1 // SPDX-License-Identifier: GPL-2.0
3 * Block multiqueue core code
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
33 #include <trace/events/block.h>
35 #include <linux/t10-pi.h>
38 #include "blk-mq-debugfs.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
44 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
45 static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51 struct list_head *list);
52 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
53 struct io_comp_batch *iob, unsigned int flags);
56 * Check if any of the ctx, dispatch list or elevator
57 * have pending work in this hardware queue.
59 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
61 return !list_empty_careful(&hctx->dispatch) ||
62 sbitmap_any_bit_set(&hctx->ctx_map) ||
63 blk_mq_sched_has_work(hctx);
67 * Mark this ctx as having pending work in this hardware queue
69 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
72 const int bit = ctx->index_hw[hctx->type];
74 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
75 sbitmap_set_bit(&hctx->ctx_map, bit);
78 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
79 struct blk_mq_ctx *ctx)
81 const int bit = ctx->index_hw[hctx->type];
83 sbitmap_clear_bit(&hctx->ctx_map, bit);
87 struct block_device *part;
88 unsigned int inflight[2];
91 static bool blk_mq_check_inflight(struct request *rq, void *priv)
93 struct mq_inflight *mi = priv;
95 if (rq->part && blk_do_io_stat(rq) &&
96 (!mi->part->bd_partno || rq->part == mi->part) &&
97 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
98 mi->inflight[rq_data_dir(rq)]++;
103 unsigned int blk_mq_in_flight(struct request_queue *q,
104 struct block_device *part)
106 struct mq_inflight mi = { .part = part };
108 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
110 return mi.inflight[0] + mi.inflight[1];
113 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
114 unsigned int inflight[2])
116 struct mq_inflight mi = { .part = part };
118 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 inflight[0] = mi.inflight[0];
120 inflight[1] = mi.inflight[1];
123 void blk_freeze_queue_start(struct request_queue *q)
125 mutex_lock(&q->mq_freeze_lock);
126 if (++q->mq_freeze_depth == 1) {
127 percpu_ref_kill(&q->q_usage_counter);
128 mutex_unlock(&q->mq_freeze_lock);
130 blk_mq_run_hw_queues(q, false);
132 mutex_unlock(&q->mq_freeze_lock);
135 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
137 void blk_mq_freeze_queue_wait(struct request_queue *q)
139 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
141 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
143 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
144 unsigned long timeout)
146 return wait_event_timeout(q->mq_freeze_wq,
147 percpu_ref_is_zero(&q->q_usage_counter),
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
153 * Guarantee no request is in use, so we can change any data structure of
154 * the queue afterward.
156 void blk_freeze_queue(struct request_queue *q)
159 * In the !blk_mq case we are only calling this to kill the
160 * q_usage_counter, otherwise this increases the freeze depth
161 * and waits for it to return to zero. For this reason there is
162 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
163 * exported to drivers as the only user for unfreeze is blk_mq.
165 blk_freeze_queue_start(q);
166 blk_mq_freeze_queue_wait(q);
169 void blk_mq_freeze_queue(struct request_queue *q)
172 * ...just an alias to keep freeze and unfreeze actions balanced
173 * in the blk_mq_* namespace
177 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
179 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
181 mutex_lock(&q->mq_freeze_lock);
183 q->q_usage_counter.data->force_atomic = true;
184 q->mq_freeze_depth--;
185 WARN_ON_ONCE(q->mq_freeze_depth < 0);
186 if (!q->mq_freeze_depth) {
187 percpu_ref_resurrect(&q->q_usage_counter);
188 wake_up_all(&q->mq_freeze_wq);
190 mutex_unlock(&q->mq_freeze_lock);
193 void blk_mq_unfreeze_queue(struct request_queue *q)
195 __blk_mq_unfreeze_queue(q, false);
197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
201 * mpt3sas driver such that this function can be removed.
203 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
207 spin_lock_irqsave(&q->queue_lock, flags);
208 if (!q->quiesce_depth++)
209 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
210 spin_unlock_irqrestore(&q->queue_lock, flags);
212 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
215 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
216 * @set: tag_set to wait on
218 * Note: it is driver's responsibility for making sure that quiesce has
219 * been started on or more of the request_queues of the tag_set. This
220 * function only waits for the quiesce on those request_queues that had
221 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
223 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
225 if (set->flags & BLK_MQ_F_BLOCKING)
226 synchronize_srcu(set->srcu);
230 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
233 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
236 * Note: this function does not prevent that the struct request end_io()
237 * callback function is invoked. Once this function is returned, we make
238 * sure no dispatch can happen until the queue is unquiesced via
239 * blk_mq_unquiesce_queue().
241 void blk_mq_quiesce_queue(struct request_queue *q)
243 blk_mq_quiesce_queue_nowait(q);
244 /* nothing to wait for non-mq queues */
246 blk_mq_wait_quiesce_done(q->tag_set);
248 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
251 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
254 * This function recovers queue into the state before quiescing
255 * which is done by blk_mq_quiesce_queue.
257 void blk_mq_unquiesce_queue(struct request_queue *q)
260 bool run_queue = false;
262 spin_lock_irqsave(&q->queue_lock, flags);
263 if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
265 } else if (!--q->quiesce_depth) {
266 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
269 spin_unlock_irqrestore(&q->queue_lock, flags);
271 /* dispatch requests which are inserted during quiescing */
273 blk_mq_run_hw_queues(q, true);
275 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
277 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
279 struct request_queue *q;
281 mutex_lock(&set->tag_list_lock);
282 list_for_each_entry(q, &set->tag_list, tag_set_list) {
283 if (!blk_queue_skip_tagset_quiesce(q))
284 blk_mq_quiesce_queue_nowait(q);
286 blk_mq_wait_quiesce_done(set);
287 mutex_unlock(&set->tag_list_lock);
289 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
291 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
293 struct request_queue *q;
295 mutex_lock(&set->tag_list_lock);
296 list_for_each_entry(q, &set->tag_list, tag_set_list) {
297 if (!blk_queue_skip_tagset_quiesce(q))
298 blk_mq_unquiesce_queue(q);
300 mutex_unlock(&set->tag_list_lock);
302 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
304 void blk_mq_wake_waiters(struct request_queue *q)
306 struct blk_mq_hw_ctx *hctx;
309 queue_for_each_hw_ctx(q, hctx, i)
310 if (blk_mq_hw_queue_mapped(hctx))
311 blk_mq_tag_wakeup_all(hctx->tags, true);
314 void blk_rq_init(struct request_queue *q, struct request *rq)
316 memset(rq, 0, sizeof(*rq));
318 INIT_LIST_HEAD(&rq->queuelist);
320 rq->__sector = (sector_t) -1;
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->tag = BLK_MQ_NO_TAG;
324 rq->internal_tag = BLK_MQ_NO_TAG;
325 rq->start_time_ns = ktime_get_ns();
327 blk_crypto_rq_set_defaults(rq);
329 EXPORT_SYMBOL(blk_rq_init);
331 /* Set start and alloc time when the allocated request is actually used */
332 static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
334 if (blk_mq_need_time_stamp(rq))
335 rq->start_time_ns = ktime_get_ns();
337 rq->start_time_ns = 0;
339 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
340 if (blk_queue_rq_alloc_time(rq->q))
341 rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
343 rq->alloc_time_ns = 0;
347 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
348 struct blk_mq_tags *tags, unsigned int tag)
350 struct blk_mq_ctx *ctx = data->ctx;
351 struct blk_mq_hw_ctx *hctx = data->hctx;
352 struct request_queue *q = data->q;
353 struct request *rq = tags->static_rqs[tag];
358 rq->cmd_flags = data->cmd_flags;
360 if (data->flags & BLK_MQ_REQ_PM)
361 data->rq_flags |= RQF_PM;
362 if (blk_queue_io_stat(q))
363 data->rq_flags |= RQF_IO_STAT;
364 rq->rq_flags = data->rq_flags;
366 if (data->rq_flags & RQF_SCHED_TAGS) {
367 rq->tag = BLK_MQ_NO_TAG;
368 rq->internal_tag = tag;
371 rq->internal_tag = BLK_MQ_NO_TAG;
376 rq->io_start_time_ns = 0;
377 rq->stats_sectors = 0;
378 rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380 rq->nr_integrity_segments = 0;
383 rq->end_io_data = NULL;
385 blk_crypto_rq_set_defaults(rq);
386 INIT_LIST_HEAD(&rq->queuelist);
387 /* tag was already set */
388 WRITE_ONCE(rq->deadline, 0);
391 if (rq->rq_flags & RQF_USE_SCHED) {
392 struct elevator_queue *e = data->q->elevator;
394 INIT_HLIST_NODE(&rq->hash);
395 RB_CLEAR_NODE(&rq->rb_node);
397 if (e->type->ops.prepare_request)
398 e->type->ops.prepare_request(rq);
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
407 unsigned int tag, tag_offset;
408 struct blk_mq_tags *tags;
410 unsigned long tag_mask;
413 tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
414 if (unlikely(!tag_mask))
417 tags = blk_mq_tags_from_data(data);
418 for (i = 0; tag_mask; i++) {
419 if (!(tag_mask & (1UL << i)))
421 tag = tag_offset + i;
422 prefetch(tags->static_rqs[tag]);
423 tag_mask &= ~(1UL << i);
424 rq = blk_mq_rq_ctx_init(data, tags, tag);
425 rq_list_add(data->cached_rq, rq);
428 if (!(data->rq_flags & RQF_SCHED_TAGS))
429 blk_mq_add_active_requests(data->hctx, nr);
430 /* caller already holds a reference, add for remainder */
431 percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
434 return rq_list_pop(data->cached_rq);
437 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
439 struct request_queue *q = data->q;
440 u64 alloc_time_ns = 0;
444 /* alloc_time includes depth and tag waits */
445 if (blk_queue_rq_alloc_time(q))
446 alloc_time_ns = ktime_get_ns();
448 if (data->cmd_flags & REQ_NOWAIT)
449 data->flags |= BLK_MQ_REQ_NOWAIT;
453 * All requests use scheduler tags when an I/O scheduler is
454 * enabled for the queue.
456 data->rq_flags |= RQF_SCHED_TAGS;
459 * Flush/passthrough requests are special and go directly to the
462 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
463 !blk_op_is_passthrough(data->cmd_flags)) {
464 struct elevator_mq_ops *ops = &q->elevator->type->ops;
466 WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
468 data->rq_flags |= RQF_USE_SCHED;
469 if (ops->limit_depth)
470 ops->limit_depth(data->cmd_flags, data);
475 data->ctx = blk_mq_get_ctx(q);
476 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
477 if (!(data->rq_flags & RQF_SCHED_TAGS))
478 blk_mq_tag_busy(data->hctx);
480 if (data->flags & BLK_MQ_REQ_RESERVED)
481 data->rq_flags |= RQF_RESV;
484 * Try batched alloc if we want more than 1 tag.
486 if (data->nr_tags > 1) {
487 rq = __blk_mq_alloc_requests_batch(data);
489 blk_mq_rq_time_init(rq, alloc_time_ns);
496 * Waiting allocations only fail because of an inactive hctx. In that
497 * case just retry the hctx assignment and tag allocation as CPU hotplug
498 * should have migrated us to an online CPU by now.
500 tag = blk_mq_get_tag(data);
501 if (tag == BLK_MQ_NO_TAG) {
502 if (data->flags & BLK_MQ_REQ_NOWAIT)
505 * Give up the CPU and sleep for a random short time to
506 * ensure that thread using a realtime scheduling class
507 * are migrated off the CPU, and thus off the hctx that
514 if (!(data->rq_flags & RQF_SCHED_TAGS))
515 blk_mq_inc_active_requests(data->hctx);
516 rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
517 blk_mq_rq_time_init(rq, alloc_time_ns);
521 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
522 struct blk_plug *plug,
524 blk_mq_req_flags_t flags)
526 struct blk_mq_alloc_data data = {
530 .nr_tags = plug->nr_ios,
531 .cached_rq = &plug->cached_rq,
535 if (blk_queue_enter(q, flags))
540 rq = __blk_mq_alloc_requests(&data);
546 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
548 blk_mq_req_flags_t flags)
550 struct blk_plug *plug = current->plug;
556 if (rq_list_empty(plug->cached_rq)) {
557 if (plug->nr_ios == 1)
559 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
563 rq = rq_list_peek(&plug->cached_rq);
564 if (!rq || rq->q != q)
567 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
569 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
572 plug->cached_rq = rq_list_next(rq);
573 blk_mq_rq_time_init(rq, 0);
577 INIT_LIST_HEAD(&rq->queuelist);
581 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
582 blk_mq_req_flags_t flags)
586 rq = blk_mq_alloc_cached_request(q, opf, flags);
588 struct blk_mq_alloc_data data = {
596 ret = blk_queue_enter(q, flags);
600 rq = __blk_mq_alloc_requests(&data);
605 rq->__sector = (sector_t) -1;
606 rq->bio = rq->biotail = NULL;
610 return ERR_PTR(-EWOULDBLOCK);
612 EXPORT_SYMBOL(blk_mq_alloc_request);
614 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
615 blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
617 struct blk_mq_alloc_data data = {
623 u64 alloc_time_ns = 0;
629 /* alloc_time includes depth and tag waits */
630 if (blk_queue_rq_alloc_time(q))
631 alloc_time_ns = ktime_get_ns();
634 * If the tag allocator sleeps we could get an allocation for a
635 * different hardware context. No need to complicate the low level
636 * allocator for this for the rare use case of a command tied to
639 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
640 WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
641 return ERR_PTR(-EINVAL);
643 if (hctx_idx >= q->nr_hw_queues)
644 return ERR_PTR(-EIO);
646 ret = blk_queue_enter(q, flags);
651 * Check if the hardware context is actually mapped to anything.
