
1287 devres_add(dev, ptr);
1294 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1296 static void regmap_field_init(struct regmap_field *rm_field,
1297 struct regmap *regmap, struct reg_field reg_field)
1299 rm_field->regmap = regmap;
1300 rm_field->reg = reg_field.reg;
1301 rm_field->shift = reg_field.lsb;
1302 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1304 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1306 rm_field->id_size = reg_field.id_size;
1307 rm_field->id_offset = reg_field.id_offset;
1311 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1313 * @dev: Device that will be interacted with
1314 * @regmap: regmap bank in which this register field is located.
1315 * @reg_field: Register field with in the bank.
1317 * The return value will be an ERR_PTR() on error or a valid pointer
1318 * to a struct regmap_field. The regmap_field will be automatically freed
1319 * by the device management code.
1321 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1322 struct regmap *regmap, struct reg_field reg_field)
1324 struct regmap_field *rm_field = devm_kzalloc(dev,
1325 sizeof(*rm_field), GFP_KERNEL);
1327 return ERR_PTR(-ENOMEM);
1329 regmap_field_init(rm_field, regmap, reg_field);
1334 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1338 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1340 * @regmap: regmap bank in which this register field is located.
1341 * @rm_field: regmap register fields within the bank.
1342 * @reg_field: Register fields within the bank.
1343 * @num_fields: Number of register fields.
1345 * The return value will be an -ENOMEM on error or zero for success.
1346 * Newly allocated regmap_fields should be freed by calling
1347 * regmap_field_bulk_free()
1349 int regmap_field_bulk_alloc(struct regmap *regmap,
1350 struct regmap_field **rm_field,
1351 const struct reg_field *reg_field,
1354 struct regmap_field *rf;
1357 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1361 for (i = 0; i < num_fields; i++) {
1362 regmap_field_init(&rf[i], regmap, reg_field[i]);
1363 rm_field[i] = &rf[i];
1368 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1371 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1374 * @dev: Device that will be interacted with
1375 * @regmap: regmap bank in which this register field is located.
1376 * @rm_field: regmap register fields within the bank.
1377 * @reg_field: Register fields within the bank.
1378 * @num_fields: Number of register fields.
1380 * The return value will be an -ENOMEM on error or zero for success.
1381 * Newly allocated regmap_fields will be automatically freed by the
1382 * device management code.
1384 int devm_regmap_field_bulk_alloc(struct device *dev,
1385 struct regmap *regmap,
1386 struct regmap_field **rm_field,
1387 const struct reg_field *reg_field,
1390 struct regmap_field *rf;
1393 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1397 for (i = 0; i < num_fields; i++) {
1398 regmap_field_init(&rf[i], regmap, reg_field[i]);
1399 rm_field[i] = &rf[i];
1404 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1407 * regmap_field_bulk_free() - Free register field allocated using
1408 * regmap_field_bulk_alloc.
1410 * @field: regmap fields which should be freed.
1412 void regmap_field_bulk_free(struct regmap_field *field)
1416 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1419 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1420 * devm_regmap_field_bulk_alloc.
1422 * @dev: Device that will be interacted with
1423 * @field: regmap field which should be freed.
1425 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1426 * drivers need not call this function, as the memory allocated via devm
1427 * will be freed as per device-driver life-cycle.
1429 void devm_regmap_field_bulk_free(struct device *dev,
1430 struct regmap_field *field)
1432 devm_kfree(dev, field);
1434 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1437 * devm_regmap_field_free() - Free a register field allocated using
1438 * devm_regmap_field_alloc.
1440 * @dev: Device that will be interacted with
1441 * @field: regmap field which should be freed.
1443 * Free register field allocated using devm_regmap_field_alloc(). Usually
1444 * drivers need not call this function, as the memory allocated via devm
1445 * will be freed as per device-driver life-cyle.
1447 void devm_regmap_field_free(struct device *dev,
1448 struct regmap_field *field)
1450 devm_kfree(dev, field);
1452 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1455 * regmap_field_alloc() - Allocate and initialise a register field.
1457 * @regmap: regmap bank in which this register field is located.
1458 * @reg_field: Register field with in the bank.
1460 * The return value will be an ERR_PTR() on error or a valid pointer
1461 * to a struct regmap_field. The regmap_field should be freed by the
1462 * user once its finished working with it using regmap_field_free().
1464 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1465 struct reg_field reg_field)
1467 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1470 return ERR_PTR(-ENOMEM);
1472 regmap_field_init(rm_field, regmap, reg_field);
1476 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1479 * regmap_field_free() - Free register field allocated using
1480 * regmap_field_alloc.
1482 * @field: regmap field which should be freed.
1484 void regmap_field_free(struct regmap_field *field)
1488 EXPORT_SYMBOL_GPL(regmap_field_free);
1491 * regmap_reinit_cache() - Reinitialise the current register cache
1493 * @map: Register map to operate on.
1494 * @config: New configuration. Only the cache data will be used.
1496 * Discard any existing register cache for the map and initialize a
1497 * new cache. This can be used to restore the cache to defaults or to
1498 * update the cache configuration to reflect runtime discovery of the
1501 * No explicit locking is done here, the user needs to ensure that
1502 * this function will not race with other calls to regmap.
