1 // SPDX-License-Identifier: GPL-2.0
2 /* smp.c: Sparc64 SMP support.
7 #include <linux/export.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/hotplug.h>
12 #include <linux/pagemap.h>
13 #include <linux/threads.h>
14 #include <linux/smp.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/spinlock.h>
21 #include <linux/seq_file.h>
22 #include <linux/cache.h>
23 #include <linux/jiffies.h>
24 #include <linux/profile.h>
25 #include <linux/memblock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/ftrace.h>
28 #include <linux/cpu.h>
29 #include <linux/slab.h>
30 #include <linux/kgdb.h>
33 #include <asm/ptrace.h>
34 #include <linux/atomic.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include <asm/cpudata.h>
38 #include <asm/hvtramp.h>
40 #include <asm/timer.h>
41 #include <asm/setup.h>
44 #include <asm/irq_regs.h>
46 #include <asm/oplib.h>
47 #include <linux/uaccess.h>
48 #include <asm/starfire.h>
50 #include <asm/pgalloc.h>
51 #include <asm/sections.h>
53 #include <asm/mdesc.h>
55 #include <asm/hypervisor.h>
61 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
62 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
63 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
65 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
66 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
68 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
69 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
71 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
72 EXPORT_SYMBOL(cpu_core_map);
73 EXPORT_SYMBOL(cpu_core_sib_map);
74 EXPORT_SYMBOL(cpu_core_sib_cache_map);
76 static cpumask_t smp_commenced_mask;
78 static DEFINE_PER_CPU(bool, poke);
81 void smp_info(struct seq_file *m)
85 seq_printf(m, "State:\n");
86 for_each_online_cpu(i)
87 seq_printf(m, "CPU%d:\t\tonline\n", i);
90 void smp_bogo(struct seq_file *m)
94 for_each_online_cpu(i)
96 "Cpu%dClkTck\t: %016lx\n",
97 i, cpu_data(i).clock_tick);
100 extern void setup_sparc64_timer(void);
102 static volatile unsigned long callin_flag = 0;
104 void smp_callin(void)
106 int cpuid = hard_smp_processor_id();
108 __local_per_cpu_offset = __per_cpu_offset(cpuid);
110 if (tlb_type == hypervisor)
111 sun4v_ktsb_register();
115 setup_sparc64_timer();
117 if (cheetah_pcache_forced_on)
118 cheetah_enable_pcache();
121 __asm__ __volatile__("membar #Sync\n\t"
122 "flush %%g6" : : : "memory");
124 /* Clear this or we will die instantly when we
125 * schedule back to this idler...
127 current_thread_info()->new_child = 0;
129 /* Attach to the address space of init_task. */
131 current->active_mm = &init_mm;
133 /* inform the notifiers about the new cpu */
134 notify_cpu_starting(cpuid);
136 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
139 set_cpu_online(cpuid, true);
143 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
148 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
149 panic("SMP bolixed\n");
152 /* This tick register synchronization scheme is taken entirely from
153 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
155 * The only change I've made is to rework it so that the master
156 * initiates the synchonization instead of the slave. -DaveM
160 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
162 #define NUM_ROUNDS 64 /* magic value */
163 #define NUM_ITERS 5 /* likewise */
165 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
166 static unsigned long go[SLAVE + 1];
168 #define DEBUG_TICK_SYNC 0
170 static inline long get_delta (long *rt, long *master)
172 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
173 unsigned long tcenter, t0, t1, tm;
176 for (i = 0; i < NUM_ITERS; i++) {
177 t0 = tick_ops->get_tick();
179 membar_safe("#StoreLoad");
180 while (!(tm = go[SLAVE]))
184 t1 = tick_ops->get_tick();
186 if (t1 - t0 < best_t1 - best_t0)
187 best_t0 = t0, best_t1 = t1, best_tm = tm;
190 *rt = best_t1 - best_t0;
191 *master = best_tm - best_t0;
193 /* average best_t0 and best_t1 without overflow: */
