]> Git Repo - linux.git/blob - include/linux/sched.h
Merge tag 'mm-nonmm-stable-2025-01-24-23-16' of git://git.kernel.org/pub/scm/linux...
[linux.git] / include / linux / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13 #include <asm/processor.h>
14 #include <linux/thread_info.h>
15 #include <linux/preempt.h>
16 #include <linux/cpumask_types.h>
17
18 #include <linux/cache.h>
19 #include <linux/irqflags_types.h>
20 #include <linux/smp_types.h>
21 #include <linux/pid_types.h>
22 #include <linux/sem_types.h>
23 #include <linux/shm.h>
24 #include <linux/kmsan_types.h>
25 #include <linux/mutex_types.h>
26 #include <linux/plist_types.h>
27 #include <linux/hrtimer_types.h>
28 #include <linux/timer_types.h>
29 #include <linux/seccomp_types.h>
30 #include <linux/nodemask_types.h>
31 #include <linux/refcount_types.h>
32 #include <linux/resource.h>
33 #include <linux/latencytop.h>
34 #include <linux/sched/prio.h>
35 #include <linux/sched/types.h>
36 #include <linux/signal_types.h>
37 #include <linux/syscall_user_dispatch_types.h>
38 #include <linux/mm_types_task.h>
39 #include <linux/netdevice_xmit.h>
40 #include <linux/task_io_accounting.h>
41 #include <linux/posix-timers_types.h>
42 #include <linux/restart_block.h>
43 #include <uapi/linux/rseq.h>
44 #include <linux/seqlock_types.h>
45 #include <linux/kcsan.h>
46 #include <linux/rv.h>
47 #include <linux/livepatch_sched.h>
48 #include <linux/uidgid_types.h>
49 #include <asm/kmap_size.h>
50
51 /* task_struct member predeclarations (sorted alphabetically): */
52 struct audit_context;
53 struct bio_list;
54 struct blk_plug;
55 struct bpf_local_storage;
56 struct bpf_run_ctx;
57 struct bpf_net_context;
58 struct capture_control;
59 struct cfs_rq;
60 struct fs_struct;
61 struct futex_pi_state;
62 struct io_context;
63 struct io_uring_task;
64 struct mempolicy;
65 struct nameidata;
66 struct nsproxy;
67 struct perf_event_context;
68 struct pid_namespace;
69 struct pipe_inode_info;
70 struct rcu_node;
71 struct reclaim_state;
72 struct robust_list_head;
73 struct root_domain;
74 struct rq;
75 struct sched_attr;
76 struct sched_dl_entity;
77 struct seq_file;
78 struct sighand_struct;
79 struct signal_struct;
80 struct task_delay_info;
81 struct task_group;
82 struct task_struct;
83 struct user_event_mm;
84
85 #include <linux/sched/ext.h>
86
87 /*
88  * Task state bitmask. NOTE! These bits are also
89  * encoded in fs/proc/array.c: get_task_state().
90  *
91  * We have two separate sets of flags: task->__state
92  * is about runnability, while task->exit_state are
93  * about the task exiting. Confusing, but this way
94  * modifying one set can't modify the other one by
95  * mistake.
96  */
97
98 /* Used in tsk->__state: */
99 #define TASK_RUNNING                    0x00000000
100 #define TASK_INTERRUPTIBLE              0x00000001
101 #define TASK_UNINTERRUPTIBLE            0x00000002
102 #define __TASK_STOPPED                  0x00000004
103 #define __TASK_TRACED                   0x00000008
104 /* Used in tsk->exit_state: */
105 #define EXIT_DEAD                       0x00000010
106 #define EXIT_ZOMBIE                     0x00000020
107 #define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
108 /* Used in tsk->__state again: */
109 #define TASK_PARKED                     0x00000040
110 #define TASK_DEAD                       0x00000080
111 #define TASK_WAKEKILL                   0x00000100
112 #define TASK_WAKING                     0x00000200
113 #define TASK_NOLOAD                     0x00000400
114 #define TASK_NEW                        0x00000800
115 #define TASK_RTLOCK_WAIT                0x00001000
116 #define TASK_FREEZABLE                  0x00002000
117 #define __TASK_FREEZABLE_UNSAFE        (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
118 #define TASK_FROZEN                     0x00008000
119 #define TASK_STATE_MAX                  0x00010000
120
121 #define TASK_ANY                        (TASK_STATE_MAX-1)
122
123 /*
124  * DO NOT ADD ANY NEW USERS !
125  */
126 #define TASK_FREEZABLE_UNSAFE           (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
127
128 /* Convenience macros for the sake of set_current_state: */
129 #define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
130 #define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
131 #define TASK_TRACED                     __TASK_TRACED
132
133 #define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
134
135 /* Convenience macros for the sake of wake_up(): */
136 #define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
137
138 /* get_task_state(): */
139 #define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
140                                          TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
141                                          __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
142                                          TASK_PARKED)
143
144 #define task_is_running(task)           (READ_ONCE((task)->__state) == TASK_RUNNING)
145
146 #define task_is_traced(task)            ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
147 #define task_is_stopped(task)           ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
148 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
149
150 /*
151  * Special states are those that do not use the normal wait-loop pattern. See
152  * the comment with set_special_state().
153  */
154 #define is_special_task_state(state)                                    \
155         ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED |      \
156                     TASK_DEAD | TASK_FROZEN))
157
158 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
159 # define debug_normal_state_change(state_value)                         \
160         do {                                                            \
161                 WARN_ON_ONCE(is_special_task_state(state_value));       \
162                 current->task_state_change = _THIS_IP_;                 \
163         } while (0)
164
165 # define debug_special_state_change(state_value)                        \
166         do {                                                            \
167                 WARN_ON_ONCE(!is_special_task_state(state_value));      \
168                 current->task_state_change = _THIS_IP_;                 \
169         } while (0)
170
171 # define debug_rtlock_wait_set_state()                                  \
172         do {                                                             \
173                 current->saved_state_change = current->task_state_change;\
174                 current->task_state_change = _THIS_IP_;                  \
175         } while (0)
176
177 # define debug_rtlock_wait_restore_state()                              \
178         do {                                                             \
179                 current->task_state_change = current->saved_state_change;\
180         } while (0)
181
182 #else
183 # define debug_normal_state_change(cond)        do { } while (0)
184 # define debug_special_state_change(cond)       do { } while (0)
185 # define debug_rtlock_wait_set_state()          do { } while (0)
186 # define debug_rtlock_wait_restore_state()      do { } while (0)
187 #endif
188
189 /*
190  * set_current_state() includes a barrier so that the write of current->__state
191  * is correctly serialised wrt the caller's subsequent test of whether to
192  * actually sleep:
193  *
194  *   for (;;) {
195  *      set_current_state(TASK_UNINTERRUPTIBLE);
196  *      if (CONDITION)
197  *         break;
198  *
199  *      schedule();
200  *   }
201  *   __set_current_state(TASK_RUNNING);
202  *
203  * If the caller does not need such serialisation (because, for instance, the
204  * CONDITION test and condition change and wakeup are under the same lock) then
205  * use __set_current_state().
206  *
207  * The above is typically ordered against the wakeup, which does:
208  *
209  *   CONDITION = 1;
210  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
211  *
212  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
213  * accessing p->__state.
214  *
215  * Wakeup will do: if (@state & p->__state) p->__state = TASK_RUNNING, that is,
216  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
217  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
218  *
219  * However, with slightly different timing the wakeup TASK_RUNNING store can
220  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
221  * a problem either because that will result in one extra go around the loop
222  * and our @cond test will save the day.
223  *
224  * Also see the comments of try_to_wake_up().
225  */
226 #define __set_current_state(state_value)                                \
227         do {                                                            \
228                 debug_normal_state_change((state_value));               \
229                 WRITE_ONCE(current->__state, (state_value));            \
230         } while (0)
231
232 #define set_current_state(state_value)                                  \
233         do {                                                            \
234                 debug_normal_state_change((state_value));               \
235                 smp_store_mb(current->__state, (state_value));          \
236         } while (0)
237
238 /*
239  * set_special_state() should be used for those states when the blocking task
240  * can not use the regular condition based wait-loop. In that case we must
241  * serialize against wakeups such that any possible in-flight TASK_RUNNING
242  * stores will not collide with our state change.