1504 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1509 regmap_debugfs_exit(map);
1511 map->max_register = config->max_register;
1512 map->writeable_reg = config->writeable_reg;
1513 map->readable_reg = config->readable_reg;
1514 map->volatile_reg = config->volatile_reg;
1515 map->precious_reg = config->precious_reg;
1516 map->writeable_noinc_reg = config->writeable_noinc_reg;
1517 map->readable_noinc_reg = config->readable_noinc_reg;
1518 map->cache_type = config->cache_type;
1520 ret = regmap_set_name(map, config);
1524 regmap_debugfs_init(map);
1526 map->cache_bypass = false;
1527 map->cache_only = false;
1529 return regcache_init(map, config);
1531 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1534 * regmap_exit() - Free a previously allocated register map
1536 * @map: Register map to operate on.
1538 void regmap_exit(struct regmap *map)
1540 struct regmap_async *async;
1543 regmap_debugfs_exit(map);
1544 regmap_range_exit(map);
1545 if (map->bus && map->bus->free_context)
1546 map->bus->free_context(map->bus_context);
1547 kfree(map->work_buf);
1548 while (!list_empty(&map->async_free)) {
1549 async = list_first_entry_or_null(&map->async_free,
1550 struct regmap_async,
1552 list_del(&async->list);
1553 kfree(async->work_buf);
1557 hwspin_lock_free(map->hwlock);
1558 if (map->lock == regmap_lock_mutex)
1559 mutex_destroy(&map->mutex);
1560 kfree_const(map->name);
1562 if (map->bus && map->bus->free_on_exit)
1566 EXPORT_SYMBOL_GPL(regmap_exit);
1568 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1570 struct regmap **r = res;
1576 /* If the user didn't specify a name match any */
1578 return !strcmp((*r)->name, data);
1584 * dev_get_regmap() - Obtain the regmap (if any) for a device
1586 * @dev: Device to retrieve the map for
1587 * @name: Optional name for the register map, usually NULL.
1589 * Returns the regmap for the device if one is present, or NULL. If
1590 * name is specified then it must match the name specified when
1591 * registering the device, if it is NULL then the first regmap found
1592 * will be used. Devices with multiple register maps are very rare,
1593 * generic code should normally not need to specify a name.
1595 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1597 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1598 dev_get_regmap_match, (void *)name);
1604 EXPORT_SYMBOL_GPL(dev_get_regmap);
1607 * regmap_get_device() - Obtain the device from a regmap
1609 * @map: Register map to operate on.
1611 * Returns the underlying device that the regmap has been created for.
1613 struct device *regmap_get_device(struct regmap *map)
1617 EXPORT_SYMBOL_GPL(regmap_get_device);
1619 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1620 struct regmap_range_node *range,
1621 unsigned int val_num)
1623 void *orig_work_buf;
1624 unsigned int win_offset;
1625 unsigned int win_page;
1629 win_offset = (*reg - range->range_min) % range->window_len;
1630 win_page = (*reg - range->range_min) / range->window_len;
1633 /* Bulk write shouldn't cross range boundary */
1634 if (*reg + val_num - 1 > range->range_max)
1637 /* ... or single page boundary */
1638 if (val_num > range->window_len - win_offset)
1642 /* It is possible to have selector register inside data window.
1643 In that case, selector register is located on every page and
1644 it needs no page switching, when accessed alone. */
1646 range->window_start + win_offset != range->selector_reg) {
1647 /* Use separate work_buf during page switching */
1648 orig_work_buf = map->work_buf;
1649 map->work_buf = map->selector_work_buf;
1651 ret = _regmap_update_bits(map, range->selector_reg,
1652 range->selector_mask,
1653 win_page << range->selector_shift,
1656 map->work_buf = orig_work_buf;
1662 *reg = range->window_start + win_offset;
1667 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1673 if (!mask || !map->work_buf)
1676 buf = map->work_buf;
1678 for (i = 0; i < max_bytes; i++)
1679 buf[i] |= (mask >> (8 * i)) & 0xff;
1682 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1683 const void *val, size_t val_len, bool noinc)
1685 struct regmap_range_node *range;
1686 unsigned long flags;
1687 void *work_val = map->work_buf + map->format.reg_bytes +
1688 map->format.pad_bytes;
1690 int ret = -ENOTSUPP;
1694 /* Check for unwritable or noinc registers in range
1697 if (!regmap_writeable_noinc(map, reg)) {
1698 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1699 unsigned int element =
1700 reg + regmap_get_offset(map, i);
1701 if (!regmap_writeable(map, element) ||
1702 regmap_writeable_noinc(map, element))
1707 if (!map->cache_bypass && map->format.parse_val) {
1709 int val_bytes = map->format.val_bytes;
1710 for (i = 0; i < val_len / val_bytes; i++) {
1711 ival = map->format.parse_val(val + (i * val_bytes));
1712 ret = regcache_write(map,
1713 reg + regmap_get_offset(map, i),
1717 "Error in caching of register: %x ret: %d\n",
1718 reg + regmap_get_offset(map, i), ret);
1722 if (map->cache_only) {
1723 map->cache_dirty = true;
1728 range = _regmap_range_lookup(map, reg);
1730 int val_num = val_len / map->format.val_bytes;
1731 int win_offset = (reg - range->range_min) % range->window_len;
1732 int win_residue = range->window_len - win_offset;
1734 /* If the write goes beyond the end of the window split it */
1735 while (val_num > win_residue) {
1736 dev_dbg(map->dev, "Writing window %d/%zu\n",
1737 win_residue, val_len / map->format.val_bytes);
1738 ret = _regmap_raw_write_impl(map, reg, val,
1740 map->format.val_bytes, noinc);
1745 val_num -= win_residue;
1746 val += win_residue * map->format.val_bytes;
1747 val_len -= win_residue * map->format.val_bytes;
1749 win_offset = (reg - range->range_min) %
1751 win_residue = range->window_len - win_offset;
1754 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1759 reg += map->reg_base;
1760 reg >>= map->format.reg_downshift;
1761 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1762 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1763 map->write_flag_mask);
1766 * Essentially all I/O mechanisms will be faster with a single
1767 * buffer to write. Since register syncs often generate raw
1768 * writes of single registers optimise that case.