194 tcenter = (best_t0/2 + best_t1/2);
195 if (best_t0 % 2 + best_t1 % 2 == 2)
197 return tcenter - best_tm;
200 void smp_synchronize_tick_client(void)
202 long i, delta, adj, adjust_latency = 0, done = 0;
203 unsigned long flags, rt, master_time_stamp;
206 long rt; /* roundtrip time */
207 long master; /* master's timestamp */
208 long diff; /* difference between midpoint and master's timestamp */
209 long lat; /* estimate of itc adjustment latency */
218 local_irq_save(flags);
220 for (i = 0; i < NUM_ROUNDS; i++) {
221 delta = get_delta(&rt, &master_time_stamp);
223 done = 1; /* let's lock on to this... */
227 adjust_latency += -delta;
228 adj = -delta + adjust_latency/4;
232 tick_ops->add_tick(adj);
236 t[i].master = master_time_stamp;
238 t[i].lat = adjust_latency/4;
242 local_irq_restore(flags);
245 for (i = 0; i < NUM_ROUNDS; i++)
246 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
247 t[i].rt, t[i].master, t[i].diff, t[i].lat);
250 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
251 "(last diff %ld cycles, maxerr %lu cycles)\n",
252 smp_processor_id(), delta, rt);
255 static void smp_start_sync_tick_client(int cpu);
257 static void smp_synchronize_one_tick(int cpu)
259 unsigned long flags, i;
263 smp_start_sync_tick_client(cpu);
265 /* wait for client to be ready */
269 /* now let the client proceed into his loop */
271 membar_safe("#StoreLoad");
273 raw_spin_lock_irqsave(&itc_sync_lock, flags);
275 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
280 go[SLAVE] = tick_ops->get_tick();
281 membar_safe("#StoreLoad");
284 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
287 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
288 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
291 extern unsigned long sparc64_ttable_tl0;
292 extern unsigned long kern_locked_tte_data;
293 struct hvtramp_descr *hdesc;
294 unsigned long trampoline_ra;
295 struct trap_per_cpu *tb;
296 u64 tte_vaddr, tte_data;
297 unsigned long hv_err;
300 hdesc = kzalloc(sizeof(*hdesc) +
301 (sizeof(struct hvtramp_mapping) *
302 num_kernel_image_mappings - 1),
305 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
312 hdesc->num_mappings = num_kernel_image_mappings;
314 tb = &trap_block[cpu];
316 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
317 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
319 hdesc->thread_reg = thread_reg;
321 tte_vaddr = (unsigned long) KERNBASE;
322 tte_data = kern_locked_tte_data;
324 for (i = 0; i < hdesc->num_mappings; i++) {
325 hdesc->maps[i].vaddr = tte_vaddr;
326 hdesc->maps[i].tte = tte_data;
327 tte_vaddr += 0x400000;
328 tte_data += 0x400000;
331 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
333 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
334 kimage_addr_to_ra(&sparc64_ttable_tl0),
337 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
338 "gives error %lu\n", hv_err);
342 extern unsigned long sparc64_cpu_startup;
344 /* The OBP cpu startup callback truncates the 3rd arg cookie to
345 * 32-bits (I think) so to be safe we have it read the pointer
346 * contained here so we work on >4GB machines. -DaveM
348 static struct thread_info *cpu_new_thread = NULL;
350 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
352 unsigned long entry =
353 (unsigned long)(&sparc64_cpu_startup);
354 unsigned long cookie =
355 (unsigned long)(&cpu_new_thread);
360 cpu_new_thread = task_thread_info(idle);
362 if (tlb_type == hypervisor) {
363 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
364 if (ldom_domaining_enabled)
365 ldom_startcpu_cpuid(cpu,
366 (unsigned long) cpu_new_thread,
370 prom_startcpu_cpuid(cpu, entry, cookie);
372 struct device_node *dp = of_find_node_by_cpuid(cpu);
374 prom_startcpu(dp->phandle, entry, cookie);
377 for (timeout = 0; timeout < 50000; timeout++) {
386 printk("Processor %d is stuck.\n", cpu);
389 cpu_new_thread = NULL;
396 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