243  */
244 #define set_special_state(state_value)                                  \
245         do {                                                            \
246                 unsigned long flags; /* may shadow */                   \
247                                                                         \
248                 raw_spin_lock_irqsave(&current->pi_lock, flags);        \
249                 debug_special_state_change((state_value));              \
250                 WRITE_ONCE(current->__state, (state_value));            \
251                 raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
252         } while (0)
253
254 /*
255  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
256  *
257  * RT's spin/rwlock substitutions are state preserving. The state of the
258  * task when blocking on the lock is saved in task_struct::saved_state and
259  * restored after the lock has been acquired.  These operations are
260  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
261  * lock related wakeups while the task is blocked on the lock are
262  * redirected to operate on task_struct::saved_state to ensure that these
263  * are not dropped. On restore task_struct::saved_state is set to
264  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
265  *
266  * The lock operation looks like this:
267  *
268  *      current_save_and_set_rtlock_wait_state();
269  *      for (;;) {
270  *              if (try_lock())
271  *                      break;
272  *              raw_spin_unlock_irq(&lock->wait_lock);
273  *              schedule_rtlock();
274  *              raw_spin_lock_irq(&lock->wait_lock);
275  *              set_current_state(TASK_RTLOCK_WAIT);
276  *      }
277  *      current_restore_rtlock_saved_state();
278  */
279 #define current_save_and_set_rtlock_wait_state()                        \
280         do {                                                            \
281                 lockdep_assert_irqs_disabled();                         \
282                 raw_spin_lock(&current->pi_lock);                       \
283                 current->saved_state = current->__state;                \
284                 debug_rtlock_wait_set_state();                          \
285                 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);         \
286                 raw_spin_unlock(&current->pi_lock);                     \
287         } while (0);
288
289 #define current_restore_rtlock_saved_state()                            \
290         do {                                                            \
291                 lockdep_assert_irqs_disabled();                         \
292                 raw_spin_lock(&current->pi_lock);                       \
293                 debug_rtlock_wait_restore_state();                      \
294                 WRITE_ONCE(current->__state, current->saved_state);     \
295                 current->saved_state = TASK_RUNNING;                    \
296                 raw_spin_unlock(&current->pi_lock);                     \
297         } while (0);
298
299 #define get_current_state()     READ_ONCE(current->__state)
300
301 /*
302  * Define the task command name length as enum, then it can be visible to
303  * BPF programs.
304  */
305 enum {
306         TASK_COMM_LEN = 16,
307 };
308
309 extern void sched_tick(void);
310
311 #define MAX_SCHEDULE_TIMEOUT            LONG_MAX
312
313 extern long schedule_timeout(long timeout);
314 extern long schedule_timeout_interruptible(long timeout);
315 extern long schedule_timeout_killable(long timeout);
316 extern long schedule_timeout_uninterruptible(long timeout);
317 extern long schedule_timeout_idle(long timeout);
318 asmlinkage void schedule(void);
319 extern void schedule_preempt_disabled(void);
320 asmlinkage void preempt_schedule_irq(void);
321 #ifdef CONFIG_PREEMPT_RT
322  extern void schedule_rtlock(void);
323 #endif
324
325 extern int __must_check io_schedule_prepare(void);
326 extern void io_schedule_finish(int token);
327 extern long io_schedule_timeout(long timeout);
328 extern void io_schedule(void);
329
330 /**
331  * struct prev_cputime - snapshot of system and user cputime
332  * @utime: time spent in user mode
333  * @stime: time spent in system mode
334  * @lock: protects the above two fields
335  *
336  * Stores previous user/system time values such that we can guarantee
337  * monotonicity.
338  */
339 struct prev_cputime {
340 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
341         u64                             utime;
342         u64                             stime;
343         raw_spinlock_t                  lock;
344 #endif
345 };
346
347 enum vtime_state {
348         /* Task is sleeping or running in a CPU with VTIME inactive: */
349         VTIME_INACTIVE = 0,
350         /* Task is idle */
351         VTIME_IDLE,
352         /* Task runs in kernelspace in a CPU with VTIME active: */
353         VTIME_SYS,
354         /* Task runs in userspace in a CPU with VTIME active: */
355         VTIME_USER,
356         /* Task runs as guests in a CPU with VTIME active: */
357         VTIME_GUEST,
358 };
359
360 struct vtime {
361         seqcount_t              seqcount;
362         unsigned long long      starttime;
363         enum vtime_state        state;
364         unsigned int            cpu;
365         u64                     utime;
366         u64                     stime;
367         u64                     gtime;
368 };
369
370 /*
371  * Utilization clamp constraints.
372  * @UCLAMP_MIN: Minimum utilization
373  * @UCLAMP_MAX: Maximum utilization
374  * @UCLAMP_CNT: Utilization clamp constraints count
375  */
376 enum uclamp_id {
377         UCLAMP_MIN = 0,
378         UCLAMP_MAX,
379         UCLAMP_CNT
380 };
381
382 #ifdef CONFIG_SMP
383 extern struct root_domain def_root_domain;
384 extern struct mutex sched_domains_mutex;
385 #endif
386
387 struct sched_param {
388         int sched_priority;
389 };
390
391 struct sched_info {
392 #ifdef CONFIG_SCHED_INFO
393         /* Cumulative counters: */
394
395         /* # of times we have run on this CPU: */
396         unsigned long                   pcount;
397
398         /* Time spent waiting on a runqueue: */
399         unsigned long long              run_delay;
400
401         /* Max time spent waiting on a runqueue: */
402         unsigned long long              max_run_delay;
403
404         /* Min time spent waiting on a runqueue: */
405         unsigned long long              min_run_delay;
406
407         /* Timestamps: */
408
409         /* When did we last run on a CPU? */
410         unsigned long long              last_arrival;
411
412         /* When were we last queued to run? */
413         unsigned long long              last_queued;
414
415 #endif /* CONFIG_SCHED_INFO */
416 };
417
418 /*
419  * Integer metrics need fixed point arithmetic, e.g., sched/fair
420  * has a few: load, load_avg, util_avg, freq, and capacity.
421  *
422  * We define a basic fixed point arithmetic range, and then formalize
423  * all these metrics based on that basic range.
424  */
425 # define SCHED_FIXEDPOINT_SHIFT         10
426 # define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
427
428 /* Increase resolution of cpu_capacity calculations */
429 # define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
430 # define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
431
432 struct load_weight {
433         unsigned long                   weight;
434         u32                             inv_weight;
435 };
436
437 /*
438  * The load/runnable/util_avg accumulates an infinite geometric series
439  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
440  *
441  * [load_avg definition]
442  *
443  *   load_avg = runnable% * scale_load_down(load)
444  *
445  * [runnable_avg definition]
446  *
447  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
448  *
449  * [util_avg definition]
450  *
451  *   util_avg = running% * SCHED_CAPACITY_SCALE
452  *
453  * where runnable% is the time ratio that a sched_entity is runnable and
454  * running% the time ratio that a sched_entity is running.
455  *
456  * For cfs_rq, they are the aggregated values of all runnable and blocked
457  * sched_entities.
458  *
459  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
460  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
461  * for computing those signals (see update_rq_clock_pelt())
462  *
463  * N.B., the above ratios (runnable% and running%) themselves are in the
464  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
465  * to as large a range as necessary. This is for example reflected by
466  * util_avg's SCHED_CAPACITY_SCALE.
467  *
468  * [Overflow issue]
469  *
470  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
471  * with the highest load (=88761), always runnable on a single cfs_rq,
472  * and should not overflow as the number already hits PID_MAX_LIMIT.
473  *
474  * For all other cases (including 32-bit kernels), struct load_weight's
475  * weight will overflow first before we do, because:
476  *
477  *    Max(load_avg) <= Max(load.weight)
478  *
479  * Then it is the load_weight's responsibility to consider overflow
480  * issues.
481  */
482 struct sched_avg {
483         u64                             last_update_time;
484         u64                             load_sum;
485         u64                             runnable_sum;
486         u32                             util_sum;
487         u32                             period_contrib;
488         unsigned long                   load_avg;
489         unsigned long                   runnable_avg;
490         unsigned long                   util_avg;
491         unsigned int                    util_est;
492 } ____cacheline_aligned;
493
494 /*
495  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
496  * updates. When a task is dequeued, its util_est should not be updated if its
497  * util_avg has not been updated in the meantime.