1770 if (val != work_val && val_len == map->format.val_bytes) {
1771 memcpy(work_val, val, map->format.val_bytes);
1775 if (map->async && map->bus && map->bus->async_write) {
1776 struct regmap_async *async;
1778 trace_regmap_async_write_start(map, reg, val_len);
1780 spin_lock_irqsave(&map->async_lock, flags);
1781 async = list_first_entry_or_null(&map->async_free,
1782 struct regmap_async,
1785 list_del(&async->list);
1786 spin_unlock_irqrestore(&map->async_lock, flags);
1789 async = map->bus->async_alloc();
1793 async->work_buf = kzalloc(map->format.buf_size,
1794 GFP_KERNEL | GFP_DMA);
1795 if (!async->work_buf) {
1803 /* If the caller supplied the value we can use it safely. */
1804 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1805 map->format.reg_bytes + map->format.val_bytes);
1807 spin_lock_irqsave(&map->async_lock, flags);
1808 list_add_tail(&async->list, &map->async_list);
1809 spin_unlock_irqrestore(&map->async_lock, flags);
1811 if (val != work_val)
1812 ret = map->bus->async_write(map->bus_context,
1814 map->format.reg_bytes +
1815 map->format.pad_bytes,
1816 val, val_len, async);
1818 ret = map->bus->async_write(map->bus_context,
1820 map->format.reg_bytes +
1821 map->format.pad_bytes +
1822 val_len, NULL, 0, async);
1825 dev_err(map->dev, "Failed to schedule write: %d\n",
1828 spin_lock_irqsave(&map->async_lock, flags);
1829 list_move(&async->list, &map->async_free);
1830 spin_unlock_irqrestore(&map->async_lock, flags);
1836 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1838 /* If we're doing a single register write we can probably just
1839 * send the work_buf directly, otherwise try to do a gather
1842 if (val == work_val)
1843 ret = map->write(map->bus_context, map->work_buf,
1844 map->format.reg_bytes +
1845 map->format.pad_bytes +
1847 else if (map->bus && map->bus->gather_write)
1848 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1849 map->format.reg_bytes +
1850 map->format.pad_bytes,
1855 /* If that didn't work fall back on linearising by hand. */
1856 if (ret == -ENOTSUPP) {
1857 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1858 buf = kzalloc(len, GFP_KERNEL);
1862 memcpy(buf, map->work_buf, map->format.reg_bytes);
1863 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1865 ret = map->write(map->bus_context, buf, len);
1868 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1869 /* regcache_drop_region() takes lock that we already have,
1870 * thus call map->cache_ops->drop() directly
1872 if (map->cache_ops && map->cache_ops->drop)
1873 map->cache_ops->drop(map, reg, reg + 1);
1876 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1882 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1884 * @map: Map to check.
1886 bool regmap_can_raw_write(struct regmap *map)
1888 return map->write && map->format.format_val && map->format.format_reg;
1890 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1893 * regmap_get_raw_read_max - Get the maximum size we can read
1895 * @map: Map to check.
1897 size_t regmap_get_raw_read_max(struct regmap *map)
1899 return map->max_raw_read;
1901 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1904 * regmap_get_raw_write_max - Get the maximum size we can read
1906 * @map: Map to check.
1908 size_t regmap_get_raw_write_max(struct regmap *map)
1910 return map->max_raw_write;
1912 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1914 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1918 struct regmap_range_node *range;
1919 struct regmap *map = context;
1921 WARN_ON(!map->format.format_write);
1923 range = _regmap_range_lookup(map, reg);
1925 ret = _regmap_select_page(map, ®, range, 1);
1930 reg += map->reg_base;
1931 reg >>= map->format.reg_downshift;
1932 map->format.format_write(map, reg, val);
1934 trace_regmap_hw_write_start(map, reg, 1);
1936 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1938 trace_regmap_hw_write_done(map, reg, 1);
1943 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1946 struct regmap *map = context;
1948 return map->bus->reg_write(map->bus_context, reg, val);
1951 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1954 struct regmap *map = context;
1956 WARN_ON(!map->format.format_val);
1958 map->format.format_val(map->work_buf + map->format.reg_bytes
1959 + map->format.pad_bytes, val, 0);
1960 return _regmap_raw_write_impl(map, reg,
1962 map->format.reg_bytes +
1963 map->format.pad_bytes,
1964 map->format.val_bytes,
1968 static inline void *_regmap_map_get_context(struct regmap *map)
1970 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1973 int _regmap_write(struct regmap *map, unsigned int reg,
1977 void *context = _regmap_map_get_context(map);
1979 if (!regmap_writeable(map, reg))
1982 if (!map->cache_bypass && !map->defer_caching) {
1983 ret = regcache_write(map, reg, val);
1986 if (map->cache_only) {
1987 map->cache_dirty = true;
1992 ret = map->reg_write(context, reg, val);
1994 if (regmap_should_log(map))
1995 dev_info(map->dev, "%x <= %x\n", reg, val);
1997 trace_regmap_reg_write(map, reg, val);
2004 * regmap_write() - Write a value to a single register
2006 * @map: Register map to write to
2007 * @reg: Register to write to
2008 * @val: Value to be written
2010 * A value of zero will be returned on success, a negative errno will
2011 * be returned in error cases.