401 if (this_is_starfire) {
402 /* map to real upaid */
403 cpu = (((cpu & 0x3c) << 1) |
404 ((cpu & 0x40) >> 4) |
408 target = (cpu << 14) | 0x70;
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
418 __asm__ __volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
425 "stxa %%g0, [%7] %3\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432 "r" (data0), "r" (data1), "r" (data2), "r" (target),
433 "r" (0x10), "0" (tmp)
436 /* NOTE: PSTATE_IE is still clear. */
439 __asm__ __volatile__("ldxa [%%g0] %1, %0"
441 : "i" (ASI_INTR_DISPATCH_STAT));
443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
450 } while (result & 0x1);
451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
454 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
455 smp_processor_id(), result);
462 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
464 u64 *mondo, data0, data1, data2;
469 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
470 cpu_list = __va(tb->cpu_list_pa);
471 mondo = __va(tb->cpu_mondo_block_pa);
475 for (i = 0; i < cnt; i++)
476 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
479 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
480 * packet, but we have no use for that. However we do take advantage of
481 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
483 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
485 int nack_busy_id, is_jbus, need_more;
486 u64 *mondo, pstate, ver, busy_mask;
489 cpu_list = __va(tb->cpu_list_pa);
490 mondo = __va(tb->cpu_mondo_block_pa);
492 /* Unfortunately, someone at Sun had the brilliant idea to make the
493 * busy/nack fields hard-coded by ITID number for this Ultra-III
494 * derivative processor.
496 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
497 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
498 (ver >> 32) == __SERRANO_ID);
500 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
504 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
505 : : "r" (pstate), "i" (PSTATE_IE));
507 /* Setup the dispatch data registers. */
508 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
509 "stxa %1, [%4] %6\n\t"
510 "stxa %2, [%5] %6\n\t"
513 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
514 "r" (0x40), "r" (0x50), "r" (0x60),
522 for (i = 0; i < cnt; i++) {
529 target = (nr << 14) | 0x70;
531 busy_mask |= (0x1UL << (nr * 2));
533 target |= (nack_busy_id << 24);
534 busy_mask |= (0x1UL <<
537 __asm__ __volatile__(
538 "stxa %%g0, [%0] %1\n\t"
541 : "r" (target), "i" (ASI_INTR_W));
543 if (nack_busy_id == 32) {
550 /* Now, poll for completion. */
552 u64 dispatch_stat, nack_mask;
555 stuck = 100000 * nack_busy_id;
556 nack_mask = busy_mask << 1;
558 __asm__ __volatile__("ldxa [%%g0] %1, %0"
559 : "=r" (dispatch_stat)
560 : "i" (ASI_INTR_DISPATCH_STAT));
561 if (!(dispatch_stat & (busy_mask | nack_mask))) {
562 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
564 if (unlikely(need_more)) {
566 for (i = 0; i < cnt; i++) {
567 if (cpu_list[i] == 0xffff)
569 cpu_list[i] = 0xffff;
580 } while (dispatch_stat & busy_mask);
582 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
585 if (dispatch_stat & busy_mask) {
586 /* Busy bits will not clear, continue instead
587 * of freezing up on this cpu.
589 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
590 smp_processor_id(), dispatch_stat);
592 int i, this_busy_nack = 0;
594 /* Delay some random time with interrupts enabled
595 * to prevent deadlock.
597 udelay(2 * nack_busy_id);
599 /* Clear out the mask bits for cpus which did not
602 for (i = 0; i < cnt; i++) {
610 check_mask = (0x2UL << (2*nr));
612 check_mask = (0x2UL <<
614 if ((dispatch_stat & check_mask) == 0)
615 cpu_list[i] = 0xffff;
617 if (this_busy_nack == 64)
626 #define CPU_MONDO_COUNTER(cpuid) (cpu_mondo_counter[cpuid])
627 #define MONDO_USEC_WAIT_MIN 2
628 #define MONDO_USEC_WAIT_MAX 100
629 #define MONDO_RETRY_LIMIT 500000
631 /* Multi-cpu list version.
