2 * Copyright 2009 Jerome Glisse.
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
51 #include <drm/amdgpu_drm.h>
52 #include <drm/drm_drv.h>
55 #include "amdgpu_object.h"
56 #include "amdgpu_trace.h"
57 #include "amdgpu_amdkfd.h"
58 #include "amdgpu_sdma.h"
59 #include "amdgpu_ras.h"
60 #include "amdgpu_hmm.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
65 MODULE_IMPORT_NS(DMA_BUF);
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
71 struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
77 uint64_t size_in_page)
79 return ttm_range_man_init(&adev->mman.bdev, type,
84 * amdgpu_evict_flags - Compute placement flags
86 * @bo: The buffer object to evict
87 * @placement: Possible destination(s) for evicted BO
89 * Fill in placement data when ttm_bo_evict() is called
91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92 struct ttm_placement *placement)
94 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95 struct amdgpu_bo *abo;
96 static const struct ttm_place placements = {
99 .mem_type = TTM_PL_SYSTEM,
103 /* Don't handle scatter gather BOs */
104 if (bo->type == ttm_bo_type_sg) {
105 placement->num_placement = 0;
106 placement->num_busy_placement = 0;
110 /* Object isn't an AMDGPU object so ignore */
111 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112 placement->placement = &placements;
113 placement->busy_placement = &placements;
114 placement->num_placement = 1;
115 placement->num_busy_placement = 1;
119 abo = ttm_to_amdgpu_bo(bo);
120 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121 placement->num_placement = 0;
122 placement->num_busy_placement = 0;
126 switch (bo->resource->mem_type) {
130 placement->num_placement = 0;
131 placement->num_busy_placement = 0;
135 if (!adev->mman.buffer_funcs_enabled) {
136 /* Move to system memory */
137 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140 amdgpu_bo_in_cpu_visible_vram(abo)) {
142 /* Try evicting to the CPU inaccessible part of VRAM
143 * first, but only set GTT as busy placement, so this
144 * BO will be evicted to GTT rather than causing other
145 * BOs to be evicted from VRAM
147 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148 AMDGPU_GEM_DOMAIN_GTT |
149 AMDGPU_GEM_DOMAIN_CPU);
150 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151 abo->placements[0].lpfn = 0;
152 abo->placement.busy_placement = &abo->placements[1];
153 abo->placement.num_busy_placement = 1;
155 /* Move to GTT memory */
156 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157 AMDGPU_GEM_DOMAIN_CPU);
161 case AMDGPU_PL_PREEMPT:
163 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
166 *placement = abo->placement;
170 * amdgpu_ttm_map_buffer - Map memory into the GART windows
171 * @bo: buffer object to map
172 * @mem: memory object to map
173 * @mm_cur: range to map
174 * @window: which GART window to use
175 * @ring: DMA ring to use for the copy
176 * @tmz: if we should setup a TMZ enabled mapping
177 * @size: in number of bytes to map, out number of bytes mapped
178 * @addr: resulting address inside the MC address space
180 * Setup one of the GART windows to access a specific piece of memory or return
181 * the physical address for local memory.
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184 struct ttm_resource *mem,
185 struct amdgpu_res_cursor *mm_cur,
186 unsigned int window, struct amdgpu_ring *ring,
187 bool tmz, uint64_t *size, uint64_t *addr)
189 struct amdgpu_device *adev = ring->adev;
190 unsigned int offset, num_pages, num_dw, num_bytes;
191 uint64_t src_addr, dst_addr;
192 struct amdgpu_job *job;
198 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
201 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
204 /* Map only what can't be accessed directly */
205 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
213 * If start begins at an offset inside the page, then adjust the size
214 * and addr accordingly
216 offset = mm_cur->start & ~PAGE_MASK;
218 num_pages = PFN_UP(*size + offset);
219 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
221 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
223 *addr = adev->gmc.gart_start;
224 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225 AMDGPU_GPU_PAGE_SIZE;
228 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
231 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
232 AMDGPU_FENCE_OWNER_UNDEFINED,
233 num_dw * 4 + num_bytes,
234 AMDGPU_IB_POOL_DELAYED, &job);
238 src_addr = num_dw * 4;
239 src_addr += job->ibs[0].gpu_addr;
241 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244 dst_addr, num_bytes, false);
246 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247 WARN_ON(job->ibs[0].length_dw > num_dw);
249 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
251 flags |= AMDGPU_PTE_TMZ;
253 cpu_addr = &job->ibs[0].ptr[num_dw];
255 if (mem->mem_type == TTM_PL_TT) {
256 dma_addr_t *dma_addr;
258 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
261 dma_addr_t dma_address;
263 dma_address = mm_cur->start;
264 dma_address += adev->vm_manager.vram_base_offset;
266 for (i = 0; i < num_pages; ++i) {
267 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
269 dma_address += PAGE_SIZE;
273 dma_fence_put(amdgpu_job_submit(job));
278 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279 * @adev: amdgpu device
280 * @src: buffer/address where to read from
281 * @dst: buffer/address where to write to
282 * @size: number of bytes to copy
283 * @tmz: if a secure copy should be used
284 * @resv: resv object to sync to
285 * @f: Returns the last fence if multiple jobs are submitted.
287 * The function copies @size bytes from {src->mem + src->offset} to
288 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289 * move and different for a BO to BO copy.