652 * If not tell the caller that it should skip this queue.
655 data.hctx = xa_load(&q->hctx_table, hctx_idx);
656 if (!blk_mq_hw_queue_mapped(data.hctx))
658 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
659 if (cpu >= nr_cpu_ids)
661 data.ctx = __blk_mq_get_ctx(q, cpu);
664 data.rq_flags |= RQF_SCHED_TAGS;
666 blk_mq_tag_busy(data.hctx);
668 if (flags & BLK_MQ_REQ_RESERVED)
669 data.rq_flags |= RQF_RESV;
672 tag = blk_mq_get_tag(&data);
673 if (tag == BLK_MQ_NO_TAG)
675 if (!(data.rq_flags & RQF_SCHED_TAGS))
676 blk_mq_inc_active_requests(data.hctx);
677 rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
678 blk_mq_rq_time_init(rq, alloc_time_ns);
680 rq->__sector = (sector_t) -1;
681 rq->bio = rq->biotail = NULL;
688 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
690 static void blk_mq_finish_request(struct request *rq)
692 struct request_queue *q = rq->q;
694 if (rq->rq_flags & RQF_USE_SCHED) {
695 q->elevator->type->ops.finish_request(rq);
697 * For postflush request that may need to be
698 * completed twice, we should clear this flag
699 * to avoid double finish_request() on the rq.
701 rq->rq_flags &= ~RQF_USE_SCHED;
705 static void __blk_mq_free_request(struct request *rq)
707 struct request_queue *q = rq->q;
708 struct blk_mq_ctx *ctx = rq->mq_ctx;
709 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
710 const int sched_tag = rq->internal_tag;
712 blk_crypto_free_request(rq);
713 blk_pm_mark_last_busy(rq);
716 if (rq->tag != BLK_MQ_NO_TAG) {
717 blk_mq_dec_active_requests(hctx);
718 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
720 if (sched_tag != BLK_MQ_NO_TAG)
721 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
722 blk_mq_sched_restart(hctx);
726 void blk_mq_free_request(struct request *rq)
728 struct request_queue *q = rq->q;
730 blk_mq_finish_request(rq);
732 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
733 laptop_io_completion(q->disk->bdi);
737 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
738 if (req_ref_put_and_test(rq))
739 __blk_mq_free_request(rq);
741 EXPORT_SYMBOL_GPL(blk_mq_free_request);
743 void blk_mq_free_plug_rqs(struct blk_plug *plug)
747 while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
748 blk_mq_free_request(rq);
751 void blk_dump_rq_flags(struct request *rq, char *msg)
753 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
754 rq->q->disk ? rq->q->disk->disk_name : "?",
755 (__force unsigned long long) rq->cmd_flags);
757 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
758 (unsigned long long)blk_rq_pos(rq),
759 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
760 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
761 rq->bio, rq->biotail, blk_rq_bytes(rq));
763 EXPORT_SYMBOL(blk_dump_rq_flags);
765 static void req_bio_endio(struct request *rq, struct bio *bio,
766 unsigned int nbytes, blk_status_t error)
768 if (unlikely(error)) {
769 bio->bi_status = error;
770 } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
772 * Partial zone append completions cannot be supported as the
773 * BIO fragments may end up not being written sequentially.
774 * For such case, force the completed nbytes to be equal to
775 * the BIO size so that bio_advance() sets the BIO remaining
776 * size to 0 and we end up calling bio_endio() before returning.
778 if (bio->bi_iter.bi_size != nbytes) {
779 bio->bi_status = BLK_STS_IOERR;
780 nbytes = bio->bi_iter.bi_size;
782 bio->bi_iter.bi_sector = rq->__sector;
786 bio_advance(bio, nbytes);
788 if (unlikely(rq->rq_flags & RQF_QUIET))
789 bio_set_flag(bio, BIO_QUIET);
790 /* don't actually finish bio if it's part of flush sequence */
791 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
795 static void blk_account_io_completion(struct request *req, unsigned int bytes)
797 if (req->part && blk_do_io_stat(req)) {
798 const int sgrp = op_stat_group(req_op(req));
801 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
806 static void blk_print_req_error(struct request *req, blk_status_t status)
808 printk_ratelimited(KERN_ERR
809 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
810 "phys_seg %u prio class %u\n",
811 blk_status_to_str(status),
812 req->q->disk ? req->q->disk->disk_name : "?",
813 blk_rq_pos(req), (__force u32)req_op(req),
814 blk_op_str(req_op(req)),
815 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
816 req->nr_phys_segments,
817 IOPRIO_PRIO_CLASS(req->ioprio));
821 * Fully end IO on a request. Does not support partial completions, or
824 static void blk_complete_request(struct request *req)
826 const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
827 int total_bytes = blk_rq_bytes(req);
828 struct bio *bio = req->bio;
830 trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
835 #ifdef CONFIG_BLK_DEV_INTEGRITY
836 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
837 req->q->integrity.profile->complete_fn(req, total_bytes);
841 * Upper layers may call blk_crypto_evict_key() anytime after the last
842 * bio_endio(). Therefore, the keyslot must be released before that.
844 blk_crypto_rq_put_keyslot(req);
846 blk_account_io_completion(req, total_bytes);
849 struct bio *next = bio->bi_next;
851 /* Completion has already been traced */
852 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
854 if (req_op(req) == REQ_OP_ZONE_APPEND)
855 bio->bi_iter.bi_sector = req->__sector;
863 * Reset counters so that the request stacking driver
864 * can find how many bytes remain in the request
874 * blk_update_request - Complete multiple bytes without completing the request
875 * @req: the request being processed
876 * @error: block status code
877 * @nr_bytes: number of bytes to complete for @req
880 * Ends I/O on a number of bytes attached to @req, but doesn't complete
881 * the request structure even if @req doesn't have leftover.
882 * If @req has leftover, sets it up for the next range of segments.
884 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
885 * %false return from this function.
888 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
889 * except in the consistency check at the end of this function.
892 * %false - this request doesn't have any more data
893 * %true - this request has more data
895 bool blk_update_request(struct request *req, blk_status_t error,
896 unsigned int nr_bytes)
900 trace_block_rq_complete(req, error, nr_bytes);
905 #ifdef CONFIG_BLK_DEV_INTEGRITY
906 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
908 req->q->integrity.profile->complete_fn(req, nr_bytes);
912 * Upper layers may call blk_crypto_evict_key() anytime after the last
913 * bio_endio(). Therefore, the keyslot must be released before that.
915 if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
916 __blk_crypto_rq_put_keyslot(req);
918 if (unlikely(error && !blk_rq_is_passthrough(req) &&
919 !(req->rq_flags & RQF_QUIET)) &&
920 !test_bit(GD_DEAD, &req->q->disk->state)) {
921 blk_print_req_error(req, error);
922 trace_block_rq_error(req, error, nr_bytes);
925 blk_account_io_completion(req, nr_bytes);
929 struct bio *bio = req->bio;
930 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
932 if (bio_bytes == bio->bi_iter.bi_size)
933 req->bio = bio->bi_next;
935 /* Completion has already been traced */
936 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
937 req_bio_endio(req, bio, bio_bytes, error);
939 total_bytes += bio_bytes;
940 nr_bytes -= bio_bytes;
951 * Reset counters so that the request stacking driver
952 * can find how many bytes remain in the request
959 req->__data_len -= total_bytes;
961 /* update sector only for requests with clear definition of sector */
962 if (!blk_rq_is_passthrough(req))
963 req->__sector += total_bytes >> 9;
965 /* mixed attributes always follow the first bio */
966 if (req->rq_flags & RQF_MIXED_MERGE) {
967 req->cmd_flags &= ~REQ_FAILFAST_MASK;
968 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
971 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
973 * If total number of sectors is less than the first segment
974 * size, something has gone terribly wrong.
976 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
977 blk_dump_rq_flags(req, "request botched");
978 req->__data_len = blk_rq_cur_bytes(req);
981 /* recalculate the number of segments */
982 req->nr_phys_segments = blk_recalc_rq_segments(req);
987 EXPORT_SYMBOL_GPL(blk_update_request);
989 static inline void blk_account_io_done(struct request *req, u64 now)
991 trace_block_io_done(req);
994 * Account IO completion. flush_rq isn't accounted as a
995 * normal IO on queueing nor completion. Accounting the
996 * containing request is enough.
998 if (blk_do_io_stat(req) && req->part &&
999 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1000 const int sgrp = op_stat_group(req_op(req));
1003 update_io_ticks(req->part, jiffies, true);
1004 part_stat_inc(req->part, ios[sgrp]);
1005 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1010 static inline void blk_account_io_start(struct request *req)
1012 trace_block_io_start(req);
1014 if (blk_do_io_stat(req)) {
1016 * All non-passthrough requests are created from a bio with one
1017 * exception: when a flush command that is part of a flush sequence
1018 * generated by the state machine in blk-flush.c is cloned onto the
1019 * lower device by dm-multipath we can get here without a bio.
1022 req->part = req->bio->bi_bdev;
1024 req->part = req->q->disk->part0;
1027 update_io_ticks(req->part, jiffies, false);
1032 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1034 if (rq->rq_flags & RQF_STATS)
1035 blk_stat_add(rq, now);
1037 blk_mq_sched_completed_request(rq, now);
1038 blk_account_io_done(rq, now);
1041 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1043 if (blk_mq_need_time_stamp(rq))
1044 __blk_mq_end_request_acct(rq, ktime_get_ns());
1046 blk_mq_finish_request(rq);
1049 rq_qos_done(rq->q, rq);
1050 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1051 blk_mq_free_request(rq);
1053 blk_mq_free_request(rq);
1056 EXPORT_SYMBOL(__blk_mq_end_request);
1058 void blk_mq_end_request(struct request *rq, blk_status_t error)
1060 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1062 __blk_mq_end_request(rq, error);
1064 EXPORT_SYMBOL(blk_mq_end_request);
1066 #define TAG_COMP_BATCH 32
1068 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1069 int *tag_array, int nr_tags)
1071 struct request_queue *q = hctx->queue;
1073 blk_mq_sub_active_requests(hctx, nr_tags);
1075 blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1076 percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1079 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1081 int tags[TAG_COMP_BATCH], nr_tags = 0;
1082 struct blk_mq_hw_ctx *cur_hctx = NULL;
1087 now = ktime_get_ns();
1089 while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1091 prefetch(rq->rq_next);
1093 blk_complete_request(rq);
1095 __blk_mq_end_request_acct(rq, now);
1097 blk_mq_finish_request(rq);
1099 rq_qos_done(rq->q, rq);
1102 * If end_io handler returns NONE, then it still has
1103 * ownership of the request.
1105 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1108 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1109 if (!req_ref_put_and_test(rq))
1112 blk_crypto_free_request(rq);
1113 blk_pm_mark_last_busy(rq);
1115 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1117 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1119 cur_hctx = rq->mq_hctx;
1121 tags[nr_tags++] = rq->tag;
1125 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1127 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1129 static void blk_complete_reqs(struct llist_head *list)
1131 struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1132 struct request *rq, *next;
1134 llist_for_each_entry_safe(rq, next, entry, ipi_list)
1135 rq->q->mq_ops->complete(rq);
1138 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1140 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1143 static int blk_softirq_cpu_dead(unsigned int cpu)
1145 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1149 static void __blk_mq_complete_request_remote(void *data)
1151 __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1154 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1156 int cpu = raw_smp_processor_id();
1158 if (!IS_ENABLED(CONFIG_SMP) ||
1159 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1162 * With force threaded interrupts enabled, raising softirq from an SMP
1163 * function call will always result in waking the ksoftirqd thread.
1164 * This is probably worse than completing the request on a different
1167 if (force_irqthreads())
1170 /* same CPU or cache domain? Complete locally */
1171 if (cpu == rq->mq_ctx->cpu ||
1172 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1173 cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1176 /* don't try to IPI to an offline CPU */
1177 return cpu_online(rq->mq_ctx->cpu);
1180 static void blk_mq_complete_send_ipi(struct request *rq)
1184 cpu = rq->mq_ctx->cpu;
1185 if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1186 smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1189 static void blk_mq_raise_softirq(struct request *rq)
1191 struct llist_head *list;
1194 list = this_cpu_ptr(&blk_cpu_done);
1195 if (llist_add(&rq->ipi_list, list))
1196 raise_softirq(BLOCK_SOFTIRQ);
1200 bool blk_mq_complete_request_remote(struct request *rq)
1202 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1205 * For request which hctx has only one ctx mapping,
1206 * or a polled request, always complete locally,
1207 * it's pointless to redirect the completion.
1209 if ((rq->mq_hctx->nr_ctx == 1 &&
1210 rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1211 rq->cmd_flags & REQ_POLLED)
1214 if (blk_mq_complete_need_ipi(rq)) {
1215 blk_mq_complete_send_ipi(rq);
1219 if (rq->q->nr_hw_queues == 1) {
1220 blk_mq_raise_softirq(rq);
1225 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1228 * blk_mq_complete_request - end I/O on a request
1229 * @rq: the request being processed
1232 * Complete a request by scheduling the ->complete_rq operation.
1234 void blk_mq_complete_request(struct request *rq)
1236 if (!blk_mq_complete_request_remote(rq))
1237 rq->q->mq_ops->complete(rq);
1239 EXPORT_SYMBOL(blk_mq_complete_request);
1242 * blk_mq_start_request - Start processing a request
1243 * @rq: Pointer to request to be started
1245 * Function used by device drivers to notify the block layer that a request
1246 * is going to be processed now, so blk layer can do proper initializations
1247 * such as starting the timeout timer.