633 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
634 * Sometimes not all cpus receive the mondo, requiring us to re-send
635 * the mondo until all cpus have received, or cpus are truly stuck
636 * unable to receive mondo, and we timeout.
637 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
638 * perform guest service, such as PCIe error handling. Consider the
639 * service time, 1 second overall wait is reasonable for 1 cpu.
640 * Here two in-between mondo check wait time are defined: 2 usec for
641 * single cpu quick turn around and up to 100usec for large cpu count.
642 * Deliver mondo to large number of cpus could take longer, we adjusts
643 * the retry count as long as target cpus are making forward progress.
645 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
647 int this_cpu, tot_cpus, prev_sent, i, rem;
648 int usec_wait, retries, tot_retries;
649 u16 first_cpu = 0xffff;
650 unsigned long xc_rcvd = 0;
651 unsigned long status;
652 int ecpuerror_id = 0;
657 this_cpu = smp_processor_id();
658 cpu_list = __va(tb->cpu_list_pa);
659 usec_wait = cnt * MONDO_USEC_WAIT_MIN;
660 if (usec_wait > MONDO_USEC_WAIT_MAX)
661 usec_wait = MONDO_USEC_WAIT_MAX;
662 retries = tot_retries = 0;
667 int n_sent, mondo_delivered, target_cpu_busy;
669 status = sun4v_cpu_mondo_send(cnt,
671 tb->cpu_mondo_block_pa);
673 /* HV_EOK means all cpus received the xcall, we're done. */
674 if (likely(status == HV_EOK))
677 /* If not these non-fatal errors, panic */
678 if (unlikely((status != HV_EWOULDBLOCK) &&
679 (status != HV_ECPUERROR) &&
680 (status != HV_ENOCPU)))
683 /* First, see if we made any forward progress.
685 * Go through the cpu_list, count the target cpus that have
686 * received our mondo (n_sent), and those that did not (rem).
687 * Re-pack cpu_list with the cpus remain to be retried in the
688 * front - this simplifies tracking the truly stalled cpus.
690 * The hypervisor indicates successful sends by setting
691 * cpu list entries to the value 0xffff.
693 * EWOULDBLOCK means some target cpus did not receive the
694 * mondo and retry usually helps.
696 * ECPUERROR means at least one target cpu is in error state,
697 * it's usually safe to skip the faulty cpu and retry.
699 * ENOCPU means one of the target cpu doesn't belong to the
700 * domain, perhaps offlined which is unexpected, but not
701 * fatal and it's okay to skip the offlined cpu.
705 for (i = 0; i < cnt; i++) {
707 if (likely(cpu == 0xffff)) {
709 } else if ((status == HV_ECPUERROR) &&
710 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
711 ecpuerror_id = cpu + 1;
712 } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
715 cpu_list[rem++] = cpu;
719 /* No cpu remained, we're done. */
723 /* Otherwise, update the cpu count for retry. */
726 /* Record the overall number of mondos received by the
727 * first of the remaining cpus.
729 if (first_cpu != cpu_list[0]) {
730 first_cpu = cpu_list[0];
731 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
734 /* Was any mondo delivered successfully? */
735 mondo_delivered = (n_sent > prev_sent);
738 /* or, was any target cpu busy processing other mondos? */
739 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
740 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
742 /* Retry count is for no progress. If we're making progress,
743 * reset the retry count.
745 if (likely(mondo_delivered || target_cpu_busy)) {
746 tot_retries += retries;
748 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
749 goto fatal_mondo_timeout;
752 /* Delay a little bit to let other cpus catch up on
753 * their cpu mondo queue work.
755 if (!mondo_delivered)
762 if (unlikely(ecpuerror_id > 0)) {
763 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
764 this_cpu, ecpuerror_id - 1);
765 } else if (unlikely(enocpu_id > 0)) {
766 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
767 this_cpu, enocpu_id - 1);
772 /* fatal errors include bad alignment, etc */
773 pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
774 this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
775 panic("Unexpected SUN4V mondo error %lu\n", status);
778 /* some cpus being non-responsive to the cpu mondo */
779 pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
780 this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
781 panic("SUN4V mondo timeout panic\n");
784 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
786 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
788 struct trap_per_cpu *tb;
789 int this_cpu, i, cnt;
794 /* We have to do this whole thing with interrupts fully disabled.