292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293 const struct amdgpu_copy_mem *src,
294 const struct amdgpu_copy_mem *dst,
295 uint64_t size, bool tmz,
296 struct dma_resv *resv,
297 struct dma_fence **f)
299 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300 struct amdgpu_res_cursor src_mm, dst_mm;
301 struct dma_fence *fence = NULL;
304 if (!adev->mman.buffer_funcs_enabled) {
305 DRM_ERROR("Trying to move memory with ring turned off.\n");
309 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
312 mutex_lock(&adev->mman.gtt_window_lock);
313 while (src_mm.remaining) {
314 uint64_t from, to, cur_size;
315 struct dma_fence *next;
317 /* Never copy more than 256MiB at once to avoid a timeout */
318 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
320 /* Map src to window 0 and dst to window 1. */
321 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322 0, ring, tmz, &cur_size, &from);
326 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327 1, ring, tmz, &cur_size, &to);
331 r = amdgpu_copy_buffer(ring, from, to, cur_size,
332 resv, &next, false, true, tmz);
336 dma_fence_put(fence);
339 amdgpu_res_next(&src_mm, cur_size);
340 amdgpu_res_next(&dst_mm, cur_size);
343 mutex_unlock(&adev->mman.gtt_window_lock);
345 *f = dma_fence_get(fence);
346 dma_fence_put(fence);
351 * amdgpu_move_blit - Copy an entire buffer to another buffer
353 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354 * help move buffers to and from VRAM.
356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
358 struct ttm_resource *new_mem,
359 struct ttm_resource *old_mem)
361 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363 struct amdgpu_copy_mem src, dst;
364 struct dma_fence *fence = NULL;
374 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
376 amdgpu_bo_encrypted(abo),
377 bo->base.resv, &fence);
381 /* clear the space being freed */
382 if (old_mem->mem_type == TTM_PL_VRAM &&
383 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384 struct dma_fence *wipe_fence = NULL;
386 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
390 } else if (wipe_fence) {
391 dma_fence_put(fence);
396 /* Always block for VM page tables before committing the new location */
397 if (bo->type == ttm_bo_type_kernel)
398 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
400 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401 dma_fence_put(fence);
406 dma_fence_wait(fence, false);
407 dma_fence_put(fence);
412 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
414 * Called by amdgpu_bo_move()
416 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417 struct ttm_resource *mem)
419 u64 mem_size = (u64)mem->size;
420 struct amdgpu_res_cursor cursor;
423 if (mem->mem_type == TTM_PL_SYSTEM ||
424 mem->mem_type == TTM_PL_TT)
426 if (mem->mem_type != TTM_PL_VRAM)
429 amdgpu_res_first(mem, 0, mem_size, &cursor);
430 end = cursor.start + cursor.size;
431 while (cursor.remaining) {
432 amdgpu_res_next(&cursor, cursor.size);
434 if (!cursor.remaining)
437 /* ttm_resource_ioremap only supports contiguous memory */
438 if (end != cursor.start)
441 end = cursor.start + cursor.size;
444 return end <= adev->gmc.visible_vram_size;
448 * amdgpu_bo_move - Move a buffer object to a new memory location
450 * Called by ttm_bo_handle_move_mem()
452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453 struct ttm_operation_ctx *ctx,
454 struct ttm_resource *new_mem,
455 struct ttm_place *hop)
457 struct amdgpu_device *adev;
458 struct amdgpu_bo *abo;
459 struct ttm_resource *old_mem = bo->resource;
462 if (new_mem->mem_type == TTM_PL_TT ||
463 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
469 abo = ttm_to_amdgpu_bo(bo);
470 adev = amdgpu_ttm_adev(bo->bdev);
472 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
474 ttm_bo_move_null(bo, new_mem);
477 if (old_mem->mem_type == TTM_PL_SYSTEM &&
478 (new_mem->mem_type == TTM_PL_TT ||
479 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
480 ttm_bo_move_null(bo, new_mem);
483 if ((old_mem->mem_type == TTM_PL_TT ||
484 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
485 new_mem->mem_type == TTM_PL_SYSTEM) {
486 r = ttm_bo_wait_ctx(bo, ctx);
490 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
491 ttm_resource_free(bo, &bo->resource);
492 ttm_bo_assign_mem(bo, new_mem);
496 if (old_mem->mem_type == AMDGPU_PL_GDS ||
497 old_mem->mem_type == AMDGPU_PL_GWS ||
498 old_mem->mem_type == AMDGPU_PL_OA ||
499 new_mem->mem_type == AMDGPU_PL_GDS ||
500 new_mem->mem_type == AMDGPU_PL_GWS ||
501 new_mem->mem_type == AMDGPU_PL_OA) {
502 /* Nothing to save here */
503 ttm_bo_move_null(bo, new_mem);
507 if (bo->type == ttm_bo_type_device &&
508 new_mem->mem_type == TTM_PL_VRAM &&
509 old_mem->mem_type != TTM_PL_VRAM) {
510 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
511 * accesses the BO after it's moved.
513 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
516 if (adev->mman.buffer_funcs_enabled) {
517 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
518 new_mem->mem_type == TTM_PL_VRAM) ||
519 (old_mem->mem_type == TTM_PL_VRAM &&
520 new_mem->mem_type == TTM_PL_SYSTEM))) {
523 hop->mem_type = TTM_PL_TT;
524 hop->flags = TTM_PL_FLAG_TEMPORARY;
528 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
534 /* Check that all memory is CPU accessible */
535 if (!amdgpu_mem_visible(adev, old_mem) ||
536 !amdgpu_mem_visible(adev, new_mem)) {
537 pr_err("Move buffer fallback to memcpy unavailable\n");
541 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
547 /* update statistics */
548 atomic64_add(bo->base.size, &adev->num_bytes_moved);
549 amdgpu_bo_move_notify(bo, evict, new_mem);
554 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
556 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
558 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
559 struct ttm_resource *mem)
561 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
562 size_t bus_size = (size_t)mem->size;
564 switch (mem->mem_type) {
569 case AMDGPU_PL_PREEMPT:
572 mem->bus.offset = mem->start << PAGE_SHIFT;
573 /* check if it's visible */
574 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
577 if (adev->mman.aper_base_kaddr &&
578 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
579 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
582 mem->bus.offset += adev->gmc.aper_base;
583 mem->bus.is_iomem = true;
591 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
592 unsigned long page_offset)
594 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
595 struct amdgpu_res_cursor cursor;
597 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
599 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
603 * amdgpu_ttm_domain_start - Returns GPU start address
604 * @adev: amdgpu device object
605 * @type: type of the memory
608 * GPU start address of a memory domain
611 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
615 return adev->gmc.gart_start;
617 return adev->gmc.vram_start;
624 * TTM backend functions.
