]> Git Repo - linux.git/blob - drivers/base/regmap/regmap.c
Merge tag 'cxl-for-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl
[linux.git] / drivers / base / regmap / regmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <[email protected]>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38         return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46                                unsigned int mask, unsigned int val,
47                                bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50                                 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52                             unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54                                        unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56                                  unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58                                  unsigned int val);
59
60 bool regmap_reg_in_ranges(unsigned int reg,
61                           const struct regmap_range *ranges,
62                           unsigned int nranges)
63 {
64         const struct regmap_range *r;
65         int i;
66
67         for (i = 0, r = ranges; i < nranges; i++, r++)
68                 if (regmap_reg_in_range(reg, r))
69                         return true;
70         return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75                               const struct regmap_access_table *table)
76 {
77         /* Check "no ranges" first */
78         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79                 return false;
80
81         /* In case zero "yes ranges" are supplied, any reg is OK */
82         if (!table->n_yes_ranges)
83                 return true;
84
85         return regmap_reg_in_ranges(reg, table->yes_ranges,
86                                     table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92         if (map->max_register && reg > map->max_register)
93                 return false;
94
95         if (map->writeable_reg)
96                 return map->writeable_reg(map->dev, reg);
97
98         if (map->wr_table)
99                 return regmap_check_range_table(map, reg, map->wr_table);
100
101         return true;
102 }
103
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106         int ret;
107         unsigned int val;
108
109         if (map->cache_type == REGCACHE_NONE)
110                 return false;
111
112         if (!map->cache_ops)
113                 return false;
114
115         if (map->max_register && reg > map->max_register)
116                 return false;
117
118         map->lock(map->lock_arg);
119         ret = regcache_read(map, reg, &val);
120         map->unlock(map->lock_arg);
121         if (ret)
122                 return false;
123
124         return true;
125 }
126
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129         if (!map->reg_read)
130                 return false;
131
132         if (map->max_register && reg > map->max_register)
133                 return false;
134
135         if (map->format.format_write)
136                 return false;
137
138         if (map->readable_reg)
139                 return map->readable_reg(map->dev, reg);
140
141         if (map->rd_table)
142                 return regmap_check_range_table(map, reg, map->rd_table);
143
144         return true;
145 }
146
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149         if (!map->format.format_write && !regmap_readable(map, reg))
150                 return false;
151
152         if (map->volatile_reg)
153                 return map->volatile_reg(map->dev, reg);
154
155         if (map->volatile_table)
156                 return regmap_check_range_table(map, reg, map->volatile_table);
157
158         if (map->cache_ops)
159                 return false;
160         else
161                 return true;
162 }
163
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166         if (!regmap_readable(map, reg))
167                 return false;
168
169         if (map->precious_reg)
170                 return map->precious_reg(map->dev, reg);
171
172         if (map->precious_table)
173                 return regmap_check_range_table(map, reg, map->precious_table);
174
175         return false;
176 }
177
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180         if (map->writeable_noinc_reg)
181                 return map->writeable_noinc_reg(map->dev, reg);
182
183         if (map->wr_noinc_table)
184                 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186         return true;
187 }
188
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191         if (map->readable_noinc_reg)
192                 return map->readable_noinc_reg(map->dev, reg);
193
194         if (map->rd_noinc_table)
195                 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197         return true;
198 }
199
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201         size_t num)
202 {
203         unsigned int i;
204
205         for (i = 0; i < num; i++)
206                 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207                         return false;
208
209         return true;
210 }
211
212 static void regmap_format_12_20_write(struct regmap *map,
213                                      unsigned int reg, unsigned int val)
214 {
215         u8 *out = map->work_buf;
216
217         out[0] = reg >> 4;
218         out[1] = (reg << 4) | (val >> 16);
219         out[2] = val >> 8;
220         out[3] = val;
221 }
222
223
224 static void regmap_format_2_6_write(struct regmap *map,
225                                      unsigned int reg, unsigned int val)
226 {
227         u8 *out = map->work_buf;
228
229         *out = (reg << 6) | val;
230 }
231
232 static void regmap_format_4_12_write(struct regmap *map,
233                                      unsigned int reg, unsigned int val)
234 {
235         __be16 *out = map->work_buf;
236         *out = cpu_to_be16((reg << 12) | val);
237 }
238
239 static void regmap_format_7_9_write(struct regmap *map,
240                                     unsigned int reg, unsigned int val)
241 {
242         __be16 *out = map->work_buf;
243         *out = cpu_to_be16((reg << 9) | val);
244 }
245
246 static void regmap_format_7_17_write(struct regmap *map,
247                                     unsigned int reg, unsigned int val)
248 {
249         u8 *out = map->work_buf;
250
251         out[2] = val;
252         out[1] = val >> 8;
253         out[0] = (val >> 16) | (reg << 1);
254 }
255
256 static void regmap_format_10_14_write(struct regmap *map,
257                                     unsigned int reg, unsigned int val)
258 {
259         u8 *out = map->work_buf;
260
261         out[2] = val;
262         out[1] = (val >> 8) | (reg << 6);
263         out[0] = reg >> 2;
264 }
265
266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268         u8 *b = buf;
269
270         b[0] = val << shift;
271 }
272
273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275         put_unaligned_be16(val << shift, buf);
276 }
277
278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280         put_unaligned_le16(val << shift, buf);
281 }
282
283 static void regmap_format_16_native(void *buf, unsigned int val,
284                                     unsigned int shift)
285 {
286         u16 v = val << shift;
287
288         memcpy(buf, &v, sizeof(v));
289 }
290
291 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292 {
293         u8 *b = buf;
294
295         val <<= shift;
296
297         b[0] = val >> 16;
298         b[1] = val >> 8;
299         b[2] = val;
300 }
301
302 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303 {
304         put_unaligned_be32(val << shift, buf);
305 }
306
307 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308 {
309         put_unaligned_le32(val << shift, buf);
310 }
311
312 static void regmap_format_32_native(void *buf, unsigned int val,
313                                     unsigned int shift)
314 {
315         u32 v = val << shift;
316
317         memcpy(buf, &v, sizeof(v));
318 }
319
320 #ifdef CONFIG_64BIT
321 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322 {
323         put_unaligned_be64((u64) val << shift, buf);
324 }
325
326 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327 {
328         put_unaligned_le64((u64) val << shift, buf);
329 }
330
331 static void regmap_format_64_native(void *buf, unsigned int val,
332                                     unsigned int shift)
333 {
334         u64 v = (u64) val << shift;
335
336         memcpy(buf, &v, sizeof(v));
337 }
338 #endif
339
340 static void regmap_parse_inplace_noop(void *buf)
341 {
342 }
343
344 static unsigned int regmap_parse_8(const void *buf)
345 {
346         const u8 *b = buf;
347
348         return b[0];
349 }
350
351 static unsigned int regmap_parse_16_be(const void *buf)
352 {
353         return get_unaligned_be16(buf);
354 }
355
356 static unsigned int regmap_parse_16_le(const void *buf)
357 {
358         return get_unaligned_le16(buf);
359 }
360
361 static void regmap_parse_16_be_inplace(void *buf)
362 {
363         u16 v = get_unaligned_be16(buf);
364
365         memcpy(buf, &v, sizeof(v));
366 }
367
368 static void regmap_parse_16_le_inplace(void *buf)
369 {
370         u16 v = get_unaligned_le16(buf);
371
372         memcpy(buf, &v, sizeof(v));
373 }
374
375 static unsigned int regmap_parse_16_native(const void *buf)
376 {
377         u16 v;
378
379         memcpy(&v, buf, sizeof(v));
380         return v;
381 }
382
383 static unsigned int regmap_parse_24(const void *buf)
384 {
385         const u8 *b = buf;
386         unsigned int ret = b[2];
387         ret |= ((unsigned int)b[1]) << 8;
388         ret |= ((unsigned int)b[0]) << 16;
389
390         return ret;
391 }
392
393 static unsigned int regmap_parse_32_be(const void *buf)
394 {
395         return get_unaligned_be32(buf);
396 }
397
398 static unsigned int regmap_parse_32_le(const void *buf)
399 {
400         return get_unaligned_le32(buf);
401 }
402
403 static void regmap_parse_32_be_inplace(void *buf)
404 {
405         u32 v = get_unaligned_be32(buf);
406
407         memcpy(buf, &v, sizeof(v));
408 }
409
410 static void regmap_parse_32_le_inplace(void *buf)
411 {
412         u32 v = get_unaligned_le32(buf);
413
414         memcpy(buf, &v, sizeof(v));
415 }
416
417 static unsigned int regmap_parse_32_native(const void *buf)
418 {
419         u32 v;
420
421         memcpy(&v, buf, sizeof(v));
422         return v;
423 }
424
425 #ifdef CONFIG_64BIT
426 static unsigned int regmap_parse_64_be(const void *buf)
427 {
428         return get_unaligned_be64(buf);
429 }
430
431 static unsigned int regmap_parse_64_le(const void *buf)
432 {
433         return get_unaligned_le64(buf);
434 }
435
436 static void regmap_parse_64_be_inplace(void *buf)
437 {
438         u64 v =  get_unaligned_be64(buf);
439
440         memcpy(buf, &v, sizeof(v));
441 }
442
443 static void regmap_parse_64_le_inplace(void *buf)
444 {
445         u64 v = get_unaligned_le64(buf);
446
447         memcpy(buf, &v, sizeof(v));
448 }
449
450 static unsigned int regmap_parse_64_native(const void *buf)
451 {
452         u64 v;
453
454         memcpy(&v, buf, sizeof(v));
455         return v;
456 }
457 #endif
458
459 static void regmap_lock_hwlock(void *__map)
460 {
461         struct regmap *map = __map;
462
463         hwspin_lock_timeout(map->hwlock, UINT_MAX);
464 }
465
466 static void regmap_lock_hwlock_irq(void *__map)
467 {
468         struct regmap *map = __map;
469
470         hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471 }
472
473 static void regmap_lock_hwlock_irqsave(void *__map)
474 {
475         struct regmap *map = __map;
476
477         hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478                                     &map->spinlock_flags);
479 }
480
481 static void regmap_unlock_hwlock(void *__map)
482 {
483         struct regmap *map = __map;
484
485         hwspin_unlock(map->hwlock);
486 }
487
488 static void regmap_unlock_hwlock_irq(void *__map)
489 {
490         struct regmap *map = __map;
491
492         hwspin_unlock_irq(map->hwlock);
493 }
494
495 static void regmap_unlock_hwlock_irqrestore(void *__map)
496 {
497         struct regmap *map = __map;
498
499         hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500 }
501
502 static void regmap_lock_unlock_none(void *__map)
503 {
504
505 }
506
507 static void regmap_lock_mutex(void *__map)
508 {
509         struct regmap *map = __map;
510         mutex_lock(&map->mutex);
511 }
512
513 static void regmap_unlock_mutex(void *__map)
514 {
515         struct regmap *map = __map;
516         mutex_unlock(&map->mutex);
517 }
518
519 static void regmap_lock_spinlock(void *__map)
520 __acquires(&map->spinlock)
521 {
522         struct regmap *map = __map;
523         unsigned long flags;
524
525         spin_lock_irqsave(&map->spinlock, flags);
526         map->spinlock_flags = flags;
527 }
528
529 static void regmap_unlock_spinlock(void *__map)
530 __releases(&map->spinlock)
531 {
532         struct regmap *map = __map;
533         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534 }
535
536 static void regmap_lock_raw_spinlock(void *__map)
537 __acquires(&map->raw_spinlock)
538 {
539         struct regmap *map = __map;
540         unsigned long flags;
541
542         raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543         map->raw_spinlock_flags = flags;
544 }
545
546 static void regmap_unlock_raw_spinlock(void *__map)
547 __releases(&map->raw_spinlock)
548 {
549         struct regmap *map = __map;
550         raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
551 }
552
553 static void dev_get_regmap_release(struct device *dev, void *res)
554 {
555         /*
556          * We don't actually have anything to do here; the goal here
557          * is not to manage the regmap but to provide a simple way to
558          * get the regmap back given a struct device.