795 * Otherwise if we send an xcall from interrupt context it will
796 * corrupt both our mondo block and cpu list state.
798 * One consequence of this is that we cannot use timeout mechanisms
799 * that depend upon interrupts being delivered locally. So, for
800 * example, we cannot sample jiffies and expect it to advance.
802 * Fortunately, udelay() uses %stick/%tick so we can use that.
804 local_irq_save(flags);
806 this_cpu = smp_processor_id();
807 tb = &trap_block[this_cpu];
809 mondo = __va(tb->cpu_mondo_block_pa);
815 cpu_list = __va(tb->cpu_list_pa);
817 /* Setup the initial cpu list. */
819 for_each_cpu(i, mask) {
820 if (i == this_cpu || !cpu_online(i))
826 xcall_deliver_impl(tb, cnt);
828 local_irq_restore(flags);
831 /* Send cross call to all processors mentioned in MASK_P
832 * except self. Really, there are only two cases currently,
833 * "cpu_online_mask" and "mm_cpumask(mm)".
835 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
837 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
839 xcall_deliver(data0, data1, data2, mask);
842 /* Send cross call to all processors except self. */
843 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
845 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
848 extern unsigned long xcall_sync_tick;
850 static void smp_start_sync_tick_client(int cpu)
852 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
856 extern unsigned long xcall_call_function;
858 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
860 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
863 extern unsigned long xcall_call_function_single;
865 void arch_send_call_function_single_ipi(int cpu)
867 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
871 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
873 clear_softint(1 << irq);
875 generic_smp_call_function_interrupt();
879 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
881 clear_softint(1 << irq);
883 generic_smp_call_function_single_interrupt();
887 static void tsb_sync(void *info)
889 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
890 struct mm_struct *mm = info;
892 /* It is not valid to test "current->active_mm == mm" here.
894 * The value of "current" is not changed atomically with
895 * switch_mm(). But that's OK, we just need to check the
896 * current cpu's trap block PGD physical address.
898 if (tp->pgd_paddr == __pa(mm->pgd))
899 tsb_context_switch(mm);
902 void smp_tsb_sync(struct mm_struct *mm)
904 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
907 extern unsigned long xcall_flush_tlb_mm;
908 extern unsigned long xcall_flush_tlb_page;
909 extern unsigned long xcall_flush_tlb_kernel_range;
910 extern unsigned long xcall_fetch_glob_regs;
911 extern unsigned long xcall_fetch_glob_pmu;
912 extern unsigned long xcall_fetch_glob_pmu_n4;
913 extern unsigned long xcall_receive_signal;
914 extern unsigned long xcall_new_mmu_context_version;
916 extern unsigned long xcall_kgdb_capture;
919 #ifdef DCACHE_ALIASING_POSSIBLE
920 extern unsigned long xcall_flush_dcache_page_cheetah;
922 extern unsigned long xcall_flush_dcache_page_spitfire;
924 static inline void __local_flush_dcache_page(struct page *page)
926 #ifdef DCACHE_ALIASING_POSSIBLE
927 __flush_dcache_page(page_address(page),
928 ((tlb_type == spitfire) &&
929 page_mapping_file(page) != NULL));
931 if (page_mapping_file(page) != NULL &&
932 tlb_type == spitfire)
933 __flush_icache_page(__pa(page_address(page)));
937 void smp_flush_dcache_page_impl(struct page *page, int cpu)
941 if (tlb_type == hypervisor)
944 #ifdef CONFIG_DEBUG_DCFLUSH
945 atomic_inc(&dcpage_flushes);
948 this_cpu = get_cpu();
950 if (cpu == this_cpu) {
951 __local_flush_dcache_page(page);
952 } else if (cpu_online(cpu)) {
953 void *pg_addr = page_address(page);
956 if (tlb_type == spitfire) {
957 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
958 if (page_mapping_file(page) != NULL)
959 data0 |= ((u64)1 << 32);
960 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
961 #ifdef DCACHE_ALIASING_POSSIBLE