1249 void blk_mq_start_request(struct request *rq)
1251 struct request_queue *q = rq->q;
1253 trace_block_rq_issue(rq);
1255 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1256 !blk_rq_is_passthrough(rq)) {
1257 rq->io_start_time_ns = ktime_get_ns();
1258 rq->stats_sectors = blk_rq_sectors(rq);
1259 rq->rq_flags |= RQF_STATS;
1260 rq_qos_issue(q, rq);
1263 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1266 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1267 rq->mq_hctx->tags->rqs[rq->tag] = rq;
1269 #ifdef CONFIG_BLK_DEV_INTEGRITY
1270 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1271 q->integrity.profile->prepare_fn(rq);
1273 if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1274 WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1276 EXPORT_SYMBOL(blk_mq_start_request);
1279 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1280 * queues. This is important for md arrays to benefit from merging
1283 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1285 if (plug->multiple_queues)
1286 return BLK_MAX_REQUEST_COUNT * 2;
1287 return BLK_MAX_REQUEST_COUNT;
1290 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1292 struct request *last = rq_list_peek(&plug->mq_list);
1294 if (!plug->rq_count) {
1295 trace_block_plug(rq->q);
1296 } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1297 (!blk_queue_nomerges(rq->q) &&
1298 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1299 blk_mq_flush_plug_list(plug, false);
1301 trace_block_plug(rq->q);
1304 if (!plug->multiple_queues && last && last->q != rq->q)
1305 plug->multiple_queues = true;
1307 * Any request allocated from sched tags can't be issued to
1308 * ->queue_rqs() directly
1310 if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1311 plug->has_elevator = true;
1313 rq_list_add(&plug->mq_list, rq);
1318 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1319 * @rq: request to insert
1320 * @at_head: insert request at head or tail of queue
1323 * Insert a fully prepared request at the back of the I/O scheduler queue
1324 * for execution. Don't wait for completion.
1327 * This function will invoke @done directly if the queue is dead.
1329 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1331 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1333 WARN_ON(irqs_disabled());
1334 WARN_ON(!blk_rq_is_passthrough(rq));
1336 blk_account_io_start(rq);
1339 * As plugging can be enabled for passthrough requests on a zoned
1340 * device, directly accessing the plug instead of using blk_mq_plug()
1341 * should not have any consequences.
1343 if (current->plug && !at_head) {
1344 blk_add_rq_to_plug(current->plug, rq);
1348 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1349 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1351 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1353 struct blk_rq_wait {
1354 struct completion done;
1358 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1360 struct blk_rq_wait *wait = rq->end_io_data;
1363 complete(&wait->done);
1364 return RQ_END_IO_NONE;
1367 bool blk_rq_is_poll(struct request *rq)
1371 if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1375 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1377 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1380 blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1382 } while (!completion_done(wait));
1386 * blk_execute_rq - insert a request into queue for execution
1387 * @rq: request to insert
1388 * @at_head: insert request at head or tail of queue
1391 * Insert a fully prepared request at the back of the I/O scheduler queue
1392 * for execution and wait for completion.
1393 * Return: The blk_status_t result provided to blk_mq_end_request().
1395 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1397 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1398 struct blk_rq_wait wait = {
1399 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1402 WARN_ON(irqs_disabled());
1403 WARN_ON(!blk_rq_is_passthrough(rq));
1405 rq->end_io_data = &wait;
1406 rq->end_io = blk_end_sync_rq;
1408 blk_account_io_start(rq);
1409 blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1410 blk_mq_run_hw_queue(hctx, false);
1412 if (blk_rq_is_poll(rq)) {
1413 blk_rq_poll_completion(rq, &wait.done);
1416 * Prevent hang_check timer from firing at us during very long
1419 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1422 while (!wait_for_completion_io_timeout(&wait.done,
1423 hang_check * (HZ/2)))
1426 wait_for_completion_io(&wait.done);
1431 EXPORT_SYMBOL(blk_execute_rq);
1433 static void __blk_mq_requeue_request(struct request *rq)
1435 struct request_queue *q = rq->q;
1437 blk_mq_put_driver_tag(rq);
1439 trace_block_rq_requeue(rq);
1440 rq_qos_requeue(q, rq);
1442 if (blk_mq_request_started(rq)) {
1443 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1444 rq->rq_flags &= ~RQF_TIMED_OUT;
1448 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1450 struct request_queue *q = rq->q;
1451 unsigned long flags;
1453 __blk_mq_requeue_request(rq);
1455 /* this request will be re-inserted to io scheduler queue */
1456 blk_mq_sched_requeue_request(rq);
1458 spin_lock_irqsave(&q->requeue_lock, flags);
1459 list_add_tail(&rq->queuelist, &q->requeue_list);
1460 spin_unlock_irqrestore(&q->requeue_lock, flags);
1462 if (kick_requeue_list)
1463 blk_mq_kick_requeue_list(q);
1465 EXPORT_SYMBOL(blk_mq_requeue_request);
1467 static void blk_mq_requeue_work(struct work_struct *work)
1469 struct request_queue *q =
1470 container_of(work, struct request_queue, requeue_work.work);
1472 LIST_HEAD(flush_list);
1475 spin_lock_irq(&q->requeue_lock);
1476 list_splice_init(&q->requeue_list, &rq_list);
1477 list_splice_init(&q->flush_list, &flush_list);
1478 spin_unlock_irq(&q->requeue_lock);
1480 while (!list_empty(&rq_list)) {
1481 rq = list_entry(rq_list.next, struct request, queuelist);
1483 * If RQF_DONTPREP ist set, the request has been started by the
1484 * driver already and might have driver-specific data allocated
1485 * already. Insert it into the hctx dispatch list to avoid
1486 * block layer merges for the request.
1488 if (rq->rq_flags & RQF_DONTPREP) {
1489 list_del_init(&rq->queuelist);
1490 blk_mq_request_bypass_insert(rq, 0);
1492 list_del_init(&rq->queuelist);
1493 blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1497 while (!list_empty(&flush_list)) {
1498 rq = list_entry(flush_list.next, struct request, queuelist);
1499 list_del_init(&rq->queuelist);
1500 blk_mq_insert_request(rq, 0);
1503 blk_mq_run_hw_queues(q, false);
1506 void blk_mq_kick_requeue_list(struct request_queue *q)
1508 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1510 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1512 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1513 unsigned long msecs)
1515 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1516 msecs_to_jiffies(msecs));
1518 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1520 static bool blk_is_flush_data_rq(struct request *rq)
1522 return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1525 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1528 * If we find a request that isn't idle we know the queue is busy
1529 * as it's checked in the iter.
1530 * Return false to stop the iteration.
1532 * In case of queue quiesce, if one flush data request is completed,
1533 * don't count it as inflight given the flush sequence is suspended,
1534 * and the original flush data request is invisible to driver, just
1535 * like other pending requests because of quiesce
1537 if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1538 blk_is_flush_data_rq(rq) &&
1539 blk_mq_request_completed(rq))) {
1549 bool blk_mq_queue_inflight(struct request_queue *q)
1553 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1556 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1558 static void blk_mq_rq_timed_out(struct request *req)
1560 req->rq_flags |= RQF_TIMED_OUT;
1561 if (req->q->mq_ops->timeout) {
1562 enum blk_eh_timer_return ret;
1564 ret = req->q->mq_ops->timeout(req);
1565 if (ret == BLK_EH_DONE)
1567 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1573 struct blk_expired_data {
1574 bool has_timedout_rq;
1576 unsigned long timeout_start;
1579 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1581 unsigned long deadline;
1583 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1585 if (rq->rq_flags & RQF_TIMED_OUT)
1588 deadline = READ_ONCE(rq->deadline);
1589 if (time_after_eq(expired->timeout_start, deadline))
1592 if (expired->next == 0)
1593 expired->next = deadline;
1594 else if (time_after(expired->next, deadline))
1595 expired->next = deadline;
1599 void blk_mq_put_rq_ref(struct request *rq)
1601 if (is_flush_rq(rq)) {
1602 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1603 blk_mq_free_request(rq);
1604 } else if (req_ref_put_and_test(rq)) {
1605 __blk_mq_free_request(rq);
1609 static bool blk_mq_check_expired(struct request *rq, void *priv)
1611 struct blk_expired_data *expired = priv;
1614 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1615 * be reallocated underneath the timeout handler's processing, then
1616 * the expire check is reliable. If the request is not expired, then
1617 * it was completed and reallocated as a new request after returning
1618 * from blk_mq_check_expired().
1620 if (blk_mq_req_expired(rq, expired)) {
1621 expired->has_timedout_rq = true;
1627 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1629 struct blk_expired_data *expired = priv;
1631 if (blk_mq_req_expired(rq, expired))
1632 blk_mq_rq_timed_out(rq);
1636 static void blk_mq_timeout_work(struct work_struct *work)
1638 struct request_queue *q =
1639 container_of(work, struct request_queue, timeout_work);
1640 struct blk_expired_data expired = {
1641 .timeout_start = jiffies,
1643 struct blk_mq_hw_ctx *hctx;
1646 /* A deadlock might occur if a request is stuck requiring a
1647 * timeout at the same time a queue freeze is waiting
1648 * completion, since the timeout code would not be able to
1649 * acquire the queue reference here.
1651 * That's why we don't use blk_queue_enter here; instead, we use
1652 * percpu_ref_tryget directly, because we need to be able to
1653 * obtain a reference even in the short window between the queue
1654 * starting to freeze, by dropping the first reference in
1655 * blk_freeze_queue_start, and the moment the last request is
1656 * consumed, marked by the instant q_usage_counter reaches
1659 if (!percpu_ref_tryget(&q->q_usage_counter))
1662 /* check if there is any timed-out request */
1663 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1664 if (expired.has_timedout_rq) {
1666 * Before walking tags, we must ensure any submit started
1667 * before the current time has finished. Since the submit
1668 * uses srcu or rcu, wait for a synchronization point to
1669 * ensure all running submits have finished
1671 blk_mq_wait_quiesce_done(q->tag_set);
1674 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1677 if (expired.next != 0) {
1678 mod_timer(&q->timeout, expired.next);
1681 * Request timeouts are handled as a forward rolling timer. If
1682 * we end up here it means that no requests are pending and
1683 * also that no request has been pending for a while. Mark
1684 * each hctx as idle.
1686 queue_for_each_hw_ctx(q, hctx, i) {
1687 /* the hctx may be unmapped, so check it here */
1688 if (blk_mq_hw_queue_mapped(hctx))
1689 blk_mq_tag_idle(hctx);
1695 struct flush_busy_ctx_data {
1696 struct blk_mq_hw_ctx *hctx;
1697 struct list_head *list;
1700 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1702 struct flush_busy_ctx_data *flush_data = data;
1703 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1704 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1705 enum hctx_type type = hctx->type;
1707 spin_lock(&ctx->lock);
1708 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1709 sbitmap_clear_bit(sb, bitnr);
1710 spin_unlock(&ctx->lock);
1715 * Process software queues that have been marked busy, splicing them
1716 * to the for-dispatch
1718 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1720 struct flush_busy_ctx_data data = {
1725 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1727 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1729 struct dispatch_rq_data {
1730 struct blk_mq_hw_ctx *hctx;
1734 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1737 struct dispatch_rq_data *dispatch_data = data;
1738 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1739 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1740 enum hctx_type type = hctx->type;
1742 spin_lock(&ctx->lock);
1743 if (!list_empty(&ctx->rq_lists[type])) {
1744 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1745 list_del_init(&dispatch_data->rq->queuelist);
1746 if (list_empty(&ctx->rq_lists[type]))
1747 sbitmap_clear_bit(sb, bitnr);
1749 spin_unlock(&ctx->lock);
1751 return !dispatch_data->rq;
1754 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1755 struct blk_mq_ctx *start)
1757 unsigned off = start ? start->index_hw[hctx->type] : 0;
1758 struct dispatch_rq_data data = {
1763 __sbitmap_for_each_set(&hctx->ctx_map, off,
1764 dispatch_rq_from_ctx, &data);
1769 bool __blk_mq_alloc_driver_tag(struct request *rq)
1771 struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1772 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1775 blk_mq_tag_busy(rq->mq_hctx);
1777 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1778 bt = &rq->mq_hctx->tags->breserved_tags;
1781 if (!hctx_may_queue(rq->mq_hctx, bt))
1785 tag = __sbitmap_queue_get(bt);
1786 if (tag == BLK_MQ_NO_TAG)
1789 rq->tag = tag + tag_offset;
1790 blk_mq_inc_active_requests(rq->mq_hctx);
1794 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1795 int flags, void *key)
1797 struct blk_mq_hw_ctx *hctx;
1799 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1801 spin_lock(&hctx->dispatch_wait_lock);
1802 if (!list_empty(&wait->entry)) {
1803 struct sbitmap_queue *sbq;
1805 list_del_init(&wait->entry);
1806 sbq = &hctx->tags->bitmap_tags;
1807 atomic_dec(&sbq->ws_active);
1809 spin_unlock(&hctx->dispatch_wait_lock);
1811 blk_mq_run_hw_queue(hctx, true);
1816 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1817 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1818 * restart. For both cases, take care to check the condition again after
1819 * marking us as waiting.
1821 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1824 struct sbitmap_queue *sbq;
1825 struct wait_queue_head *wq;
1826 wait_queue_entry_t *wait;
1829 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1830 !(blk_mq_is_shared_tags(hctx->flags))) {
1831 blk_mq_sched_mark_restart_hctx(hctx);
1834 * It's possible that a tag was freed in the window between the
1835 * allocation failure and adding the hardware queue to the wait
1838 * Don't clear RESTART here, someone else could have set it.
1839 * At most this will cost an extra queue run.