626 struct amdgpu_ttm_tt {
628 struct drm_gem_object *gobj;
631 struct task_struct *usertask;
637 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
639 #ifdef CONFIG_DRM_AMDGPU_USERPTR
641 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
642 * memory and start HMM tracking CPU page table update
644 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
645 * once afterwards to stop HMM tracking
647 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
648 struct hmm_range **range)
650 struct ttm_tt *ttm = bo->tbo.ttm;
651 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
652 unsigned long start = gtt->userptr;
653 struct vm_area_struct *vma;
654 struct mm_struct *mm;
658 /* Make sure get_user_pages_done() can cleanup gracefully */
661 mm = bo->notifier.mm;
663 DRM_DEBUG_DRIVER("BO is not registered?\n");
667 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
671 vma = vma_lookup(mm, start);
672 if (unlikely(!vma)) {
676 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
682 readonly = amdgpu_ttm_tt_is_readonly(ttm);
683 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
684 readonly, NULL, pages, range);
686 mmap_read_unlock(mm);
688 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
695 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
697 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
698 struct hmm_range *range)
700 struct amdgpu_ttm_tt *gtt = (void *)ttm;
702 if (gtt && gtt->userptr && range)
703 amdgpu_hmm_range_get_pages_done(range);
707 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
708 * Check if the pages backing this ttm range have been invalidated
710 * Returns: true if pages are still valid
712 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
713 struct hmm_range *range)
715 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
717 if (!gtt || !gtt->userptr || !range)
720 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
721 gtt->userptr, ttm->num_pages);
723 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
725 return !amdgpu_hmm_range_get_pages_done(range);
730 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
732 * Called by amdgpu_cs_list_validate(). This creates the page list
733 * that backs user memory and will ultimately be mapped into the device
736 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
740 for (i = 0; i < ttm->num_pages; ++i)
741 ttm->pages[i] = pages ? pages[i] : NULL;
745 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
747 * Called by amdgpu_ttm_backend_bind()
749 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
752 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
753 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
754 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
755 enum dma_data_direction direction = write ?
756 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
759 /* Allocate an SG array and squash pages into it */
760 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
761 (u64)ttm->num_pages << PAGE_SHIFT,
766 /* Map SG to device */
767 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
771 /* convert SG to linear array of pages and dma addresses */
772 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
784 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
786 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
789 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
790 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
791 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
792 enum dma_data_direction direction = write ?
793 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
795 /* double check that we don't free the table twice */
796 if (!ttm->sg || !ttm->sg->sgl)
799 /* unmap the pages mapped to the device */
800 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
801 sg_free_table(ttm->sg);
805 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
806 * MQDn+CtrlStackn where n is the number of XCCs per partition.
807 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
808 * and uses memory type default, UC. The rest of pages_per_xcc are
809 * Ctrl stack and modify their memory type to NC.
811 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
812 struct ttm_tt *ttm, uint64_t flags)
814 struct amdgpu_ttm_tt *gtt = (void *)ttm;
815 uint64_t total_pages = ttm->num_pages;
816 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
817 uint64_t page_idx, pages_per_xcc;
819 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
820 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
822 pages_per_xcc = total_pages;
823 do_div(pages_per_xcc, num_xcc);
825 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
826 /* MQD page: use default flags */
827 amdgpu_gart_bind(adev,
828 gtt->offset + (page_idx << PAGE_SHIFT),
829 1, >t->ttm.dma_address[page_idx], flags);
831 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
832 * the second page of the BO onward.
834 amdgpu_gart_bind(adev,
835 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
837 >t->ttm.dma_address[page_idx + 1],
842 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
843 struct ttm_buffer_object *tbo,
846 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
847 struct ttm_tt *ttm = tbo->ttm;
848 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
850 if (amdgpu_bo_encrypted(abo))
851 flags |= AMDGPU_PTE_TMZ;
853 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
854 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
856 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
857 gtt->ttm.dma_address, flags);
862 * amdgpu_ttm_backend_bind - Bind GTT memory
864 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
865 * This handles binding GTT memory to the device address space.
867 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
869 struct ttm_resource *bo_mem)
871 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
872 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
883 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
885 DRM_ERROR("failed to pin userptr\n");
888 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
890 struct dma_buf_attachment *attach;
891 struct sg_table *sgt;
893 attach = gtt->gobj->import_attach;
894 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
901 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
905 if (!ttm->num_pages) {
906 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
907 ttm->num_pages, bo_mem, ttm);
910 if (bo_mem->mem_type != TTM_PL_TT ||
911 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
912 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
916 /* compute PTE flags relevant to this BO memory */
917 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
919 /* bind pages into GART page tables */
920 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
921 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
922 gtt->ttm.dma_address, flags);
928 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
929 * through AGP or GART aperture.
931 * If bo is accessible through AGP aperture, then use AGP aperture
932 * to access bo; otherwise allocate logical space in GART aperture
933 * and map bo to GART aperture.