2013 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2017 if (!IS_ALIGNED(reg, map->reg_stride))
2020 map->lock(map->lock_arg);
2022 ret = _regmap_write(map, reg, val);
2024 map->unlock(map->lock_arg);
2028 EXPORT_SYMBOL_GPL(regmap_write);
2031 * regmap_write_async() - Write a value to a single register asynchronously
2033 * @map: Register map to write to
2034 * @reg: Register to write to
2035 * @val: Value to be written
2037 * A value of zero will be returned on success, a negative errno will
2038 * be returned in error cases.
2040 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2044 if (!IS_ALIGNED(reg, map->reg_stride))
2047 map->lock(map->lock_arg);
2051 ret = _regmap_write(map, reg, val);
2055 map->unlock(map->lock_arg);
2059 EXPORT_SYMBOL_GPL(regmap_write_async);
2061 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2062 const void *val, size_t val_len, bool noinc)
2064 size_t val_bytes = map->format.val_bytes;
2065 size_t val_count = val_len / val_bytes;
2066 size_t chunk_count, chunk_bytes;
2067 size_t chunk_regs = val_count;
2073 if (map->use_single_write)
2075 else if (map->max_raw_write && val_len > map->max_raw_write)
2076 chunk_regs = map->max_raw_write / val_bytes;
2078 chunk_count = val_count / chunk_regs;
2079 chunk_bytes = chunk_regs * val_bytes;
2081 /* Write as many bytes as possible with chunk_size */
2082 for (i = 0; i < chunk_count; i++) {
2083 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2087 reg += regmap_get_offset(map, chunk_regs);
2089 val_len -= chunk_bytes;
2092 /* Write remaining bytes */
2094 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2100 * regmap_raw_write() - Write raw values to one or more registers
2102 * @map: Register map to write to
2103 * @reg: Initial register to write to
2104 * @val: Block of data to be written, laid out for direct transmission to the
2106 * @val_len: Length of data pointed to by val.
2108 * This function is intended to be used for things like firmware
2109 * download where a large block of data needs to be transferred to the
2110 * device. No formatting will be done on the data provided.
2112 * A value of zero will be returned on success, a negative errno will
2113 * be returned in error cases.
2115 int regmap_raw_write(struct regmap *map, unsigned int reg,
2116 const void *val, size_t val_len)
2120 if (!regmap_can_raw_write(map))
2122 if (val_len % map->format.val_bytes)
2125 map->lock(map->lock_arg);
2127 ret = _regmap_raw_write(map, reg, val, val_len, false);
2129 map->unlock(map->lock_arg);
2133 EXPORT_SYMBOL_GPL(regmap_raw_write);
2136 * regmap_noinc_write(): Write data from a register without incrementing the
2139 * @map: Register map to write to
2140 * @reg: Register to write to
2141 * @val: Pointer to data buffer
2142 * @val_len: Length of output buffer in bytes.
2144 * The regmap API usually assumes that bulk bus write operations will write a
2145 * range of registers. Some devices have certain registers for which a write
2146 * operation can write to an internal FIFO.
2148 * The target register must be volatile but registers after it can be
2149 * completely unrelated cacheable registers.
2151 * This will attempt multiple writes as required to write val_len bytes.
2153 * A value of zero will be returned on success, a negative errno will be
2154 * returned in error cases.
2156 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2157 const void *val, size_t val_len)
2165 if (val_len % map->format.val_bytes)
2167 if (!IS_ALIGNED(reg, map->reg_stride))
2172 map->lock(map->lock_arg);
2174 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2180 if (map->max_raw_write && map->max_raw_write < val_len)
2181 write_len = map->max_raw_write;
2183 write_len = val_len;
2184 ret = _regmap_raw_write(map, reg, val, write_len, true);
2187 val = ((u8 *)val) + write_len;
2188 val_len -= write_len;
2192 map->unlock(map->lock_arg);
2195 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2198 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2201 * @field: Register field to write to
2202 * @mask: Bitmask to change
2203 * @val: Value to be written
2204 * @change: Boolean indicating if a write was done
2205 * @async: Boolean indicating asynchronously
2206 * @force: Boolean indicating use force update
2208 * Perform a read/modify/write cycle on the register field with change,
2209 * async, force option.
2211 * A value of zero will be returned on success, a negative errno will
2212 * be returned in error cases.
2214 int regmap_field_update_bits_base(struct regmap_field *field,
2215 unsigned int mask, unsigned int val,
2216 bool *change, bool async, bool force)
2218 mask = (mask << field->shift) & field->mask;
2220 return regmap_update_bits_base(field->regmap, field->reg,
2221 mask, val << field->shift,
2222 change, async, force);
2224 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2227 * regmap_field_test_bits() - Check if all specified bits are set in a
2230 * @field: Register field to operate on
2231 * @bits: Bits to test
2233 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2234 * tested bits is not set and 1 if all tested bits are set.
2236 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2238 unsigned int val, ret;
2240 ret = regmap_field_read(field, &val);
2244 return (val & bits) == bits;
2246 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2249 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2250 * register field with port ID
2252 * @field: Register field to write to
2254 * @mask: Bitmask to change
2255 * @val: Value to be written
2256 * @change: Boolean indicating if a write was done
2257 * @async: Boolean indicating asynchronously
2258 * @force: Boolean indicating use force update
2260 * A value of zero will be returned on success, a negative errno will
2261 * be returned in error cases.