1841 return blk_mq_get_driver_tag(rq);
1844 wait = &hctx->dispatch_wait;
1845 if (!list_empty_careful(&wait->entry))
1848 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1849 sbq = &hctx->tags->breserved_tags;
1851 sbq = &hctx->tags->bitmap_tags;
1852 wq = &bt_wait_ptr(sbq, hctx)->wait;
1854 spin_lock_irq(&wq->lock);
1855 spin_lock(&hctx->dispatch_wait_lock);
1856 if (!list_empty(&wait->entry)) {
1857 spin_unlock(&hctx->dispatch_wait_lock);
1858 spin_unlock_irq(&wq->lock);
1862 atomic_inc(&sbq->ws_active);
1863 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1864 __add_wait_queue(wq, wait);
1867 * Add one explicit barrier since blk_mq_get_driver_tag() may
1868 * not imply barrier in case of failure.
1870 * Order adding us to wait queue and allocating driver tag.
1872 * The pair is the one implied in sbitmap_queue_wake_up() which
1873 * orders clearing sbitmap tag bits and waitqueue_active() in
1874 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1876 * Otherwise, re-order of adding wait queue and getting driver tag
1877 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1878 * the waitqueue_active() may not observe us in wait queue.
1883 * It's possible that a tag was freed in the window between the
1884 * allocation failure and adding the hardware queue to the wait
1887 ret = blk_mq_get_driver_tag(rq);
1889 spin_unlock(&hctx->dispatch_wait_lock);
1890 spin_unlock_irq(&wq->lock);
1895 * We got a tag, remove ourselves from the wait queue to ensure
1896 * someone else gets the wakeup.
1898 list_del_init(&wait->entry);
1899 atomic_dec(&sbq->ws_active);
1900 spin_unlock(&hctx->dispatch_wait_lock);
1901 spin_unlock_irq(&wq->lock);
1906 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1907 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1909 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1910 * - EWMA is one simple way to compute running average value
1911 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1912 * - take 4 as factor for avoiding to get too small(0) result, and this
1913 * factor doesn't matter because EWMA decreases exponentially
1915 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1919 ewma = hctx->dispatch_busy;
1924 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1926 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1927 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1929 hctx->dispatch_busy = ewma;
1932 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1934 static void blk_mq_handle_dev_resource(struct request *rq,
1935 struct list_head *list)
1937 list_add(&rq->queuelist, list);
1938 __blk_mq_requeue_request(rq);
1941 static void blk_mq_handle_zone_resource(struct request *rq,
1942 struct list_head *zone_list)
1945 * If we end up here it is because we cannot dispatch a request to a
1946 * specific zone due to LLD level zone-write locking or other zone
1947 * related resource not being available. In this case, set the request
1948 * aside in zone_list for retrying it later.
1950 list_add(&rq->queuelist, zone_list);
1951 __blk_mq_requeue_request(rq);
1954 enum prep_dispatch {
1956 PREP_DISPATCH_NO_TAG,
1957 PREP_DISPATCH_NO_BUDGET,
1960 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1963 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1964 int budget_token = -1;
1967 budget_token = blk_mq_get_dispatch_budget(rq->q);
1968 if (budget_token < 0) {
1969 blk_mq_put_driver_tag(rq);
1970 return PREP_DISPATCH_NO_BUDGET;
1972 blk_mq_set_rq_budget_token(rq, budget_token);
1975 if (!blk_mq_get_driver_tag(rq)) {
1977 * The initial allocation attempt failed, so we need to
1978 * rerun the hardware queue when a tag is freed. The
1979 * waitqueue takes care of that. If the queue is run
1980 * before we add this entry back on the dispatch list,
1981 * we'll re-run it below.
1983 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1985 * All budgets not got from this function will be put
1986 * together during handling partial dispatch
1989 blk_mq_put_dispatch_budget(rq->q, budget_token);
1990 return PREP_DISPATCH_NO_TAG;
1994 return PREP_DISPATCH_OK;
1997 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1998 static void blk_mq_release_budgets(struct request_queue *q,
1999 struct list_head *list)
2003 list_for_each_entry(rq, list, queuelist) {
2004 int budget_token = blk_mq_get_rq_budget_token(rq);
2006 if (budget_token >= 0)
2007 blk_mq_put_dispatch_budget(q, budget_token);
2012 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2013 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2015 * Attention, we should explicitly call this in unusual cases:
2016 * 1) did not queue everything initially scheduled to queue
2017 * 2) the last attempt to queue a request failed
2019 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2022 if (hctx->queue->mq_ops->commit_rqs && queued) {
2023 trace_block_unplug(hctx->queue, queued, !from_schedule);
2024 hctx->queue->mq_ops->commit_rqs(hctx);
2029 * Returns true if we did some work AND can potentially do more.
2031 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2032 unsigned int nr_budgets)
2034 enum prep_dispatch prep;
2035 struct request_queue *q = hctx->queue;
2038 blk_status_t ret = BLK_STS_OK;
2039 LIST_HEAD(zone_list);
2040 bool needs_resource = false;
2042 if (list_empty(list))
2046 * Now process all the entries, sending them to the driver.
2050 struct blk_mq_queue_data bd;
2052 rq = list_first_entry(list, struct request, queuelist);
2054 WARN_ON_ONCE(hctx != rq->mq_hctx);
2055 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2056 if (prep != PREP_DISPATCH_OK)
2059 list_del_init(&rq->queuelist);
2062 bd.last = list_empty(list);
2065 * once the request is queued to lld, no need to cover the
2070 ret = q->mq_ops->queue_rq(hctx, &bd);
2075 case BLK_STS_RESOURCE:
2076 needs_resource = true;
2078 case BLK_STS_DEV_RESOURCE:
2079 blk_mq_handle_dev_resource(rq, list);
2081 case BLK_STS_ZONE_RESOURCE:
2083 * Move the request to zone_list and keep going through
2084 * the dispatch list to find more requests the drive can
2087 blk_mq_handle_zone_resource(rq, &zone_list);
2088 needs_resource = true;
2091 blk_mq_end_request(rq, ret);
2093 } while (!list_empty(list));
2095 if (!list_empty(&zone_list))
2096 list_splice_tail_init(&zone_list, list);
2098 /* If we didn't flush the entire list, we could have told the driver
2099 * there was more coming, but that turned out to be a lie.
2101 if (!list_empty(list) || ret != BLK_STS_OK)
2102 blk_mq_commit_rqs(hctx, queued, false);
2105 * Any items that need requeuing? Stuff them into hctx->dispatch,
2106 * that is where we will continue on next queue run.
2108 if (!list_empty(list)) {
2110 /* For non-shared tags, the RESTART check will suffice */
2111 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2112 ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2113 blk_mq_is_shared_tags(hctx->flags));
2116 blk_mq_release_budgets(q, list);
2118 spin_lock(&hctx->lock);
2119 list_splice_tail_init(list, &hctx->dispatch);
2120 spin_unlock(&hctx->lock);
2123 * Order adding requests to hctx->dispatch and checking
2124 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2125 * in blk_mq_sched_restart(). Avoid restart code path to
2126 * miss the new added requests to hctx->dispatch, meantime
2127 * SCHED_RESTART is observed here.
2132 * If SCHED_RESTART was set by the caller of this function and
2133 * it is no longer set that means that it was cleared by another
2134 * thread and hence that a queue rerun is needed.
2136 * If 'no_tag' is set, that means that we failed getting
2137 * a driver tag with an I/O scheduler attached. If our dispatch
2138 * waitqueue is no longer active, ensure that we run the queue
2139 * AFTER adding our entries back to the list.
2141 * If no I/O scheduler has been configured it is possible that
2142 * the hardware queue got stopped and restarted before requests
2143 * were pushed back onto the dispatch list. Rerun the queue to
2144 * avoid starvation. Notes:
2145 * - blk_mq_run_hw_queue() checks whether or not a queue has
2146 * been stopped before rerunning a queue.
2147 * - Some but not all block drivers stop a queue before
2148 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2151 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2152 * bit is set, run queue after a delay to avoid IO stalls
2153 * that could otherwise occur if the queue is idle. We'll do
2154 * similar if we couldn't get budget or couldn't lock a zone
2155 * and SCHED_RESTART is set.
2157 needs_restart = blk_mq_sched_needs_restart(hctx);
2158 if (prep == PREP_DISPATCH_NO_BUDGET)
2159 needs_resource = true;
2160 if (!needs_restart ||
2161 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2162 blk_mq_run_hw_queue(hctx, true);
2163 else if (needs_resource)
2164 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2166 blk_mq_update_dispatch_busy(hctx, true);
2170 blk_mq_update_dispatch_busy(hctx, false);
2174 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2176 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2178 if (cpu >= nr_cpu_ids)
2179 cpu = cpumask_first(hctx->cpumask);
2184 * It'd be great if the workqueue API had a way to pass
2185 * in a mask and had some smarts for more clever placement.
2186 * For now we just round-robin here, switching for every
2187 * BLK_MQ_CPU_WORK_BATCH queued items.
2189 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2192 int next_cpu = hctx->next_cpu;
2194 if (hctx->queue->nr_hw_queues == 1)
2195 return WORK_CPU_UNBOUND;
2197 if (--hctx->next_cpu_batch <= 0) {
2199 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2201 if (next_cpu >= nr_cpu_ids)
2202 next_cpu = blk_mq_first_mapped_cpu(hctx);
2203 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2207 * Do unbound schedule if we can't find a online CPU for this hctx,
2208 * and it should only happen in the path of handling CPU DEAD.
2210 if (!cpu_online(next_cpu)) {
2217 * Make sure to re-select CPU next time once after CPUs
2218 * in hctx->cpumask become online again.
2220 hctx->next_cpu = next_cpu;
2221 hctx->next_cpu_batch = 1;
2222 return WORK_CPU_UNBOUND;
2225 hctx->next_cpu = next_cpu;
2230 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2231 * @hctx: Pointer to the hardware queue to run.
2232 * @msecs: Milliseconds of delay to wait before running the queue.
2234 * Run a hardware queue asynchronously with a delay of @msecs.
2236 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2238 if (unlikely(blk_mq_hctx_stopped(hctx)))
2240 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2241 msecs_to_jiffies(msecs));
2243 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2246 * blk_mq_run_hw_queue - Start to run a hardware queue.
2247 * @hctx: Pointer to the hardware queue to run.
2248 * @async: If we want to run the queue asynchronously.
2250 * Check if the request queue is not in a quiesced state and if there are
2251 * pending requests to be sent. If this is true, run the queue to send requests
2254 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2259 * We can't run the queue inline with interrupts disabled.
2261 WARN_ON_ONCE(!async && in_interrupt());
2263 might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2266 * When queue is quiesced, we may be switching io scheduler, or
2267 * updating nr_hw_queues, or other things, and we can't run queue
2268 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2270 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2273 __blk_mq_run_dispatch_ops(hctx->queue, false,
2274 need_run = !blk_queue_quiesced(hctx->queue) &&
2275 blk_mq_hctx_has_pending(hctx));
2280 if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2281 blk_mq_delay_run_hw_queue(hctx, 0);
2285 blk_mq_run_dispatch_ops(hctx->queue,
2286 blk_mq_sched_dispatch_requests(hctx));
2288 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2291 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2294 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2296 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2298 * If the IO scheduler does not respect hardware queues when
2299 * dispatching, we just don't bother with multiple HW queues and
2300 * dispatch from hctx for the current CPU since running multiple queues
2301 * just causes lock contention inside the scheduler and pointless cache
2304 struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2306 if (!blk_mq_hctx_stopped(hctx))
2312 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2313 * @q: Pointer to the request queue to run.
2314 * @async: If we want to run the queue asynchronously.
2316 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2318 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2322 if (blk_queue_sq_sched(q))
2323 sq_hctx = blk_mq_get_sq_hctx(q);
2324 queue_for_each_hw_ctx(q, hctx, i) {
2325 if (blk_mq_hctx_stopped(hctx))
2328 * Dispatch from this hctx either if there's no hctx preferred
2329 * by IO scheduler or if it has requests that bypass the
2332 if (!sq_hctx || sq_hctx == hctx ||
2333 !list_empty_careful(&hctx->dispatch))
2334 blk_mq_run_hw_queue(hctx, async);
2337 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2340 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2341 * @q: Pointer to the request queue to run.
2342 * @msecs: Milliseconds of delay to wait before running the queues.
2344 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2346 struct blk_mq_hw_ctx *hctx, *sq_hctx;
2350 if (blk_queue_sq_sched(q))
2351 sq_hctx = blk_mq_get_sq_hctx(q);
2352 queue_for_each_hw_ctx(q, hctx, i) {
2353 if (blk_mq_hctx_stopped(hctx))
2356 * If there is already a run_work pending, leave the
2357 * pending delay untouched. Otherwise, a hctx can stall
2358 * if another hctx is re-delaying the other's work
2359 * before the work executes.
2361 if (delayed_work_pending(&hctx->run_work))
2364 * Dispatch from this hctx either if there's no hctx preferred
2365 * by IO scheduler or if it has requests that bypass the
2368 if (!sq_hctx || sq_hctx == hctx ||
2369 !list_empty_careful(&hctx->dispatch))
2370 blk_mq_delay_run_hw_queue(hctx, msecs);
2373 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2376 * This function is often used for pausing .queue_rq() by driver when
2377 * there isn't enough resource or some conditions aren't satisfied, and
2378 * BLK_STS_RESOURCE is usually returned.
2380 * We do not guarantee that dispatch can be drained or blocked
2381 * after blk_mq_stop_hw_queue() returns. Please use
2382 * blk_mq_quiesce_queue() for that requirement.
2384 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2386 cancel_delayed_work(&hctx->run_work);
2388 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2390 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2393 * This function is often used for pausing .queue_rq() by driver when
2394 * there isn't enough resource or some conditions aren't satisfied, and
2395 * BLK_STS_RESOURCE is usually returned.
2397 * We do not guarantee that dispatch can be drained or blocked
2398 * after blk_mq_stop_hw_queues() returns. Please use
2399 * blk_mq_quiesce_queue() for that requirement.