962 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
966 xcall_deliver(data0, __pa(pg_addr),
967 (u64) pg_addr, cpumask_of(cpu));
968 #ifdef CONFIG_DEBUG_DCFLUSH
969 atomic_inc(&dcpage_flushes_xcall);
977 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
982 if (tlb_type == hypervisor)
987 #ifdef CONFIG_DEBUG_DCFLUSH
988 atomic_inc(&dcpage_flushes);
991 pg_addr = page_address(page);
992 if (tlb_type == spitfire) {
993 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
994 if (page_mapping_file(page) != NULL)
995 data0 |= ((u64)1 << 32);
996 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
997 #ifdef DCACHE_ALIASING_POSSIBLE
998 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1002 xcall_deliver(data0, __pa(pg_addr),
1003 (u64) pg_addr, cpu_online_mask);
1004 #ifdef CONFIG_DEBUG_DCFLUSH
1005 atomic_inc(&dcpage_flushes_xcall);
1008 __local_flush_dcache_page(page);
1014 void kgdb_roundup_cpus(void)
1016 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1020 void smp_fetch_global_regs(void)
1022 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1025 void smp_fetch_global_pmu(void)
1027 if (tlb_type == hypervisor &&
1028 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1029 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1031 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1034 /* We know that the window frames of the user have been flushed
1035 * to the stack before we get here because all callers of us
1036 * are flush_tlb_*() routines, and these run after flush_cache_*()
1037 * which performs the flushw.
1039 * mm->cpu_vm_mask is a bit mask of which cpus an address
1040 * space has (potentially) executed on, this is the heuristic
1041 * we use to limit cross calls.
1044 /* This currently is only used by the hugetlb arch pre-fault
1045 * hook on UltraSPARC-III+ and later when changing the pagesize
1046 * bits of the context register for an address space.
1048 void smp_flush_tlb_mm(struct mm_struct *mm)
1050 u32 ctx = CTX_HWBITS(mm->context);
1054 smp_cross_call_masked(&xcall_flush_tlb_mm,
1058 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1063 struct tlb_pending_info {
1066 unsigned long *vaddrs;
1069 static void tlb_pending_func(void *info)
1071 struct tlb_pending_info *t = info;
1073 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1076 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1078 u32 ctx = CTX_HWBITS(mm->context);
1079 struct tlb_pending_info info;
1085 info.vaddrs = vaddrs;
1087 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1090 __flush_tlb_pending(ctx, nr, vaddrs);
1095 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1097 unsigned long context = CTX_HWBITS(mm->context);
1101 smp_cross_call_masked(&xcall_flush_tlb_page,
1105 __flush_tlb_page(context, vaddr);
1110 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1113 end = PAGE_ALIGN(end);
1115 smp_cross_call(&xcall_flush_tlb_kernel_range,
1118 __flush_tlb_kernel_range(start, end);
1123 /* #define CAPTURE_DEBUG */
1124 extern unsigned long xcall_capture;
1126 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1127 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1128 static unsigned long penguins_are_doing_time;
1130 void smp_capture(void)
1132 int result = atomic_add_return(1, &smp_capture_depth);
1135 int ncpus = num_online_cpus();
1137 #ifdef CAPTURE_DEBUG
1138 printk("CPU[%d]: Sending penguins to jail...",
1139 smp_processor_id());
1141 penguins_are_doing_time = 1;
1142 atomic_inc(&smp_capture_registry);
1143 smp_cross_call(&xcall_capture, 0, 0, 0);
1144 while (atomic_read(&smp_capture_registry) != ncpus)
1146 #ifdef CAPTURE_DEBUG
1152 void smp_release(void)
1154 if (atomic_dec_and_test(&smp_capture_depth)) {
1155 #ifdef CAPTURE_DEBUG
1156 printk("CPU[%d]: Giving pardon to "
1157 "imprisoned penguins\n",
1158 smp_processor_id());
1160 penguins_are_doing_time = 0;
1161 membar_safe("#StoreLoad");
1162 atomic_dec(&smp_capture_registry);
1166 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1167 * set, so they can service tlb flush xcalls...