2263 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2264 unsigned int mask, unsigned int val,
2265 bool *change, bool async, bool force)
2267 if (id >= field->id_size)
2270 mask = (mask << field->shift) & field->mask;
2272 return regmap_update_bits_base(field->regmap,
2273 field->reg + (field->id_offset * id),
2274 mask, val << field->shift,
2275 change, async, force);
2277 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2280 * regmap_bulk_write() - Write multiple registers to the device
2282 * @map: Register map to write to
2283 * @reg: First register to be write from
2284 * @val: Block of data to be written, in native register size for device
2285 * @val_count: Number of registers to write
2287 * This function is intended to be used for writing a large block of
2288 * data to the device either in single transfer or multiple transfer.
2290 * A value of zero will be returned on success, a negative errno will
2291 * be returned in error cases.
2293 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2297 size_t val_bytes = map->format.val_bytes;
2299 if (!IS_ALIGNED(reg, map->reg_stride))
2303 * Some devices don't support bulk write, for them we have a series of
2304 * single write operations.
2306 if (!map->write || !map->format.parse_inplace) {
2307 map->lock(map->lock_arg);
2308 for (i = 0; i < val_count; i++) {
2311 switch (val_bytes) {
2313 ival = *(u8 *)(val + (i * val_bytes));
2316 ival = *(u16 *)(val + (i * val_bytes));
2319 ival = *(u32 *)(val + (i * val_bytes));
2323 ival = *(u64 *)(val + (i * val_bytes));
2331 ret = _regmap_write(map,
2332 reg + regmap_get_offset(map, i),
2338 map->unlock(map->lock_arg);
2342 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2346 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2347 map->format.parse_inplace(wval + i);
2349 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2355 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2358 * _regmap_raw_multi_reg_write()
2360 * the (register,newvalue) pairs in regs have not been formatted, but
2361 * they are all in the same page and have been changed to being page
2362 * relative. The page register has been written if that was necessary.
2364 static int _regmap_raw_multi_reg_write(struct regmap *map,
2365 const struct reg_sequence *regs,
2372 size_t val_bytes = map->format.val_bytes;
2373 size_t reg_bytes = map->format.reg_bytes;
2374 size_t pad_bytes = map->format.pad_bytes;
2375 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2376 size_t len = pair_size * num_regs;
2381 buf = kzalloc(len, GFP_KERNEL);
2385 /* We have to linearise by hand. */
2389 for (i = 0; i < num_regs; i++) {
2390 unsigned int reg = regs[i].reg;
2391 unsigned int val = regs[i].def;
2392 trace_regmap_hw_write_start(map, reg, 1);
2393 reg += map->reg_base;
2394 reg >>= map->format.reg_downshift;
2395 map->format.format_reg(u8, reg, map->reg_shift);
2396 u8 += reg_bytes + pad_bytes;
2397 map->format.format_val(u8, val, 0);
2401 *u8 |= map->write_flag_mask;
2403 ret = map->write(map->bus_context, buf, len);
2407 for (i = 0; i < num_regs; i++) {
2408 int reg = regs[i].reg;
2409 trace_regmap_hw_write_done(map, reg, 1);
2414 static unsigned int _regmap_register_page(struct regmap *map,
2416 struct regmap_range_node *range)
2418 unsigned int win_page = (reg - range->range_min) / range->window_len;
2423 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2424 struct reg_sequence *regs,
2429 struct reg_sequence *base;
2430 unsigned int this_page = 0;
2431 unsigned int page_change = 0;
2433 * the set of registers are not neccessarily in order, but
2434 * since the order of write must be preserved this algorithm
2435 * chops the set each time the page changes. This also applies
2436 * if there is a delay required at any point in the sequence.
2439 for (i = 0, n = 0; i < num_regs; i++, n++) {
2440 unsigned int reg = regs[i].reg;
2441 struct regmap_range_node *range;
2443 range = _regmap_range_lookup(map, reg);
2445 unsigned int win_page = _regmap_register_page(map, reg,
2449 this_page = win_page;
2450 if (win_page != this_page) {
2451 this_page = win_page;
2456 /* If we have both a page change and a delay make sure to
2457 * write the regs and apply the delay before we change the
2461 if (page_change || regs[i].delay_us) {
2463 /* For situations where the first write requires
2464 * a delay we need to make sure we don't call
2465 * raw_multi_reg_write with n=0
2466 * This can't occur with page breaks as we
2467 * never write on the first iteration
2469 if (regs[i].delay_us && i == 0)
2472 ret = _regmap_raw_multi_reg_write(map, base, n);
2476 if (regs[i].delay_us) {
2478 fsleep(regs[i].delay_us);
2480 udelay(regs[i].delay_us);
2487 ret = _regmap_select_page(map,
2500 return _regmap_raw_multi_reg_write(map, base, n);
2504 static int _regmap_multi_reg_write(struct regmap *map,
2505 const struct reg_sequence *regs,
2511 if (!map->can_multi_write) {
2512 for (i = 0; i < num_regs; i++) {
2513 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2517 if (regs[i].delay_us) {
2519 fsleep(regs[i].delay_us);
2521 udelay(regs[i].delay_us);
2527 if (!map->format.parse_inplace)
2530 if (map->writeable_reg)
2531 for (i = 0; i < num_regs; i++) {
2532 int reg = regs[i].reg;
2533 if (!map->writeable_reg(map->dev, reg))
2535 if (!IS_ALIGNED(reg, map->reg_stride))
2539 if (!map->cache_bypass) {
2540 for (i = 0; i < num_regs; i++) {
2541 unsigned int val = regs[i].def;
2542 unsigned int reg = regs[i].reg;
2543 ret = regcache_write(map, reg, val);
2546 "Error in caching of register: %x ret: %d\n",
2551 if (map->cache_only) {
2552 map->cache_dirty = true;
2559 for (i = 0; i < num_regs; i++) {
2560 unsigned int reg = regs[i].reg;
2561 struct regmap_range_node *range;
2563 /* Coalesce all the writes between a page break or a delay
2566 range = _regmap_range_lookup(map, reg);
2567 if (range || regs[i].delay_us) {
2568 size_t len = sizeof(struct reg_sequence)*num_regs;
2569 struct reg_sequence *base = kmemdup(regs, len,
2573 ret = _regmap_range_multi_paged_reg_write(map, base,
2580 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2584 * regmap_multi_reg_write() - Write multiple registers to the device
2586 * @map: Register map to write to
2587 * @regs: Array of structures containing register,value to be written
2588 * @num_regs: Number of registers to write
2590 * Write multiple registers to the device where the set of register, value
2591 * pairs are supplied in any order, possibly not all in a single range.