2401 void blk_mq_stop_hw_queues(struct request_queue *q)
2403 struct blk_mq_hw_ctx *hctx;
2406 queue_for_each_hw_ctx(q, hctx, i)
2407 blk_mq_stop_hw_queue(hctx);
2409 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2411 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2413 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2415 blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2417 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2419 void blk_mq_start_hw_queues(struct request_queue *q)
2421 struct blk_mq_hw_ctx *hctx;
2424 queue_for_each_hw_ctx(q, hctx, i)
2425 blk_mq_start_hw_queue(hctx);
2427 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2429 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2431 if (!blk_mq_hctx_stopped(hctx))
2434 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2435 blk_mq_run_hw_queue(hctx, async);
2437 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2439 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2441 struct blk_mq_hw_ctx *hctx;
2444 queue_for_each_hw_ctx(q, hctx, i)
2445 blk_mq_start_stopped_hw_queue(hctx, async ||
2446 (hctx->flags & BLK_MQ_F_BLOCKING));
2448 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2450 static void blk_mq_run_work_fn(struct work_struct *work)
2452 struct blk_mq_hw_ctx *hctx =
2453 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2455 blk_mq_run_dispatch_ops(hctx->queue,
2456 blk_mq_sched_dispatch_requests(hctx));
2460 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2461 * @rq: Pointer to request to be inserted.
2462 * @flags: BLK_MQ_INSERT_*
2464 * Should only be used carefully, when the caller knows we want to
2465 * bypass a potential IO scheduler on the target device.
2467 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2469 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2471 spin_lock(&hctx->lock);
2472 if (flags & BLK_MQ_INSERT_AT_HEAD)
2473 list_add(&rq->queuelist, &hctx->dispatch);
2475 list_add_tail(&rq->queuelist, &hctx->dispatch);
2476 spin_unlock(&hctx->lock);
2479 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2480 struct blk_mq_ctx *ctx, struct list_head *list,
2481 bool run_queue_async)
2484 enum hctx_type type = hctx->type;
2487 * Try to issue requests directly if the hw queue isn't busy to save an
2488 * extra enqueue & dequeue to the sw queue.
2490 if (!hctx->dispatch_busy && !run_queue_async) {
2491 blk_mq_run_dispatch_ops(hctx->queue,
2492 blk_mq_try_issue_list_directly(hctx, list));
2493 if (list_empty(list))
2498 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2501 list_for_each_entry(rq, list, queuelist) {
2502 BUG_ON(rq->mq_ctx != ctx);
2503 trace_block_rq_insert(rq);
2504 if (rq->cmd_flags & REQ_NOWAIT)
2505 run_queue_async = true;
2508 spin_lock(&ctx->lock);
2509 list_splice_tail_init(list, &ctx->rq_lists[type]);
2510 blk_mq_hctx_mark_pending(hctx, ctx);
2511 spin_unlock(&ctx->lock);
2513 blk_mq_run_hw_queue(hctx, run_queue_async);
2516 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2518 struct request_queue *q = rq->q;
2519 struct blk_mq_ctx *ctx = rq->mq_ctx;
2520 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2522 if (blk_rq_is_passthrough(rq)) {
2524 * Passthrough request have to be added to hctx->dispatch
2525 * directly. The device may be in a situation where it can't
2526 * handle FS request, and always returns BLK_STS_RESOURCE for
2527 * them, which gets them added to hctx->dispatch.
2529 * If a passthrough request is required to unblock the queues,
2530 * and it is added to the scheduler queue, there is no chance to
2531 * dispatch it given we prioritize requests in hctx->dispatch.
2533 blk_mq_request_bypass_insert(rq, flags);
2534 } else if (req_op(rq) == REQ_OP_FLUSH) {
2536 * Firstly normal IO request is inserted to scheduler queue or
2537 * sw queue, meantime we add flush request to dispatch queue(
2538 * hctx->dispatch) directly and there is at most one in-flight
2539 * flush request for each hw queue, so it doesn't matter to add
2540 * flush request to tail or front of the dispatch queue.
2542 * Secondly in case of NCQ, flush request belongs to non-NCQ
2543 * command, and queueing it will fail when there is any
2544 * in-flight normal IO request(NCQ command). When adding flush
2545 * rq to the front of hctx->dispatch, it is easier to introduce
2546 * extra time to flush rq's latency because of S_SCHED_RESTART
2547 * compared with adding to the tail of dispatch queue, then
2548 * chance of flush merge is increased, and less flush requests
2549 * will be issued to controller. It is observed that ~10% time
2550 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2551 * drive when adding flush rq to the front of hctx->dispatch.
2553 * Simply queue flush rq to the front of hctx->dispatch so that
2554 * intensive flush workloads can benefit in case of NCQ HW.
2556 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2557 } else if (q->elevator) {
2560 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2562 list_add(&rq->queuelist, &list);
2563 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2565 trace_block_rq_insert(rq);
2567 spin_lock(&ctx->lock);
2568 if (flags & BLK_MQ_INSERT_AT_HEAD)
2569 list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2571 list_add_tail(&rq->queuelist,
2572 &ctx->rq_lists[hctx->type]);
2573 blk_mq_hctx_mark_pending(hctx, ctx);
2574 spin_unlock(&ctx->lock);
2578 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2579 unsigned int nr_segs)
2583 if (bio->bi_opf & REQ_RAHEAD)
2584 rq->cmd_flags |= REQ_FAILFAST_MASK;
2586 rq->__sector = bio->bi_iter.bi_sector;
2587 blk_rq_bio_prep(rq, bio, nr_segs);
2589 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2590 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2593 blk_account_io_start(rq);
2596 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2597 struct request *rq, bool last)
2599 struct request_queue *q = rq->q;
2600 struct blk_mq_queue_data bd = {
2607 * For OK queue, we are done. For error, caller may kill it.
2608 * Any other error (busy), just add it to our list as we
2609 * previously would have done.
2611 ret = q->mq_ops->queue_rq(hctx, &bd);
2614 blk_mq_update_dispatch_busy(hctx, false);
2616 case BLK_STS_RESOURCE:
2617 case BLK_STS_DEV_RESOURCE:
2618 blk_mq_update_dispatch_busy(hctx, true);
2619 __blk_mq_requeue_request(rq);
2622 blk_mq_update_dispatch_busy(hctx, false);
2629 static bool blk_mq_get_budget_and_tag(struct request *rq)
2633 budget_token = blk_mq_get_dispatch_budget(rq->q);
2634 if (budget_token < 0)
2636 blk_mq_set_rq_budget_token(rq, budget_token);
2637 if (!blk_mq_get_driver_tag(rq)) {
2638 blk_mq_put_dispatch_budget(rq->q, budget_token);
2645 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2646 * @hctx: Pointer of the associated hardware queue.
2647 * @rq: Pointer to request to be sent.
2649 * If the device has enough resources to accept a new request now, send the
2650 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2651 * we can try send it another time in the future. Requests inserted at this
2652 * queue have higher priority.
2654 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2659 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2660 blk_mq_insert_request(rq, 0);
2664 if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2665 blk_mq_insert_request(rq, 0);
2666 blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2670 ret = __blk_mq_issue_directly(hctx, rq, true);
2674 case BLK_STS_RESOURCE:
2675 case BLK_STS_DEV_RESOURCE:
2676 blk_mq_request_bypass_insert(rq, 0);
2677 blk_mq_run_hw_queue(hctx, false);
2680 blk_mq_end_request(rq, ret);
2685 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2687 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2689 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2690 blk_mq_insert_request(rq, 0);
2694 if (!blk_mq_get_budget_and_tag(rq))
2695 return BLK_STS_RESOURCE;
2696 return __blk_mq_issue_directly(hctx, rq, last);
2699 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2701 struct blk_mq_hw_ctx *hctx = NULL;
2704 blk_status_t ret = BLK_STS_OK;
2706 while ((rq = rq_list_pop(&plug->mq_list))) {
2707 bool last = rq_list_empty(plug->mq_list);
2709 if (hctx != rq->mq_hctx) {
2711 blk_mq_commit_rqs(hctx, queued, false);
2717 ret = blk_mq_request_issue_directly(rq, last);
2722 case BLK_STS_RESOURCE:
2723 case BLK_STS_DEV_RESOURCE:
2724 blk_mq_request_bypass_insert(rq, 0);
2725 blk_mq_run_hw_queue(hctx, false);
2728 blk_mq_end_request(rq, ret);
2734 if (ret != BLK_STS_OK)
2735 blk_mq_commit_rqs(hctx, queued, false);
2738 static void __blk_mq_flush_plug_list(struct request_queue *q,
2739 struct blk_plug *plug)
2741 if (blk_queue_quiesced(q))
2743 q->mq_ops->queue_rqs(&plug->mq_list);
2746 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2748 struct blk_mq_hw_ctx *this_hctx = NULL;
2749 struct blk_mq_ctx *this_ctx = NULL;
2750 struct request *requeue_list = NULL;
2751 struct request **requeue_lastp = &requeue_list;
2752 unsigned int depth = 0;
2753 bool is_passthrough = false;
2757 struct request *rq = rq_list_pop(&plug->mq_list);
2760 this_hctx = rq->mq_hctx;
2761 this_ctx = rq->mq_ctx;
2762 is_passthrough = blk_rq_is_passthrough(rq);
2763 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2764 is_passthrough != blk_rq_is_passthrough(rq)) {
2765 rq_list_add_tail(&requeue_lastp, rq);
2768 list_add(&rq->queuelist, &list);
2770 } while (!rq_list_empty(plug->mq_list));
2772 plug->mq_list = requeue_list;
2773 trace_block_unplug(this_hctx->queue, depth, !from_sched);
2775 percpu_ref_get(&this_hctx->queue->q_usage_counter);
2776 /* passthrough requests should never be issued to the I/O scheduler */
2777 if (is_passthrough) {
2778 spin_lock(&this_hctx->lock);
2779 list_splice_tail_init(&list, &this_hctx->dispatch);
2780 spin_unlock(&this_hctx->lock);
2781 blk_mq_run_hw_queue(this_hctx, from_sched);
2782 } else if (this_hctx->queue->elevator) {
2783 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2785 blk_mq_run_hw_queue(this_hctx, from_sched);
2787 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2789 percpu_ref_put(&this_hctx->queue->q_usage_counter);
2792 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2797 * We may have been called recursively midway through handling
2798 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2799 * To avoid mq_list changing under our feet, clear rq_count early and
2800 * bail out specifically if rq_count is 0 rather than checking
2801 * whether the mq_list is empty.
2803 if (plug->rq_count == 0)
2807 if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2808 struct request_queue *q;
2810 rq = rq_list_peek(&plug->mq_list);
2814 * Peek first request and see if we have a ->queue_rqs() hook.
2815 * If we do, we can dispatch the whole plug list in one go. We
2816 * already know at this point that all requests belong to the
2817 * same queue, caller must ensure that's the case.
2819 if (q->mq_ops->queue_rqs) {
2820 blk_mq_run_dispatch_ops(q,
2821 __blk_mq_flush_plug_list(q, plug));
2822 if (rq_list_empty(plug->mq_list))
2826 blk_mq_run_dispatch_ops(q,
2827 blk_mq_plug_issue_direct(plug));
2828 if (rq_list_empty(plug->mq_list))
2833 blk_mq_dispatch_plug_list(plug, from_schedule);
2834 } while (!rq_list_empty(plug->mq_list));
2837 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2838 struct list_head *list)
2841 blk_status_t ret = BLK_STS_OK;
2843 while (!list_empty(list)) {
2844 struct request *rq = list_first_entry(list, struct request,
2847 list_del_init(&rq->queuelist);
2848 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2853 case BLK_STS_RESOURCE:
2854 case BLK_STS_DEV_RESOURCE:
2855 blk_mq_request_bypass_insert(rq, 0);
2856 if (list_empty(list))
2857 blk_mq_run_hw_queue(hctx, false);
2860 blk_mq_end_request(rq, ret);
2866 if (ret != BLK_STS_OK)
2867 blk_mq_commit_rqs(hctx, queued, false);
2870 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2871 struct bio *bio, unsigned int nr_segs)
2873 if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2874 if (blk_attempt_plug_merge(q, bio, nr_segs))
2876 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2882 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2883 struct blk_plug *plug,
2887 struct blk_mq_alloc_data data = {
2890 .cmd_flags = bio->bi_opf,
2894 if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2897 rq_qos_throttle(q, bio);
2900 data.nr_tags = plug->nr_ios;
2902 data.cached_rq = &plug->cached_rq;
2905 rq = __blk_mq_alloc_requests(&data);
2908 rq_qos_cleanup(q, bio);
2909 if (bio->bi_opf & REQ_NOWAIT)
2910 bio_wouldblock_error(bio);
2915 * Check if we can use the passed on request for submitting the passed in bio,
2916 * and remove it from the request list if it can be used.
2918 static bool blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2921 enum hctx_type type = blk_mq_get_hctx_type(bio->bi_opf);
2922 enum hctx_type hctx_type = rq->mq_hctx->type;
2924 WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
2926 if (type != hctx_type &&
2927 !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2929 if (op_is_flush(rq->cmd_flags) != op_is_flush(bio->bi_opf))
2933 * If any qos ->throttle() end up blocking, we will have flushed the
2934 * plug and hence killed the cached_rq list as well. Pop this entry
2935 * before we throttle.
2937 plug->cached_rq = rq_list_next(rq);
2938 rq_qos_throttle(rq->q, bio);
2940 blk_mq_rq_time_init(rq, 0);
2941 rq->cmd_flags = bio->bi_opf;
2942 INIT_LIST_HEAD(&rq->queuelist);
2947 * blk_mq_submit_bio - Create and send a request to block device.
2948 * @bio: Bio pointer.