1169 extern void prom_world(int);
1171 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1173 clear_softint(1 << irq);
1177 __asm__ __volatile__("flushw");
1179 atomic_inc(&smp_capture_registry);
1180 membar_safe("#StoreLoad");
1181 while (penguins_are_doing_time)
1183 atomic_dec(&smp_capture_registry);
1189 void __init smp_prepare_cpus(unsigned int max_cpus)
1193 void smp_prepare_boot_cpu(void)
1197 void __init smp_setup_processor_id(void)
1199 if (tlb_type == spitfire)
1200 xcall_deliver_impl = spitfire_xcall_deliver;
1201 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1202 xcall_deliver_impl = cheetah_xcall_deliver;
1204 xcall_deliver_impl = hypervisor_xcall_deliver;
1207 void __init smp_fill_in_cpu_possible_map(void)
1209 int possible_cpus = num_possible_cpus();
1212 if (possible_cpus > nr_cpu_ids)
1213 possible_cpus = nr_cpu_ids;
1215 for (i = 0; i < possible_cpus; i++)
1216 set_cpu_possible(i, true);
1217 for (; i < NR_CPUS; i++)
1218 set_cpu_possible(i, false);
1221 void smp_fill_in_sib_core_maps(void)
1225 for_each_present_cpu(i) {
1228 cpumask_clear(&cpu_core_map[i]);
1229 if (cpu_data(i).core_id == 0) {
1230 cpumask_set_cpu(i, &cpu_core_map[i]);
1234 for_each_present_cpu(j) {
1235 if (cpu_data(i).core_id ==
1236 cpu_data(j).core_id)
1237 cpumask_set_cpu(j, &cpu_core_map[i]);
1241 for_each_present_cpu(i) {
1244 for_each_present_cpu(j) {
1245 if (cpu_data(i).max_cache_id ==
1246 cpu_data(j).max_cache_id)
1247 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1249 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1250 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1254 for_each_present_cpu(i) {
1257 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1258 if (cpu_data(i).proc_id == -1) {
1259 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1263 for_each_present_cpu(j) {
1264 if (cpu_data(i).proc_id ==
1265 cpu_data(j).proc_id)
1266 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1271 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1273 int ret = smp_boot_one_cpu(cpu, tidle);
1276 cpumask_set_cpu(cpu, &smp_commenced_mask);
1277 while (!cpu_online(cpu))
1279 if (!cpu_online(cpu)) {
1282 /* On SUN4V, writes to %tick and %stick are
1285 if (tlb_type != hypervisor)
1286 smp_synchronize_one_tick(cpu);
1292 #ifdef CONFIG_HOTPLUG_CPU
1293 void cpu_play_dead(void)
1295 int cpu = smp_processor_id();
1296 unsigned long pstate;
1300 if (tlb_type == hypervisor) {
1301 struct trap_per_cpu *tb = &trap_block[cpu];
1303 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1304 tb->cpu_mondo_pa, 0);
1305 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1306 tb->dev_mondo_pa, 0);
1307 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1308 tb->resum_mondo_pa, 0);
1309 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1310 tb->nonresum_mondo_pa, 0);
1313 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1314 membar_safe("#Sync");
1316 local_irq_disable();
1318 __asm__ __volatile__(
1319 "rdpr %%pstate, %0\n\t"
1320 "wrpr %0, %1, %%pstate"
1328 int __cpu_disable(void)
1330 int cpu = smp_processor_id();
1334 for_each_cpu(i, &cpu_core_map[cpu])
1335 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1336 cpumask_clear(&cpu_core_map[cpu]);
1338 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1339 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1340 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1349 /* Make sure no interrupts point to this cpu. */
1354 local_irq_disable();
1356 set_cpu_online(cpu, false);
1363 void __cpu_die(unsigned int cpu)
1367 for (i = 0; i < 100; i++) {