935 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
937 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
938 struct ttm_operation_ctx ctx = { false, false };
939 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
940 struct ttm_placement placement;
941 struct ttm_place placements;
942 struct ttm_resource *tmp;
943 uint64_t addr, flags;
946 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
949 addr = amdgpu_gmc_agp_addr(bo);
950 if (addr != AMDGPU_BO_INVALID_OFFSET) {
951 bo->resource->start = addr >> PAGE_SHIFT;
955 /* allocate GART space */
956 placement.num_placement = 1;
957 placement.placement = &placements;
958 placement.num_busy_placement = 1;
959 placement.busy_placement = &placements;
961 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
962 placements.mem_type = TTM_PL_TT;
963 placements.flags = bo->resource->placement;
965 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
969 /* compute PTE flags for this buffer object */
970 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
973 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
974 amdgpu_ttm_gart_bind(adev, bo, flags);
975 amdgpu_gart_invalidate_tlb(adev);
976 ttm_resource_free(bo, &bo->resource);
977 ttm_bo_assign_mem(bo, tmp);
983 * amdgpu_ttm_recover_gart - Rebind GTT pages
985 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
986 * rebind GTT pages during a GPU reset.
988 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
990 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
996 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
997 amdgpu_ttm_gart_bind(adev, tbo, flags);
1001 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1003 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1006 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1009 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1010 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1012 /* if the pages have userptr pinning then clear that first */
1014 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1015 } else if (ttm->sg && gtt->gobj->import_attach) {
1016 struct dma_buf_attachment *attach;
1018 attach = gtt->gobj->import_attach;
1019 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1026 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1029 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1030 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1034 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1037 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1040 put_task_struct(gtt->usertask);
1042 ttm_tt_fini(>t->ttm);
1047 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1049 * @bo: The buffer object to create a GTT ttm_tt object around
1050 * @page_flags: Page flags to be added to the ttm_tt object
1052 * Called by ttm_tt_create().
1054 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1055 uint32_t page_flags)
1057 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1058 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1059 struct amdgpu_ttm_tt *gtt;
1060 enum ttm_caching caching;
1062 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1066 gtt->gobj = &bo->base;
1067 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1068 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1070 gtt->pool_id = abo->xcp_id;
1072 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1073 caching = ttm_write_combined;
1075 caching = ttm_cached;
1077 /* allocate space for the uninitialized page entries */
1078 if (ttm_sg_tt_init(>t->ttm, bo, page_flags, caching)) {
1086 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1088 * Map the pages of a ttm_tt object to an address space visible
1089 * to the underlying device.
1091 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1093 struct ttm_operation_ctx *ctx)
1095 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1096 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1097 struct ttm_pool *pool;
1101 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1103 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1109 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1112 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1113 pool = &adev->mman.ttm_pools[gtt->pool_id];
1115 pool = &adev->mman.bdev.pool;
1116 ret = ttm_pool_alloc(pool, ttm, ctx);
1120 for (i = 0; i < ttm->num_pages; ++i)
1121 ttm->pages[i]->mapping = bdev->dev_mapping;
1127 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1129 * Unmaps pages of a ttm_tt object from the device address space and
1130 * unpopulates the page array backing it.
1132 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1135 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1136 struct amdgpu_device *adev;
1137 struct ttm_pool *pool;
1140 amdgpu_ttm_backend_unbind(bdev, ttm);
1143 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1149 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1152 for (i = 0; i < ttm->num_pages; ++i)
1153 ttm->pages[i]->mapping = NULL;
1155 adev = amdgpu_ttm_adev(bdev);
1157 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1158 pool = &adev->mman.ttm_pools[gtt->pool_id];
1160 pool = &adev->mman.bdev.pool;
1162 return ttm_pool_free(pool, ttm);
1166 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1169 * @tbo: The ttm_buffer_object that contains the userptr
1170 * @user_addr: The returned value
1172 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1173 uint64_t *user_addr)
1175 struct amdgpu_ttm_tt *gtt;
1180 gtt = (void *)tbo->ttm;
1181 *user_addr = gtt->userptr;
1186 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1189 * @bo: The ttm_buffer_object to bind this userptr to
1190 * @addr: The address in the current tasks VM space to use
1191 * @flags: Requirements of userptr object.
1193 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1194 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1195 * initialize GPU VM for a KFD process.
1197 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1198 uint64_t addr, uint32_t flags)
1200 struct amdgpu_ttm_tt *gtt;
1203 /* TODO: We want a separate TTM object type for userptrs */
1204 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1205 if (bo->ttm == NULL)
1209 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1210 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1212 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1213 gtt->userptr = addr;
1214 gtt->userflags = flags;
1217 put_task_struct(gtt->usertask);
1218 gtt->usertask = current->group_leader;
1219 get_task_struct(gtt->usertask);
1225 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1227 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1229 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1234 if (gtt->usertask == NULL)
1237 return gtt->usertask->mm;
1241 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1242 * address range for the current task.
1245 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1246 unsigned long end, unsigned long *userptr)
1248 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1251 if (gtt == NULL || !gtt->userptr)
1254 /* Return false if no part of the ttm_tt object lies within
1257 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1258 if (gtt->userptr > end || gtt->userptr + size <= start)
1262 *userptr = gtt->userptr;
1267 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1269 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1271 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1273 if (gtt == NULL || !gtt->userptr)
1280 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1282 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1284 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1289 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1293 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1295 * @ttm: The ttm_tt object to compute the flags for
1296 * @mem: The memory registry backing this ttm_tt object
1298 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1300 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1304 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1305 flags |= AMDGPU_PTE_VALID;
1307 if (mem && (mem->mem_type == TTM_PL_TT ||
1308 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1309 flags |= AMDGPU_PTE_SYSTEM;
1311 if (ttm->caching == ttm_cached)
1312 flags |= AMDGPU_PTE_SNOOPED;
1315 if (mem && mem->mem_type == TTM_PL_VRAM &&
1316 mem->bus.caching == ttm_cached)
1317 flags |= AMDGPU_PTE_SNOOPED;
1323 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1325 * @adev: amdgpu_device pointer
1326 * @ttm: The ttm_tt object to compute the flags for
1327 * @mem: The memory registry backing this ttm_tt object
1329 * Figure out the flags to use for a VM PTE (Page Table Entry).