2950 * Builds up a request structure from @q and @bio and send to the device. The
2951 * request may not be queued directly to hardware if:
2952 * * This request can be merged with another one
2953 * * We want to place request at plug queue for possible future merging
2954 * * There is an IO scheduler active at this queue
2956 * It will not queue the request if there is an error with the bio, or at the
2959 void blk_mq_submit_bio(struct bio *bio)
2961 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2962 struct blk_plug *plug = blk_mq_plug(bio);
2963 const int is_sync = op_is_sync(bio->bi_opf);
2964 struct blk_mq_hw_ctx *hctx;
2965 struct request *rq = NULL;
2966 unsigned int nr_segs = 1;
2969 bio = blk_queue_bounce(bio, q);
2972 rq = rq_list_peek(&plug->cached_rq);
2973 if (rq && rq->q != q)
2977 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2978 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2982 if (!bio_integrity_prep(bio))
2984 if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2986 if (blk_mq_use_cached_rq(rq, plug, bio))
2988 percpu_ref_get(&q->q_usage_counter);
2990 if (unlikely(bio_queue_enter(bio)))
2992 if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2993 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2997 if (!bio_integrity_prep(bio))
3001 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3002 if (unlikely(!rq)) {
3009 trace_block_getrq(bio);
3011 rq_qos_track(q, rq, bio);
3013 blk_mq_bio_to_request(rq, bio, nr_segs);
3015 ret = blk_crypto_rq_get_keyslot(rq);
3016 if (ret != BLK_STS_OK) {
3017 bio->bi_status = ret;
3019 blk_mq_free_request(rq);
3023 if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3027 blk_add_rq_to_plug(plug, rq);
3032 if ((rq->rq_flags & RQF_USE_SCHED) ||
3033 (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3034 blk_mq_insert_request(rq, 0);
3035 blk_mq_run_hw_queue(hctx, true);
3037 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3041 #ifdef CONFIG_BLK_MQ_STACKING
3043 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3044 * @rq: the request being queued
3046 blk_status_t blk_insert_cloned_request(struct request *rq)
3048 struct request_queue *q = rq->q;
3049 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3050 unsigned int max_segments = blk_rq_get_max_segments(rq);
3053 if (blk_rq_sectors(rq) > max_sectors) {
3055 * SCSI device does not have a good way to return if
3056 * Write Same/Zero is actually supported. If a device rejects
3057 * a non-read/write command (discard, write same,etc.) the
3058 * low-level device driver will set the relevant queue limit to
3059 * 0 to prevent blk-lib from issuing more of the offending
3060 * operations. Commands queued prior to the queue limit being
3061 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3062 * errors being propagated to upper layers.
3064 if (max_sectors == 0)
3065 return BLK_STS_NOTSUPP;
3067 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3068 __func__, blk_rq_sectors(rq), max_sectors);
3069 return BLK_STS_IOERR;
3073 * The queue settings related to segment counting may differ from the
3076 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3077 if (rq->nr_phys_segments > max_segments) {
3078 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3079 __func__, rq->nr_phys_segments, max_segments);
3080 return BLK_STS_IOERR;
3083 if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3084 return BLK_STS_IOERR;
3086 ret = blk_crypto_rq_get_keyslot(rq);
3087 if (ret != BLK_STS_OK)
3090 blk_account_io_start(rq);
3093 * Since we have a scheduler attached on the top device,
3094 * bypass a potential scheduler on the bottom device for
3097 blk_mq_run_dispatch_ops(q,
3098 ret = blk_mq_request_issue_directly(rq, true));
3100 blk_account_io_done(rq, ktime_get_ns());
3103 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3106 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3107 * @rq: the clone request to be cleaned up
3110 * Free all bios in @rq for a cloned request.
3112 void blk_rq_unprep_clone(struct request *rq)
3116 while ((bio = rq->bio) != NULL) {
3117 rq->bio = bio->bi_next;
3122 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3125 * blk_rq_prep_clone - Helper function to setup clone request
3126 * @rq: the request to be setup
3127 * @rq_src: original request to be cloned
3128 * @bs: bio_set that bios for clone are allocated from
3129 * @gfp_mask: memory allocation mask for bio
3130 * @bio_ctr: setup function to be called for each clone bio.
3131 * Returns %0 for success, non %0 for failure.
3132 * @data: private data to be passed to @bio_ctr
3135 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3136 * Also, pages which the original bios are pointing to are not copied
3137 * and the cloned bios just point same pages.
3138 * So cloned bios must be completed before original bios, which means
3139 * the caller must complete @rq before @rq_src.
3141 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3142 struct bio_set *bs, gfp_t gfp_mask,
3143 int (*bio_ctr)(struct bio *, struct bio *, void *),
3146 struct bio *bio, *bio_src;
3151 __rq_for_each_bio(bio_src, rq_src) {
3152 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3157 if (bio_ctr && bio_ctr(bio, bio_src, data))
3161 rq->biotail->bi_next = bio;
3164 rq->bio = rq->biotail = bio;
3169 /* Copy attributes of the original request to the clone request. */
3170 rq->__sector = blk_rq_pos(rq_src);
3171 rq->__data_len = blk_rq_bytes(rq_src);
3172 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3173 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3174 rq->special_vec = rq_src->special_vec;
3176 rq->nr_phys_segments = rq_src->nr_phys_segments;
3177 rq->ioprio = rq_src->ioprio;
3179 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3187 blk_rq_unprep_clone(rq);
3191 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3192 #endif /* CONFIG_BLK_MQ_STACKING */
3195 * Steal bios from a request and add them to a bio list.
3196 * The request must not have been partially completed before.
3198 void blk_steal_bios(struct bio_list *list, struct request *rq)
3202 list->tail->bi_next = rq->bio;
3204 list->head = rq->bio;
3205 list->tail = rq->biotail;
3213 EXPORT_SYMBOL_GPL(blk_steal_bios);
3215 static size_t order_to_size(unsigned int order)
3217 return (size_t)PAGE_SIZE << order;
3220 /* called before freeing request pool in @tags */
3221 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3222 struct blk_mq_tags *tags)
3225 unsigned long flags;
3228 * There is no need to clear mapping if driver tags is not initialized
3229 * or the mapping belongs to the driver tags.
3231 if (!drv_tags || drv_tags == tags)
3234 list_for_each_entry(page, &tags->page_list, lru) {
3235 unsigned long start = (unsigned long)page_address(page);
3236 unsigned long end = start + order_to_size(page->private);
3239 for (i = 0; i < drv_tags->nr_tags; i++) {
3240 struct request *rq = drv_tags->rqs[i];
3241 unsigned long rq_addr = (unsigned long)rq;
3243 if (rq_addr >= start && rq_addr < end) {
3244 WARN_ON_ONCE(req_ref_read(rq) != 0);
3245 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3251 * Wait until all pending iteration is done.
3253 * Request reference is cleared and it is guaranteed to be observed
3254 * after the ->lock is released.
3256 spin_lock_irqsave(&drv_tags->lock, flags);
3257 spin_unlock_irqrestore(&drv_tags->lock, flags);
3260 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3261 unsigned int hctx_idx)
3263 struct blk_mq_tags *drv_tags;
3266 if (list_empty(&tags->page_list))
3269 if (blk_mq_is_shared_tags(set->flags))
3270 drv_tags = set->shared_tags;
3272 drv_tags = set->tags[hctx_idx];
3274 if (tags->static_rqs && set->ops->exit_request) {
3277 for (i = 0; i < tags->nr_tags; i++) {
3278 struct request *rq = tags->static_rqs[i];
3282 set->ops->exit_request(set, rq, hctx_idx);
3283 tags->static_rqs[i] = NULL;
3287 blk_mq_clear_rq_mapping(drv_tags, tags);
3289 while (!list_empty(&tags->page_list)) {
3290 page = list_first_entry(&tags->page_list, struct page, lru);
3291 list_del_init(&page->lru);
3293 * Remove kmemleak object previously allocated in
3294 * blk_mq_alloc_rqs().
3296 kmemleak_free(page_address(page));
3297 __free_pages(page, page->private);
3301 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3305 kfree(tags->static_rqs);
3306 tags->static_rqs = NULL;
3308 blk_mq_free_tags(tags);
3311 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3312 unsigned int hctx_idx)
3316 for (i = 0; i < set->nr_maps; i++) {
3317 unsigned int start = set->map[i].queue_offset;
3318 unsigned int end = start + set->map[i].nr_queues;
3320 if (hctx_idx >= start && hctx_idx < end)
3324 if (i >= set->nr_maps)
3325 i = HCTX_TYPE_DEFAULT;
3330 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3331 unsigned int hctx_idx)
3333 enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3335 return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3338 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3339 unsigned int hctx_idx,
3340 unsigned int nr_tags,
3341 unsigned int reserved_tags)
3343 int node = blk_mq_get_hctx_node(set, hctx_idx);
3344 struct blk_mq_tags *tags;
3346 if (node == NUMA_NO_NODE)
3347 node = set->numa_node;
3349 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3350 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3354 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3355 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3360 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3361 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3363 if (!tags->static_rqs)
3371 blk_mq_free_tags(tags);
3375 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3376 unsigned int hctx_idx, int node)
3380 if (set->ops->init_request) {
3381 ret = set->ops->init_request(set, rq, hctx_idx, node);
3386 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3390 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3391 struct blk_mq_tags *tags,
3392 unsigned int hctx_idx, unsigned int depth)
3394 unsigned int i, j, entries_per_page, max_order = 4;
3395 int node = blk_mq_get_hctx_node(set, hctx_idx);
3396 size_t rq_size, left;
3398 if (node == NUMA_NO_NODE)
3399 node = set->numa_node;
3401 INIT_LIST_HEAD(&tags->page_list);
3404 * rq_size is the size of the request plus driver payload, rounded
3405 * to the cacheline size
3407 rq_size = round_up(sizeof(struct request) + set->cmd_size,
3409 left = rq_size * depth;
3411 for (i = 0; i < depth; ) {
3412 int this_order = max_order;
3417 while (this_order && left < order_to_size(this_order - 1))
3421 page = alloc_pages_node(node,
3422 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3428 if (order_to_size(this_order) < rq_size)
3435 page->private = this_order;
3436 list_add_tail(&page->lru, &tags->page_list);
3438 p = page_address(page);
3440 * Allow kmemleak to scan these pages as they contain pointers
3441 * to additional allocations like via ops->init_request().
3443 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3444 entries_per_page = order_to_size(this_order) / rq_size;
3445 to_do = min(entries_per_page, depth - i);
3446 left -= to_do * rq_size;
3447 for (j = 0; j < to_do; j++) {
3448 struct request *rq = p;
3450 tags->static_rqs[i] = rq;
3451 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3452 tags->static_rqs[i] = NULL;
3463 blk_mq_free_rqs(set, tags, hctx_idx);
3467 struct rq_iter_data {
3468 struct blk_mq_hw_ctx *hctx;
3472 static bool blk_mq_has_request(struct request *rq, void *data)
3474 struct rq_iter_data *iter_data = data;
3476 if (rq->mq_hctx != iter_data->hctx)
3478 iter_data->has_rq = true;
3482 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3484 struct blk_mq_tags *tags = hctx->sched_tags ?
3485 hctx->sched_tags : hctx->tags;
3486 struct rq_iter_data data = {
3490 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3494 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3495 struct blk_mq_hw_ctx *hctx)
3497 if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3499 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3504 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3506 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3507 struct blk_mq_hw_ctx, cpuhp_online);
3509 if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3510 !blk_mq_last_cpu_in_hctx(cpu, hctx))
3514 * Prevent new request from being allocated on the current hctx.
3516 * The smp_mb__after_atomic() Pairs with the implied barrier in
3517 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is
3518 * seen once we return from the tag allocator.
3520 set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3521 smp_mb__after_atomic();
3524 * Try to grab a reference to the queue and wait for any outstanding
3525 * requests. If we could not grab a reference the queue has been
3526 * frozen and there are no requests.
3528 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3529 while (blk_mq_hctx_has_requests(hctx))
3531 percpu_ref_put(&hctx->queue->q_usage_counter);
3537 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3539 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3540 struct blk_mq_hw_ctx, cpuhp_online);
3542 if (cpumask_test_cpu(cpu, hctx->cpumask))
3543 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3548 * 'cpu' is going away. splice any existing rq_list entries from this
3549 * software queue to the hw queue dispatch list, and ensure that it
3552 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3554 struct blk_mq_hw_ctx *hctx;
3555 struct blk_mq_ctx *ctx;
3557 enum hctx_type type;
3559 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3560 if (!cpumask_test_cpu(cpu, hctx->cpumask))
3563 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3566 spin_lock(&ctx->lock);
3567 if (!list_empty(&ctx->rq_lists[type])) {
3568 list_splice_init(&ctx->rq_lists[type], &tmp);
3569 blk_mq_hctx_clear_pending(hctx, ctx);
3571 spin_unlock(&ctx->lock);
3573 if (list_empty(&tmp))
3576 spin_lock(&hctx->lock);
3577 list_splice_tail_init(&tmp, &hctx->dispatch);
3578 spin_unlock(&hctx->lock);
3580 blk_mq_run_hw_queue(hctx, true);
3584 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3586 if (!(hctx->flags & BLK_MQ_F_STACKING))
3587 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3588 &hctx->cpuhp_online);
3589 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3594 * Before freeing hw queue, clearing the flush request reference in
3595 * tags->rqs[] for avoiding potential UAF.
3597 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3598 unsigned int queue_depth, struct request *flush_rq)
3601 unsigned long flags;
3603 /* The hw queue may not be mapped yet */
3607 WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3609 for (i = 0; i < queue_depth; i++)
3610 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3613 * Wait until all pending iteration is done.
3615 * Request reference is cleared and it is guaranteed to be observed
3616 * after the ->lock is released.
