2 * Copyright 2014 Advanced Micro Devices, Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
24 #include "amdgpu_amdkfd.h"
26 #include "gca/gfx_8_0_sh_mask.h"
27 #include "gca/gfx_8_0_d.h"
28 #include "gca/gfx_8_0_enum.h"
29 #include "oss/oss_3_0_sh_mask.h"
30 #include "oss/oss_3_0_d.h"
31 #include "gmc/gmc_8_1_sh_mask.h"
32 #include "gmc/gmc_8_1_d.h"
33 #include "vi_structs.h"
36 enum hqd_dequeue_request_type {
42 static void lock_srbm(struct amdgpu_device *adev, uint32_t mec, uint32_t pipe,
43 uint32_t queue, uint32_t vmid)
45 uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
47 mutex_lock(&adev->srbm_mutex);
48 WREG32(mmSRBM_GFX_CNTL, value);
51 static void unlock_srbm(struct amdgpu_device *adev)
53 WREG32(mmSRBM_GFX_CNTL, 0);
54 mutex_unlock(&adev->srbm_mutex);
57 static void acquire_queue(struct amdgpu_device *adev, uint32_t pipe_id,
60 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
61 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
63 lock_srbm(adev, mec, pipe, queue_id, 0);
66 static void release_queue(struct amdgpu_device *adev)
71 static void kgd_program_sh_mem_settings(struct amdgpu_device *adev, uint32_t vmid,
72 uint32_t sh_mem_config,
73 uint32_t sh_mem_ape1_base,
74 uint32_t sh_mem_ape1_limit,
75 uint32_t sh_mem_bases, uint32_t inst)
77 lock_srbm(adev, 0, 0, 0, vmid);
79 WREG32(mmSH_MEM_CONFIG, sh_mem_config);
80 WREG32(mmSH_MEM_APE1_BASE, sh_mem_ape1_base);
81 WREG32(mmSH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
82 WREG32(mmSH_MEM_BASES, sh_mem_bases);
87 static int kgd_set_pasid_vmid_mapping(struct amdgpu_device *adev, u32 pasid,
88 unsigned int vmid, uint32_t inst)
91 * We have to assume that there is no outstanding mapping.
92 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
93 * a mapping is in progress or because a mapping finished
94 * and the SW cleared it.
95 * So the protocol is to always wait & clear.
97 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
98 ATC_VMID0_PASID_MAPPING__VALID_MASK;
100 WREG32(mmATC_VMID0_PASID_MAPPING + vmid, pasid_mapping);
102 while (!(RREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS) & (1U << vmid)))
104 WREG32(mmATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
106 /* Mapping vmid to pasid also for IH block */
107 WREG32(mmIH_VMID_0_LUT + vmid, pasid_mapping);
112 static int kgd_init_interrupts(struct amdgpu_device *adev, uint32_t pipe_id,
118 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
119 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
121 lock_srbm(adev, mec, pipe, 0, 0);
123 WREG32(mmCPC_INT_CNTL, CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
124 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
131 static inline uint32_t get_sdma_rlc_reg_offset(struct vi_sdma_mqd *m)
135 retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
136 m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
138 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n",
139 m->sdma_engine_id, m->sdma_queue_id, retval);
144 static inline struct vi_mqd *get_mqd(void *mqd)
146 return (struct vi_mqd *)mqd;
149 static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
151 return (struct vi_sdma_mqd *)mqd;
154 static int kgd_hqd_load(struct amdgpu_device *adev, void *mqd,
155 uint32_t pipe_id, uint32_t queue_id,
156 uint32_t __user *wptr, uint32_t wptr_shift,
157 uint32_t wptr_mask, struct mm_struct *mm, uint32_t inst)
161 uint32_t reg, wptr_val, data;
162 bool valid_wptr = false;
166 acquire_queue(adev, pipe_id, queue_id);
168 /* HIQ is set during driver init period with vmid set to 0*/
169 if (m->cp_hqd_vmid == 0) {
170 uint32_t value, mec, pipe;
172 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
173 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
175 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
176 mec, pipe, queue_id);
177 value = RREG32(mmRLC_CP_SCHEDULERS);
178 value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
179 ((mec << 5) | (pipe << 3) | queue_id | 0x80));
180 WREG32(mmRLC_CP_SCHEDULERS, value);
183 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
184 mqd_hqd = &m->cp_mqd_base_addr_lo;
186 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_CONTROL; reg++)
187 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
189 /* Tonga errata: EOP RPTR/WPTR should be left unmodified.
190 * This is safe since EOP RPTR==WPTR for any inactive HQD
191 * on ASICs that do not support context-save.
192 * EOP writes/reads can start anywhere in the ring.