1331 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1332 struct ttm_resource *mem)
1334 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1336 flags |= adev->gart.gart_pte_flags;
1337 flags |= AMDGPU_PTE_READABLE;
1339 if (!amdgpu_ttm_tt_is_readonly(ttm))
1340 flags |= AMDGPU_PTE_WRITEABLE;
1346 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1349 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1350 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1351 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1352 * used to clean out a memory space.
1354 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1355 const struct ttm_place *place)
1357 struct dma_resv_iter resv_cursor;
1358 struct dma_fence *f;
1360 if (!amdgpu_bo_is_amdgpu_bo(bo))
1361 return ttm_bo_eviction_valuable(bo, place);
1364 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1367 if (bo->type == ttm_bo_type_kernel &&
1368 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1371 /* If bo is a KFD BO, check if the bo belongs to the current process.
1372 * If true, then return false as any KFD process needs all its BOs to
1373 * be resident to run successfully
1375 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1376 DMA_RESV_USAGE_BOOKKEEP, f) {
1377 if (amdkfd_fence_check_mm(f, current->mm))
1381 /* Preemptible BOs don't own system resources managed by the
1382 * driver (pages, VRAM, GART space). They point to resources
1383 * owned by someone else (e.g. pageable memory in user mode
1384 * or a DMABuf). They are used in a preemptible context so we
1385 * can guarantee no deadlocks and good QoS in case of MMU
1386 * notifiers or DMABuf move notifiers from the resource owner.
1388 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1391 if (bo->resource->mem_type == TTM_PL_TT &&
1392 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1395 return ttm_bo_eviction_valuable(bo, place);
1398 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1399 void *buf, size_t size, bool write)
1402 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1403 uint64_t bytes = 4 - (pos & 0x3);
1404 uint32_t shift = (pos & 0x3) * 8;
1405 uint32_t mask = 0xffffffff << shift;
1409 mask &= 0xffffffff >> (bytes - size) * 8;
1413 if (mask != 0xffffffff) {
1414 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1417 value |= (*(uint32_t *)buf << shift) & mask;
1418 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1420 value = (value & mask) >> shift;
1421 memcpy(buf, &value, bytes);
1424 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1433 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1434 unsigned long offset, void *buf,
1437 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1438 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1439 struct amdgpu_res_cursor src_mm;
1440 struct amdgpu_job *job;
1441 struct dma_fence *fence;
1442 uint64_t src_addr, dst_addr;
1443 unsigned int num_dw;
1446 if (len != PAGE_SIZE)
1449 if (!adev->mman.sdma_access_ptr)
1452 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1456 memcpy(adev->mman.sdma_access_ptr, buf, len);
1458 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1459 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1460 AMDGPU_FENCE_OWNER_UNDEFINED,
1461 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1466 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1467 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1469 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1471 swap(src_addr, dst_addr);
1473 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1476 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1477 WARN_ON(job->ibs[0].length_dw > num_dw);
1479 fence = amdgpu_job_submit(job);
1481 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1483 dma_fence_put(fence);
1486 memcpy(buf, adev->mman.sdma_access_ptr, len);
1493 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1495 * @bo: The buffer object to read/write
1496 * @offset: Offset into buffer object
1497 * @buf: Secondary buffer to write/read from
1498 * @len: Length in bytes of access
1499 * @write: true if writing
1501 * This is used to access VRAM that backs a buffer object via MMIO
1502 * access for debugging purposes.
1504 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1505 unsigned long offset, void *buf, int len,
1508 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1509 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1510 struct amdgpu_res_cursor cursor;
1513 if (bo->resource->mem_type != TTM_PL_VRAM)
1516 if (amdgpu_device_has_timeouts_enabled(adev) &&
1517 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1520 amdgpu_res_first(bo->resource, offset, len, &cursor);
1521 while (cursor.remaining) {
1522 size_t count, size = cursor.size;
1523 loff_t pos = cursor.start;
1525 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1528 /* using MM to access rest vram and handle un-aligned address */
1531 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1536 amdgpu_res_next(&cursor, cursor.size);
1543 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1545 amdgpu_bo_move_notify(bo, false, NULL);
1548 static struct ttm_device_funcs amdgpu_bo_driver = {
1549 .ttm_tt_create = &amdgpu_ttm_tt_create,
1550 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1551 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1552 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1553 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1554 .evict_flags = &amdgpu_evict_flags,
1555 .move = &amdgpu_bo_move,
1556 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1557 .release_notify = &amdgpu_bo_release_notify,
1558 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1559 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1560 .access_memory = &amdgpu_ttm_access_memory,
1564 * Firmware Reservation functions
1567 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1569 * @adev: amdgpu_device pointer
1571 * free fw reserved vram if it has been reserved.
1573 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1575 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1576 NULL, &adev->mman.fw_vram_usage_va);
1580 * Driver Reservation functions
1583 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1585 * @adev: amdgpu_device pointer
1587 * free drv reserved vram if it has been reserved.
1589 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1591 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1593 &adev->mman.drv_vram_usage_va);
1597 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1599 * @adev: amdgpu_device pointer
1601 * create bo vram reservation from fw.
1603 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1605 uint64_t vram_size = adev->gmc.visible_vram_size;
1607 adev->mman.fw_vram_usage_va = NULL;
1608 adev->mman.fw_vram_usage_reserved_bo = NULL;
1610 if (adev->mman.fw_vram_usage_size == 0 ||
1611 adev->mman.fw_vram_usage_size > vram_size)
1614 return amdgpu_bo_create_kernel_at(adev,
1615 adev->mman.fw_vram_usage_start_offset,
1616 adev->mman.fw_vram_usage_size,
1617 &adev->mman.fw_vram_usage_reserved_bo,
1618 &adev->mman.fw_vram_usage_va);
1622 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1624 * @adev: amdgpu_device pointer
1626 * create bo vram reservation from drv.