3618 spin_lock_irqsave(&tags->lock, flags);
3619 spin_unlock_irqrestore(&tags->lock, flags);
3622 /* hctx->ctxs will be freed in queue's release handler */
3623 static void blk_mq_exit_hctx(struct request_queue *q,
3624 struct blk_mq_tag_set *set,
3625 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3627 struct request *flush_rq = hctx->fq->flush_rq;
3629 if (blk_mq_hw_queue_mapped(hctx))
3630 blk_mq_tag_idle(hctx);
3632 if (blk_queue_init_done(q))
3633 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3634 set->queue_depth, flush_rq);
3635 if (set->ops->exit_request)
3636 set->ops->exit_request(set, flush_rq, hctx_idx);
3638 if (set->ops->exit_hctx)
3639 set->ops->exit_hctx(hctx, hctx_idx);
3641 blk_mq_remove_cpuhp(hctx);
3643 xa_erase(&q->hctx_table, hctx_idx);
3645 spin_lock(&q->unused_hctx_lock);
3646 list_add(&hctx->hctx_list, &q->unused_hctx_list);
3647 spin_unlock(&q->unused_hctx_lock);
3650 static void blk_mq_exit_hw_queues(struct request_queue *q,
3651 struct blk_mq_tag_set *set, int nr_queue)
3653 struct blk_mq_hw_ctx *hctx;
3656 queue_for_each_hw_ctx(q, hctx, i) {
3659 blk_mq_exit_hctx(q, set, hctx, i);
3663 static int blk_mq_init_hctx(struct request_queue *q,
3664 struct blk_mq_tag_set *set,
3665 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3667 hctx->queue_num = hctx_idx;
3669 if (!(hctx->flags & BLK_MQ_F_STACKING))
3670 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3671 &hctx->cpuhp_online);
3672 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3674 hctx->tags = set->tags[hctx_idx];
3676 if (set->ops->init_hctx &&
3677 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3678 goto unregister_cpu_notifier;
3680 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3684 if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3690 if (set->ops->exit_request)
3691 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3693 if (set->ops->exit_hctx)
3694 set->ops->exit_hctx(hctx, hctx_idx);
3695 unregister_cpu_notifier:
3696 blk_mq_remove_cpuhp(hctx);
3700 static struct blk_mq_hw_ctx *
3701 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3704 struct blk_mq_hw_ctx *hctx;
3705 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3707 hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3709 goto fail_alloc_hctx;
3711 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3714 atomic_set(&hctx->nr_active, 0);
3715 if (node == NUMA_NO_NODE)
3716 node = set->numa_node;
3717 hctx->numa_node = node;
3719 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3720 spin_lock_init(&hctx->lock);
3721 INIT_LIST_HEAD(&hctx->dispatch);
3723 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3725 INIT_LIST_HEAD(&hctx->hctx_list);
3728 * Allocate space for all possible cpus to avoid allocation at
3731 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3736 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3737 gfp, node, false, false))
3741 spin_lock_init(&hctx->dispatch_wait_lock);
3742 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3743 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3745 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3749 blk_mq_hctx_kobj_init(hctx);
3754 sbitmap_free(&hctx->ctx_map);
3758 free_cpumask_var(hctx->cpumask);
3765 static void blk_mq_init_cpu_queues(struct request_queue *q,
3766 unsigned int nr_hw_queues)
3768 struct blk_mq_tag_set *set = q->tag_set;
3771 for_each_possible_cpu(i) {
3772 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3773 struct blk_mq_hw_ctx *hctx;
3777 spin_lock_init(&__ctx->lock);
3778 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3779 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3784 * Set local node, IFF we have more than one hw queue. If
3785 * not, we remain on the home node of the device
3787 for (j = 0; j < set->nr_maps; j++) {
3788 hctx = blk_mq_map_queue_type(q, j, i);
3789 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3790 hctx->numa_node = cpu_to_node(i);
3795 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3796 unsigned int hctx_idx,
3799 struct blk_mq_tags *tags;
3802 tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3806 ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3808 blk_mq_free_rq_map(tags);
3815 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3818 if (blk_mq_is_shared_tags(set->flags)) {
3819 set->tags[hctx_idx] = set->shared_tags;
3824 set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3827 return set->tags[hctx_idx];
3830 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3831 struct blk_mq_tags *tags,
3832 unsigned int hctx_idx)
3835 blk_mq_free_rqs(set, tags, hctx_idx);
3836 blk_mq_free_rq_map(tags);
3840 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3841 unsigned int hctx_idx)
3843 if (!blk_mq_is_shared_tags(set->flags))
3844 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3846 set->tags[hctx_idx] = NULL;
3849 static void blk_mq_map_swqueue(struct request_queue *q)
3851 unsigned int j, hctx_idx;
3853 struct blk_mq_hw_ctx *hctx;
3854 struct blk_mq_ctx *ctx;
3855 struct blk_mq_tag_set *set = q->tag_set;
3857 queue_for_each_hw_ctx(q, hctx, i) {
3858 cpumask_clear(hctx->cpumask);
3860 hctx->dispatch_from = NULL;
3864 * Map software to hardware queues.
3866 * If the cpu isn't present, the cpu is mapped to first hctx.
3868 for_each_possible_cpu(i) {
3870 ctx = per_cpu_ptr(q->queue_ctx, i);
3871 for (j = 0; j < set->nr_maps; j++) {
3872 if (!set->map[j].nr_queues) {
3873 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3874 HCTX_TYPE_DEFAULT, i);
3877 hctx_idx = set->map[j].mq_map[i];
3878 /* unmapped hw queue can be remapped after CPU topo changed */
3879 if (!set->tags[hctx_idx] &&
3880 !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3882 * If tags initialization fail for some hctx,
3883 * that hctx won't be brought online. In this
3884 * case, remap the current ctx to hctx[0] which
3885 * is guaranteed to always have tags allocated
3887 set->map[j].mq_map[i] = 0;
3890 hctx = blk_mq_map_queue_type(q, j, i);
3891 ctx->hctxs[j] = hctx;
3893 * If the CPU is already set in the mask, then we've
3894 * mapped this one already. This can happen if
3895 * devices share queues across queue maps.
3897 if (cpumask_test_cpu(i, hctx->cpumask))
3900 cpumask_set_cpu(i, hctx->cpumask);
3902 ctx->index_hw[hctx->type] = hctx->nr_ctx;
3903 hctx->ctxs[hctx->nr_ctx++] = ctx;
3906 * If the nr_ctx type overflows, we have exceeded the
3907 * amount of sw queues we can support.
3909 BUG_ON(!hctx->nr_ctx);
3912 for (; j < HCTX_MAX_TYPES; j++)
3913 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3914 HCTX_TYPE_DEFAULT, i);
3917 queue_for_each_hw_ctx(q, hctx, i) {
3919 * If no software queues are mapped to this hardware queue,
3920 * disable it and free the request entries.
3922 if (!hctx->nr_ctx) {
3923 /* Never unmap queue 0. We need it as a
3924 * fallback in case of a new remap fails
3928 __blk_mq_free_map_and_rqs(set, i);
3934 hctx->tags = set->tags[i];
3935 WARN_ON(!hctx->tags);
3938 * Set the map size to the number of mapped software queues.
3939 * This is more accurate and more efficient than looping
3940 * over all possibly mapped software queues.
3942 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3945 * Initialize batch roundrobin counts
3947 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3948 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3953 * Caller needs to ensure that we're either frozen/quiesced, or that
3954 * the queue isn't live yet.
3956 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3958 struct blk_mq_hw_ctx *hctx;
3961 queue_for_each_hw_ctx(q, hctx, i) {
3963 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3965 blk_mq_tag_idle(hctx);
3966 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3971 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3974 struct request_queue *q;
3976 lockdep_assert_held(&set->tag_list_lock);
3978 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3979 blk_mq_freeze_queue(q);
3980 queue_set_hctx_shared(q, shared);
3981 blk_mq_unfreeze_queue(q);
3985 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3987 struct blk_mq_tag_set *set = q->tag_set;
3989 mutex_lock(&set->tag_list_lock);
3990 list_del(&q->tag_set_list);
3991 if (list_is_singular(&set->tag_list)) {
3992 /* just transitioned to unshared */
3993 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3994 /* update existing queue */
3995 blk_mq_update_tag_set_shared(set, false);
3997 mutex_unlock(&set->tag_list_lock);
3998 INIT_LIST_HEAD(&q->tag_set_list);
4001 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4002 struct request_queue *q)
4004 mutex_lock(&set->tag_list_lock);
4007 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4009 if (!list_empty(&set->tag_list) &&
4010 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4011 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4012 /* update existing queue */
4013 blk_mq_update_tag_set_shared(set, true);
4015 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4016 queue_set_hctx_shared(q, true);
4017 list_add_tail(&q->tag_set_list, &set->tag_list);
4019 mutex_unlock(&set->tag_list_lock);
4022 /* All allocations will be freed in release handler of q->mq_kobj */
4023 static int blk_mq_alloc_ctxs(struct request_queue *q)
4025 struct blk_mq_ctxs *ctxs;
4028 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4032 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4033 if (!ctxs->queue_ctx)
4036 for_each_possible_cpu(cpu) {
4037 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4041 q->mq_kobj = &ctxs->kobj;
4042 q->queue_ctx = ctxs->queue_ctx;
4051 * It is the actual release handler for mq, but we do it from
4052 * request queue's release handler for avoiding use-after-free
4053 * and headache because q->mq_kobj shouldn't have been introduced,
4054 * but we can't group ctx/kctx kobj without it.
4056 void blk_mq_release(struct request_queue *q)
4058 struct blk_mq_hw_ctx *hctx, *next;
4061 queue_for_each_hw_ctx(q, hctx, i)
4062 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4064 /* all hctx are in .unused_hctx_list now */
4065 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4066 list_del_init(&hctx->hctx_list);
4067 kobject_put(&hctx->kobj);
4070 xa_destroy(&q->hctx_table);
4073 * release .mq_kobj and sw queue's kobject now because
4074 * both share lifetime with request queue.
4076 blk_mq_sysfs_deinit(q);
4079 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4082 struct request_queue *q;
4085 q = blk_alloc_queue(set->numa_node);
4087 return ERR_PTR(-ENOMEM);
4088 q->queuedata = queuedata;
4089 ret = blk_mq_init_allocated_queue(set, q);
4092 return ERR_PTR(ret);
4097 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4099 return blk_mq_init_queue_data(set, NULL);
4101 EXPORT_SYMBOL(blk_mq_init_queue);
4104 * blk_mq_destroy_queue - shutdown a request queue
4105 * @q: request queue to shutdown
4107 * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4108 * requests will be failed with -ENODEV. The caller is responsible for dropping
4109 * the reference from blk_mq_init_queue() by calling blk_put_queue().
4111 * Context: can sleep
4113 void blk_mq_destroy_queue(struct request_queue *q)
4115 WARN_ON_ONCE(!queue_is_mq(q));
4116 WARN_ON_ONCE(blk_queue_registered(q));
4120 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4121 blk_queue_start_drain(q);
4122 blk_mq_freeze_queue_wait(q);
4125 blk_mq_cancel_work_sync(q);
4126 blk_mq_exit_queue(q);
4128 EXPORT_SYMBOL(blk_mq_destroy_queue);
4130 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4131 struct lock_class_key *lkclass)
4133 struct request_queue *q;
4134 struct gendisk *disk;
4136 q = blk_mq_init_queue_data(set, queuedata);
4140 disk = __alloc_disk_node(q, set->numa_node, lkclass);
4142 blk_mq_destroy_queue(q);
4144 return ERR_PTR(-ENOMEM);
4146 set_bit(GD_OWNS_QUEUE, &disk->state);
4149 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4151 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4152 struct lock_class_key *lkclass)
4154 struct gendisk *disk;
4156 if (!blk_get_queue(q))
4158 disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4163 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4165 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4166 struct blk_mq_tag_set *set, struct request_queue *q,
4167 int hctx_idx, int node)
4169 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4171 /* reuse dead hctx first */
4172 spin_lock(&q->unused_hctx_lock);
4173 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4174 if (tmp->numa_node == node) {
4180 list_del_init(&hctx->hctx_list);
4181 spin_unlock(&q->unused_hctx_lock);
4184 hctx = blk_mq_alloc_hctx(q, set, node);
4188 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4194 kobject_put(&hctx->kobj);
4199 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4200 struct request_queue *q)
4202 struct blk_mq_hw_ctx *hctx;
4205 /* protect against switching io scheduler */
4206 mutex_lock(&q->sysfs_lock);
4207 for (i = 0; i < set->nr_hw_queues; i++) {
4209 int node = blk_mq_get_hctx_node(set, i);
4210 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4213 old_node = old_hctx->numa_node;
4214 blk_mq_exit_hctx(q, set, old_hctx, i);
4217 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4220 pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4222 hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4223 WARN_ON_ONCE(!hctx);
4227 * Increasing nr_hw_queues fails. Free the newly allocated
4228 * hctxs and keep the previous q->nr_hw_queues.