2593 * The 'normal' block write mode will send ultimately send data on the
2594 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2595 * addressed. However, this alternative block multi write mode will send
2596 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2597 * must of course support the mode.
2599 * A value of zero will be returned on success, a negative errno will be
2600 * returned in error cases.
2602 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2607 map->lock(map->lock_arg);
2609 ret = _regmap_multi_reg_write(map, regs, num_regs);
2611 map->unlock(map->lock_arg);
2615 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2618 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2619 * device but not the cache
2621 * @map: Register map to write to
2622 * @regs: Array of structures containing register,value to be written
2623 * @num_regs: Number of registers to write
2625 * Write multiple registers to the device but not the cache where the set
2626 * of register are supplied in any order.
2628 * This function is intended to be used for writing a large block of data
2629 * atomically to the device in single transfer for those I2C client devices
2630 * that implement this alternative block write mode.
2632 * A value of zero will be returned on success, a negative errno will
2633 * be returned in error cases.
2635 int regmap_multi_reg_write_bypassed(struct regmap *map,
2636 const struct reg_sequence *regs,
2642 map->lock(map->lock_arg);
2644 bypass = map->cache_bypass;
2645 map->cache_bypass = true;
2647 ret = _regmap_multi_reg_write(map, regs, num_regs);
2649 map->cache_bypass = bypass;
2651 map->unlock(map->lock_arg);
2655 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2658 * regmap_raw_write_async() - Write raw values to one or more registers
2661 * @map: Register map to write to
2662 * @reg: Initial register to write to
2663 * @val: Block of data to be written, laid out for direct transmission to the
2664 * device. Must be valid until regmap_async_complete() is called.
2665 * @val_len: Length of data pointed to by val.
2667 * This function is intended to be used for things like firmware
2668 * download where a large block of data needs to be transferred to the
2669 * device. No formatting will be done on the data provided.
2671 * If supported by the underlying bus the write will be scheduled
2672 * asynchronously, helping maximise I/O speed on higher speed buses
2673 * like SPI. regmap_async_complete() can be called to ensure that all
2674 * asynchrnous writes have been completed.
2676 * A value of zero will be returned on success, a negative errno will
2677 * be returned in error cases.
2679 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2680 const void *val, size_t val_len)
2684 if (val_len % map->format.val_bytes)
2686 if (!IS_ALIGNED(reg, map->reg_stride))
2689 map->lock(map->lock_arg);
2693 ret = _regmap_raw_write(map, reg, val, val_len, false);
2697 map->unlock(map->lock_arg);
2701 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2703 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2704 unsigned int val_len, bool noinc)
2706 struct regmap_range_node *range;
2712 range = _regmap_range_lookup(map, reg);
2714 ret = _regmap_select_page(map, ®, range,
2715 noinc ? 1 : val_len / map->format.val_bytes);
2720 reg += map->reg_base;
2721 reg >>= map->format.reg_downshift;
2722 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2723 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2724 map->read_flag_mask);
2725 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2727 ret = map->read(map->bus_context, map->work_buf,
2728 map->format.reg_bytes + map->format.pad_bytes,
2731 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2736 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2739 struct regmap *map = context;
2741 return map->bus->reg_read(map->bus_context, reg, val);
2744 static int _regmap_bus_read(void *context, unsigned int reg,
2748 struct regmap *map = context;
2749 void *work_val = map->work_buf + map->format.reg_bytes +
2750 map->format.pad_bytes;
2752 if (!map->format.parse_val)
2755 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2757 *val = map->format.parse_val(work_val);
2762 static int _regmap_read(struct regmap *map, unsigned int reg,
2766 void *context = _regmap_map_get_context(map);
2768 if (!map->cache_bypass) {
2769 ret = regcache_read(map, reg, val);
2774 if (map->cache_only)
2777 if (!regmap_readable(map, reg))
2780 ret = map->reg_read(context, reg, val);
2782 if (regmap_should_log(map))
2783 dev_info(map->dev, "%x => %x\n", reg, *val);
2785 trace_regmap_reg_read(map, reg, *val);
2787 if (!map->cache_bypass)
2788 regcache_write(map, reg, *val);
2795 * regmap_read() - Read a value from a single register
2797 * @map: Register map to read from
2798 * @reg: Register to be read from
2799 * @val: Pointer to store read value
2801 * A value of zero will be returned on success, a negative errno will
2802 * be returned in error cases.