559          */
560 }
561
562 static bool _regmap_range_add(struct regmap *map,
563                               struct regmap_range_node *data)
564 {
565         struct rb_root *root = &map->range_tree;
566         struct rb_node **new = &(root->rb_node), *parent = NULL;
567
568         while (*new) {
569                 struct regmap_range_node *this =
570                         rb_entry(*new, struct regmap_range_node, node);
571
572                 parent = *new;
573                 if (data->range_max < this->range_min)
574                         new = &((*new)->rb_left);
575                 else if (data->range_min > this->range_max)
576                         new = &((*new)->rb_right);
577                 else
578                         return false;
579         }
580
581         rb_link_node(&data->node, parent, new);
582         rb_insert_color(&data->node, root);
583
584         return true;
585 }
586
587 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
588                                                       unsigned int reg)
589 {
590         struct rb_node *node = map->range_tree.rb_node;
591
592         while (node) {
593                 struct regmap_range_node *this =
594                         rb_entry(node, struct regmap_range_node, node);
595
596                 if (reg < this->range_min)
597                         node = node->rb_left;
598                 else if (reg > this->range_max)
599                         node = node->rb_right;
600                 else
601                         return this;
602         }
603
604         return NULL;
605 }
606
607 static void regmap_range_exit(struct regmap *map)
608 {
609         struct rb_node *next;
610         struct regmap_range_node *range_node;
611
612         next = rb_first(&map->range_tree);
613         while (next) {
614                 range_node = rb_entry(next, struct regmap_range_node, node);
615                 next = rb_next(&range_node->node);
616                 rb_erase(&range_node->node, &map->range_tree);
617                 kfree(range_node);
618         }
619
620         kfree(map->selector_work_buf);
621 }
622
623 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
624 {
625         if (config->name) {
626                 const char *name = kstrdup_const(config->name, GFP_KERNEL);
627
628                 if (!name)
629                         return -ENOMEM;
630
631                 kfree_const(map->name);
632                 map->name = name;
633         }
634
635         return 0;
636 }
637
638 int regmap_attach_dev(struct device *dev, struct regmap *map,
639                       const struct regmap_config *config)
640 {
641         struct regmap **m;
642         int ret;
643
644         map->dev = dev;
645
646         ret = regmap_set_name(map, config);
647         if (ret)
648                 return ret;
649
650         regmap_debugfs_exit(map);
651         regmap_debugfs_init(map);
652
653         /* Add a devres resource for dev_get_regmap() */
654         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
655         if (!m) {
656                 regmap_debugfs_exit(map);
657                 return -ENOMEM;
658         }
659         *m = map;
660         devres_add(dev, m);
661
662         return 0;
663 }
664 EXPORT_SYMBOL_GPL(regmap_attach_dev);
665
666 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
667                                         const struct regmap_config *config)
668 {
669         enum regmap_endian endian;
670
671         /* Retrieve the endianness specification from the regmap config */
672         endian = config->reg_format_endian;
673
674         /* If the regmap config specified a non-default value, use that */
675         if (endian != REGMAP_ENDIAN_DEFAULT)
676                 return endian;
677
678         /* Retrieve the endianness specification from the bus config */
679         if (bus && bus->reg_format_endian_default)
680                 endian = bus->reg_format_endian_default;
681
682         /* If the bus specified a non-default value, use that */
683         if (endian != REGMAP_ENDIAN_DEFAULT)
684                 return endian;
685
686         /* Use this if no other value was found */
687         return REGMAP_ENDIAN_BIG;
688 }
689
690 enum regmap_endian regmap_get_val_endian(struct device *dev,
691                                          const struct regmap_bus *bus,
692                                          const struct regmap_config *config)
693 {
694         struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695         enum regmap_endian endian;
696
697         /* Retrieve the endianness specification from the regmap config */
698         endian = config->val_format_endian;
699
700         /* If the regmap config specified a non-default value, use that */
701         if (endian != REGMAP_ENDIAN_DEFAULT)
702                 return endian;
703
704         /* If the firmware node exist try to get endianness from it */
705         if (fwnode_property_read_bool(fwnode, "big-endian"))
706                 endian = REGMAP_ENDIAN_BIG;
707         else if (fwnode_property_read_bool(fwnode, "little-endian"))
708                 endian = REGMAP_ENDIAN_LITTLE;
709         else if (fwnode_property_read_bool(fwnode, "native-endian"))
710                 endian = REGMAP_ENDIAN_NATIVE;
711
712         /* If the endianness was specified in fwnode, use that */
713         if (endian != REGMAP_ENDIAN_DEFAULT)
714                 return endian;
715
716         /* Retrieve the endianness specification from the bus config */
717         if (bus && bus->val_format_endian_default)
718                 endian = bus->val_format_endian_default;
719
720         /* If the bus specified a non-default value, use that */
721         if (endian != REGMAP_ENDIAN_DEFAULT)
722                 return endian;
723
724         /* Use this if no other value was found */
725         return REGMAP_ENDIAN_BIG;
726 }
727 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
728
729 struct regmap *__regmap_init(struct device *dev,
730                              const struct regmap_bus *bus,
731                              void *bus_context,
732                              const struct regmap_config *config,
733                              struct lock_class_key *lock_key,
734                              const char *lock_name)
735 {
736         struct regmap *map;
737         int ret = -EINVAL;
738         enum regmap_endian reg_endian, val_endian;
739         int i, j;
740
741         if (!config)
742                 goto err;
743
744         map = kzalloc(sizeof(*map), GFP_KERNEL);
745         if (map == NULL) {
746                 ret = -ENOMEM;
747                 goto err;
748         }
749
750         ret = regmap_set_name(map, config);
751         if (ret)
752                 goto err_map;
753
754         ret = -EINVAL; /* Later error paths rely on this */
755
756         if (config->disable_locking) {
757                 map->lock = map->unlock = regmap_lock_unlock_none;
758                 map->can_sleep = config->can_sleep;
759                 regmap_debugfs_disable(map);
760         } else if (config->lock && config->unlock) {
761                 map->lock = config->lock;
762                 map->unlock = config->unlock;
763                 map->lock_arg = config->lock_arg;
764                 map->can_sleep = config->can_sleep;
765         } else if (config->use_hwlock) {
766                 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
767                 if (!map->hwlock) {
768                         ret = -ENXIO;
769                         goto err_name;
770                 }
771
772                 switch (config->hwlock_mode) {
773                 case HWLOCK_IRQSTATE:
774                         map->lock = regmap_lock_hwlock_irqsave;
775                         map->unlock = regmap_unlock_hwlock_irqrestore;
776                         break;
777                 case HWLOCK_IRQ:
778                         map->lock = regmap_lock_hwlock_irq;
779                         map->unlock = regmap_unlock_hwlock_irq;
780                         break;
781                 default:
782                         map->lock = regmap_lock_hwlock;
783                         map->unlock = regmap_unlock_hwlock;
784                         break;
785                 }
786
787                 map->lock_arg = map;
788         } else {
789                 if ((bus && bus->fast_io) ||
790                     config->fast_io) {
791                         if (config->use_raw_spinlock) {
792                                 raw_spin_lock_init(&map->raw_spinlock);
793                                 map->lock = regmap_lock_raw_spinlock;
794                                 map->unlock = regmap_unlock_raw_spinlock;
795                                 lockdep_set_class_and_name(&map->raw_spinlock,
796                                                            lock_key, lock_name);
797                         } else {
798                                 spin_lock_init(&map->spinlock);
799                                 map->lock = regmap_lock_spinlock;
800                                 map->unlock = regmap_unlock_spinlock;
801                                 lockdep_set_class_and_name(&map->spinlock,
802                                                            lock_key, lock_name);
803                         }
804                 } else {
805                         mutex_init(&map->mutex);
806                         map->lock = regmap_lock_mutex;
807                         map->unlock = regmap_unlock_mutex;
808                         map->can_sleep = true;
809                         lockdep_set_class_and_name(&map->mutex,
810                                                    lock_key, lock_name);
811                 }
812                 map->lock_arg = map;
813         }
814
815         /*
816          * When we write in fast-paths with regmap_bulk_write() don't allocate
817          * scratch buffers with sleeping allocations.
818          */
819         if ((bus && bus->fast_io) || config->fast_io)
820                 map->alloc_flags = GFP_ATOMIC;
821         else
822                 map->alloc_flags = GFP_KERNEL;
823
824         map->reg_base = config->reg_base;
825
826         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
827         map->format.pad_bytes = config->pad_bits / 8;
828         map->format.reg_downshift = config->reg_downshift;
829         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
830         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
831                         config->val_bits + config->pad_bits, 8);
832         map->reg_shift = config->pad_bits % 8;
833         if (config->reg_stride)
834                 map->reg_stride = config->reg_stride;
835         else
836                 map->reg_stride = 1;
837         if (is_power_of_2(map->reg_stride))
838                 map->reg_stride_order = ilog2(map->reg_stride);
839         else
840                 map->reg_stride_order = -1;
841         map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
842         map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
843         map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
844         if (bus) {
845                 map->max_raw_read = bus->max_raw_read;
846                 map->max_raw_write = bus->max_raw_write;
847         } else if (config->max_raw_read && config->max_raw_write) {
848                 map->max_raw_read = config->max_raw_read;
849                 map->max_raw_write = config->max_raw_write;
850         }
851         map->dev = dev;
852         map->bus = bus;
853         map->bus_context = bus_context;
854         map->max_register = config->max_register;
855         map->wr_table = config->wr_table;
856         map->rd_table = config->rd_table;
857         map->volatile_table = config->volatile_table;
858         map->precious_table = config->precious_table;
859         map->wr_noinc_table = config->wr_noinc_table;
860         map->rd_noinc_table = config->rd_noinc_table;
861         map->writeable_reg = config->writeable_reg;
862         map->readable_reg = config->readable_reg;
863         map->volatile_reg = config->volatile_reg;
864         map->precious_reg = config->precious_reg;
865         map->writeable_noinc_reg = config->writeable_noinc_reg;
866         map->readable_noinc_reg = config->readable_noinc_reg;
867         map->cache_type = config->cache_type;
868
869         spin_lock_init(&map->async_lock);
870         INIT_LIST_HEAD(&map->async_list);
871         INIT_LIST_HEAD(&map->async_free);
872         init_waitqueue_head(&map->async_waitq);
873
874         if (config->read_flag_mask ||
875             config->write_flag_mask ||
876             config->zero_flag_mask) {
877                 map->read_flag_mask = config->read_flag_mask;
878                 map->write_flag_mask = config->write_flag_mask;
879         } else if (bus) {
880                 map->read_flag_mask = bus->read_flag_mask;
881         }
882
883         if (config && config->read && config->write) {
884                 map->reg_read  = _regmap_bus_read;
885                 if (config->reg_update_bits)
886                         map->reg_update_bits = config->reg_update_bits;
887
888                 /* Bulk read/write */
889                 map->read = config->read;
890                 map->write = config->write;
891
892                 reg_endian = REGMAP_ENDIAN_NATIVE;
893                 val_endian = REGMAP_ENDIAN_NATIVE;
894         } else if (!bus) {
895                 map->reg_read  = config->reg_read;
896                 map->reg_write = config->reg_write;
897                 map->reg_update_bits = config->reg_update_bits;
898
899                 map->defer_caching = false;
900                 goto skip_format_initialization;
901         } else if (!bus->read || !bus->write) {
902                 map->reg_read = _regmap_bus_reg_read;
903                 map->reg_write = _regmap_bus_reg_write;
904                 map->reg_update_bits = bus->reg_update_bits;
905
906                 map->defer_caching = false;
907                 goto skip_format_initialization;
908         } else {
909                 map->reg_read  = _regmap_bus_read;
910                 map->reg_update_bits = bus->reg_update_bits;
911                 /* Bulk read/write */
912                 map->read = bus->read;
913                 map->write = bus->write;
914
915                 reg_endian = regmap_get_reg_endian(bus, config);
916                 val_endian = regmap_get_val_endian(dev, bus, config);
917         }
918
919         switch (config->reg_bits + map->reg_shift) {
920         case 2:
921                 switch (config->val_bits) {
922                 case 6:
923                         map->format.format_write = regmap_format_2_6_write;
924                         break;
925                 default:
926                         goto err_hwlock;
927                 }
928                 break;
929
930         case 4:
931                 switch (config->val_bits) {
932                 case 12:
933                         map->format.format_write = regmap_format_4_12_write;
934                         break;
935                 default:
936                         goto err_hwlock;
937                 }
938                 break;
939
940         case 7:
941                 switch (config->val_bits) {
942                 case 9:
943                         map->format.format_write = regmap_format_7_9_write;