1628 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1630 u64 vram_size = adev->gmc.visible_vram_size;
1632 adev->mman.drv_vram_usage_va = NULL;
1633 adev->mman.drv_vram_usage_reserved_bo = NULL;
1635 if (adev->mman.drv_vram_usage_size == 0 ||
1636 adev->mman.drv_vram_usage_size > vram_size)
1639 return amdgpu_bo_create_kernel_at(adev,
1640 adev->mman.drv_vram_usage_start_offset,
1641 adev->mman.drv_vram_usage_size,
1642 &adev->mman.drv_vram_usage_reserved_bo,
1643 &adev->mman.drv_vram_usage_va);
1647 * Memoy training reservation functions
1651 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1653 * @adev: amdgpu_device pointer
1655 * free memory training reserved vram if it has been reserved.
1657 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1659 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1661 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1662 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1668 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1669 uint32_t reserve_size)
1671 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1673 memset(ctx, 0, sizeof(*ctx));
1675 ctx->c2p_train_data_offset =
1676 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1677 ctx->p2c_train_data_offset =
1678 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1679 ctx->train_data_size =
1680 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1682 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1683 ctx->train_data_size,
1684 ctx->p2c_train_data_offset,
1685 ctx->c2p_train_data_offset);
1689 * reserve TMR memory at the top of VRAM which holds
1690 * IP Discovery data and is protected by PSP.
1692 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1694 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1695 bool mem_train_support = false;
1696 uint32_t reserve_size = 0;
1699 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1700 if (amdgpu_atomfirmware_mem_training_supported(adev))
1701 mem_train_support = true;
1703 DRM_DEBUG("memory training does not support!\n");
1707 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1708 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1710 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1711 * discovery data and G6 memory training data respectively
1715 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1717 if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1718 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1719 else if (!reserve_size)
1720 reserve_size = DISCOVERY_TMR_OFFSET;
1722 if (mem_train_support) {
1723 /* reserve vram for mem train according to TMR location */
1724 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1725 ret = amdgpu_bo_create_kernel_at(adev,
1726 ctx->c2p_train_data_offset,
1727 ctx->train_data_size,
1731 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1732 amdgpu_ttm_training_reserve_vram_fini(adev);
1735 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1738 if (!adev->gmc.is_app_apu) {
1739 ret = amdgpu_bo_create_kernel_at(
1740 adev, adev->gmc.real_vram_size - reserve_size,
1741 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1743 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1744 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1749 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1755 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1759 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1762 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1763 sizeof(*adev->mman.ttm_pools),
1765 if (!adev->mman.ttm_pools)
1768 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1769 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1770 adev->gmc.mem_partitions[i].numa.node,
1776 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1780 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1783 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1784 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1786 kfree(adev->mman.ttm_pools);
1787 adev->mman.ttm_pools = NULL;
1791 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1792 * gtt/vram related fields.
1794 * This initializes all of the memory space pools that the TTM layer
1795 * will need such as the GTT space (system memory mapped to the device),
1796 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1797 * can be mapped per VMID.
1799 int amdgpu_ttm_init(struct amdgpu_device *adev)
1804 mutex_init(&adev->mman.gtt_window_lock);
1806 /* No others user of address space so set it to 0 */
1807 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1808 adev_to_drm(adev)->anon_inode->i_mapping,
1809 adev_to_drm(adev)->vma_offset_manager,
1811 dma_addressing_limited(adev->dev));
1813 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1817 r = amdgpu_ttm_pools_init(adev);
1819 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1822 adev->mman.initialized = true;
1824 /* Initialize VRAM pool with all of VRAM divided into pages */
1825 r = amdgpu_vram_mgr_init(adev);
1827 DRM_ERROR("Failed initializing VRAM heap.\n");
1831 /* Change the size here instead of the init above so only lpfn is affected */
1832 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1835 if (adev->gmc.xgmi.connected_to_cpu)
1836 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1837 adev->gmc.visible_vram_size);
1839 else if (adev->gmc.is_app_apu)
1841 "No need to ioremap when real vram size is 0\n");
1844 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1845 adev->gmc.visible_vram_size);
1849 *The reserved vram for firmware must be pinned to the specified
1850 *place on the VRAM, so reserve it early.
1852 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1857 *The reserved vram for driver must be pinned to the specified
1858 *place on the VRAM, so reserve it early.
1860 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1865 * only NAVI10 and onwards ASIC support for IP discovery.
1866 * If IP discovery enabled, a block of memory should be
1867 * reserved for IP discovey.
1869 if (adev->mman.discovery_bin) {
1870 r = amdgpu_ttm_reserve_tmr(adev);
1875 /* allocate memory as required for VGA
1876 * This is used for VGA emulation and pre-OS scanout buffers to
1877 * avoid display artifacts while transitioning between pre-OS
1880 if (!adev->gmc.is_app_apu) {
1881 r = amdgpu_bo_create_kernel_at(adev, 0,
1882 adev->mman.stolen_vga_size,
1883 &adev->mman.stolen_vga_memory,
1888 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1889 adev->mman.stolen_extended_size,
1890 &adev->mman.stolen_extended_memory,
1896 r = amdgpu_bo_create_kernel_at(adev,
1897 adev->mman.stolen_reserved_offset,
1898 adev->mman.stolen_reserved_size,
1899 &adev->mman.stolen_reserved_memory,
1904 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1907 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1908 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1910 /* Compute GTT size, either based on TTM limit
1911 * or whatever the user passed on module init.