498  * This information is mapped into the MSB bit of util_est at dequeue time.
499  * Since max value of util_est for a task is 1024 (PELT util_avg for a task)
500  * it is safe to use MSB.
501  */
502 #define UTIL_EST_WEIGHT_SHIFT           2
503 #define UTIL_AVG_UNCHANGED              0x80000000
504
505 struct sched_statistics {
506 #ifdef CONFIG_SCHEDSTATS
507         u64                             wait_start;
508         u64                             wait_max;
509         u64                             wait_count;
510         u64                             wait_sum;
511         u64                             iowait_count;
512         u64                             iowait_sum;
513
514         u64                             sleep_start;
515         u64                             sleep_max;
516         s64                             sum_sleep_runtime;
517
518         u64                             block_start;
519         u64                             block_max;
520         s64                             sum_block_runtime;
521
522         s64                             exec_max;
523         u64                             slice_max;
524
525         u64                             nr_migrations_cold;
526         u64                             nr_failed_migrations_affine;
527         u64                             nr_failed_migrations_running;
528         u64                             nr_failed_migrations_hot;
529         u64                             nr_forced_migrations;
530
531         u64                             nr_wakeups;
532         u64                             nr_wakeups_sync;
533         u64                             nr_wakeups_migrate;
534         u64                             nr_wakeups_local;
535         u64                             nr_wakeups_remote;
536         u64                             nr_wakeups_affine;
537         u64                             nr_wakeups_affine_attempts;
538         u64                             nr_wakeups_passive;
539         u64                             nr_wakeups_idle;
540
541 #ifdef CONFIG_SCHED_CORE
542         u64                             core_forceidle_sum;
543 #endif
544 #endif /* CONFIG_SCHEDSTATS */
545 } ____cacheline_aligned;
546
547 struct sched_entity {
548         /* For load-balancing: */
549         struct load_weight              load;
550         struct rb_node                  run_node;
551         u64                             deadline;
552         u64                             min_vruntime;
553         u64                             min_slice;
554
555         struct list_head                group_node;
556         unsigned char                   on_rq;
557         unsigned char                   sched_delayed;
558         unsigned char                   rel_deadline;
559         unsigned char                   custom_slice;
560                                         /* hole */
561
562         u64                             exec_start;
563         u64                             sum_exec_runtime;
564         u64                             prev_sum_exec_runtime;
565         u64                             vruntime;
566         s64                             vlag;
567         u64                             slice;
568
569         u64                             nr_migrations;
570
571 #ifdef CONFIG_FAIR_GROUP_SCHED
572         int                             depth;
573         struct sched_entity             *parent;
574         /* rq on which this entity is (to be) queued: */
575         struct cfs_rq                   *cfs_rq;
576         /* rq "owned" by this entity/group: */
577         struct cfs_rq                   *my_q;
578         /* cached value of my_q->h_nr_running */
579         unsigned long                   runnable_weight;
580 #endif
581
582 #ifdef CONFIG_SMP
583         /*
584          * Per entity load average tracking.
585          *
586          * Put into separate cache line so it does not
587          * collide with read-mostly values above.
588          */
589         struct sched_avg                avg;
590 #endif
591 };
592
593 struct sched_rt_entity {
594         struct list_head                run_list;
595         unsigned long                   timeout;
596         unsigned long                   watchdog_stamp;
597         unsigned int                    time_slice;
598         unsigned short                  on_rq;
599         unsigned short                  on_list;
600
601         struct sched_rt_entity          *back;
602 #ifdef CONFIG_RT_GROUP_SCHED
603         struct sched_rt_entity          *parent;
604         /* rq on which this entity is (to be) queued: */
605         struct rt_rq                    *rt_rq;
606         /* rq "owned" by this entity/group: */
607         struct rt_rq                    *my_q;
608 #endif
609 } __randomize_layout;
610
611 typedef bool (*dl_server_has_tasks_f)(struct sched_dl_entity *);
612 typedef struct task_struct *(*dl_server_pick_f)(struct sched_dl_entity *);
613
614 struct sched_dl_entity {
615         struct rb_node                  rb_node;
616
617         /*
618          * Original scheduling parameters. Copied here from sched_attr
619          * during sched_setattr(), they will remain the same until
620          * the next sched_setattr().
621          */
622         u64                             dl_runtime;     /* Maximum runtime for each instance    */
623         u64                             dl_deadline;    /* Relative deadline of each instance   */
624         u64                             dl_period;      /* Separation of two instances (period) */
625         u64                             dl_bw;          /* dl_runtime / dl_period               */
626         u64                             dl_density;     /* dl_runtime / dl_deadline             */
627
628         /*
629          * Actual scheduling parameters. Initialized with the values above,
630          * they are continuously updated during task execution. Note that
631          * the remaining runtime could be < 0 in case we are in overrun.
632          */
633         s64                             runtime;        /* Remaining runtime for this instance  */
634         u64                             deadline;       /* Absolute deadline for this instance  */
635         unsigned int                    flags;          /* Specifying the scheduler behaviour   */
636
637         /*
638          * Some bool flags:
639          *
640          * @dl_throttled tells if we exhausted the runtime. If so, the
641          * task has to wait for a replenishment to be performed at the
642          * next firing of dl_timer.
643          *
644          * @dl_yielded tells if task gave up the CPU before consuming
645          * all its available runtime during the last job.
646          *
647          * @dl_non_contending tells if the task is inactive while still
648          * contributing to the active utilization. In other words, it
649          * indicates if the inactive timer has been armed and its handler
650          * has not been executed yet. This flag is useful to avoid race
651          * conditions between the inactive timer handler and the wakeup
652          * code.
653          *
654          * @dl_overrun tells if the task asked to be informed about runtime
655          * overruns.
656          *
657          * @dl_server tells if this is a server entity.
658          *
659          * @dl_defer tells if this is a deferred or regular server. For
660          * now only defer server exists.
661          *
662          * @dl_defer_armed tells if the deferrable server is waiting
663          * for the replenishment timer to activate it.
664          *
665          * @dl_server_active tells if the dlserver is active(started).
666          * dlserver is started on first cfs enqueue on an idle runqueue
667          * and is stopped when a dequeue results in 0 cfs tasks on the
668          * runqueue. In other words, dlserver is active only when cpu's
669          * runqueue has atleast one cfs task.
670          *
671          * @dl_defer_running tells if the deferrable server is actually
672          * running, skipping the defer phase.
673          */
674         unsigned int                    dl_throttled      : 1;
675         unsigned int                    dl_yielded        : 1;
676         unsigned int                    dl_non_contending : 1;
677         unsigned int                    dl_overrun        : 1;
678         unsigned int                    dl_server         : 1;
679         unsigned int                    dl_server_active  : 1;
680         unsigned int                    dl_defer          : 1;
681         unsigned int                    dl_defer_armed    : 1;
682         unsigned int                    dl_defer_running  : 1;
683
684         /*
685          * Bandwidth enforcement timer. Each -deadline task has its
686          * own bandwidth to be enforced, thus we need one timer per task.
687          */
688         struct hrtimer                  dl_timer;
689
690         /*
691          * Inactive timer, responsible for decreasing the active utilization
692          * at the "0-lag time". When a -deadline task blocks, it contributes
693          * to GRUB's active utilization until the "0-lag time", hence a
694          * timer is needed to decrease the active utilization at the correct
695          * time.
696          */
697         struct hrtimer                  inactive_timer;
698
699         /*
700          * Bits for DL-server functionality. Also see the comment near
701          * dl_server_update().
702          *
703          * @rq the runqueue this server is for
704          *
705          * @server_has_tasks() returns true if @server_pick return a
706          * runnable task.
707          */
708         struct rq                       *rq;
709         dl_server_has_tasks_f           server_has_tasks;
710         dl_server_pick_f                server_pick_task;
711
712 #ifdef CONFIG_RT_MUTEXES
713         /*
714          * Priority Inheritance. When a DEADLINE scheduling entity is boosted
715          * pi_se points to the donor, otherwise points to the dl_se it belongs
716          * to (the original one/itself).