944                         break;
945                 case 17:
946                         map->format.format_write = regmap_format_7_17_write;
947                         break;
948                 default:
949                         goto err_hwlock;
950                 }
951                 break;
952
953         case 10:
954                 switch (config->val_bits) {
955                 case 14:
956                         map->format.format_write = regmap_format_10_14_write;
957                         break;
958                 default:
959                         goto err_hwlock;
960                 }
961                 break;
962
963         case 12:
964                 switch (config->val_bits) {
965                 case 20:
966                         map->format.format_write = regmap_format_12_20_write;
967                         break;
968                 default:
969                         goto err_hwlock;
970                 }
971                 break;
972
973         case 8:
974                 map->format.format_reg = regmap_format_8;
975                 break;
976
977         case 16:
978                 switch (reg_endian) {
979                 case REGMAP_ENDIAN_BIG:
980                         map->format.format_reg = regmap_format_16_be;
981                         break;
982                 case REGMAP_ENDIAN_LITTLE:
983                         map->format.format_reg = regmap_format_16_le;
984                         break;
985                 case REGMAP_ENDIAN_NATIVE:
986                         map->format.format_reg = regmap_format_16_native;
987                         break;
988                 default:
989                         goto err_hwlock;
990                 }
991                 break;
992
993         case 24:
994                 if (reg_endian != REGMAP_ENDIAN_BIG)
995                         goto err_hwlock;
996                 map->format.format_reg = regmap_format_24;
997                 break;
998
999         case 32:
1000                 switch (reg_endian) {
1001                 case REGMAP_ENDIAN_BIG:
1002                         map->format.format_reg = regmap_format_32_be;
1003                         break;
1004                 case REGMAP_ENDIAN_LITTLE:
1005                         map->format.format_reg = regmap_format_32_le;
1006                         break;
1007                 case REGMAP_ENDIAN_NATIVE:
1008                         map->format.format_reg = regmap_format_32_native;
1009                         break;
1010                 default:
1011                         goto err_hwlock;
1012                 }
1013                 break;
1014
1015 #ifdef CONFIG_64BIT
1016         case 64:
1017                 switch (reg_endian) {
1018                 case REGMAP_ENDIAN_BIG:
1019                         map->format.format_reg = regmap_format_64_be;
1020                         break;
1021                 case REGMAP_ENDIAN_LITTLE:
1022                         map->format.format_reg = regmap_format_64_le;
1023                         break;
1024                 case REGMAP_ENDIAN_NATIVE:
1025                         map->format.format_reg = regmap_format_64_native;
1026                         break;
1027                 default:
1028                         goto err_hwlock;
1029                 }
1030                 break;
1031 #endif
1032
1033         default:
1034                 goto err_hwlock;
1035         }
1036
1037         if (val_endian == REGMAP_ENDIAN_NATIVE)
1038                 map->format.parse_inplace = regmap_parse_inplace_noop;
1039
1040         switch (config->val_bits) {
1041         case 8:
1042                 map->format.format_val = regmap_format_8;
1043                 map->format.parse_val = regmap_parse_8;
1044                 map->format.parse_inplace = regmap_parse_inplace_noop;
1045                 break;
1046         case 16:
1047                 switch (val_endian) {
1048                 case REGMAP_ENDIAN_BIG:
1049                         map->format.format_val = regmap_format_16_be;
1050                         map->format.parse_val = regmap_parse_16_be;
1051                         map->format.parse_inplace = regmap_parse_16_be_inplace;
1052                         break;
1053                 case REGMAP_ENDIAN_LITTLE:
1054                         map->format.format_val = regmap_format_16_le;
1055                         map->format.parse_val = regmap_parse_16_le;
1056                         map->format.parse_inplace = regmap_parse_16_le_inplace;
1057                         break;
1058                 case REGMAP_ENDIAN_NATIVE:
1059                         map->format.format_val = regmap_format_16_native;
1060                         map->format.parse_val = regmap_parse_16_native;
1061                         break;
1062                 default:
1063                         goto err_hwlock;
1064                 }
1065                 break;
1066         case 24:
1067                 if (val_endian != REGMAP_ENDIAN_BIG)
1068                         goto err_hwlock;
1069                 map->format.format_val = regmap_format_24;
1070                 map->format.parse_val = regmap_parse_24;
1071                 break;
1072         case 32:
1073                 switch (val_endian) {
1074                 case REGMAP_ENDIAN_BIG:
1075                         map->format.format_val = regmap_format_32_be;
1076                         map->format.parse_val = regmap_parse_32_be;
1077                         map->format.parse_inplace = regmap_parse_32_be_inplace;
1078                         break;
1079                 case REGMAP_ENDIAN_LITTLE:
1080                         map->format.format_val = regmap_format_32_le;
1081                         map->format.parse_val = regmap_parse_32_le;
1082                         map->format.parse_inplace = regmap_parse_32_le_inplace;
1083                         break;
1084                 case REGMAP_ENDIAN_NATIVE:
1085                         map->format.format_val = regmap_format_32_native;
1086                         map->format.parse_val = regmap_parse_32_native;
1087                         break;
1088                 default:
1089                         goto err_hwlock;
1090                 }
1091                 break;
1092 #ifdef CONFIG_64BIT
1093         case 64:
1094                 switch (val_endian) {
1095                 case REGMAP_ENDIAN_BIG:
1096                         map->format.format_val = regmap_format_64_be;
1097                         map->format.parse_val = regmap_parse_64_be;
1098                         map->format.parse_inplace = regmap_parse_64_be_inplace;
1099                         break;
1100                 case REGMAP_ENDIAN_LITTLE:
1101                         map->format.format_val = regmap_format_64_le;
1102                         map->format.parse_val = regmap_parse_64_le;
1103                         map->format.parse_inplace = regmap_parse_64_le_inplace;
1104                         break;
1105                 case REGMAP_ENDIAN_NATIVE:
1106                         map->format.format_val = regmap_format_64_native;
1107                         map->format.parse_val = regmap_parse_64_native;
1108                         break;
1109                 default:
1110                         goto err_hwlock;
1111                 }
1112                 break;
1113 #endif
1114         }
1115
1116         if (map->format.format_write) {
1117                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1118                     (val_endian != REGMAP_ENDIAN_BIG))
1119                         goto err_hwlock;
1120                 map->use_single_write = true;
1121         }
1122
1123         if (!map->format.format_write &&
1124             !(map->format.format_reg && map->format.format_val))
1125                 goto err_hwlock;
1126
1127         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1128         if (map->work_buf == NULL) {
1129                 ret = -ENOMEM;
1130                 goto err_hwlock;
1131         }
1132
1133         if (map->format.format_write) {
1134                 map->defer_caching = false;
1135                 map->reg_write = _regmap_bus_formatted_write;
1136         } else if (map->format.format_val) {
1137                 map->defer_caching = true;
1138                 map->reg_write = _regmap_bus_raw_write;
1139         }
1140
1141 skip_format_initialization:
1142
1143         map->range_tree = RB_ROOT;
1144         for (i = 0; i < config->num_ranges; i++) {
1145                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1146                 struct regmap_range_node *new;
1147
1148                 /* Sanity check */
1149                 if (range_cfg->range_max < range_cfg->range_min) {
1150                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1151                                 range_cfg->range_max, range_cfg->range_min);
1152                         goto err_range;
1153                 }
1154
1155                 if (range_cfg->range_max > map->max_register) {
1156                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1157                                 range_cfg->range_max, map->max_register);
1158                         goto err_range;
1159                 }
1160
1161                 if (range_cfg->selector_reg > map->max_register) {
1162                         dev_err(map->dev,
1163                                 "Invalid range %d: selector out of map\n", i);
1164                         goto err_range;
1165                 }
1166
1167                 if (range_cfg->window_len == 0) {
1168                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
1169                                 i);
1170                         goto err_range;
1171                 }
1172
1173                 /* Make sure, that this register range has no selector
1174                    or data window within its boundary */
1175                 for (j = 0; j < config->num_ranges; j++) {
1176                         unsigned int sel_reg = config->ranges[j].selector_reg;
1177                         unsigned int win_min = config->ranges[j].window_start;
1178                         unsigned int win_max = win_min +
1179                                                config->ranges[j].window_len - 1;
1180
1181                         /* Allow data window inside its own virtual range */
1182                         if (j == i)
1183                                 continue;
1184
1185                         if (range_cfg->range_min <= sel_reg &&
1186                             sel_reg <= range_cfg->range_max) {
1187                                 dev_err(map->dev,
1188                                         "Range %d: selector for %d in window\n",
1189                                         i, j);
1190                                 goto err_range;
1191                         }
1192
1193                         if (!(win_max < range_cfg->range_min ||
1194                               win_min > range_cfg->range_max)) {
1195                                 dev_err(map->dev,
1196                                         "Range %d: window for %d in window\n",
1197                                         i, j);
1198                                 goto err_range;
1199                         }
1200                 }
1201
1202                 new = kzalloc(sizeof(*new), GFP_KERNEL);
1203                 if (new == NULL) {
1204                         ret = -ENOMEM;
1205                         goto err_range;
1206                 }
1207
1208                 new->map = map;
1209                 new->name = range_cfg->name;
1210                 new->range_min = range_cfg->range_min;
1211                 new->range_max = range_cfg->range_max;
1212                 new->selector_reg = range_cfg->selector_reg;
1213                 new->selector_mask = range_cfg->selector_mask;
1214                 new->selector_shift = range_cfg->selector_shift;
1215                 new->window_start = range_cfg->window_start;
1216                 new->window_len = range_cfg->window_len;
1217
1218                 if (!_regmap_range_add(map, new)) {
1219                         dev_err(map->dev, "Failed to add range %d\n", i);
1220                         kfree(new);
1221                         goto err_range;
1222                 }
1223
1224                 if (map->selector_work_buf == NULL) {
1225                         map->selector_work_buf =
1226                                 kzalloc(map->format.buf_size, GFP_KERNEL);
1227                         if (map->selector_work_buf == NULL) {
1228                                 ret = -ENOMEM;
1229                                 goto err_range;
1230                         }
1231                 }
1232         }
1233
1234         ret = regcache_init(map, config);
1235         if (ret != 0)
1236                 goto err_range;
1237
1238         if (dev) {
1239                 ret = regmap_attach_dev(dev, map, config);
1240                 if (ret != 0)
1241                         goto err_regcache;
1242         } else {
1243                 regmap_debugfs_init(map);
1244         }
1245
1246         return map;
1247
1248 err_regcache:
1249         regcache_exit(map);
1250 err_range:
1251         regmap_range_exit(map);
1252         kfree(map->work_buf);
1253 err_hwlock:
1254         if (map->hwlock)
1255                 hwspin_lock_free(map->hwlock);
1256 err_name:
1257         kfree_const(map->name);
1258 err_map:
1259         kfree(map);
1260 err:
1261         return ERR_PTR(ret);
1262 }
1263 EXPORT_SYMBOL_GPL(__regmap_init);
1264
1265 static void devm_regmap_release(struct device *dev, void *res)
1266 {
1267         regmap_exit(*(struct regmap **)res);
1268 }
1269
1270 struct regmap *__devm_regmap_init(struct device *dev,
1271                                   const struct regmap_bus *bus,
1272                                   void *bus_context,
1273                                   const struct regmap_config *config,
1274                                   struct lock_class_key *lock_key,
1275                                   const char *lock_name)
1276 {
1277         struct regmap **ptr, *regmap;
1278
1279         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1280         if (!ptr)
1281                 return ERR_PTR(-ENOMEM);
1282
1283         regmap = __regmap_init(dev, bus, bus_context, config,
1284                                lock_key, lock_name);
1285         if (!IS_ERR(regmap)) {
1286                 *ptr = regmap;
1287                 devres_add(dev, ptr);
1288         } else {
1289                 devres_free(ptr);
1290         }
1291
1292         return regmap;
1293 }
1294 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1295
1296 static void regmap_field_init(struct regmap_field *rm_field,
1297         struct regmap *regmap, struct reg_field reg_field)
1298 {
1299         rm_field->regmap = regmap;
1300         rm_field->reg = reg_field.reg;
1301         rm_field->shift = reg_field.lsb;
1302         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1303
1304         WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1305
1306         rm_field->id_size = reg_field.id_size;
1307         rm_field->id_offset = reg_field.id_offset;
1308 }
1309
1310 /**
1311  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1312  *
1313  * @dev: Device that will be interacted with
1314  * @regmap: regmap bank in which this register field is located.
1315  * @reg_field: Register field with in the bank.