1913 if (amdgpu_gtt_size == -1)
1914 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1916 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1918 /* Initialize GTT memory pool */
1919 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1921 DRM_ERROR("Failed initializing GTT heap.\n");
1924 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1925 (unsigned int)(gtt_size / (1024 * 1024)));
1927 /* Initialize preemptible memory pool */
1928 r = amdgpu_preempt_mgr_init(adev);
1930 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1934 /* Initialize various on-chip memory pools */
1935 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1937 DRM_ERROR("Failed initializing GDS heap.\n");
1941 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1943 DRM_ERROR("Failed initializing gws heap.\n");
1947 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1949 DRM_ERROR("Failed initializing oa heap.\n");
1952 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1953 AMDGPU_GEM_DOMAIN_GTT,
1954 &adev->mman.sdma_access_bo, NULL,
1955 &adev->mman.sdma_access_ptr))
1956 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1962 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1964 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1968 if (!adev->mman.initialized)
1971 amdgpu_ttm_pools_fini(adev);
1973 amdgpu_ttm_training_reserve_vram_fini(adev);
1974 /* return the stolen vga memory back to VRAM */
1975 if (!adev->gmc.is_app_apu) {
1976 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1977 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1978 /* return the FW reserved memory back to VRAM */
1979 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
1981 if (adev->mman.stolen_reserved_size)
1982 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1985 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1986 &adev->mman.sdma_access_ptr);
1987 amdgpu_ttm_fw_reserve_vram_fini(adev);
1988 amdgpu_ttm_drv_reserve_vram_fini(adev);
1990 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1992 if (adev->mman.aper_base_kaddr)
1993 iounmap(adev->mman.aper_base_kaddr);
1994 adev->mman.aper_base_kaddr = NULL;
1999 amdgpu_vram_mgr_fini(adev);
2000 amdgpu_gtt_mgr_fini(adev);
2001 amdgpu_preempt_mgr_fini(adev);
2002 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2003 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2004 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2005 ttm_device_fini(&adev->mman.bdev);
2006 adev->mman.initialized = false;
2007 DRM_INFO("amdgpu: ttm finalized\n");
2011 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2013 * @adev: amdgpu_device pointer
2014 * @enable: true when we can use buffer functions.
2016 * Enable/disable use of buffer functions during suspend/resume. This should
2017 * only be called at bootup or when userspace isn't running.
2019 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2021 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2025 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2026 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2030 struct amdgpu_ring *ring;
2031 struct drm_gpu_scheduler *sched;
2033 ring = adev->mman.buffer_funcs_ring;
2034 sched = &ring->sched;
2035 r = drm_sched_entity_init(&adev->mman.high_pr,
2036 DRM_SCHED_PRIORITY_KERNEL, &sched,
2039 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2044 r = drm_sched_entity_init(&adev->mman.low_pr,
2045 DRM_SCHED_PRIORITY_NORMAL, &sched,
2048 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2050 goto error_free_entity;
2053 drm_sched_entity_destroy(&adev->mman.high_pr);
2054 drm_sched_entity_destroy(&adev->mman.low_pr);
2055 dma_fence_put(man->move);
2059 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2061 size = adev->gmc.real_vram_size;
2063 size = adev->gmc.visible_vram_size;
2065 adev->mman.buffer_funcs_enabled = enable;
2070 drm_sched_entity_destroy(&adev->mman.high_pr);
2073 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2075 unsigned int num_dw,
2076 struct dma_resv *resv,
2077 bool vm_needs_flush,
2078 struct amdgpu_job **job,
2081 enum amdgpu_ib_pool_type pool = direct_submit ?
2082 AMDGPU_IB_POOL_DIRECT :
2083 AMDGPU_IB_POOL_DELAYED;
2085 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2086 &adev->mman.high_pr;
2087 r = amdgpu_job_alloc_with_ib(adev, entity,
2088 AMDGPU_FENCE_OWNER_UNDEFINED,
2089 num_dw * 4, pool, job);
2093 if (vm_needs_flush) {
2094 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2097 (*job)->vm_needs_flush = true;
2102 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2103 DMA_RESV_USAGE_BOOKKEEP);
2106 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2107 uint64_t dst_offset, uint32_t byte_count,
2108 struct dma_resv *resv,
2109 struct dma_fence **fence, bool direct_submit,
2110 bool vm_needs_flush, bool tmz)
2112 struct amdgpu_device *adev = ring->adev;
2113 unsigned int num_loops, num_dw;
2114 struct amdgpu_job *job;
2119 if (!direct_submit && !ring->sched.ready) {
2120 DRM_ERROR("Trying to move memory with ring turned off.\n");
2124 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2125 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2126 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2127 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2128 resv, vm_needs_flush, &job, false);
2132 for (i = 0; i < num_loops; i++) {
2133 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2135 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2136 dst_offset, cur_size_in_bytes, tmz);
2138 src_offset += cur_size_in_bytes;
2139 dst_offset += cur_size_in_bytes;
2140 byte_count -= cur_size_in_bytes;
2143 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2144 WARN_ON(job->ibs[0].length_dw > num_dw);
2146 r = amdgpu_job_submit_direct(job, ring, fence);
2148 *fence = amdgpu_job_submit(job);
2155 amdgpu_job_free(job);
2156 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2160 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2161 uint64_t dst_addr, uint32_t byte_count,
2162 struct dma_resv *resv,
2163 struct dma_fence **fence,
2164 bool vm_needs_flush, bool delayed)
2166 struct amdgpu_device *adev = ring->adev;
2167 unsigned int num_loops, num_dw;
2168 struct amdgpu_job *job;
2173 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2174 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2175 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2176 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2181 for (i = 0; i < num_loops; i++) {
2182 uint32_t cur_size = min(byte_count, max_bytes);
2184 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2187 dst_addr += cur_size;
2188 byte_count -= cur_size;
2191 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2192 WARN_ON(job->ibs[0].length_dw > num_dw);
2193 *fence = amdgpu_job_submit(job);
2197 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2199 struct dma_resv *resv,
2200 struct dma_fence **f,
2203 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2204 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2205 struct dma_fence *fence = NULL;
2206 struct amdgpu_res_cursor dst;
2209 if (!adev->mman.buffer_funcs_enabled) {
2210 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2214 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2216 mutex_lock(&adev->mman.gtt_window_lock);
2217 while (dst.remaining) {
2218 struct dma_fence *next;
2219 uint64_t cur_size, to;
2221 /* Never fill more than 256MiB at once to avoid timeouts */
2222 cur_size = min(dst.size, 256ULL << 20);
2224 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2225 1, ring, false, &cur_size, &to);
2229 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2230 &next, true, delayed);
2234 dma_fence_put(fence);
2237 amdgpu_res_next(&dst, cur_size);
2240 mutex_unlock(&adev->mman.gtt_window_lock);
2242 *f = dma_fence_get(fence);
2243 dma_fence_put(fence);
2248 * amdgpu_ttm_evict_resources - evict memory buffers
2249 * @adev: amdgpu device object
2250 * @mem_type: evicted BO's memory type
2252 * Evicts all @mem_type buffers on the lru list of the memory type.