717          */
718         struct sched_dl_entity *pi_se;
719 #endif
720 };
721
722 #ifdef CONFIG_UCLAMP_TASK
723 /* Number of utilization clamp buckets (shorter alias) */
724 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
725
726 /*
727  * Utilization clamp for a scheduling entity
728  * @value:              clamp value "assigned" to a se
729  * @bucket_id:          bucket index corresponding to the "assigned" value
730  * @active:             the se is currently refcounted in a rq's bucket
731  * @user_defined:       the requested clamp value comes from user-space
732  *
733  * The bucket_id is the index of the clamp bucket matching the clamp value
734  * which is pre-computed and stored to avoid expensive integer divisions from
735  * the fast path.
736  *
737  * The active bit is set whenever a task has got an "effective" value assigned,
738  * which can be different from the clamp value "requested" from user-space.
739  * This allows to know a task is refcounted in the rq's bucket corresponding
740  * to the "effective" bucket_id.
741  *
742  * The user_defined bit is set whenever a task has got a task-specific clamp
743  * value requested from userspace, i.e. the system defaults apply to this task
744  * just as a restriction. This allows to relax default clamps when a less
745  * restrictive task-specific value has been requested, thus allowing to
746  * implement a "nice" semantic. For example, a task running with a 20%
747  * default boost can still drop its own boosting to 0%.
748  */
749 struct uclamp_se {
750         unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
751         unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
752         unsigned int active             : 1;
753         unsigned int user_defined       : 1;
754 };
755 #endif /* CONFIG_UCLAMP_TASK */
756
757 union rcu_special {
758         struct {
759                 u8                      blocked;
760                 u8                      need_qs;
761                 u8                      exp_hint; /* Hint for performance. */
762                 u8                      need_mb; /* Readers need smp_mb(). */
763         } b; /* Bits. */
764         u32 s; /* Set of bits. */
765 };
766
767 enum perf_event_task_context {
768         perf_invalid_context = -1,
769         perf_hw_context = 0,
770         perf_sw_context,
771         perf_nr_task_contexts,
772 };
773
774 /*
775  * Number of contexts where an event can trigger:
776  *      task, softirq, hardirq, nmi.
777  */
778 #define PERF_NR_CONTEXTS        4
779
780 struct wake_q_node {
781         struct wake_q_node *next;
782 };
783
784 struct kmap_ctrl {
785 #ifdef CONFIG_KMAP_LOCAL
786         int                             idx;
787         pte_t                           pteval[KM_MAX_IDX];
788 #endif
789 };
790
791 struct task_struct {
792 #ifdef CONFIG_THREAD_INFO_IN_TASK
793         /*
794          * For reasons of header soup (see current_thread_info()), this
795          * must be the first element of task_struct.
796          */
797         struct thread_info              thread_info;
798 #endif
799         unsigned int                    __state;
800
801         /* saved state for "spinlock sleepers" */
802         unsigned int                    saved_state;
803
804         /*
805          * This begins the randomizable portion of task_struct. Only
806          * scheduling-critical items should be added above here.
807          */
808         randomized_struct_fields_start
809
810         void                            *stack;
811         refcount_t                      usage;
812         /* Per task flags (PF_*), defined further below: */
813         unsigned int                    flags;
814         unsigned int                    ptrace;
815
816 #ifdef CONFIG_MEM_ALLOC_PROFILING
817         struct alloc_tag                *alloc_tag;
818 #endif
819
820 #ifdef CONFIG_SMP
821         int                             on_cpu;
822         struct __call_single_node       wake_entry;
823         unsigned int                    wakee_flips;
824         unsigned long                   wakee_flip_decay_ts;
825         struct task_struct              *last_wakee;
826
827         /*
828          * recent_used_cpu is initially set as the last CPU used by a task
829          * that wakes affine another task. Waker/wakee relationships can
830          * push tasks around a CPU where each wakeup moves to the next one.
831          * Tracking a recently used CPU allows a quick search for a recently
832          * used CPU that may be idle.
833          */
834         int                             recent_used_cpu;
835         int                             wake_cpu;
836 #endif
837         int                             on_rq;
838
839         int                             prio;
840         int                             static_prio;
841         int                             normal_prio;
842         unsigned int                    rt_priority;
843
844         struct sched_entity             se;
845         struct sched_rt_entity          rt;
846         struct sched_dl_entity          dl;
847         struct sched_dl_entity          *dl_server;
848 #ifdef CONFIG_SCHED_CLASS_EXT
849         struct sched_ext_entity         scx;
850 #endif
851         const struct sched_class        *sched_class;
852
853 #ifdef CONFIG_SCHED_CORE
854         struct rb_node                  core_node;
855         unsigned long                   core_cookie;
856         unsigned int                    core_occupation;
857 #endif
858
859 #ifdef CONFIG_CGROUP_SCHED
860         struct task_group               *sched_task_group;
861 #endif
862
863
864 #ifdef CONFIG_UCLAMP_TASK
865         /*
866          * Clamp values requested for a scheduling entity.
867          * Must be updated with task_rq_lock() held.
868          */
869         struct uclamp_se                uclamp_req[UCLAMP_CNT];
870         /*
871          * Effective clamp values used for a scheduling entity.
872          * Must be updated with task_rq_lock() held.
873          */
874         struct uclamp_se                uclamp[UCLAMP_CNT];
875 #endif
876
877         struct sched_statistics         stats;
878
879 #ifdef CONFIG_PREEMPT_NOTIFIERS
880         /* List of struct preempt_notifier: */
881         struct hlist_head               preempt_notifiers;
882 #endif
883
884 #ifdef CONFIG_BLK_DEV_IO_TRACE
885         unsigned int                    btrace_seq;
886 #endif
887
888         unsigned int                    policy;
889         unsigned long                   max_allowed_capacity;
890         int                             nr_cpus_allowed;
891         const cpumask_t                 *cpus_ptr;
892         cpumask_t                       *user_cpus_ptr;
893         cpumask_t                       cpus_mask;
894         void                            *migration_pending;
895 #ifdef CONFIG_SMP
896         unsigned short                  migration_disabled;
897 #endif
898         unsigned short                  migration_flags;
899
900 #ifdef CONFIG_PREEMPT_RCU
901         int                             rcu_read_lock_nesting;
902         union rcu_special               rcu_read_unlock_special;
903         struct list_head                rcu_node_entry;
904         struct rcu_node                 *rcu_blocked_node;
905 #endif /* #ifdef CONFIG_PREEMPT_RCU */
906
907 #ifdef CONFIG_TASKS_RCU
908         unsigned long                   rcu_tasks_nvcsw;
909         u8                              rcu_tasks_holdout;
910         u8                              rcu_tasks_idx;
911         int                             rcu_tasks_idle_cpu;
912         struct list_head                rcu_tasks_holdout_list;
913         int                             rcu_tasks_exit_cpu;
914         struct list_head                rcu_tasks_exit_list;
915 #endif /* #ifdef CONFIG_TASKS_RCU */
916
917 #ifdef CONFIG_TASKS_TRACE_RCU
918         int                             trc_reader_nesting;
919         int                             trc_ipi_to_cpu;
920         union rcu_special               trc_reader_special;
921         struct list_head                trc_holdout_list;
922         struct list_head                trc_blkd_node;
923         int                             trc_blkd_cpu;
924 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
925
926         struct sched_info               sched_info;
927
928         struct list_head                tasks;
929 #ifdef CONFIG_SMP
930         struct plist_node               pushable_tasks;
931         struct rb_node                  pushable_dl_tasks;
932 #endif
933
934         struct mm_struct                *mm;
935         struct mm_struct                *active_mm;
936         struct address_space            *faults_disabled_mapping;
937
938         int                             exit_state;
939         int                             exit_code;
940         int                             exit_signal;
941         /* The signal sent when the parent dies: */
942         int                             pdeath_signal;
943         /* JOBCTL_*, siglock protected: */
944         unsigned long                   jobctl;
945
946         /* Used for emulating ABI behavior of previous Linux versions: */
947         unsigned int                    personality;
948
949         /* Scheduler bits, serialized by scheduler locks: */
950         unsigned                        sched_reset_on_fork:1;
951         unsigned                        sched_contributes_to_load:1;
952         unsigned                        sched_migrated:1;
953         unsigned                        sched_task_hot:1;
954
955         /* Force alignment to the next boundary: */
956         unsigned                        :0;
957
958         /* Unserialized, strictly 'current' */
959
960         /*
961          * This field must not be in the scheduler word above due to wakelist
962          * queueing no longer being serialized by p->on_cpu. However:
963          *
964          * p->XXX = X;                  ttwu()
965          * schedule()                     if (p->on_rq && ..) // false
966          *   smp_mb__after_spinlock();    if (smp_load_acquire(&p->on_cpu) && //true
967          *   deactivate_task()                ttwu_queue_wakelist())
968          *     p->on_rq = 0;                    p->sched_remote_wakeup = Y;
969          *
970          * guarantees all stores of 'current' are visible before
971          * ->sched_remote_wakeup gets used, so it can be in this word.