1316  *
1317  * The return value will be an ERR_PTR() on error or a valid pointer
1318  * to a struct regmap_field. The regmap_field will be automatically freed
1319  * by the device management code.
1320  */
1321 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1322                 struct regmap *regmap, struct reg_field reg_field)
1323 {
1324         struct regmap_field *rm_field = devm_kzalloc(dev,
1325                                         sizeof(*rm_field), GFP_KERNEL);
1326         if (!rm_field)
1327                 return ERR_PTR(-ENOMEM);
1328
1329         regmap_field_init(rm_field, regmap, reg_field);
1330
1331         return rm_field;
1332
1333 }
1334 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1335
1336
1337 /**
1338  * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1339  *
1340  * @regmap: regmap bank in which this register field is located.
1341  * @rm_field: regmap register fields within the bank.
1342  * @reg_field: Register fields within the bank.
1343  * @num_fields: Number of register fields.
1344  *
1345  * The return value will be an -ENOMEM on error or zero for success.
1346  * Newly allocated regmap_fields should be freed by calling
1347  * regmap_field_bulk_free()
1348  */
1349 int regmap_field_bulk_alloc(struct regmap *regmap,
1350                             struct regmap_field **rm_field,
1351                             const struct reg_field *reg_field,
1352                             int num_fields)
1353 {
1354         struct regmap_field *rf;
1355         int i;
1356
1357         rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1358         if (!rf)
1359                 return -ENOMEM;
1360
1361         for (i = 0; i < num_fields; i++) {
1362                 regmap_field_init(&rf[i], regmap, reg_field[i]);
1363                 rm_field[i] = &rf[i];
1364         }
1365
1366         return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1369
1370 /**
1371  * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1372  * fields.
1373  *
1374  * @dev: Device that will be interacted with
1375  * @regmap: regmap bank in which this register field is located.
1376  * @rm_field: regmap register fields within the bank.
1377  * @reg_field: Register fields within the bank.
1378  * @num_fields: Number of register fields.
1379  *
1380  * The return value will be an -ENOMEM on error or zero for success.
1381  * Newly allocated regmap_fields will be automatically freed by the
1382  * device management code.
1383  */
1384 int devm_regmap_field_bulk_alloc(struct device *dev,
1385                                  struct regmap *regmap,
1386                                  struct regmap_field **rm_field,
1387                                  const struct reg_field *reg_field,
1388                                  int num_fields)
1389 {
1390         struct regmap_field *rf;
1391         int i;
1392
1393         rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1394         if (!rf)
1395                 return -ENOMEM;
1396
1397         for (i = 0; i < num_fields; i++) {
1398                 regmap_field_init(&rf[i], regmap, reg_field[i]);
1399                 rm_field[i] = &rf[i];
1400         }
1401
1402         return 0;
1403 }
1404 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1405
1406 /**
1407  * regmap_field_bulk_free() - Free register field allocated using
1408  *                       regmap_field_bulk_alloc.
1409  *
1410  * @field: regmap fields which should be freed.
1411  */
1412 void regmap_field_bulk_free(struct regmap_field *field)
1413 {
1414         kfree(field);
1415 }
1416 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1417
1418 /**
1419  * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1420  *                            devm_regmap_field_bulk_alloc.
1421  *
1422  * @dev: Device that will be interacted with
1423  * @field: regmap field which should be freed.
1424  *
1425  * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1426  * drivers need not call this function, as the memory allocated via devm
1427  * will be freed as per device-driver life-cycle.
1428  */
1429 void devm_regmap_field_bulk_free(struct device *dev,
1430                                  struct regmap_field *field)
1431 {
1432         devm_kfree(dev, field);
1433 }
1434 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1435
1436 /**
1437  * devm_regmap_field_free() - Free a register field allocated using
1438  *                            devm_regmap_field_alloc.
1439  *
1440  * @dev: Device that will be interacted with
1441  * @field: regmap field which should be freed.
1442  *
1443  * Free register field allocated using devm_regmap_field_alloc(). Usually
1444  * drivers need not call this function, as the memory allocated via devm
1445  * will be freed as per device-driver life-cyle.
1446  */
1447 void devm_regmap_field_free(struct device *dev,
1448         struct regmap_field *field)
1449 {
1450         devm_kfree(dev, field);
1451 }
1452 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1453
1454 /**
1455  * regmap_field_alloc() - Allocate and initialise a register field.
1456  *
1457  * @regmap: regmap bank in which this register field is located.
1458  * @reg_field: Register field with in the bank.
1459  *
1460  * The return value will be an ERR_PTR() on error or a valid pointer
1461  * to a struct regmap_field. The regmap_field should be freed by the
1462  * user once its finished working with it using regmap_field_free().
1463  */
1464 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1465                 struct reg_field reg_field)
1466 {
1467         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1468
1469         if (!rm_field)
1470                 return ERR_PTR(-ENOMEM);
1471
1472         regmap_field_init(rm_field, regmap, reg_field);
1473
1474         return rm_field;
1475 }
1476 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1477
1478 /**
1479  * regmap_field_free() - Free register field allocated using
1480  *                       regmap_field_alloc.
1481  *
1482  * @field: regmap field which should be freed.
1483  */
1484 void regmap_field_free(struct regmap_field *field)
1485 {
1486         kfree(field);
1487 }
1488 EXPORT_SYMBOL_GPL(regmap_field_free);
1489
1490 /**
1491  * regmap_reinit_cache() - Reinitialise the current register cache
1492  *
1493  * @map: Register map to operate on.
1494  * @config: New configuration.  Only the cache data will be used.
1495  *
1496  * Discard any existing register cache for the map and initialize a
1497  * new cache.  This can be used to restore the cache to defaults or to
1498  * update the cache configuration to reflect runtime discovery of the
1499  * hardware.
1500  *
1501  * No explicit locking is done here, the user needs to ensure that
1502  * this function will not race with other calls to regmap.
1503  */
1504 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1505 {
1506         int ret;
1507
1508         regcache_exit(map);
1509         regmap_debugfs_exit(map);
1510
1511         map->max_register = config->max_register;
1512         map->writeable_reg = config->writeable_reg;
1513         map->readable_reg = config->readable_reg;
1514         map->volatile_reg = config->volatile_reg;
1515         map->precious_reg = config->precious_reg;
1516         map->writeable_noinc_reg = config->writeable_noinc_reg;
1517         map->readable_noinc_reg = config->readable_noinc_reg;
1518         map->cache_type = config->cache_type;
1519
1520         ret = regmap_set_name(map, config);
1521         if (ret)
1522                 return ret;
1523
1524         regmap_debugfs_init(map);
1525
1526         map->cache_bypass = false;
1527         map->cache_only = false;
1528
1529         return regcache_init(map, config);
1530 }
1531 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1532
1533 /**
1534  * regmap_exit() - Free a previously allocated register map
1535  *
1536  * @map: Register map to operate on.
1537  */
1538 void regmap_exit(struct regmap *map)
1539 {
1540         struct regmap_async *async;
1541
1542         regcache_exit(map);
1543         regmap_debugfs_exit(map);
1544         regmap_range_exit(map);
1545         if (map->bus && map->bus->free_context)
1546                 map->bus->free_context(map->bus_context);
1547         kfree(map->work_buf);
1548         while (!list_empty(&map->async_free)) {
1549                 async = list_first_entry_or_null(&map->async_free,
1550                                                  struct regmap_async,
1551                                                  list);
1552                 list_del(&async->list);
1553                 kfree(async->work_buf);
1554                 kfree(async);
1555         }
1556         if (map->hwlock)
1557                 hwspin_lock_free(map->hwlock);
1558         if (map->lock == regmap_lock_mutex)
1559                 mutex_destroy(&map->mutex);
1560         kfree_const(map->name);
1561         kfree(map->patch);
1562         if (map->bus && map->bus->free_on_exit)
1563                 kfree(map->bus);
1564         kfree(map);
1565 }
1566 EXPORT_SYMBOL_GPL(regmap_exit);
1567
1568 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1569 {
1570         struct regmap **r = res;
1571         if (!r || !*r) {
1572                 WARN_ON(!r || !*r);
1573                 return 0;
1574         }
1575
1576         /* If the user didn't specify a name match any */
1577         if (data)
1578                 return !strcmp((*r)->name, data);
1579         else
1580                 return 1;
1581 }
1582
1583 /**
1584  * dev_get_regmap() - Obtain the regmap (if any) for a device
1585  *
1586  * @dev: Device to retrieve the map for
1587  * @name: Optional name for the register map, usually NULL.
1588  *
1589  * Returns the regmap for the device if one is present, or NULL.  If
1590  * name is specified then it must match the name specified when
1591  * registering the device, if it is NULL then the first regmap found
1592  * will be used.  Devices with multiple register maps are very rare,
1593  * generic code should normally not need to specify a name.
1594  */
1595 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1596 {
1597         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1598                                         dev_get_regmap_match, (void *)name);
1599
1600         if (!r)
1601                 return NULL;
1602         return *r;
1603 }
1604 EXPORT_SYMBOL_GPL(dev_get_regmap);
1605
1606 /**
1607  * regmap_get_device() - Obtain the device from a regmap
1608  *
1609  * @map: Register map to operate on.
1610  *
1611  * Returns the underlying device that the regmap has been created for.
1612  */
1613 struct device *regmap_get_device(struct regmap *map)
1614 {
1615         return map->dev;
1616 }
1617 EXPORT_SYMBOL_GPL(regmap_get_device);
1618
1619 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1620                                struct regmap_range_node *range,
1621                                unsigned int val_num)
1622 {
1623         void *orig_work_buf;
1624         unsigned int win_offset;
1625         unsigned int win_page;
1626         bool page_chg;
1627         int ret;
1628
1629         win_offset = (*reg - range->range_min) % range->window_len;
1630         win_page = (*reg - range->range_min) / range->window_len;
1631
1632         if (val_num > 1) {
1633                 /* Bulk write shouldn't cross range boundary */
1634                 if (*reg + val_num - 1 > range->range_max)
1635                         return -EINVAL;
1636
1637                 /* ... or single page boundary */
1638                 if (val_num > range->window_len - win_offset)
1639                         return -EINVAL;
1640         }
1641
1642         /* It is possible to have selector register inside data window.
1643            In that case, selector register is located on every page and
1644            it needs no page switching, when accessed alone. */
1645         if (val_num > 1 ||
1646             range->window_start + win_offset != range->selector_reg) {
1647                 /* Use separate work_buf during page switching */
1648                 orig_work_buf = map->work_buf;
1649                 map->work_buf = map->selector_work_buf;
1650
1651                 ret = _regmap_update_bits(map, range->selector_reg,
1652                                           range->selector_mask,
1653                                           win_page << range->selector_shift,
1654                                           &page_chg, false);
1655
1656                 map->work_buf = orig_work_buf;
1657
1658                 if (ret != 0)
1659                         return ret;
1660         }
1661
1662         *reg = range->window_start + win_offset;
1663
1664         return 0;
1665 }
1666
1667 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1668                                           unsigned long mask)
1669 {
1670         u8 *buf;
1671         int i;
1672
1673         if (!mask || !map->work_buf)
1674                 return;
1675
1676         buf = map->work_buf;
1677
1678         for (i = 0; i < max_bytes; i++)
1679                 buf[i] |= (mask >> (8 * i)) & 0xff;
1680 }
1681
1682 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1683                                   const void *val, size_t val_len, bool noinc)
1684 {
1685         struct regmap_range_node *range;
1686         unsigned long flags;
1687         void *work_val = map->work_buf + map->format.reg_bytes +
1688                 map->format.pad_bytes;
1689         void *buf;
1690         int ret = -ENOTSUPP;
1691         size_t len;
1692         int i;
1693
1694         /* Check for unwritable or noinc registers in range
1695          * before we start
1696          */
1697         if (!regmap_writeable_noinc(map, reg)) {
1698                 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1699                         unsigned int element =
1700                                 reg + regmap_get_offset(map, i);
1701                         if (!regmap_writeable(map, element) ||
1702                                 regmap_writeable_noinc(map, element))
1703                                 return -EINVAL;
1704                 }
1705         }
1706
1707         if (!map->cache_bypass && map->format.parse_val) {
1708                 unsigned int ival;
1709                 int val_bytes = map->format.val_bytes;
1710                 for (i = 0; i < val_len / val_bytes; i++) {
1711                         ival = map->format.parse_val(val + (i * val_bytes));
1712                         ret = regcache_write(map,
1713                                              reg + regmap_get_offset(map, i),
1714                                              ival);
1715                         if (ret) {
1716                                 dev_err(map->dev,
1717                                         "Error in caching of register: %x ret: %d\n",
1718                                         reg + regmap_get_offset(map, i), ret);
1719                                 return ret;
1720                         }
1721                 }
1722                 if (map->cache_only) {
1723                         map->cache_dirty = true;
1724                         return 0;
1725                 }
1726         }
1727
1728         range = _regmap_range_lookup(map, reg);
1729         if (range) {
1730                 int val_num = val_len / map->format.val_bytes;
1731                 int win_offset = (reg - range->range_min) % range->window_len;
1732                 int win_residue = range->window_len - win_offset;
1733
1734                 /* If the write goes beyond the end of the window split it */
1735                 while (val_num > win_residue) {
1736                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1737                                 win_residue, val_len / map->format.val_bytes);
1738                         ret = _regmap_raw_write_impl(map, reg, val,
1739                                                      win_residue *
1740                                                      map->format.val_bytes, noinc);
1741                         if (ret != 0)
1742                                 return ret;
1743
1744                         reg += win_residue;
1745                         val_num -= win_residue;
1746                         val += win_residue * map->format.val_bytes;
1747                         val_len -= win_residue * map->format.val_bytes;
1748
1749                         win_offset = (reg - range->range_min) %
1750                                 range->window_len;
1751                         win_residue = range->window_len - win_offset;
1752                 }
1753
1754                 ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1755                 if (ret != 0)
1756                         return ret;
1757         }
1758
1759         reg += map->reg_base;
1760         reg >>= map->format.reg_downshift;
1761         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1762         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1763                                       map->write_flag_mask);
1764
1765         /*
1766          * Essentially all I/O mechanisms will be faster with a single
1767          * buffer to write.  Since register syncs often generate raw
1768          * writes of single registers optimise that case.