2255 * 0 for success or a negative error code on failure.
2257 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2259 struct ttm_resource_manager *man;
2267 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2270 DRM_ERROR("Trying to evict invalid memory type\n");
2274 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2277 #if defined(CONFIG_DEBUG_FS)
2279 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2281 struct amdgpu_device *adev = m->private;
2283 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2286 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2289 * amdgpu_ttm_vram_read - Linear read access to VRAM
2291 * Accesses VRAM via MMIO for debugging purposes.
2293 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2294 size_t size, loff_t *pos)
2296 struct amdgpu_device *adev = file_inode(f)->i_private;
2299 if (size & 0x3 || *pos & 0x3)
2302 if (*pos >= adev->gmc.mc_vram_size)
2305 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2307 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2308 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2310 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2311 if (copy_to_user(buf, value, bytes))
2324 * amdgpu_ttm_vram_write - Linear write access to VRAM
2326 * Accesses VRAM via MMIO for debugging purposes.
2328 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2329 size_t size, loff_t *pos)
2331 struct amdgpu_device *adev = file_inode(f)->i_private;
2335 if (size & 0x3 || *pos & 0x3)
2338 if (*pos >= adev->gmc.mc_vram_size)
2344 if (*pos >= adev->gmc.mc_vram_size)
2347 r = get_user(value, (uint32_t *)buf);
2351 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2362 static const struct file_operations amdgpu_ttm_vram_fops = {
2363 .owner = THIS_MODULE,
2364 .read = amdgpu_ttm_vram_read,
2365 .write = amdgpu_ttm_vram_write,
2366 .llseek = default_llseek,
2370 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2372 * This function is used to read memory that has been mapped to the
2373 * GPU and the known addresses are not physical addresses but instead
2374 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2376 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2377 size_t size, loff_t *pos)
2379 struct amdgpu_device *adev = file_inode(f)->i_private;
2380 struct iommu_domain *dom;
2384 /* retrieve the IOMMU domain if any for this device */
2385 dom = iommu_get_domain_for_dev(adev->dev);
2388 phys_addr_t addr = *pos & PAGE_MASK;
2389 loff_t off = *pos & ~PAGE_MASK;
2390 size_t bytes = PAGE_SIZE - off;
2395 bytes = bytes < size ? bytes : size;
2397 /* Translate the bus address to a physical address. If
2398 * the domain is NULL it means there is no IOMMU active
2399 * and the address translation is the identity
2401 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2403 pfn = addr >> PAGE_SHIFT;
2404 if (!pfn_valid(pfn))
2407 p = pfn_to_page(pfn);
2408 if (p->mapping != adev->mman.bdev.dev_mapping)
2411 ptr = kmap_local_page(p);
2412 r = copy_to_user(buf, ptr + off, bytes);
2426 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2428 * This function is used to write memory that has been mapped to the
2429 * GPU and the known addresses are not physical addresses but instead
2430 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2432 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2433 size_t size, loff_t *pos)
2435 struct amdgpu_device *adev = file_inode(f)->i_private;
2436 struct iommu_domain *dom;
2440 dom = iommu_get_domain_for_dev(adev->dev);
2443 phys_addr_t addr = *pos & PAGE_MASK;
2444 loff_t off = *pos & ~PAGE_MASK;
2445 size_t bytes = PAGE_SIZE - off;
2450 bytes = bytes < size ? bytes : size;
2452 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2454 pfn = addr >> PAGE_SHIFT;
2455 if (!pfn_valid(pfn))
2458 p = pfn_to_page(pfn);
2459 if (p->mapping != adev->mman.bdev.dev_mapping)
2462 ptr = kmap_local_page(p);
2463 r = copy_from_user(ptr + off, buf, bytes);
2476 static const struct file_operations amdgpu_ttm_iomem_fops = {
2477 .owner = THIS_MODULE,
2478 .read = amdgpu_iomem_read,
2479 .write = amdgpu_iomem_write,
2480 .llseek = default_llseek
2485 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2487 #if defined(CONFIG_DEBUG_FS)
2488 struct drm_minor *minor = adev_to_drm(adev)->primary;
2489 struct dentry *root = minor->debugfs_root;
2491 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2492 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2493 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2494 &amdgpu_ttm_iomem_fops);
2495 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2496 &amdgpu_ttm_page_pool_fops);
2497 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2499 root, "amdgpu_vram_mm");
2500 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2502 root, "amdgpu_gtt_mm");
2503 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2505 root, "amdgpu_gds_mm");
2506 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2508 root, "amdgpu_gws_mm");
2509 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2511 root, "amdgpu_oa_mm");