972          */
973         unsigned                        sched_remote_wakeup:1;
974 #ifdef CONFIG_RT_MUTEXES
975         unsigned                        sched_rt_mutex:1;
976 #endif
977
978         /* Bit to tell TOMOYO we're in execve(): */
979         unsigned                        in_execve:1;
980         unsigned                        in_iowait:1;
981 #ifndef TIF_RESTORE_SIGMASK
982         unsigned                        restore_sigmask:1;
983 #endif
984 #ifdef CONFIG_MEMCG_V1
985         unsigned                        in_user_fault:1;
986 #endif
987 #ifdef CONFIG_LRU_GEN
988         /* whether the LRU algorithm may apply to this access */
989         unsigned                        in_lru_fault:1;
990 #endif
991 #ifdef CONFIG_COMPAT_BRK
992         unsigned                        brk_randomized:1;
993 #endif
994 #ifdef CONFIG_CGROUPS
995         /* disallow userland-initiated cgroup migration */
996         unsigned                        no_cgroup_migration:1;
997         /* task is frozen/stopped (used by the cgroup freezer) */
998         unsigned                        frozen:1;
999 #endif
1000 #ifdef CONFIG_BLK_CGROUP
1001         unsigned                        use_memdelay:1;
1002 #endif
1003 #ifdef CONFIG_PSI
1004         /* Stalled due to lack of memory */
1005         unsigned                        in_memstall:1;
1006 #endif
1007 #ifdef CONFIG_PAGE_OWNER
1008         /* Used by page_owner=on to detect recursion in page tracking. */
1009         unsigned                        in_page_owner:1;
1010 #endif
1011 #ifdef CONFIG_EVENTFD
1012         /* Recursion prevention for eventfd_signal() */
1013         unsigned                        in_eventfd:1;
1014 #endif
1015 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1016         unsigned                        pasid_activated:1;
1017 #endif
1018 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1019         unsigned                        reported_split_lock:1;
1020 #endif
1021 #ifdef CONFIG_TASK_DELAY_ACCT
1022         /* delay due to memory thrashing */
1023         unsigned                        in_thrashing:1;
1024 #endif
1025 #ifdef CONFIG_PREEMPT_RT
1026         struct netdev_xmit              net_xmit;
1027 #endif
1028         unsigned long                   atomic_flags; /* Flags requiring atomic access. */
1029
1030         struct restart_block            restart_block;
1031
1032         pid_t                           pid;
1033         pid_t                           tgid;
1034
1035 #ifdef CONFIG_STACKPROTECTOR
1036         /* Canary value for the -fstack-protector GCC feature: */
1037         unsigned long                   stack_canary;
1038 #endif
1039         /*
1040          * Pointers to the (original) parent process, youngest child, younger sibling,
1041          * older sibling, respectively.  (p->father can be replaced with
1042          * p->real_parent->pid)
1043          */
1044
1045         /* Real parent process: */
1046         struct task_struct __rcu        *real_parent;
1047
1048         /* Recipient of SIGCHLD, wait4() reports: */
1049         struct task_struct __rcu        *parent;
1050
1051         /*
1052          * Children/sibling form the list of natural children:
1053          */
1054         struct list_head                children;
1055         struct list_head                sibling;
1056         struct task_struct              *group_leader;
1057
1058         /*
1059          * 'ptraced' is the list of tasks this task is using ptrace() on.
1060          *
1061          * This includes both natural children and PTRACE_ATTACH targets.
1062          * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1063          */
1064         struct list_head                ptraced;
1065         struct list_head                ptrace_entry;
1066
1067         /* PID/PID hash table linkage. */
1068         struct pid                      *thread_pid;
1069         struct hlist_node               pid_links[PIDTYPE_MAX];
1070         struct list_head                thread_node;
1071
1072         struct completion               *vfork_done;
1073
1074         /* CLONE_CHILD_SETTID: */
1075         int __user                      *set_child_tid;
1076
1077         /* CLONE_CHILD_CLEARTID: */
1078         int __user                      *clear_child_tid;
1079
1080         /* PF_KTHREAD | PF_IO_WORKER */
1081         void                            *worker_private;
1082
1083         u64                             utime;
1084         u64                             stime;
1085 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1086         u64                             utimescaled;
1087         u64                             stimescaled;
1088 #endif
1089         u64                             gtime;
1090         struct prev_cputime             prev_cputime;
1091 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1092         struct vtime                    vtime;
1093 #endif
1094
1095 #ifdef CONFIG_NO_HZ_FULL
1096         atomic_t                        tick_dep_mask;
1097 #endif
1098         /* Context switch counts: */
1099         unsigned long                   nvcsw;
1100         unsigned long                   nivcsw;
1101
1102         /* Monotonic time in nsecs: */
1103         u64                             start_time;
1104
1105         /* Boot based time in nsecs: */
1106         u64                             start_boottime;
1107
1108         /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1109         unsigned long                   min_flt;
1110         unsigned long                   maj_flt;
1111
1112         /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1113         struct posix_cputimers          posix_cputimers;
1114
1115 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1116         struct posix_cputimers_work     posix_cputimers_work;
1117 #endif
1118
1119         /* Process credentials: */
1120
1121         /* Tracer's credentials at attach: */
1122         const struct cred __rcu         *ptracer_cred;
1123
1124         /* Objective and real subjective task credentials (COW): */
1125         const struct cred __rcu         *real_cred;
1126
1127         /* Effective (overridable) subjective task credentials (COW): */
1128         const struct cred __rcu         *cred;
1129
1130 #ifdef CONFIG_KEYS
1131         /* Cached requested key. */
1132         struct key                      *cached_requested_key;
1133 #endif
1134
1135         /*
1136          * executable name, excluding path.
1137          *
1138          * - normally initialized begin_new_exec()
1139          * - set it with set_task_comm()
1140          *   - strscpy_pad() to ensure it is always NUL-terminated and
1141          *     zero-padded
1142          *   - task_lock() to ensure the operation is atomic and the name is
1143          *     fully updated.