1769          */
1770         if (val != work_val && val_len == map->format.val_bytes) {
1771                 memcpy(work_val, val, map->format.val_bytes);
1772                 val = work_val;
1773         }
1774
1775         if (map->async && map->bus && map->bus->async_write) {
1776                 struct regmap_async *async;
1777
1778                 trace_regmap_async_write_start(map, reg, val_len);
1779
1780                 spin_lock_irqsave(&map->async_lock, flags);
1781                 async = list_first_entry_or_null(&map->async_free,
1782                                                  struct regmap_async,
1783                                                  list);
1784                 if (async)
1785                         list_del(&async->list);
1786                 spin_unlock_irqrestore(&map->async_lock, flags);
1787
1788                 if (!async) {
1789                         async = map->bus->async_alloc();
1790                         if (!async)
1791                                 return -ENOMEM;
1792
1793                         async->work_buf = kzalloc(map->format.buf_size,
1794                                                   GFP_KERNEL | GFP_DMA);
1795                         if (!async->work_buf) {
1796                                 kfree(async);
1797                                 return -ENOMEM;
1798                         }
1799                 }
1800
1801                 async->map = map;
1802
1803                 /* If the caller supplied the value we can use it safely. */
1804                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1805                        map->format.reg_bytes + map->format.val_bytes);
1806
1807                 spin_lock_irqsave(&map->async_lock, flags);
1808                 list_add_tail(&async->list, &map->async_list);
1809                 spin_unlock_irqrestore(&map->async_lock, flags);
1810
1811                 if (val != work_val)
1812                         ret = map->bus->async_write(map->bus_context,
1813                                                     async->work_buf,
1814                                                     map->format.reg_bytes +
1815                                                     map->format.pad_bytes,
1816                                                     val, val_len, async);
1817                 else
1818                         ret = map->bus->async_write(map->bus_context,
1819                                                     async->work_buf,
1820                                                     map->format.reg_bytes +
1821                                                     map->format.pad_bytes +
1822                                                     val_len, NULL, 0, async);
1823
1824                 if (ret != 0) {
1825                         dev_err(map->dev, "Failed to schedule write: %d\n",
1826                                 ret);
1827
1828                         spin_lock_irqsave(&map->async_lock, flags);
1829                         list_move(&async->list, &map->async_free);
1830                         spin_unlock_irqrestore(&map->async_lock, flags);
1831                 }
1832
1833                 return ret;
1834         }
1835
1836         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1837
1838         /* If we're doing a single register write we can probably just
1839          * send the work_buf directly, otherwise try to do a gather
1840          * write.
1841          */
1842         if (val == work_val)
1843                 ret = map->write(map->bus_context, map->work_buf,
1844                                  map->format.reg_bytes +
1845                                  map->format.pad_bytes +
1846                                  val_len);
1847         else if (map->bus && map->bus->gather_write)
1848                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1849                                              map->format.reg_bytes +
1850                                              map->format.pad_bytes,
1851                                              val, val_len);
1852         else
1853                 ret = -ENOTSUPP;
1854
1855         /* If that didn't work fall back on linearising by hand. */
1856         if (ret == -ENOTSUPP) {
1857                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1858                 buf = kzalloc(len, GFP_KERNEL);
1859                 if (!buf)
1860                         return -ENOMEM;
1861
1862                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1863                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1864                        val, val_len);
1865                 ret = map->write(map->bus_context, buf, len);
1866
1867                 kfree(buf);
1868         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1869                 /* regcache_drop_region() takes lock that we already have,
1870                  * thus call map->cache_ops->drop() directly
1871                  */
1872                 if (map->cache_ops && map->cache_ops->drop)
1873                         map->cache_ops->drop(map, reg, reg + 1);
1874         }
1875
1876         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1877
1878         return ret;
1879 }
1880
1881 /**
1882  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1883  *
1884  * @map: Map to check.
1885  */
1886 bool regmap_can_raw_write(struct regmap *map)
1887 {
1888         return map->write && map->format.format_val && map->format.format_reg;
1889 }
1890 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1891
1892 /**
1893  * regmap_get_raw_read_max - Get the maximum size we can read
1894  *
1895  * @map: Map to check.
1896  */
1897 size_t regmap_get_raw_read_max(struct regmap *map)
1898 {
1899         return map->max_raw_read;
1900 }
1901 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1902
1903 /**
1904  * regmap_get_raw_write_max - Get the maximum size we can read
1905  *
1906  * @map: Map to check.
1907  */
1908 size_t regmap_get_raw_write_max(struct regmap *map)
1909 {
1910         return map->max_raw_write;
1911 }
1912 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1913
1914 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1915                                        unsigned int val)
1916 {
1917         int ret;
1918         struct regmap_range_node *range;
1919         struct regmap *map = context;
1920
1921         WARN_ON(!map->format.format_write);
1922
1923         range = _regmap_range_lookup(map, reg);
1924         if (range) {
1925                 ret = _regmap_select_page(map, &reg, range, 1);
1926                 if (ret != 0)
1927                         return ret;
1928         }
1929
1930         reg += map->reg_base;
1931         reg >>= map->format.reg_downshift;
1932         map->format.format_write(map, reg, val);
1933
1934         trace_regmap_hw_write_start(map, reg, 1);
1935
1936         ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1937
1938         trace_regmap_hw_write_done(map, reg, 1);
1939
1940         return ret;
1941 }
1942
1943 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1944                                  unsigned int val)
1945 {
1946         struct regmap *map = context;
1947
1948         return map->bus->reg_write(map->bus_context, reg, val);
1949 }
1950
1951 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1952                                  unsigned int val)
1953 {
1954         struct regmap *map = context;
1955
1956         WARN_ON(!map->format.format_val);
1957
1958         map->format.format_val(map->work_buf + map->format.reg_bytes
1959                                + map->format.pad_bytes, val, 0);
1960         return _regmap_raw_write_impl(map, reg,
1961                                       map->work_buf +
1962                                       map->format.reg_bytes +
1963                                       map->format.pad_bytes,
1964                                       map->format.val_bytes,
1965                                       false);
1966 }
1967
1968 static inline void *_regmap_map_get_context(struct regmap *map)
1969 {
1970         return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1971 }
1972
1973 int _regmap_write(struct regmap *map, unsigned int reg,
1974                   unsigned int val)
1975 {
1976         int ret;
1977         void *context = _regmap_map_get_context(map);
1978
1979         if (!regmap_writeable(map, reg))
1980                 return -EIO;
1981
1982         if (!map->cache_bypass && !map->defer_caching) {
1983                 ret = regcache_write(map, reg, val);
1984                 if (ret != 0)
1985                         return ret;
1986                 if (map->cache_only) {
1987                         map->cache_dirty = true;
1988                         return 0;
1989                 }
1990         }
1991
1992         ret = map->reg_write(context, reg, val);
1993         if (ret == 0) {
1994                 if (regmap_should_log(map))
1995                         dev_info(map->dev, "%x <= %x\n", reg, val);
1996
1997                 trace_regmap_reg_write(map, reg, val);
1998         }
1999
2000         return ret;
2001 }
2002
2003 /**
2004  * regmap_write() - Write a value to a single register
2005  *
2006  * @map: Register map to write to
2007  * @reg: Register to write to
2008  * @val: Value to be written
2009  *
2010  * A value of zero will be returned on success, a negative errno will
2011  * be returned in error cases.
2012  */
2013 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2014 {
2015         int ret;
2016
2017         if (!IS_ALIGNED(reg, map->reg_stride))
2018                 return -EINVAL;
2019
2020         map->lock(map->lock_arg);
2021
2022         ret = _regmap_write(map, reg, val);
2023
2024         map->unlock(map->lock_arg);
2025
2026         return ret;
2027 }
2028 EXPORT_SYMBOL_GPL(regmap_write);
2029
2030 /**
2031  * regmap_write_async() - Write a value to a single register asynchronously
2032  *
2033  * @map: Register map to write to
2034  * @reg: Register to write to
2035  * @val: Value to be written
2036  *
2037  * A value of zero will be returned on success, a negative errno will
2038  * be returned in error cases.
2039  */
2040 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2041 {
2042         int ret;
2043
2044         if (!IS_ALIGNED(reg, map->reg_stride))
2045                 return -EINVAL;
2046
2047         map->lock(map->lock_arg);
2048
2049         map->async = true;
2050
2051         ret = _regmap_write(map, reg, val);
2052
2053         map->async = false;
2054
2055         map->unlock(map->lock_arg);
2056
2057         return ret;
2058 }
2059 EXPORT_SYMBOL_GPL(regmap_write_async);
2060
2061 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2062                       const void *val, size_t val_len, bool noinc)
2063 {
2064         size_t val_bytes = map->format.val_bytes;
2065         size_t val_count = val_len / val_bytes;
2066         size_t chunk_count, chunk_bytes;
2067         size_t chunk_regs = val_count;
2068         int ret, i;
2069
2070         if (!val_count)
2071                 return -EINVAL;
2072
2073         if (map->use_single_write)
2074                 chunk_regs = 1;
2075         else if (map->max_raw_write && val_len > map->max_raw_write)
2076                 chunk_regs = map->max_raw_write / val_bytes;
2077
2078         chunk_count = val_count / chunk_regs;
2079         chunk_bytes = chunk_regs * val_bytes;
2080
2081         /* Write as many bytes as possible with chunk_size */
2082         for (i = 0; i < chunk_count; i++) {
2083                 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2084                 if (ret)
2085                         return ret;
2086
2087                 reg += regmap_get_offset(map, chunk_regs);
2088                 val += chunk_bytes;
2089                 val_len -= chunk_bytes;
2090         }
2091
2092         /* Write remaining bytes */
2093         if (val_len)
2094                 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2095
2096         return ret;
2097 }
2098
2099 /**
2100  * regmap_raw_write() - Write raw values to one or more registers
2101  *
2102  * @map: Register map to write to
2103  * @reg: Initial register to write to
2104  * @val: Block of data to be written, laid out for direct transmission to the
2105  *       device
2106  * @val_len: Length of data pointed to by val.
2107  *
2108  * This function is intended to be used for things like firmware
2109  * download where a large block of data needs to be transferred to the
2110  * device.  No formatting will be done on the data provided.
2111  *
2112  * A value of zero will be returned on success, a negative errno will
2113  * be returned in error cases.