2804 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2808 if (!IS_ALIGNED(reg, map->reg_stride))
2811 map->lock(map->lock_arg);
2813 ret = _regmap_read(map, reg, val);
2815 map->unlock(map->lock_arg);
2819 EXPORT_SYMBOL_GPL(regmap_read);
2822 * regmap_raw_read() - Read raw data from the device
2824 * @map: Register map to read from
2825 * @reg: First register to be read from
2826 * @val: Pointer to store read value
2827 * @val_len: Size of data to read
2829 * A value of zero will be returned on success, a negative errno will
2830 * be returned in error cases.
2832 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2835 size_t val_bytes = map->format.val_bytes;
2836 size_t val_count = val_len / val_bytes;
2840 if (val_len % map->format.val_bytes)
2842 if (!IS_ALIGNED(reg, map->reg_stride))
2847 map->lock(map->lock_arg);
2849 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2850 map->cache_type == REGCACHE_NONE) {
2851 size_t chunk_count, chunk_bytes;
2852 size_t chunk_regs = val_count;
2859 if (map->use_single_read)
2861 else if (map->max_raw_read && val_len > map->max_raw_read)
2862 chunk_regs = map->max_raw_read / val_bytes;
2864 chunk_count = val_count / chunk_regs;
2865 chunk_bytes = chunk_regs * val_bytes;
2867 /* Read bytes that fit into whole chunks */
2868 for (i = 0; i < chunk_count; i++) {
2869 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2873 reg += regmap_get_offset(map, chunk_regs);
2875 val_len -= chunk_bytes;
2878 /* Read remaining bytes */
2880 ret = _regmap_raw_read(map, reg, val, val_len, false);
2885 /* Otherwise go word by word for the cache; should be low
2886 * cost as we expect to hit the cache.
2888 for (i = 0; i < val_count; i++) {
2889 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2894 map->format.format_val(val + (i * val_bytes), v, 0);
2899 map->unlock(map->lock_arg);
2903 EXPORT_SYMBOL_GPL(regmap_raw_read);
2906 * regmap_noinc_read(): Read data from a register without incrementing the
2909 * @map: Register map to read from
2910 * @reg: Register to read from
2911 * @val: Pointer to data buffer
2912 * @val_len: Length of output buffer in bytes.
2914 * The regmap API usually assumes that bulk read operations will read a
2915 * range of registers. Some devices have certain registers for which a read
2916 * operation read will read from an internal FIFO.
2918 * The target register must be volatile but registers after it can be
2919 * completely unrelated cacheable registers.
2921 * This will attempt multiple reads as required to read val_len bytes.
2923 * A value of zero will be returned on success, a negative errno will be
2924 * returned in error cases.
2926 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2927 void *val, size_t val_len)
2935 if (val_len % map->format.val_bytes)
2937 if (!IS_ALIGNED(reg, map->reg_stride))
2942 map->lock(map->lock_arg);
2944 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2950 if (map->max_raw_read && map->max_raw_read < val_len)
2951 read_len = map->max_raw_read;
2954 ret = _regmap_raw_read(map, reg, val, read_len, true);
2957 val = ((u8 *)val) + read_len;
2958 val_len -= read_len;
2962 map->unlock(map->lock_arg);
2965 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2968 * regmap_field_read(): Read a value to a single register field
2970 * @field: Register field to read from
2971 * @val: Pointer to store read value
2973 * A value of zero will be returned on success, a negative errno will
2974 * be returned in error cases.
2976 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2979 unsigned int reg_val;
2980 ret = regmap_read(field->regmap, field->reg, ®_val);
2984 reg_val &= field->mask;
2985 reg_val >>= field->shift;
2990 EXPORT_SYMBOL_GPL(regmap_field_read);
2993 * regmap_fields_read() - Read a value to a single register field with port ID
2995 * @field: Register field to read from
2997 * @val: Pointer to store read value
2999 * A value of zero will be returned on success, a negative errno will
3000 * be returned in error cases.
3002 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3006 unsigned int reg_val;
3008 if (id >= field->id_size)
3011 ret = regmap_read(field->regmap,
3012 field->reg + (field->id_offset * id),
3017 reg_val &= field->mask;
3018 reg_val >>= field->shift;
3023 EXPORT_SYMBOL_GPL(regmap_fields_read);
3026 * regmap_bulk_read() - Read multiple registers from the device
3028 * @map: Register map to read from
3029 * @reg: First register to be read from
3030 * @val: Pointer to store read value, in native register size for device
3031 * @val_count: Number of registers to read
3033 * A value of zero will be returned on success, a negative errno will
3034 * be returned in error cases.