194 if (adev->asic_type != CHIP_TONGA) {
195 WREG32(mmCP_HQD_EOP_RPTR, m->cp_hqd_eop_rptr);
196 WREG32(mmCP_HQD_EOP_WPTR, m->cp_hqd_eop_wptr);
197 WREG32(mmCP_HQD_EOP_WPTR_MEM, m->cp_hqd_eop_wptr_mem);
200 for (reg = mmCP_HQD_EOP_EVENTS; reg <= mmCP_HQD_ERROR; reg++)
201 WREG32(reg, mqd_hqd[reg - mmCP_MQD_BASE_ADDR]);
203 /* Copy userspace write pointer value to register.
204 * Activate doorbell logic to monitor subsequent changes.
206 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
207 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
208 WREG32(mmCP_HQD_PQ_DOORBELL_CONTROL, data);
210 /* read_user_ptr may take the mm->mmap_lock.
211 * release srbm_mutex to avoid circular dependency between
212 * srbm_mutex->mmap_lock->reservation_ww_class_mutex->srbm_mutex.
215 valid_wptr = read_user_wptr(mm, wptr, wptr_val);
216 acquire_queue(adev, pipe_id, queue_id);
218 WREG32(mmCP_HQD_PQ_WPTR, (wptr_val << wptr_shift) & wptr_mask);
220 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
221 WREG32(mmCP_HQD_ACTIVE, data);
228 static int kgd_hqd_dump(struct amdgpu_device *adev,
229 uint32_t pipe_id, uint32_t queue_id,
230 uint32_t (**dump)[2], uint32_t *n_regs, uint32_t inst)
233 #define HQD_N_REGS (54+4)
234 #define DUMP_REG(addr) do { \
235 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
237 (*dump)[i][0] = (addr) << 2; \
238 (*dump)[i++][1] = RREG32(addr); \
241 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
245 acquire_queue(adev, pipe_id, queue_id);
247 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
248 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
249 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
250 DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
252 for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
257 WARN_ON_ONCE(i != HQD_N_REGS);
263 static int kgd_hqd_sdma_load(struct amdgpu_device *adev, void *mqd,
264 uint32_t __user *wptr, struct mm_struct *mm)
266 struct vi_sdma_mqd *m;
267 unsigned long end_jiffies;
268 uint32_t sdma_rlc_reg_offset;
271 m = get_sdma_mqd(mqd);
272 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
273 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
274 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
276 end_jiffies = msecs_to_jiffies(2000) + jiffies;
278 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
279 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
281 if (time_after(jiffies, end_jiffies)) {
282 pr_err("SDMA RLC not idle in %s\n", __func__);
285 usleep_range(500, 1000);
288 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
290 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
291 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
292 m->sdmax_rlcx_rb_rptr);
294 if (read_user_wptr(mm, wptr, data))
295 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR, data);
297 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
298 m->sdmax_rlcx_rb_rptr);
300 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_VIRTUAL_ADDR,
301 m->sdmax_rlcx_virtual_addr);
302 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
303 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
304 m->sdmax_rlcx_rb_base_hi);
305 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
306 m->sdmax_rlcx_rb_rptr_addr_lo);
307 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
308 m->sdmax_rlcx_rb_rptr_addr_hi);
310 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
312 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
317 static int kgd_hqd_sdma_dump(struct amdgpu_device *adev,
318 uint32_t engine_id, uint32_t queue_id,
319 uint32_t (**dump)[2], uint32_t *n_regs)
321 uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
322 queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
325 #define HQD_N_REGS (19+4+2+3+7)
327 *dump = kmalloc_array(HQD_N_REGS * 2, sizeof(uint32_t), GFP_KERNEL);
331 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
332 DUMP_REG(sdma_offset + reg);
333 for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
335 DUMP_REG(sdma_offset + reg);
336 for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
338 DUMP_REG(sdma_offset + reg);
339 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
341 DUMP_REG(sdma_offset + reg);
342 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
344 DUMP_REG(sdma_offset + reg);
346 WARN_ON_ONCE(i != HQD_N_REGS);
352 static bool kgd_hqd_is_occupied(struct amdgpu_device *adev,
353 uint64_t queue_address, uint32_t pipe_id,
354 uint32_t queue_id, uint32_t inst)
360 acquire_queue(adev, pipe_id, queue_id);
361 act = RREG32(mmCP_HQD_ACTIVE);
363 low = lower_32_bits(queue_address >> 8);
364 high = upper_32_bits(queue_address >> 8);
366 if (low == RREG32(mmCP_HQD_PQ_BASE) &&
367 high == RREG32(mmCP_HQD_PQ_BASE_HI))
374 static bool kgd_hqd_sdma_is_occupied(struct amdgpu_device *adev, void *mqd)
376 struct vi_sdma_mqd *m;
377 uint32_t sdma_rlc_reg_offset;
378 uint32_t sdma_rlc_rb_cntl;
380 m = get_sdma_mqd(mqd);
381 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
383 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
385 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
391 static int kgd_hqd_destroy(struct amdgpu_device *adev, void *mqd,
392 enum kfd_preempt_type reset_type,