2114  */
2115 int regmap_raw_write(struct regmap *map, unsigned int reg,
2116                      const void *val, size_t val_len)
2117 {
2118         int ret;
2119
2120         if (!regmap_can_raw_write(map))
2121                 return -EINVAL;
2122         if (val_len % map->format.val_bytes)
2123                 return -EINVAL;
2124
2125         map->lock(map->lock_arg);
2126
2127         ret = _regmap_raw_write(map, reg, val, val_len, false);
2128
2129         map->unlock(map->lock_arg);
2130
2131         return ret;
2132 }
2133 EXPORT_SYMBOL_GPL(regmap_raw_write);
2134
2135 /**
2136  * regmap_noinc_write(): Write data from a register without incrementing the
2137  *                      register number
2138  *
2139  * @map: Register map to write to
2140  * @reg: Register to write to
2141  * @val: Pointer to data buffer
2142  * @val_len: Length of output buffer in bytes.
2143  *
2144  * The regmap API usually assumes that bulk bus write operations will write a
2145  * range of registers. Some devices have certain registers for which a write
2146  * operation can write to an internal FIFO.
2147  *
2148  * The target register must be volatile but registers after it can be
2149  * completely unrelated cacheable registers.
2150  *
2151  * This will attempt multiple writes as required to write val_len bytes.
2152  *
2153  * A value of zero will be returned on success, a negative errno will be
2154  * returned in error cases.
2155  */
2156 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2157                       const void *val, size_t val_len)
2158 {
2159         size_t write_len;
2160         int ret;
2161
2162         if (!map->write)
2163                 return -ENOTSUPP;
2164
2165         if (val_len % map->format.val_bytes)
2166                 return -EINVAL;
2167         if (!IS_ALIGNED(reg, map->reg_stride))
2168                 return -EINVAL;
2169         if (val_len == 0)
2170                 return -EINVAL;
2171
2172         map->lock(map->lock_arg);
2173
2174         if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2175                 ret = -EINVAL;
2176                 goto out_unlock;
2177         }
2178
2179         while (val_len) {
2180                 if (map->max_raw_write && map->max_raw_write < val_len)
2181                         write_len = map->max_raw_write;
2182                 else
2183                         write_len = val_len;
2184                 ret = _regmap_raw_write(map, reg, val, write_len, true);
2185                 if (ret)
2186                         goto out_unlock;
2187                 val = ((u8 *)val) + write_len;
2188                 val_len -= write_len;
2189         }
2190
2191 out_unlock:
2192         map->unlock(map->lock_arg);
2193         return ret;
2194 }
2195 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2196
2197 /**
2198  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2199  *                                   register field.
2200  *
2201  * @field: Register field to write to
2202  * @mask: Bitmask to change
2203  * @val: Value to be written
2204  * @change: Boolean indicating if a write was done
2205  * @async: Boolean indicating asynchronously
2206  * @force: Boolean indicating use force update
2207  *
2208  * Perform a read/modify/write cycle on the register field with change,
2209  * async, force option.
2210  *
2211  * A value of zero will be returned on success, a negative errno will
2212  * be returned in error cases.
2213  */
2214 int regmap_field_update_bits_base(struct regmap_field *field,
2215                                   unsigned int mask, unsigned int val,
2216                                   bool *change, bool async, bool force)
2217 {
2218         mask = (mask << field->shift) & field->mask;
2219
2220         return regmap_update_bits_base(field->regmap, field->reg,
2221                                        mask, val << field->shift,
2222                                        change, async, force);
2223 }
2224 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2225
2226 /**
2227  * regmap_field_test_bits() - Check if all specified bits are set in a
2228  *                            register field.
2229  *
2230  * @field: Register field to operate on
2231  * @bits: Bits to test
2232  *
2233  * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2234  * tested bits is not set and 1 if all tested bits are set.
2235  */
2236 int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2237 {
2238         unsigned int val, ret;
2239
2240         ret = regmap_field_read(field, &val);
2241         if (ret)
2242                 return ret;
2243
2244         return (val & bits) == bits;
2245 }
2246 EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2247
2248 /**
2249  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2250  *                                    register field with port ID
2251  *
2252  * @field: Register field to write to
2253  * @id: port ID
2254  * @mask: Bitmask to change
2255  * @val: Value to be written
2256  * @change: Boolean indicating if a write was done
2257  * @async: Boolean indicating asynchronously
2258  * @force: Boolean indicating use force update
2259  *
2260  * A value of zero will be returned on success, a negative errno will
2261  * be returned in error cases.
2262  */
2263 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2264                                    unsigned int mask, unsigned int val,
2265                                    bool *change, bool async, bool force)
2266 {
2267         if (id >= field->id_size)
2268                 return -EINVAL;
2269
2270         mask = (mask << field->shift) & field->mask;
2271
2272         return regmap_update_bits_base(field->regmap,
2273                                        field->reg + (field->id_offset * id),
2274                                        mask, val << field->shift,
2275                                        change, async, force);
2276 }
2277 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2278
2279 /**
2280  * regmap_bulk_write() - Write multiple registers to the device
2281  *
2282  * @map: Register map to write to
2283  * @reg: First register to be write from
2284  * @val: Block of data to be written, in native register size for device
2285  * @val_count: Number of registers to write
2286  *
2287  * This function is intended to be used for writing a large block of
2288  * data to the device either in single transfer or multiple transfer.
2289  *
2290  * A value of zero will be returned on success, a negative errno will
2291  * be returned in error cases.
2292  */
2293 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2294                      size_t val_count)
2295 {
2296         int ret = 0, i;
2297         size_t val_bytes = map->format.val_bytes;
2298
2299         if (!IS_ALIGNED(reg, map->reg_stride))
2300                 return -EINVAL;
2301
2302         /*
2303          * Some devices don't support bulk write, for them we have a series of
2304          * single write operations.
2305          */
2306         if (!map->write || !map->format.parse_inplace) {
2307                 map->lock(map->lock_arg);
2308                 for (i = 0; i < val_count; i++) {
2309                         unsigned int ival;
2310
2311                         switch (val_bytes) {
2312                         case 1:
2313                                 ival = *(u8 *)(val + (i * val_bytes));
2314                                 break;
2315                         case 2:
2316                                 ival = *(u16 *)(val + (i * val_bytes));
2317                                 break;
2318                         case 4:
2319                                 ival = *(u32 *)(val + (i * val_bytes));
2320                                 break;
2321 #ifdef CONFIG_64BIT
2322                         case 8:
2323                                 ival = *(u64 *)(val + (i * val_bytes));
2324                                 break;
2325 #endif
2326                         default:
2327                                 ret = -EINVAL;
2328                                 goto out;
2329                         }
2330
2331                         ret = _regmap_write(map,
2332                                             reg + regmap_get_offset(map, i),
2333                                             ival);
2334                         if (ret != 0)
2335                                 goto out;
2336                 }
2337 out:
2338                 map->unlock(map->lock_arg);
2339         } else {
2340                 void *wval;
2341
2342                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2343                 if (!wval)
2344                         return -ENOMEM;
2345
2346                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2347                         map->format.parse_inplace(wval + i);
2348
2349                 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2350
2351                 kfree(wval);
2352         }
2353         return ret;
2354 }
2355 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2356
2357 /*
2358  * _regmap_raw_multi_reg_write()
2359  *
2360  * the (register,newvalue) pairs in regs have not been formatted, but
2361  * they are all in the same page and have been changed to being page
2362  * relative. The page register has been written if that was necessary.
2363  */
2364 static int _regmap_raw_multi_reg_write(struct regmap *map,
2365                                        const struct reg_sequence *regs,
2366                                        size_t num_regs)
2367 {
2368         int ret;
2369         void *buf;
2370         int i;
2371         u8 *u8;
2372         size_t val_bytes = map->format.val_bytes;
2373         size_t reg_bytes = map->format.reg_bytes;
2374         size_t pad_bytes = map->format.pad_bytes;
2375         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2376         size_t len = pair_size * num_regs;
2377
2378         if (!len)
2379                 return -EINVAL;
2380
2381         buf = kzalloc(len, GFP_KERNEL);
2382         if (!buf)
2383                 return -ENOMEM;
2384
2385         /* We have to linearise by hand. */
2386
2387         u8 = buf;
2388
2389         for (i = 0; i < num_regs; i++) {
2390                 unsigned int reg = regs[i].reg;
2391                 unsigned int val = regs[i].def;
2392                 trace_regmap_hw_write_start(map, reg, 1);
2393                 reg += map->reg_base;
2394                 reg >>= map->format.reg_downshift;
2395                 map->format.format_reg(u8, reg, map->reg_shift);
2396                 u8 += reg_bytes + pad_bytes;
2397                 map->format.format_val(u8, val, 0);
2398                 u8 += val_bytes;
2399         }
2400         u8 = buf;
2401         *u8 |= map->write_flag_mask;
2402
2403         ret = map->write(map->bus_context, buf, len);
2404
2405         kfree(buf);
2406
2407         for (i = 0; i < num_regs; i++) {
2408                 int reg = regs[i].reg;
2409                 trace_regmap_hw_write_done(map, reg, 1);
2410         }
2411         return ret;
2412 }
2413
2414 static unsigned int _regmap_register_page(struct regmap *map,
2415                                           unsigned int reg,
2416                                           struct regmap_range_node *range)
2417 {
2418         unsigned int win_page = (reg - range->range_min) / range->window_len;
2419
2420         return win_page;
2421 }
2422
2423 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2424                                                struct reg_sequence *regs,
2425                                                size_t num_regs)
2426 {
2427         int ret;
2428         int i, n;
2429         struct reg_sequence *base;
2430         unsigned int this_page = 0;
2431         unsigned int page_change = 0;
2432         /*
2433          * the set of registers are not neccessarily in order, but
2434          * since the order of write must be preserved this algorithm
2435          * chops the set each time the page changes. This also applies
2436          * if there is a delay required at any point in the sequence.
2437          */
2438         base = regs;
2439         for (i = 0, n = 0; i < num_regs; i++, n++) {
2440                 unsigned int reg = regs[i].reg;
2441                 struct regmap_range_node *range;
2442
2443                 range = _regmap_range_lookup(map, reg);
2444                 if (range) {
2445                         unsigned int win_page = _regmap_register_page(map, reg,
2446                                                                       range);
2447
2448                         if (i == 0)
2449                                 this_page = win_page;
2450                         if (win_page != this_page) {
2451                                 this_page = win_page;
2452                                 page_change = 1;
2453                         }
2454                 }
2455
2456                 /* If we have both a page change and a delay make sure to
2457                  * write the regs and apply the delay before we change the
2458                  * page.