3036 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3040 size_t val_bytes = map->format.val_bytes;
3041 bool vol = regmap_volatile_range(map, reg, val_count);
3043 if (!IS_ALIGNED(reg, map->reg_stride))
3048 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3049 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3053 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3054 map->format.parse_inplace(val + i);
3063 map->lock(map->lock_arg);
3065 for (i = 0; i < val_count; i++) {
3068 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3073 switch (map->format.val_bytes) {
3095 map->unlock(map->lock_arg);
3100 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3102 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3103 unsigned int mask, unsigned int val,
3104 bool *change, bool force_write)
3107 unsigned int tmp, orig;
3112 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3113 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3114 if (ret == 0 && change)
3117 ret = _regmap_read(map, reg, &orig);
3124 if (force_write || (tmp != orig)) {
3125 ret = _regmap_write(map, reg, tmp);
3126 if (ret == 0 && change)
3135 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3137 * @map: Register map to update
3138 * @reg: Register to update
3139 * @mask: Bitmask to change
3140 * @val: New value for bitmask
3141 * @change: Boolean indicating if a write was done
3142 * @async: Boolean indicating asynchronously
3143 * @force: Boolean indicating use force update
3145 * Perform a read/modify/write cycle on a register map with change, async, force
3150 * With most buses the read must be done synchronously so this is most useful
3151 * for devices with a cache which do not need to interact with the hardware to
3152 * determine the current register value.
3154 * Returns zero for success, a negative number on error.
3156 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3157 unsigned int mask, unsigned int val,
3158 bool *change, bool async, bool force)
3162 map->lock(map->lock_arg);
3166 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3170 map->unlock(map->lock_arg);
3174 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3177 * regmap_test_bits() - Check if all specified bits are set in a register.
3179 * @map: Register map to operate on
3180 * @reg: Register to read from
3181 * @bits: Bits to test
3183 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3184 * bits are set and a negative error number if the underlying regmap_read()
3187 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3189 unsigned int val, ret;
3191 ret = regmap_read(map, reg, &val);
3195 return (val & bits) == bits;
3197 EXPORT_SYMBOL_GPL(regmap_test_bits);
3199 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3201 struct regmap *map = async->map;
3204 trace_regmap_async_io_complete(map);
3206 spin_lock(&map->async_lock);
3207 list_move(&async->list, &map->async_free);
3208 wake = list_empty(&map->async_list);
3211 map->async_ret = ret;
3213 spin_unlock(&map->async_lock);
3216 wake_up(&map->async_waitq);
3218 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3220 static int regmap_async_is_done(struct regmap *map)
3222 unsigned long flags;
3225 spin_lock_irqsave(&map->async_lock, flags);
3226 ret = list_empty(&map->async_list);
3227 spin_unlock_irqrestore(&map->async_lock, flags);
3233 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3235 * @map: Map to operate on.
3237 * Blocks until any pending asynchronous I/O has completed. Returns
3238 * an error code for any failed I/O operations.
3240 int regmap_async_complete(struct regmap *map)
3242 unsigned long flags;
3245 /* Nothing to do with no async support */
3246 if (!map->bus || !map->bus->async_write)
3249 trace_regmap_async_complete_start(map);
3251 wait_event(map->async_waitq, regmap_async_is_done(map));
3253 spin_lock_irqsave(&map->async_lock, flags);
3254 ret = map->async_ret;
3256 spin_unlock_irqrestore(&map->async_lock, flags);
3258 trace_regmap_async_complete_done(map);
3262 EXPORT_SYMBOL_GPL(regmap_async_complete);
3265 * regmap_register_patch - Register and apply register updates to be applied
3266 * on device initialistion
3268 * @map: Register map to apply updates to.
3269 * @regs: Values to update.
3270 * @num_regs: Number of entries in regs.
3272 * Register a set of register updates to be applied to the device
3273 * whenever the device registers are synchronised with the cache and
3274 * apply them immediately. Typically this is used to apply
3275 * corrections to be applied to the device defaults on startup, such
3276 * as the updates some vendors provide to undocumented registers.
3278 * The caller must ensure that this function cannot be called
3279 * concurrently with either itself or regcache_sync().
3281 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3284 struct reg_sequence *p;
3288 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3292 p = krealloc(map->patch,
3293 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3296 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3298 map->patch_regs += num_regs;
3303 map->lock(map->lock_arg);
3305 bypass = map->cache_bypass;
3307 map->cache_bypass = true;
3310 ret = _regmap_multi_reg_write(map, regs, num_regs);
3313 map->cache_bypass = bypass;
3315 map->unlock(map->lock_arg);
3317 regmap_async_complete(map);
3321 EXPORT_SYMBOL_GPL(regmap_register_patch);
3324 * regmap_get_val_bytes() - Report the size of a register value
3326 * @map: Register map to operate on.
3328 * Report the size of a register value, mainly intended to for use by
3329 * generic infrastructure built on top of regmap.
3331 int regmap_get_val_bytes(struct regmap *map)
3333 if (map->format.format_write)
3336 return map->format.val_bytes;
3338 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3341 * regmap_get_max_register() - Report the max register value
3343 * @map: Register map to operate on.
3345 * Report the max register value, mainly intended to for use by
3346 * generic infrastructure built on top of regmap.
3348 int regmap_get_max_register(struct regmap *map)
3350 return map->max_register ? map->max_register : -EINVAL;
3352 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3355 * regmap_get_reg_stride() - Report the register address stride
3357 * @map: Register map to operate on.
3359 * Report the register address stride, mainly intended to for use by
3360 * generic infrastructure built on top of regmap.
3362 int regmap_get_reg_stride(struct regmap *map)
3364 return map->reg_stride;
3366 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3368 int regmap_parse_val(struct regmap *map, const void *buf,
3371 if (!map->format.parse_val)
3374 *val = map->format.parse_val(buf);
3378 EXPORT_SYMBOL_GPL(regmap_parse_val);
3380 static int __init regmap_initcall(void)
3382 regmap_debugfs_initcall();
3386 postcore_initcall(regmap_initcall);