393 unsigned int utimeout, uint32_t pipe_id,
394 uint32_t queue_id, uint32_t inst)
397 enum hqd_dequeue_request_type type;
398 unsigned long flags, end_jiffies;
400 struct vi_mqd *m = get_mqd(mqd);
402 if (amdgpu_in_reset(adev))
405 acquire_queue(adev, pipe_id, queue_id);
407 if (m->cp_hqd_vmid == 0)
408 WREG32_FIELD(RLC_CP_SCHEDULERS, scheduler1, 0);
410 switch (reset_type) {
411 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
414 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
422 /* Workaround: If IQ timer is active and the wait time is close to or
423 * equal to 0, dequeueing is not safe. Wait until either the wait time
424 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
425 * cleared before continuing. Also, ensure wait times are set to at
428 local_irq_save(flags);
430 retry = 5000; /* wait for 500 usecs at maximum */
432 temp = RREG32(mmCP_HQD_IQ_TIMER);
433 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
434 pr_debug("HW is processing IQ\n");
437 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
438 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
439 == 3) /* SEM-rearm is safe */
441 /* Wait time 3 is safe for CP, but our MMIO read/write
442 * time is close to 1 microsecond, so check for 10 to
443 * leave more buffer room
445 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
448 pr_debug("IQ timer is active\n");
453 pr_err("CP HQD IQ timer status time out\n");
461 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
462 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
464 pr_debug("Dequeue request is pending\n");
467 pr_err("CP HQD dequeue request time out\n");
473 local_irq_restore(flags);
476 WREG32(mmCP_HQD_DEQUEUE_REQUEST, type);
478 end_jiffies = (utimeout * HZ / 1000) + jiffies;
480 temp = RREG32(mmCP_HQD_ACTIVE);
481 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
483 if (time_after(jiffies, end_jiffies)) {
484 pr_err("cp queue preemption time out.\n");
488 usleep_range(500, 1000);
495 static int kgd_hqd_sdma_destroy(struct amdgpu_device *adev, void *mqd,
496 unsigned int utimeout)
498 struct vi_sdma_mqd *m;
499 uint32_t sdma_rlc_reg_offset;
501 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
503 m = get_sdma_mqd(mqd);
504 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(m);
506 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
507 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
508 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
511 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
512 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
514 if (time_after(jiffies, end_jiffies)) {
515 pr_err("SDMA RLC not idle in %s\n", __func__);
518 usleep_range(500, 1000);
521 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
522 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
523 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
524 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
526 m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
531 static bool get_atc_vmid_pasid_mapping_info(struct amdgpu_device *adev,
532 uint8_t vmid, uint16_t *p_pasid)
536 value = RREG32(mmATC_VMID0_PASID_MAPPING + vmid);
537 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
539 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
542 static int kgd_wave_control_execute(struct amdgpu_device *adev,
543 uint32_t gfx_index_val,
544 uint32_t sq_cmd, uint32_t inst)
548 mutex_lock(&adev->grbm_idx_mutex);
550 WREG32(mmGRBM_GFX_INDEX, gfx_index_val);
551 WREG32(mmSQ_CMD, sq_cmd);
553 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
554 INSTANCE_BROADCAST_WRITES, 1);
555 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
556 SH_BROADCAST_WRITES, 1);
557 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
558 SE_BROADCAST_WRITES, 1);
560 WREG32(mmGRBM_GFX_INDEX, data);
561 mutex_unlock(&adev->grbm_idx_mutex);
566 static void set_scratch_backing_va(struct amdgpu_device *adev,
567 uint64_t va, uint32_t vmid)
569 lock_srbm(adev, 0, 0, 0, vmid);
570 WREG32(mmSH_HIDDEN_PRIVATE_BASE_VMID, va);
574 static void set_vm_context_page_table_base(struct amdgpu_device *adev,
575 uint32_t vmid, uint64_t page_table_base)
577 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
578 pr_err("trying to set page table base for wrong VMID\n");
581 WREG32(mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vmid - 8,
582 lower_32_bits(page_table_base));
585 const struct kfd2kgd_calls gfx_v8_kfd2kgd = {
586 .program_sh_mem_settings = kgd_program_sh_mem_settings,
587 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
588 .init_interrupts = kgd_init_interrupts,
589 .hqd_load = kgd_hqd_load,
590 .hqd_sdma_load = kgd_hqd_sdma_load,
591 .hqd_dump = kgd_hqd_dump,
592 .hqd_sdma_dump = kgd_hqd_sdma_dump,
593 .hqd_is_occupied = kgd_hqd_is_occupied,
594 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
595 .hqd_destroy = kgd_hqd_destroy,
596 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
597 .wave_control_execute = kgd_wave_control_execute,
598 .get_atc_vmid_pasid_mapping_info =
599 get_atc_vmid_pasid_mapping_info,
600 .set_scratch_backing_va = set_scratch_backing_va,
601 .set_vm_context_page_table_base = set_vm_context_page_table_base,