1144          */
1145         char                            comm[TASK_COMM_LEN];
1146
1147         struct nameidata                *nameidata;
1148
1149 #ifdef CONFIG_SYSVIPC
1150         struct sysv_sem                 sysvsem;
1151         struct sysv_shm                 sysvshm;
1152 #endif
1153 #ifdef CONFIG_DETECT_HUNG_TASK
1154         unsigned long                   last_switch_count;
1155         unsigned long                   last_switch_time;
1156 #endif
1157         /* Filesystem information: */
1158         struct fs_struct                *fs;
1159
1160         /* Open file information: */
1161         struct files_struct             *files;
1162
1163 #ifdef CONFIG_IO_URING
1164         struct io_uring_task            *io_uring;
1165 #endif
1166
1167         /* Namespaces: */
1168         struct nsproxy                  *nsproxy;
1169
1170         /* Signal handlers: */
1171         struct signal_struct            *signal;
1172         struct sighand_struct __rcu             *sighand;
1173         sigset_t                        blocked;
1174         sigset_t                        real_blocked;
1175         /* Restored if set_restore_sigmask() was used: */
1176         sigset_t                        saved_sigmask;
1177         struct sigpending               pending;
1178         unsigned long                   sas_ss_sp;
1179         size_t                          sas_ss_size;
1180         unsigned int                    sas_ss_flags;
1181
1182         struct callback_head            *task_works;
1183
1184 #ifdef CONFIG_AUDIT
1185 #ifdef CONFIG_AUDITSYSCALL
1186         struct audit_context            *audit_context;
1187 #endif
1188         kuid_t                          loginuid;
1189         unsigned int                    sessionid;
1190 #endif
1191         struct seccomp                  seccomp;
1192         struct syscall_user_dispatch    syscall_dispatch;
1193
1194         /* Thread group tracking: */
1195         u64                             parent_exec_id;
1196         u64                             self_exec_id;
1197
1198         /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1199         spinlock_t                      alloc_lock;
1200
1201         /* Protection of the PI data structures: */
1202         raw_spinlock_t                  pi_lock;
1203
1204         struct wake_q_node              wake_q;
1205
1206 #ifdef CONFIG_RT_MUTEXES
1207         /* PI waiters blocked on a rt_mutex held by this task: */
1208         struct rb_root_cached           pi_waiters;
1209         /* Updated under owner's pi_lock and rq lock */
1210         struct task_struct              *pi_top_task;
1211         /* Deadlock detection and priority inheritance handling: */
1212         struct rt_mutex_waiter          *pi_blocked_on;
1213 #endif
1214
1215 #ifdef CONFIG_DEBUG_MUTEXES
1216         /* Mutex deadlock detection: */
1217         struct mutex_waiter             *blocked_on;
1218 #endif
1219
1220 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1221         int                             non_block_count;
1222 #endif
1223
1224 #ifdef CONFIG_TRACE_IRQFLAGS
1225         struct irqtrace_events          irqtrace;
1226         unsigned int                    hardirq_threaded;
1227         u64                             hardirq_chain_key;
1228         int                             softirqs_enabled;
1229         int                             softirq_context;
1230         int                             irq_config;
1231 #endif
1232 #ifdef CONFIG_PREEMPT_RT
1233         int                             softirq_disable_cnt;
1234 #endif
1235
1236 #ifdef CONFIG_LOCKDEP
1237 # define MAX_LOCK_DEPTH                 48UL
1238         u64                             curr_chain_key;
1239         int                             lockdep_depth;
1240         unsigned int                    lockdep_recursion;
1241         struct held_lock                held_locks[MAX_LOCK_DEPTH];
1242 #endif
1243
1244 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1245         unsigned int                    in_ubsan;
1246 #endif
1247
1248         /* Journalling filesystem info: */
1249         void                            *journal_info;
1250
1251         /* Stacked block device info: */
1252         struct bio_list                 *bio_list;
1253
1254         /* Stack plugging: */
1255         struct blk_plug                 *plug;
1256
1257         /* VM state: */
1258         struct reclaim_state            *reclaim_state;
1259
1260         struct io_context               *io_context;
1261
1262 #ifdef CONFIG_COMPACTION
1263         struct capture_control          *capture_control;
1264 #endif
1265         /* Ptrace state: */
1266         unsigned long                   ptrace_message;
1267         kernel_siginfo_t                *last_siginfo;
1268
1269         struct task_io_accounting       ioac;
1270 #ifdef CONFIG_PSI
1271         /* Pressure stall state */
1272         unsigned int                    psi_flags;
1273 #endif
1274 #ifdef CONFIG_TASK_XACCT
1275         /* Accumulated RSS usage: */
1276         u64                             acct_rss_mem1;
1277         /* Accumulated virtual memory usage: */
1278         u64                             acct_vm_mem1;
1279         /* stime + utime since last update: */
1280         u64                             acct_timexpd;
1281 #endif
1282 #ifdef CONFIG_CPUSETS
1283         /* Protected by ->alloc_lock: */
1284         nodemask_t                      mems_allowed;
1285         /* Sequence number to catch updates: */
1286         seqcount_spinlock_t             mems_allowed_seq;
1287         int                             cpuset_mem_spread_rotor;
1288 #endif
1289 #ifdef CONFIG_CGROUPS
1290         /* Control Group info protected by css_set_lock: */
1291         struct css_set __rcu            *cgroups;
1292         /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1293         struct list_head                cg_list;
1294 #endif
1295 #ifdef CONFIG_X86_CPU_RESCTRL
1296         u32                             closid;
1297         u32                             rmid;
1298 #endif
1299 #ifdef CONFIG_FUTEX
1300         struct robust_list_head __user  *robust_list;
1301 #ifdef CONFIG_COMPAT
1302         struct compat_robust_list_head __user *compat_robust_list;
1303 #endif
1304         struct list_head                pi_state_list;
1305         struct futex_pi_state           *pi_state_cache;
1306         struct mutex                    futex_exit_mutex;
1307         unsigned int                    futex_state;
1308 #endif
1309 #ifdef CONFIG_PERF_EVENTS
1310         u8                              perf_recursion[PERF_NR_CONTEXTS];
1311         struct perf_event_context       *perf_event_ctxp;
1312         struct mutex                    perf_event_mutex;
1313         struct list_head                perf_event_list;
1314 #endif
1315 #ifdef CONFIG_DEBUG_PREEMPT
1316         unsigned long                   preempt_disable_ip;
1317 #endif
1318 #ifdef CONFIG_NUMA
1319         /* Protected by alloc_lock: */
1320         struct mempolicy                *mempolicy;
1321         short                           il_prev;
1322         u8                              il_weight;
1323         short                           pref_node_fork;
1324 #endif
1325 #ifdef CONFIG_NUMA_BALANCING
1326         int                             numa_scan_seq;
1327         unsigned int                    numa_scan_period;
1328         unsigned int                    numa_scan_period_max;
1329         int                             numa_preferred_nid;
1330         unsigned long                   numa_migrate_retry;
1331         /* Migration stamp: */
1332         u64                             node_stamp;
1333         u64                             last_task_numa_placement;
1334         u64                             last_sum_exec_runtime;
1335         struct callback_head            numa_work;
1336
1337         /*
1338          * This pointer is only modified for current in syscall and
1339          * pagefault context (and for tasks being destroyed), so it can be read
1340          * from any of the following contexts:
1341          *  - RCU read-side critical section
1342          *  - current->numa_group from everywhere
1343          *  - task's runqueue locked, task not running
1344          */
1345         struct numa_group __rcu         *numa_group;
1346
1347         /*
1348          * numa_faults is an array split into four regions:
1349          * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1350          * in this precise order.
1351          *
1352          * faults_memory: Exponential decaying average of faults on a per-node
1353          * basis. Scheduling placement decisions are made based on these
1354          * counts. The values remain static for the duration of a PTE scan.
1355          * faults_cpu: Track the nodes the process was running on when a NUMA
1356          * hinting fault was incurred.
1357          * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1358          * during the current scan window. When the scan completes, the counts
1359          * in faults_memory and faults_cpu decay and these values are copied.
1360          */
1361         unsigned long                   *numa_faults;
1362         unsigned long                   total_numa_faults;
1363
1364         /*
1365          * numa_faults_locality tracks if faults recorded during the last
1366          * scan window were remote/local or failed to migrate. The task scan
1367          * period is adapted based on the locality of the faults with different
1368          * weights depending on whether they were shared or private faults
1369          */
1370         unsigned long                   numa_faults_locality[3];
1371
1372         unsigned long                   numa_pages_migrated;
1373 #endif /* CONFIG_NUMA_BALANCING */
1374
1375 #ifdef CONFIG_RSEQ
1376         struct rseq __user *rseq;
1377         u32 rseq_len;
1378         u32 rseq_sig;
1379         /*
1380          * RmW on rseq_event_mask must be performed atomically
1381          * with respect to preemption.
1382          */
1383         unsigned long rseq_event_mask;
1384 # ifdef CONFIG_DEBUG_RSEQ
1385         /*
1386          * This is a place holder to save a copy of the rseq fields for
1387          * validation of read-only fields. The struct rseq has a
1388          * variable-length array at the end, so it cannot be used
1389          * directly. Reserve a size large enough for the known fields.