1369 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1373 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1374 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1376 #if defined(CONFIG_SUN_LDOMS)
1377 unsigned long hv_err;
1381 hv_err = sun4v_cpu_stop(cpu);
1382 if (hv_err == HV_EOK) {
1383 set_cpu_present(cpu, false);
1386 } while (--limit > 0);
1388 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1396 void __init smp_cpus_done(unsigned int max_cpus)
1400 static void send_cpu_ipi(int cpu)
1402 xcall_deliver((u64) &xcall_receive_signal,
1403 0, 0, cpumask_of(cpu));
1406 void scheduler_poke(void)
1411 if (!__this_cpu_read(poke))
1414 __this_cpu_write(poke, false);
1415 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1418 static unsigned long send_cpu_poke(int cpu)
1420 unsigned long hv_err;
1422 per_cpu(poke, cpu) = true;
1423 hv_err = sun4v_cpu_poke(cpu);
1424 if (hv_err != HV_EOK) {
1425 per_cpu(poke, cpu) = false;
1426 pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1433 void smp_send_reschedule(int cpu)
1435 if (cpu == smp_processor_id()) {
1436 WARN_ON_ONCE(preemptible());
1437 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1441 /* Use cpu poke to resume idle cpu if supported. */
1442 if (cpu_poke && idle_cpu(cpu)) {
1445 ret = send_cpu_poke(cpu);
1450 /* Use IPI in following cases:
1451 * - cpu poke not supported
1453 * - send_cpu_poke() returns with error
1458 void smp_init_cpu_poke(void)
1460 unsigned long major;
1461 unsigned long minor;
1464 if (tlb_type != hypervisor)
1467 ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1469 pr_debug("HV_GRP_CORE is not registered\n");
1473 if (major == 1 && minor >= 6) {
1474 /* CPU POKE is registered. */
1479 pr_debug("CPU_POKE not supported\n");
1482 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1484 clear_softint(1 << irq);
1488 static void stop_this_cpu(void *dummy)
1490 set_cpu_online(smp_processor_id(), false);
1494 void smp_send_stop(void)
1498 if (tlb_type == hypervisor) {
1499 int this_cpu = smp_processor_id();
1500 #ifdef CONFIG_SERIAL_SUNHV
1501 sunhv_migrate_hvcons_irq(this_cpu);
1503 for_each_online_cpu(cpu) {
1504 if (cpu == this_cpu)
1507 set_cpu_online(cpu, false);
1508 #ifdef CONFIG_SUN_LDOMS
1509 if (ldom_domaining_enabled) {
1510 unsigned long hv_err;
1511 hv_err = sun4v_cpu_stop(cpu);
1513 printk(KERN_ERR "sun4v_cpu_stop() "
1514 "failed err=%lu\n", hv_err);
1517 prom_stopcpu_cpuid(cpu);
1520 smp_call_function(stop_this_cpu, NULL, 0);
1523 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1525 if (cpu_to_node(from) == cpu_to_node(to))
1526 return LOCAL_DISTANCE;
1528 return REMOTE_DISTANCE;
1531 static int __init pcpu_cpu_to_node(int cpu)
1533 return cpu_to_node(cpu);
1536 void __init setup_per_cpu_areas(void)
1538 unsigned long delta;
1542 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1543 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1544 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1548 pr_warn("PERCPU: %s allocator failed (%d), "
1549 "falling back to page size\n",
1550 pcpu_fc_names[pcpu_chosen_fc], rc);
1553 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1556 panic("cannot initialize percpu area (err=%d)", rc);
1558 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1559 for_each_possible_cpu(cpu)
1560 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1562 /* Setup %g5 for the boot cpu. */
1563 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1565 of_fill_in_cpu_data();
1566 if (tlb_type == hypervisor)
1567 mdesc_fill_in_cpu_data(cpu_all_mask);