2459                  */
2460
2461                 if (page_change || regs[i].delay_us) {
2462
2463                                 /* For situations where the first write requires
2464                                  * a delay we need to make sure we don't call
2465                                  * raw_multi_reg_write with n=0
2466                                  * This can't occur with page breaks as we
2467                                  * never write on the first iteration
2468                                  */
2469                                 if (regs[i].delay_us && i == 0)
2470                                         n = 1;
2471
2472                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2473                                 if (ret != 0)
2474                                         return ret;
2475
2476                                 if (regs[i].delay_us) {
2477                                         if (map->can_sleep)
2478                                                 fsleep(regs[i].delay_us);
2479                                         else
2480                                                 udelay(regs[i].delay_us);
2481                                 }
2482
2483                                 base += n;
2484                                 n = 0;
2485
2486                                 if (page_change) {
2487                                         ret = _regmap_select_page(map,
2488                                                                   &base[n].reg,
2489                                                                   range, 1);
2490                                         if (ret != 0)
2491                                                 return ret;
2492
2493                                         page_change = 0;
2494                                 }
2495
2496                 }
2497
2498         }
2499         if (n > 0)
2500                 return _regmap_raw_multi_reg_write(map, base, n);
2501         return 0;
2502 }
2503
2504 static int _regmap_multi_reg_write(struct regmap *map,
2505                                    const struct reg_sequence *regs,
2506                                    size_t num_regs)
2507 {
2508         int i;
2509         int ret;
2510
2511         if (!map->can_multi_write) {
2512                 for (i = 0; i < num_regs; i++) {
2513                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2514                         if (ret != 0)
2515                                 return ret;
2516
2517                         if (regs[i].delay_us) {
2518                                 if (map->can_sleep)
2519                                         fsleep(regs[i].delay_us);
2520                                 else
2521                                         udelay(regs[i].delay_us);
2522                         }
2523                 }
2524                 return 0;
2525         }
2526
2527         if (!map->format.parse_inplace)
2528                 return -EINVAL;
2529
2530         if (map->writeable_reg)
2531                 for (i = 0; i < num_regs; i++) {
2532                         int reg = regs[i].reg;
2533                         if (!map->writeable_reg(map->dev, reg))
2534                                 return -EINVAL;
2535                         if (!IS_ALIGNED(reg, map->reg_stride))
2536                                 return -EINVAL;
2537                 }
2538
2539         if (!map->cache_bypass) {
2540                 for (i = 0; i < num_regs; i++) {
2541                         unsigned int val = regs[i].def;
2542                         unsigned int reg = regs[i].reg;
2543                         ret = regcache_write(map, reg, val);
2544                         if (ret) {
2545                                 dev_err(map->dev,
2546                                 "Error in caching of register: %x ret: %d\n",
2547                                                                 reg, ret);
2548                                 return ret;
2549                         }
2550                 }
2551                 if (map->cache_only) {
2552                         map->cache_dirty = true;
2553                         return 0;
2554                 }
2555         }
2556
2557         WARN_ON(!map->bus);
2558
2559         for (i = 0; i < num_regs; i++) {
2560                 unsigned int reg = regs[i].reg;
2561                 struct regmap_range_node *range;
2562
2563                 /* Coalesce all the writes between a page break or a delay
2564                  * in a sequence
2565                  */
2566                 range = _regmap_range_lookup(map, reg);
2567                 if (range || regs[i].delay_us) {
2568                         size_t len = sizeof(struct reg_sequence)*num_regs;
2569                         struct reg_sequence *base = kmemdup(regs, len,
2570                                                            GFP_KERNEL);
2571                         if (!base)
2572                                 return -ENOMEM;
2573                         ret = _regmap_range_multi_paged_reg_write(map, base,
2574                                                                   num_regs);
2575                         kfree(base);
2576
2577                         return ret;
2578                 }
2579         }
2580         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2581 }
2582
2583 /**
2584  * regmap_multi_reg_write() - Write multiple registers to the device
2585  *
2586  * @map: Register map to write to
2587  * @regs: Array of structures containing register,value to be written
2588  * @num_regs: Number of registers to write
2589  *
2590  * Write multiple registers to the device where the set of register, value
2591  * pairs are supplied in any order, possibly not all in a single range.
2592  *
2593  * The 'normal' block write mode will send ultimately send data on the
2594  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2595  * addressed. However, this alternative block multi write mode will send
2596  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2597  * must of course support the mode.
2598  *
2599  * A value of zero will be returned on success, a negative errno will be
2600  * returned in error cases.
2601  */
2602 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2603                            int num_regs)
2604 {
2605         int ret;
2606
2607         map->lock(map->lock_arg);
2608
2609         ret = _regmap_multi_reg_write(map, regs, num_regs);
2610
2611         map->unlock(map->lock_arg);
2612
2613         return ret;
2614 }
2615 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2616
2617 /**
2618  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2619  *                                     device but not the cache
2620  *
2621  * @map: Register map to write to
2622  * @regs: Array of structures containing register,value to be written
2623  * @num_regs: Number of registers to write
2624  *
2625  * Write multiple registers to the device but not the cache where the set
2626  * of register are supplied in any order.
2627  *
2628  * This function is intended to be used for writing a large block of data
2629  * atomically to the device in single transfer for those I2C client devices
2630  * that implement this alternative block write mode.
2631  *
2632  * A value of zero will be returned on success, a negative errno will
2633  * be returned in error cases.
2634  */
2635 int regmap_multi_reg_write_bypassed(struct regmap *map,
2636                                     const struct reg_sequence *regs,
2637                                     int num_regs)
2638 {
2639         int ret;
2640         bool bypass;
2641
2642         map->lock(map->lock_arg);
2643
2644         bypass = map->cache_bypass;
2645         map->cache_bypass = true;
2646
2647         ret = _regmap_multi_reg_write(map, regs, num_regs);
2648
2649         map->cache_bypass = bypass;
2650
2651         map->unlock(map->lock_arg);
2652
2653         return ret;
2654 }
2655 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2656
2657 /**
2658  * regmap_raw_write_async() - Write raw values to one or more registers
2659  *                            asynchronously
2660  *
2661  * @map: Register map to write to
2662  * @reg: Initial register to write to
2663  * @val: Block of data to be written, laid out for direct transmission to the
2664  *       device.  Must be valid until regmap_async_complete() is called.
2665  * @val_len: Length of data pointed to by val.
2666  *
2667  * This function is intended to be used for things like firmware
2668  * download where a large block of data needs to be transferred to the
2669  * device.  No formatting will be done on the data provided.
2670  *
2671  * If supported by the underlying bus the write will be scheduled
2672  * asynchronously, helping maximise I/O speed on higher speed buses
2673  * like SPI.  regmap_async_complete() can be called to ensure that all
2674  * asynchrnous writes have been completed.
2675  *
2676  * A value of zero will be returned on success, a negative errno will
2677  * be returned in error cases.
2678  */
2679 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2680                            const void *val, size_t val_len)
2681 {
2682         int ret;
2683
2684         if (val_len % map->format.val_bytes)
2685                 return -EINVAL;
2686         if (!IS_ALIGNED(reg, map->reg_stride))
2687                 return -EINVAL;
2688
2689         map->lock(map->lock_arg);
2690
2691         map->async = true;
2692
2693         ret = _regmap_raw_write(map, reg, val, val_len, false);
2694
2695         map->async = false;
2696
2697         map->unlock(map->lock_arg);
2698
2699         return ret;
2700 }
2701 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2702
2703 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2704                             unsigned int val_len, bool noinc)
2705 {
2706         struct regmap_range_node *range;
2707         int ret;
2708
2709         if (!map->read)
2710                 return -EINVAL;
2711
2712         range = _regmap_range_lookup(map, reg);
2713         if (range) {
2714                 ret = _regmap_select_page(map, &reg, range,
2715                                           noinc ? 1 : val_len / map->format.val_bytes);
2716                 if (ret != 0)
2717                         return ret;
2718         }
2719
2720         reg += map->reg_base;
2721         reg >>= map->format.reg_downshift;
2722         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2723         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2724                                       map->read_flag_mask);
2725         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2726
2727         ret = map->read(map->bus_context, map->work_buf,
2728                         map->format.reg_bytes + map->format.pad_bytes,
2729                         val, val_len);
2730
2731         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2732
2733         return ret;
2734 }
2735
2736 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2737                                 unsigned int *val)
2738 {
2739         struct regmap *map = context;
2740
2741         return map->bus->reg_read(map->bus_context, reg, val);
2742 }
2743
2744 static int _regmap_bus_read(void *context, unsigned int reg,
2745                             unsigned int *val)
2746 {
2747         int ret;
2748         struct regmap *map = context;
2749         void *work_val = map->work_buf + map->format.reg_bytes +
2750                 map->format.pad_bytes;
2751
2752         if (!map->format.parse_val)
2753                 return -EINVAL;
2754
2755         ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2756         if (ret == 0)
2757                 *val = map->format.parse_val(work_val);
2758
2759         return ret;
2760 }
2761
2762 static int _regmap_read(struct regmap *map, unsigned int reg,
2763                         unsigned int *val)
2764 {
2765         int ret;
2766         void *context = _regmap_map_get_context(map);
2767
2768         if (!map->cache_bypass) {
2769                 ret = regcache_read(map, reg, val);
2770                 if (ret == 0)
2771                         return 0;
2772         }
2773
2774         if (map->cache_only)
2775                 return -EBUSY;
2776
2777         if (!regmap_readable(map, reg))
2778                 return -EIO;
2779
2780         ret = map->reg_read(context, reg, val);
2781         if (ret == 0) {
2782                 if (regmap_should_log(map))
2783                         dev_info(map->dev, "%x => %x\n", reg, *val);
2784
2785                 trace_regmap_reg_read(map, reg, *val);
2786
2787                 if (!map->cache_bypass)
2788                         regcache_write(map, reg, *val);
2789         }
2790
2791         return ret;
2792 }
2793
2794 /**
2795  * regmap_read() - Read a value from a single register
2796  *
2797  * @map: Register map to read from
2798  * @reg: Register to be read from
2799  * @val: Pointer to store read value
2800  *
2801  * A value of zero will be returned on success, a negative errno will
2802  * be returned in error cases.
2803  */
2804 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2805 {
2806         int ret;
2807
2808         if (!IS_ALIGNED(reg, map->reg_stride))
2809                 return -EINVAL;
2810
2811         map->lock(map->lock_arg);
2812
2813         ret = _regmap_read(map, reg, val);
2814
2815         map->unlock(map->lock_arg);
2816
2817         return ret;
2818 }
2819 EXPORT_SYMBOL_GPL(regmap_read);
2820
2821 /**
2822  * regmap_raw_read() - Read raw data from the device
2823  *
2824  * @map: Register map to read from
2825  * @reg: First register to be read from
2826  * @val: Pointer to store read value
2827  * @val_len: Size of data to read
2828  *
2829  * A value of zero will be returned on success, a negative errno will
2830  * be returned in error cases.
2831  */
2832 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2833                     size_t val_len)
2834 {
2835         size_t val_bytes = map->format.val_bytes;
2836         size_t val_count = val_len / val_bytes;
2837         unsigned int v;
2838         int ret, i;
2839
2840         if (val_len % map->format.val_bytes)
2841                 return -EINVAL;
2842         if (!IS_ALIGNED(reg, map->reg_stride))
2843                 return -EINVAL;
2844         if (val_count == 0)
2845                 return -EINVAL;
2846
2847         map->lock(map->lock_arg);
2848
2849         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2850             map->cache_type == REGCACHE_NONE) {
2851                 size_t chunk_count, chunk_bytes;
2852                 size_t chunk_regs = val_count;
2853
2854                 if (!map->read) {
2855                         ret = -ENOTSUPP;
2856                         goto out;
2857                 }
2858
2859                 if (map->use_single_read)
2860                         chunk_regs = 1;
2861                 else if (map->max_raw_read && val_len > map->max_raw_read)
2862                         chunk_regs = map->max_raw_read / val_bytes;
2863
2864                 chunk_count = val_count / chunk_regs;
2865                 chunk_bytes = chunk_regs * val_bytes;
2866
2867                 /* Read bytes that fit into whole chunks */
2868                 for (i = 0; i < chunk_count; i++) {
2869                         ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2870                         if (ret != 0)
2871                                 goto out;
2872
2873                         reg += regmap_get_offset(map, chunk_regs);
2874                         val += chunk_bytes;
2875                         val_len -= chunk_bytes;
2876                 }
2877
2878                 /* Read remaining bytes */
2879                 if (val_len) {
2880                         ret = _regmap_raw_read(map, reg, val, val_len, false);
2881                         if (ret != 0)
2882                                 goto out;
2883                 }
2884         } else {
2885                 /* Otherwise go word by word for the cache; should be low
2886                  * cost as we expect to hit the cache.
2887                  */
2888                 for (i = 0; i < val_count; i++) {
2889                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2890                                            &v);
2891                         if (ret != 0)
2892                                 goto out;
2893
2894                         map->format.format_val(val + (i * val_bytes), v, 0);
2895                 }
2896         }
2897
2898  out:
2899         map->unlock(map->lock_arg);
2900
2901         return ret;
2902 }
2903 EXPORT_SYMBOL_GPL(regmap_raw_read);
2904
2905 /**
2906  * regmap_noinc_read(): Read data from a register without incrementing the
2907  *                      register number
2908  *
2909  * @map: Register map to read from
2910  * @reg: Register to read from
2911  * @val: Pointer to data buffer
2912  * @val_len: Length of output buffer in bytes.
2913  *
2914  * The regmap API usually assumes that bulk read operations will read a
2915  * range of registers. Some devices have certain registers for which a read
2916  * operation read will read from an internal FIFO.
2917  *
2918  * The target register must be volatile but registers after it can be
2919  * completely unrelated cacheable registers.
2920  *
2921  * This will attempt multiple reads as required to read val_len bytes.
2922  *
2923  * A value of zero will be returned on success, a negative errno will be
2924  * returned in error cases.