4230 if (i != set->nr_hw_queues) {
4231 j = q->nr_hw_queues;
4234 q->nr_hw_queues = set->nr_hw_queues;
4237 xa_for_each_start(&q->hctx_table, j, hctx, j)
4238 blk_mq_exit_hctx(q, set, hctx, j);
4239 mutex_unlock(&q->sysfs_lock);
4242 static void blk_mq_update_poll_flag(struct request_queue *q)
4244 struct blk_mq_tag_set *set = q->tag_set;
4246 if (set->nr_maps > HCTX_TYPE_POLL &&
4247 set->map[HCTX_TYPE_POLL].nr_queues)
4248 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4250 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4253 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4254 struct request_queue *q)
4256 /* mark the queue as mq asap */
4257 q->mq_ops = set->ops;
4259 if (blk_mq_alloc_ctxs(q))
4262 /* init q->mq_kobj and sw queues' kobjects */
4263 blk_mq_sysfs_init(q);
4265 INIT_LIST_HEAD(&q->unused_hctx_list);
4266 spin_lock_init(&q->unused_hctx_lock);
4268 xa_init(&q->hctx_table);
4270 blk_mq_realloc_hw_ctxs(set, q);
4271 if (!q->nr_hw_queues)
4274 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4275 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4279 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4280 blk_mq_update_poll_flag(q);
4282 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4283 INIT_LIST_HEAD(&q->flush_list);
4284 INIT_LIST_HEAD(&q->requeue_list);
4285 spin_lock_init(&q->requeue_lock);
4287 q->nr_requests = set->queue_depth;
4289 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4290 blk_mq_add_queue_tag_set(set, q);
4291 blk_mq_map_swqueue(q);
4300 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4302 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4303 void blk_mq_exit_queue(struct request_queue *q)
4305 struct blk_mq_tag_set *set = q->tag_set;
4307 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4308 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4309 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4310 blk_mq_del_queue_tag_set(q);
4313 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4317 if (blk_mq_is_shared_tags(set->flags)) {
4318 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4321 if (!set->shared_tags)
4325 for (i = 0; i < set->nr_hw_queues; i++) {
4326 if (!__blk_mq_alloc_map_and_rqs(set, i))
4335 __blk_mq_free_map_and_rqs(set, i);
4337 if (blk_mq_is_shared_tags(set->flags)) {
4338 blk_mq_free_map_and_rqs(set, set->shared_tags,
4339 BLK_MQ_NO_HCTX_IDX);
4346 * Allocate the request maps associated with this tag_set. Note that this
4347 * may reduce the depth asked for, if memory is tight. set->queue_depth
4348 * will be updated to reflect the allocated depth.
4350 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4355 depth = set->queue_depth;
4357 err = __blk_mq_alloc_rq_maps(set);
4361 set->queue_depth >>= 1;
4362 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4366 } while (set->queue_depth);
4368 if (!set->queue_depth || err) {
4369 pr_err("blk-mq: failed to allocate request map\n");
4373 if (depth != set->queue_depth)
4374 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4375 depth, set->queue_depth);
4380 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4383 * blk_mq_map_queues() and multiple .map_queues() implementations
4384 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4385 * number of hardware queues.
4387 if (set->nr_maps == 1)
4388 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4390 if (set->ops->map_queues && !is_kdump_kernel()) {
4394 * transport .map_queues is usually done in the following
4397 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4398 * mask = get_cpu_mask(queue)
4399 * for_each_cpu(cpu, mask)
4400 * set->map[x].mq_map[cpu] = queue;
4403 * When we need to remap, the table has to be cleared for
4404 * killing stale mapping since one CPU may not be mapped
4407 for (i = 0; i < set->nr_maps; i++)
4408 blk_mq_clear_mq_map(&set->map[i]);
4410 set->ops->map_queues(set);
4412 BUG_ON(set->nr_maps > 1);
4413 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4417 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4418 int new_nr_hw_queues)
4420 struct blk_mq_tags **new_tags;
4423 if (set->nr_hw_queues >= new_nr_hw_queues)
4426 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4427 GFP_KERNEL, set->numa_node);
4432 memcpy(new_tags, set->tags, set->nr_hw_queues *
4433 sizeof(*set->tags));
4435 set->tags = new_tags;
4437 for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4438 if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4439 while (--i >= set->nr_hw_queues)
4440 __blk_mq_free_map_and_rqs(set, i);
4447 set->nr_hw_queues = new_nr_hw_queues;
4452 * Alloc a tag set to be associated with one or more request queues.
4453 * May fail with EINVAL for various error conditions. May adjust the
4454 * requested depth down, if it's too large. In that case, the set
4455 * value will be stored in set->queue_depth.
4457 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4461 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4463 if (!set->nr_hw_queues)
4465 if (!set->queue_depth)
4467 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4470 if (!set->ops->queue_rq)
4473 if (!set->ops->get_budget ^ !set->ops->put_budget)
4476 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4477 pr_info("blk-mq: reduced tag depth to %u\n",
4479 set->queue_depth = BLK_MQ_MAX_DEPTH;
4484 else if (set->nr_maps > HCTX_MAX_TYPES)
4488 * If a crashdump is active, then we are potentially in a very
4489 * memory constrained environment. Limit us to 1 queue and
4490 * 64 tags to prevent using too much memory.
4492 if (is_kdump_kernel()) {
4493 set->nr_hw_queues = 1;
4495 set->queue_depth = min(64U, set->queue_depth);
4498 * There is no use for more h/w queues than cpus if we just have
4501 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4502 set->nr_hw_queues = nr_cpu_ids;
4504 if (set->flags & BLK_MQ_F_BLOCKING) {
4505 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4508 ret = init_srcu_struct(set->srcu);
4514 set->tags = kcalloc_node(set->nr_hw_queues,
4515 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4518 goto out_cleanup_srcu;
4520 for (i = 0; i < set->nr_maps; i++) {
4521 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4522 sizeof(set->map[i].mq_map[0]),
4523 GFP_KERNEL, set->numa_node);
4524 if (!set->map[i].mq_map)
4525 goto out_free_mq_map;
4526 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4529 blk_mq_update_queue_map(set);
4531 ret = blk_mq_alloc_set_map_and_rqs(set);
4533 goto out_free_mq_map;
4535 mutex_init(&set->tag_list_lock);
4536 INIT_LIST_HEAD(&set->tag_list);
4541 for (i = 0; i < set->nr_maps; i++) {
4542 kfree(set->map[i].mq_map);
4543 set->map[i].mq_map = NULL;
4548 if (set->flags & BLK_MQ_F_BLOCKING)
4549 cleanup_srcu_struct(set->srcu);
4551 if (set->flags & BLK_MQ_F_BLOCKING)
4555 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4557 /* allocate and initialize a tagset for a simple single-queue device */
4558 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4559 const struct blk_mq_ops *ops, unsigned int queue_depth,
4560 unsigned int set_flags)
4562 memset(set, 0, sizeof(*set));
4564 set->nr_hw_queues = 1;
4566 set->queue_depth = queue_depth;
4567 set->numa_node = NUMA_NO_NODE;
4568 set->flags = set_flags;
4569 return blk_mq_alloc_tag_set(set);
4571 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4573 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4577 for (i = 0; i < set->nr_hw_queues; i++)
4578 __blk_mq_free_map_and_rqs(set, i);
4580 if (blk_mq_is_shared_tags(set->flags)) {
4581 blk_mq_free_map_and_rqs(set, set->shared_tags,
4582 BLK_MQ_NO_HCTX_IDX);
4585 for (j = 0; j < set->nr_maps; j++) {
4586 kfree(set->map[j].mq_map);
4587 set->map[j].mq_map = NULL;
4592 if (set->flags & BLK_MQ_F_BLOCKING) {
4593 cleanup_srcu_struct(set->srcu);
4597 EXPORT_SYMBOL(blk_mq_free_tag_set);
4599 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4601 struct blk_mq_tag_set *set = q->tag_set;
4602 struct blk_mq_hw_ctx *hctx;
4609 if (q->nr_requests == nr)
4612 blk_mq_freeze_queue(q);
4613 blk_mq_quiesce_queue(q);
4616 queue_for_each_hw_ctx(q, hctx, i) {
4620 * If we're using an MQ scheduler, just update the scheduler
4621 * queue depth. This is similar to what the old code would do.
4623 if (hctx->sched_tags) {
4624 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4627 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4632 if (q->elevator && q->elevator->type->ops.depth_updated)
4633 q->elevator->type->ops.depth_updated(hctx);
4636 q->nr_requests = nr;
4637 if (blk_mq_is_shared_tags(set->flags)) {
4639 blk_mq_tag_update_sched_shared_tags(q);
4641 blk_mq_tag_resize_shared_tags(set, nr);
4645 blk_mq_unquiesce_queue(q);
4646 blk_mq_unfreeze_queue(q);
4652 * request_queue and elevator_type pair.
4653 * It is just used by __blk_mq_update_nr_hw_queues to cache
4654 * the elevator_type associated with a request_queue.
4656 struct blk_mq_qe_pair {
4657 struct list_head node;
4658 struct request_queue *q;
4659 struct elevator_type *type;
4663 * Cache the elevator_type in qe pair list and switch the
4664 * io scheduler to 'none'
4666 static bool blk_mq_elv_switch_none(struct list_head *head,
4667 struct request_queue *q)
4669 struct blk_mq_qe_pair *qe;
4671 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4675 /* q->elevator needs protection from ->sysfs_lock */
4676 mutex_lock(&q->sysfs_lock);
4678 /* the check has to be done with holding sysfs_lock */
4684 INIT_LIST_HEAD(&qe->node);
4686 qe->type = q->elevator->type;
4687 /* keep a reference to the elevator module as we'll switch back */
4688 __elevator_get(qe->type);
4689 list_add(&qe->node, head);
4690 elevator_disable(q);
4692 mutex_unlock(&q->sysfs_lock);
4697 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4698 struct request_queue *q)
4700 struct blk_mq_qe_pair *qe;
4702 list_for_each_entry(qe, head, node)
4709 static void blk_mq_elv_switch_back(struct list_head *head,
4710 struct request_queue *q)
4712 struct blk_mq_qe_pair *qe;
4713 struct elevator_type *t;
4715 qe = blk_lookup_qe_pair(head, q);
4719 list_del(&qe->node);
4722 mutex_lock(&q->sysfs_lock);
4723 elevator_switch(q, t);
4724 /* drop the reference acquired in blk_mq_elv_switch_none */
4726 mutex_unlock(&q->sysfs_lock);
4729 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4732 struct request_queue *q;
4734 int prev_nr_hw_queues = set->nr_hw_queues;
4737 lockdep_assert_held(&set->tag_list_lock);
4739 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4740 nr_hw_queues = nr_cpu_ids;
4741 if (nr_hw_queues < 1)
4743 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4746 list_for_each_entry(q, &set->tag_list, tag_set_list)
4747 blk_mq_freeze_queue(q);
4749 * Switch IO scheduler to 'none', cleaning up the data associated
4750 * with the previous scheduler. We will switch back once we are done
4751 * updating the new sw to hw queue mappings.
4753 list_for_each_entry(q, &set->tag_list, tag_set_list)
4754 if (!blk_mq_elv_switch_none(&head, q))
4757 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4758 blk_mq_debugfs_unregister_hctxs(q);
4759 blk_mq_sysfs_unregister_hctxs(q);
4762 if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4766 blk_mq_update_queue_map(set);
4767 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4768 blk_mq_realloc_hw_ctxs(set, q);
4769 blk_mq_update_poll_flag(q);
4770 if (q->nr_hw_queues != set->nr_hw_queues) {
4771 int i = prev_nr_hw_queues;
4773 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4774 nr_hw_queues, prev_nr_hw_queues);
4775 for (; i < set->nr_hw_queues; i++)
4776 __blk_mq_free_map_and_rqs(set, i);
4778 set->nr_hw_queues = prev_nr_hw_queues;
4781 blk_mq_map_swqueue(q);
4785 list_for_each_entry(q, &set->tag_list, tag_set_list) {
4786 blk_mq_sysfs_register_hctxs(q);
4787 blk_mq_debugfs_register_hctxs(q);
4791 list_for_each_entry(q, &set->tag_list, tag_set_list)
4792 blk_mq_elv_switch_back(&head, q);
4794 list_for_each_entry(q, &set->tag_list, tag_set_list)
4795 blk_mq_unfreeze_queue(q);
4797 /* Free the excess tags when nr_hw_queues shrink. */
4798 for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4799 __blk_mq_free_map_and_rqs(set, i);
4802 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4804 mutex_lock(&set->tag_list_lock);
4805 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4806 mutex_unlock(&set->tag_list_lock);
4808 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4810 static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4811 struct io_comp_batch *iob, unsigned int flags)
4813 long state = get_current_state();
4817 ret = q->mq_ops->poll(hctx, iob);
4819 __set_current_state(TASK_RUNNING);
4823 if (signal_pending_state(state, current))
4824 __set_current_state(TASK_RUNNING);
4825 if (task_is_running(current))
4828 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4831 } while (!need_resched());
4833 __set_current_state(TASK_RUNNING);
4837 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4838 struct io_comp_batch *iob, unsigned int flags)
4840 struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4842 return blk_hctx_poll(q, hctx, iob, flags);
4845 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4846 unsigned int poll_flags)
4848 struct request_queue *q = rq->q;
4851 if (!blk_rq_is_poll(rq))
4853 if (!percpu_ref_tryget(&q->q_usage_counter))
4856 ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4861 EXPORT_SYMBOL_GPL(blk_rq_poll);
4863 unsigned int blk_mq_rq_cpu(struct request *rq)
4865 return rq->mq_ctx->cpu;
4867 EXPORT_SYMBOL(blk_mq_rq_cpu);
4869 void blk_mq_cancel_work_sync(struct request_queue *q)
4871 struct blk_mq_hw_ctx *hctx;
4874 cancel_delayed_work_sync(&q->requeue_work);
4876 queue_for_each_hw_ctx(q, hctx, i)
4877 cancel_delayed_work_sync(&hctx->run_work);
4880 static int __init blk_mq_init(void)
4884 for_each_possible_cpu(i)
4885 init_llist_head(&per_cpu(blk_cpu_done, i));
4886 for_each_possible_cpu(i)
4887 INIT_CSD(&per_cpu(blk_cpu_csd, i),
4888 __blk_mq_complete_request_remote, NULL);
4889 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4891 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4892 "block/softirq:dead", NULL,
4893 blk_softirq_cpu_dead);
4894 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4895 blk_mq_hctx_notify_dead);
4896 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4897 blk_mq_hctx_notify_online,
4898 blk_mq_hctx_notify_offline);
4901 subsys_initcall(blk_mq_init);