1390          */
1391         char                            rseq_fields[sizeof(struct rseq)];
1392 # endif
1393 #endif
1394
1395 #ifdef CONFIG_SCHED_MM_CID
1396         int                             mm_cid;         /* Current cid in mm */
1397         int                             last_mm_cid;    /* Most recent cid in mm */
1398         int                             migrate_from_cpu;
1399         int                             mm_cid_active;  /* Whether cid bitmap is active */
1400         struct callback_head            cid_work;
1401 #endif
1402
1403         struct tlbflush_unmap_batch     tlb_ubc;
1404
1405         /* Cache last used pipe for splice(): */
1406         struct pipe_inode_info          *splice_pipe;
1407
1408         struct page_frag                task_frag;
1409
1410 #ifdef CONFIG_TASK_DELAY_ACCT
1411         struct task_delay_info          *delays;
1412 #endif
1413
1414 #ifdef CONFIG_FAULT_INJECTION
1415         int                             make_it_fail;
1416         unsigned int                    fail_nth;
1417 #endif
1418         /*
1419          * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1420          * balance_dirty_pages() for a dirty throttling pause:
1421          */
1422         int                             nr_dirtied;
1423         int                             nr_dirtied_pause;
1424         /* Start of a write-and-pause period: */
1425         unsigned long                   dirty_paused_when;
1426
1427 #ifdef CONFIG_LATENCYTOP
1428         int                             latency_record_count;
1429         struct latency_record           latency_record[LT_SAVECOUNT];
1430 #endif
1431         /*
1432          * Time slack values; these are used to round up poll() and
1433          * select() etc timeout values. These are in nanoseconds.
1434          */
1435         u64                             timer_slack_ns;
1436         u64                             default_timer_slack_ns;
1437
1438 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1439         unsigned int                    kasan_depth;
1440 #endif
1441
1442 #ifdef CONFIG_KCSAN
1443         struct kcsan_ctx                kcsan_ctx;
1444 #ifdef CONFIG_TRACE_IRQFLAGS
1445         struct irqtrace_events          kcsan_save_irqtrace;
1446 #endif
1447 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1448         int                             kcsan_stack_depth;
1449 #endif
1450 #endif
1451
1452 #ifdef CONFIG_KMSAN
1453         struct kmsan_ctx                kmsan_ctx;
1454 #endif
1455
1456 #if IS_ENABLED(CONFIG_KUNIT)
1457         struct kunit                    *kunit_test;
1458 #endif
1459
1460 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1461         /* Index of current stored address in ret_stack: */
1462         int                             curr_ret_stack;
1463         int                             curr_ret_depth;
1464
1465         /* Stack of return addresses for return function tracing: */
1466         unsigned long                   *ret_stack;
1467
1468         /* Timestamp for last schedule: */
1469         unsigned long long              ftrace_timestamp;
1470         unsigned long long              ftrace_sleeptime;
1471
1472         /*
1473          * Number of functions that haven't been traced
1474          * because of depth overrun:
1475          */
1476         atomic_t                        trace_overrun;
1477
1478         /* Pause tracing: */
1479         atomic_t                        tracing_graph_pause;
1480 #endif
1481
1482 #ifdef CONFIG_TRACING
1483         /* Bitmask and counter of trace recursion: */
1484         unsigned long                   trace_recursion;
1485 #endif /* CONFIG_TRACING */
1486
1487 #ifdef CONFIG_KCOV
1488         /* See kernel/kcov.c for more details. */
1489
1490         /* Coverage collection mode enabled for this task (0 if disabled): */
1491         unsigned int                    kcov_mode;
1492
1493         /* Size of the kcov_area: */
1494         unsigned int                    kcov_size;
1495
1496         /* Buffer for coverage collection: */
1497         void                            *kcov_area;
1498
1499         /* KCOV descriptor wired with this task or NULL: */
1500         struct kcov                     *kcov;
1501
1502         /* KCOV common handle for remote coverage collection: */
1503         u64                             kcov_handle;
1504
1505         /* KCOV sequence number: */
1506         int                             kcov_sequence;
1507
1508         /* Collect coverage from softirq context: */
1509         unsigned int                    kcov_softirq;
1510 #endif
1511
1512 #ifdef CONFIG_MEMCG_V1
1513         struct mem_cgroup               *memcg_in_oom;
1514 #endif
1515
1516 #ifdef CONFIG_MEMCG
1517         /* Number of pages to reclaim on returning to userland: */
1518         unsigned int                    memcg_nr_pages_over_high;
1519
1520         /* Used by memcontrol for targeted memcg charge: */
1521         struct mem_cgroup               *active_memcg;
1522
1523         /* Cache for current->cgroups->memcg->objcg lookups: */
1524         struct obj_cgroup               *objcg;
1525 #endif
1526
1527 #ifdef CONFIG_BLK_CGROUP
1528         struct gendisk                  *throttle_disk;
1529 #endif
1530
1531 #ifdef CONFIG_UPROBES
1532         struct uprobe_task              *utask;
1533 #endif
1534 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1535         unsigned int                    sequential_io;
1536         unsigned int                    sequential_io_avg;
1537 #endif
1538         struct kmap_ctrl                kmap_ctrl;
1539 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1540         unsigned long                   task_state_change;
1541 # ifdef CONFIG_PREEMPT_RT
1542         unsigned long                   saved_state_change;
1543 # endif
1544 #endif
1545         struct rcu_head                 rcu;
1546         refcount_t                      rcu_users;
1547         int                             pagefault_disabled;
1548 #ifdef CONFIG_MMU
1549         struct task_struct              *oom_reaper_list;
1550         struct timer_list               oom_reaper_timer;
1551 #endif
1552 #ifdef CONFIG_VMAP_STACK
1553         struct vm_struct                *stack_vm_area;
1554 #endif
1555 #ifdef CONFIG_THREAD_INFO_IN_TASK
1556         /* A live task holds one reference: */
1557         refcount_t                      stack_refcount;
1558 #endif
1559 #ifdef CONFIG_LIVEPATCH
1560         int patch_state;
1561 #endif
1562 #ifdef CONFIG_SECURITY
1563         /* Used by LSM modules for access restriction: */
1564         void                            *security;
1565 #endif
1566 #ifdef CONFIG_BPF_SYSCALL
1567         /* Used by BPF task local storage */
1568         struct bpf_local_storage __rcu  *bpf_storage;
1569         /* Used for BPF run context */
1570         struct bpf_run_ctx              *bpf_ctx;
1571 #endif
1572         /* Used by BPF for per-TASK xdp storage */
1573         struct bpf_net_context          *bpf_net_context;
1574
1575 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1576         unsigned long                   lowest_stack;
1577         unsigned long                   prev_lowest_stack;
1578 #endif
1579
1580 #ifdef CONFIG_X86_MCE
1581         void __user                     *mce_vaddr;
1582         __u64                           mce_kflags;
1583         u64                             mce_addr;
1584         __u64                           mce_ripv : 1,
1585                                         mce_whole_page : 1,
1586                                         __mce_reserved : 62;
1587         struct callback_head            mce_kill_me;
1588         int                             mce_count;
1589 #endif
1590
1591 #ifdef CONFIG_KRETPROBES
1592         struct llist_head               kretprobe_instances;
1593 #endif
1594 #ifdef CONFIG_RETHOOK
1595         struct llist_head               rethooks;
1596 #endif
1597
1598 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1599         /*
1600          * If L1D flush is supported on mm context switch
1601          * then we use this callback head to queue kill work
1602          * to kill tasks that are not running on SMT disabled
1603          * cores
1604          */
1605         struct callback_head            l1d_flush_kill;
1606 #endif
1607
1608 #ifdef CONFIG_RV
1609         /*
1610          * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1611          * If we find justification for more monitors, we can think
1612          * about adding more or developing a dynamic method. So far,
1613          * none of these are justified.
1614          */
1615         union rv_task_monitor           rv[RV_PER_TASK_MONITORS];
1616 #endif
1617
1618 #ifdef CONFIG_USER_EVENTS
1619         struct user_event_mm            *user_event_mm;
1620 #endif
1621
1622         /*
1623          * New fields for task_struct should be added above here, so that
1624          * they are included in the randomized portion of task_struct.
1625          */
1626         randomized_struct_fields_end
1627
1628         /* CPU-specific state of this task: */
1629         struct thread_struct            thread;
1630
1631         /*
1632          * WARNING: on x86, 'thread_struct' contains a variable-sized
1633          * structure.  It *MUST* be at the end of 'task_struct'.
1634          *
1635          * Do not put anything below here!
1636          */
1637 };
1638
1639 #define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1640 #define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1641
1642 static inline unsigned int __task_state_index(unsigned int tsk_state,
1643                                               unsigned int tsk_exit_state)
1644 {
1645         unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1646
1647         BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1648
1649         if ((tsk_state & TASK_IDLE) == TASK_IDLE)
1650                 state = TASK_REPORT_IDLE;
1651
1652         /*
1653          * We're lying here, but rather than expose a completely new task state
1654          * to userspace, we can make this appear as if the task has gone through
1655          * a regular rt_mutex_lock() call.