2925  */
2926 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2927                       void *val, size_t val_len)
2928 {
2929         size_t read_len;
2930         int ret;
2931
2932         if (!map->read)
2933                 return -ENOTSUPP;
2934
2935         if (val_len % map->format.val_bytes)
2936                 return -EINVAL;
2937         if (!IS_ALIGNED(reg, map->reg_stride))
2938                 return -EINVAL;
2939         if (val_len == 0)
2940                 return -EINVAL;
2941
2942         map->lock(map->lock_arg);
2943
2944         if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2945                 ret = -EINVAL;
2946                 goto out_unlock;
2947         }
2948
2949         while (val_len) {
2950                 if (map->max_raw_read && map->max_raw_read < val_len)
2951                         read_len = map->max_raw_read;
2952                 else
2953                         read_len = val_len;
2954                 ret = _regmap_raw_read(map, reg, val, read_len, true);
2955                 if (ret)
2956                         goto out_unlock;
2957                 val = ((u8 *)val) + read_len;
2958                 val_len -= read_len;
2959         }
2960
2961 out_unlock:
2962         map->unlock(map->lock_arg);
2963         return ret;
2964 }
2965 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2966
2967 /**
2968  * regmap_field_read(): Read a value to a single register field
2969  *
2970  * @field: Register field to read from
2971  * @val: Pointer to store read value
2972  *
2973  * A value of zero will be returned on success, a negative errno will
2974  * be returned in error cases.
2975  */
2976 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2977 {
2978         int ret;
2979         unsigned int reg_val;
2980         ret = regmap_read(field->regmap, field->reg, &reg_val);
2981         if (ret != 0)
2982                 return ret;
2983
2984         reg_val &= field->mask;
2985         reg_val >>= field->shift;
2986         *val = reg_val;
2987
2988         return ret;
2989 }
2990 EXPORT_SYMBOL_GPL(regmap_field_read);
2991
2992 /**
2993  * regmap_fields_read() - Read a value to a single register field with port ID
2994  *
2995  * @field: Register field to read from
2996  * @id: port ID
2997  * @val: Pointer to store read value
2998  *
2999  * A value of zero will be returned on success, a negative errno will
3000  * be returned in error cases.
3001  */
3002 int regmap_fields_read(struct regmap_field *field, unsigned int id,
3003                        unsigned int *val)
3004 {
3005         int ret;
3006         unsigned int reg_val;
3007
3008         if (id >= field->id_size)
3009                 return -EINVAL;
3010
3011         ret = regmap_read(field->regmap,
3012                           field->reg + (field->id_offset * id),
3013                           &reg_val);
3014         if (ret != 0)
3015                 return ret;
3016
3017         reg_val &= field->mask;
3018         reg_val >>= field->shift;
3019         *val = reg_val;
3020
3021         return ret;
3022 }
3023 EXPORT_SYMBOL_GPL(regmap_fields_read);
3024
3025 /**
3026  * regmap_bulk_read() - Read multiple registers from the device
3027  *
3028  * @map: Register map to read from
3029  * @reg: First register to be read from
3030  * @val: Pointer to store read value, in native register size for device
3031  * @val_count: Number of registers to read
3032  *
3033  * A value of zero will be returned on success, a negative errno will
3034  * be returned in error cases.
3035  */
3036 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3037                      size_t val_count)
3038 {
3039         int ret, i;
3040         size_t val_bytes = map->format.val_bytes;
3041         bool vol = regmap_volatile_range(map, reg, val_count);
3042
3043         if (!IS_ALIGNED(reg, map->reg_stride))
3044                 return -EINVAL;
3045         if (val_count == 0)
3046                 return -EINVAL;
3047
3048         if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3049                 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3050                 if (ret != 0)
3051                         return ret;
3052
3053                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3054                         map->format.parse_inplace(val + i);
3055         } else {
3056 #ifdef CONFIG_64BIT
3057                 u64 *u64 = val;
3058 #endif
3059                 u32 *u32 = val;
3060                 u16 *u16 = val;
3061                 u8 *u8 = val;
3062
3063                 map->lock(map->lock_arg);
3064
3065                 for (i = 0; i < val_count; i++) {
3066                         unsigned int ival;
3067
3068                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3069                                            &ival);
3070                         if (ret != 0)
3071                                 goto out;
3072
3073                         switch (map->format.val_bytes) {
3074 #ifdef CONFIG_64BIT
3075                         case 8:
3076                                 u64[i] = ival;
3077                                 break;
3078 #endif
3079                         case 4:
3080                                 u32[i] = ival;
3081                                 break;
3082                         case 2:
3083                                 u16[i] = ival;
3084                                 break;
3085                         case 1:
3086                                 u8[i] = ival;
3087                                 break;
3088                         default:
3089                                 ret = -EINVAL;
3090                                 goto out;
3091                         }
3092                 }
3093
3094 out:
3095                 map->unlock(map->lock_arg);
3096         }
3097
3098         return ret;
3099 }
3100 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3101
3102 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3103                                unsigned int mask, unsigned int val,
3104                                bool *change, bool force_write)
3105 {
3106         int ret;
3107         unsigned int tmp, orig;
3108
3109         if (change)
3110                 *change = false;
3111
3112         if (regmap_volatile(map, reg) && map->reg_update_bits) {
3113                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3114                 if (ret == 0 && change)
3115                         *change = true;
3116         } else {
3117                 ret = _regmap_read(map, reg, &orig);
3118                 if (ret != 0)
3119                         return ret;
3120
3121                 tmp = orig & ~mask;
3122                 tmp |= val & mask;
3123
3124                 if (force_write || (tmp != orig)) {
3125                         ret = _regmap_write(map, reg, tmp);
3126                         if (ret == 0 && change)
3127                                 *change = true;
3128                 }
3129         }
3130
3131         return ret;
3132 }
3133
3134 /**
3135  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3136  *
3137  * @map: Register map to update
3138  * @reg: Register to update
3139  * @mask: Bitmask to change
3140  * @val: New value for bitmask
3141  * @change: Boolean indicating if a write was done
3142  * @async: Boolean indicating asynchronously
3143  * @force: Boolean indicating use force update
3144  *
3145  * Perform a read/modify/write cycle on a register map with change, async, force
3146  * options.
3147  *
3148  * If async is true:
3149  *
3150  * With most buses the read must be done synchronously so this is most useful
3151  * for devices with a cache which do not need to interact with the hardware to
3152  * determine the current register value.
3153  *
3154  * Returns zero for success, a negative number on error.
3155  */
3156 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3157                             unsigned int mask, unsigned int val,
3158                             bool *change, bool async, bool force)
3159 {
3160         int ret;
3161
3162         map->lock(map->lock_arg);
3163
3164         map->async = async;
3165
3166         ret = _regmap_update_bits(map, reg, mask, val, change, force);
3167
3168         map->async = false;
3169
3170         map->unlock(map->lock_arg);
3171
3172         return ret;
3173 }
3174 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3175
3176 /**
3177  * regmap_test_bits() - Check if all specified bits are set in a register.
3178  *
3179  * @map: Register map to operate on
3180  * @reg: Register to read from
3181  * @bits: Bits to test
3182  *
3183  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3184  * bits are set and a negative error number if the underlying regmap_read()
3185  * fails.
3186  */
3187 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3188 {
3189         unsigned int val, ret;
3190
3191         ret = regmap_read(map, reg, &val);
3192         if (ret)
3193                 return ret;
3194
3195         return (val & bits) == bits;
3196 }
3197 EXPORT_SYMBOL_GPL(regmap_test_bits);
3198
3199 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3200 {
3201         struct regmap *map = async->map;
3202         bool wake;
3203
3204         trace_regmap_async_io_complete(map);
3205
3206         spin_lock(&map->async_lock);
3207         list_move(&async->list, &map->async_free);
3208         wake = list_empty(&map->async_list);
3209
3210         if (ret != 0)
3211                 map->async_ret = ret;
3212
3213         spin_unlock(&map->async_lock);
3214
3215         if (wake)
3216                 wake_up(&map->async_waitq);
3217 }
3218 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3219
3220 static int regmap_async_is_done(struct regmap *map)
3221 {
3222         unsigned long flags;
3223         int ret;
3224
3225         spin_lock_irqsave(&map->async_lock, flags);
3226         ret = list_empty(&map->async_list);
3227         spin_unlock_irqrestore(&map->async_lock, flags);
3228
3229         return ret;
3230 }
3231
3232 /**
3233  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3234  *
3235  * @map: Map to operate on.
3236  *
3237  * Blocks until any pending asynchronous I/O has completed.  Returns
3238  * an error code for any failed I/O operations.
3239  */
3240 int regmap_async_complete(struct regmap *map)
3241 {
3242         unsigned long flags;
3243         int ret;
3244
3245         /* Nothing to do with no async support */
3246         if (!map->bus || !map->bus->async_write)
3247                 return 0;
3248
3249         trace_regmap_async_complete_start(map);
3250
3251         wait_event(map->async_waitq, regmap_async_is_done(map));
3252
3253         spin_lock_irqsave(&map->async_lock, flags);
3254         ret = map->async_ret;
3255         map->async_ret = 0;
3256         spin_unlock_irqrestore(&map->async_lock, flags);
3257
3258         trace_regmap_async_complete_done(map);
3259
3260         return ret;
3261 }
3262 EXPORT_SYMBOL_GPL(regmap_async_complete);
3263
3264 /**
3265  * regmap_register_patch - Register and apply register updates to be applied
3266  *                         on device initialistion
3267  *
3268  * @map: Register map to apply updates to.
3269  * @regs: Values to update.
3270  * @num_regs: Number of entries in regs.
3271  *
3272  * Register a set of register updates to be applied to the device
3273  * whenever the device registers are synchronised with the cache and
3274  * apply them immediately.  Typically this is used to apply
3275  * corrections to be applied to the device defaults on startup, such
3276  * as the updates some vendors provide to undocumented registers.
3277  *
3278  * The caller must ensure that this function cannot be called
3279  * concurrently with either itself or regcache_sync().
3280  */
3281 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3282                           int num_regs)
3283 {
3284         struct reg_sequence *p;
3285         int ret;
3286         bool bypass;
3287
3288         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3289             num_regs))
3290                 return 0;
3291
3292         p = krealloc(map->patch,
3293                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3294                      GFP_KERNEL);
3295         if (p) {
3296                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3297                 map->patch = p;
3298                 map->patch_regs += num_regs;
3299         } else {
3300                 return -ENOMEM;
3301         }
3302
3303         map->lock(map->lock_arg);
3304
3305         bypass = map->cache_bypass;
3306
3307         map->cache_bypass = true;
3308         map->async = true;
3309
3310         ret = _regmap_multi_reg_write(map, regs, num_regs);
3311
3312         map->async = false;
3313         map->cache_bypass = bypass;
3314
3315         map->unlock(map->lock_arg);
3316
3317         regmap_async_complete(map);
3318
3319         return ret;
3320 }
3321 EXPORT_SYMBOL_GPL(regmap_register_patch);
3322
3323 /**
3324  * regmap_get_val_bytes() - Report the size of a register value
3325  *
3326  * @map: Register map to operate on.
3327  *
3328  * Report the size of a register value, mainly intended to for use by
3329  * generic infrastructure built on top of regmap.
3330  */
3331 int regmap_get_val_bytes(struct regmap *map)
3332 {
3333         if (map->format.format_write)
3334                 return -EINVAL;
3335
3336         return map->format.val_bytes;
3337 }
3338 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3339
3340 /**
3341  * regmap_get_max_register() - Report the max register value
3342  *
3343  * @map: Register map to operate on.
3344  *
3345  * Report the max register value, mainly intended to for use by
3346  * generic infrastructure built on top of regmap.
3347  */
3348 int regmap_get_max_register(struct regmap *map)
3349 {
3350         return map->max_register ? map->max_register : -EINVAL;
3351 }
3352 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3353
3354 /**
3355  * regmap_get_reg_stride() - Report the register address stride
3356  *
3357  * @map: Register map to operate on.
3358  *
3359  * Report the register address stride, mainly intended to for use by
3360  * generic infrastructure built on top of regmap.
3361  */
3362 int regmap_get_reg_stride(struct regmap *map)
3363 {
3364         return map->reg_stride;
3365 }
3366 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3367
3368 int regmap_parse_val(struct regmap *map, const void *buf,
3369                         unsigned int *val)
3370 {
3371         if (!map->format.parse_val)
3372                 return -EINVAL;
3373
3374         *val = map->format.parse_val(buf);
3375
3376         return 0;
3377 }
3378 EXPORT_SYMBOL_GPL(regmap_parse_val);
3379
3380 static int __init regmap_initcall(void)
3381 {
3382         regmap_debugfs_initcall();
3383
3384         return 0;
3385 }
3386 postcore_initcall(regmap_initcall);
This page took 0.234832 seconds and 4 git commands to generate.