1656          * Report frozen tasks as uninterruptible.
1657          */
1658         if ((tsk_state & TASK_RTLOCK_WAIT) || (tsk_state & TASK_FROZEN))
1659                 state = TASK_UNINTERRUPTIBLE;
1660
1661         return fls(state);
1662 }
1663
1664 static inline unsigned int task_state_index(struct task_struct *tsk)
1665 {
1666         return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1667 }
1668
1669 static inline char task_index_to_char(unsigned int state)
1670 {
1671         static const char state_char[] = "RSDTtXZPI";
1672
1673         BUILD_BUG_ON(TASK_REPORT_MAX * 2 != 1 << (sizeof(state_char) - 1));
1674
1675         return state_char[state];
1676 }
1677
1678 static inline char task_state_to_char(struct task_struct *tsk)
1679 {
1680         return task_index_to_char(task_state_index(tsk));
1681 }
1682
1683 extern struct pid *cad_pid;
1684
1685 /*
1686  * Per process flags
1687  */
1688 #define PF_VCPU                 0x00000001      /* I'm a virtual CPU */
1689 #define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1690 #define PF_EXITING              0x00000004      /* Getting shut down */
1691 #define PF_POSTCOREDUMP         0x00000008      /* Coredumps should ignore this task */
1692 #define PF_IO_WORKER            0x00000010      /* Task is an IO worker */
1693 #define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1694 #define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1695 #define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1696 #define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1697 #define PF_DUMPCORE             0x00000200      /* Dumped core */
1698 #define PF_SIGNALED             0x00000400      /* Killed by a signal */
1699 #define PF_MEMALLOC             0x00000800      /* Allocating memory to free memory. See memalloc_noreclaim_save() */
1700 #define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1701 #define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1702 #define PF_USER_WORKER          0x00004000      /* Kernel thread cloned from userspace thread */
1703 #define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1704 #define PF__HOLE__00010000      0x00010000
1705 #define PF_KSWAPD               0x00020000      /* I am kswapd */
1706 #define PF_MEMALLOC_NOFS        0x00040000      /* All allocations inherit GFP_NOFS. See memalloc_nfs_save() */
1707 #define PF_MEMALLOC_NOIO        0x00080000      /* All allocations inherit GFP_NOIO. See memalloc_noio_save() */
1708 #define PF_LOCAL_THROTTLE       0x00100000      /* Throttle writes only against the bdi I write to,
1709                                                  * I am cleaning dirty pages from some other bdi. */
1710 #define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1711 #define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1712 #define PF__HOLE__00800000      0x00800000
1713 #define PF__HOLE__01000000      0x01000000
1714 #define PF__HOLE__02000000      0x02000000
1715 #define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1716 #define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1717 #define PF_MEMALLOC_PIN         0x10000000      /* Allocations constrained to zones which allow long term pinning.
1718                                                  * See memalloc_pin_save() */
1719 #define PF_BLOCK_TS             0x20000000      /* plug has ts that needs updating */
1720 #define PF__HOLE__40000000      0x40000000
1721 #define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1722
1723 /*
1724  * Only the _current_ task can read/write to tsk->flags, but other
1725  * tasks can access tsk->flags in readonly mode for example
1726  * with tsk_used_math (like during threaded core dumping).
1727  * There is however an exception to this rule during ptrace
1728  * or during fork: the ptracer task is allowed to write to the
1729  * child->flags of its traced child (same goes for fork, the parent
1730  * can write to the child->flags), because we're guaranteed the
1731  * child is not running and in turn not changing child->flags
1732  * at the same time the parent does it.
1733  */
1734 #define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1735 #define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1736 #define clear_used_math()                       clear_stopped_child_used_math(current)
1737 #define set_used_math()                         set_stopped_child_used_math(current)
1738
1739 #define conditional_stopped_child_used_math(condition, child) \
1740         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1741
1742 #define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1743
1744 #define copy_to_stopped_child_used_math(child) \
1745         do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1746
1747 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1748 #define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1749 #define used_math()                             tsk_used_math(current)
1750
1751 static __always_inline bool is_percpu_thread(void)
1752 {
1753 #ifdef CONFIG_SMP
1754         return (current->flags & PF_NO_SETAFFINITY) &&
1755                 (current->nr_cpus_allowed  == 1);
1756 #else
1757         return true;
1758 #endif
1759 }
1760
1761 /* Per-process atomic flags. */
1762 #define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1763 #define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1764 #define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1765 #define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1766 #define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1767 #define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1768 #define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1769 #define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1770
1771 #define TASK_PFA_TEST(name, func)                                       \
1772         static inline bool task_##func(struct task_struct *p)           \
1773         { return test_bit(PFA_##name, &p->atomic_flags); }
1774
1775 #define TASK_PFA_SET(name, func)                                        \
1776         static inline void task_set_##func(struct task_struct *p)       \
1777         { set_bit(PFA_##name, &p->atomic_flags); }
1778
1779 #define TASK_PFA_CLEAR(name, func)                                      \
1780         static inline void task_clear_##func(struct task_struct *p)     \
1781         { clear_bit(PFA_##name, &p->atomic_flags); }
1782
1783 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1784 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1785
1786 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1787 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1788 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1789
1790 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1791 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1792 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1793
1794 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1795 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1796 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1797
1798 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1799 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1800 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1801
1802 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1803 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1804
1805 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1806 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1807 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1808
1809 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1810 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1811
1812 static inline void
1813 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1814 {
1815         current->flags &= ~flags;
1816         current->flags |= orig_flags & flags;
1817 }
1818
1819 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1820 extern int task_can_attach(struct task_struct *p);
1821 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1822 extern void dl_bw_free(int cpu, u64 dl_bw);
1823 #ifdef CONFIG_SMP
1824
1825 /* do_set_cpus_allowed() - consider using set_cpus_allowed_ptr() instead */
1826 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1827
1828 /**
1829  * set_cpus_allowed_ptr - set CPU affinity mask of a task
1830  * @p: the task
1831  * @new_mask: CPU affinity mask
1832  *
1833  * Return: zero if successful, or a negative error code
1834  */
1835 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1836 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1837 extern void release_user_cpus_ptr(struct task_struct *p);
1838 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1839 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1840 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1841 #else
1842 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1843 {
1844 }
1845 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1846 {
1847         /* Opencoded cpumask_test_cpu(0, new_mask) to avoid dependency on cpumask.h */
1848         if ((*cpumask_bits(new_mask) & 1) == 0)
1849                 return -EINVAL;
1850         return 0;
1851 }
1852 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1853 {
1854         if (src->user_cpus_ptr)
1855                 return -EINVAL;
1856         return 0;
1857 }
1858 static inline void release_user_cpus_ptr(struct task_struct *p)
1859 {
1860         WARN_ON(p->user_cpus_ptr);
1861 }
1862
1863 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1864 {
1865         return 0;
1866 }
1867 #endif
1868
1869 extern int yield_to(struct task_struct *p, bool preempt);
1870 extern void set_user_nice(struct task_struct *p, long nice);
1871 extern int task_prio(const struct task_struct *p);
1872
1873 /**
1874  * task_nice - return the nice value of a given task.
1875  * @p: the task in question.
1876  *
1877  * Return: The nice value [ -20 ... 0 ... 19 ].
1878  */
1879 static inline int task_nice(const struct task_struct *p)
1880 {
1881         return PRIO_TO_NICE((p)->static_prio);
1882 }
1883
1884 extern int can_nice(const struct task_struct *p, const int nice);
1885 extern int task_curr(const struct task_struct *p);
1886 extern int idle_cpu(int cpu);
1887 extern int available_idle_cpu(int cpu);
1888 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1889 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1890 extern void sched_set_fifo(struct task_struct *p);
1891 extern void sched_set_fifo_low(struct task_struct *p);
1892 extern void sched_set_normal(struct task_struct *p, int nice);
1893 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1894 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1895 extern struct task_struct *idle_task(int cpu);
1896
1897 /**
1898  * is_idle_task - is the specified task an idle task?
1899  * @p: the task in question.
1900  *
1901  * Return: 1 if @p is an idle task. 0 otherwise.
1902  */
1903 static __always_inline bool is_idle_task(const struct task_struct *p)
1904 {
1905         return !!(p->flags & PF_IDLE);
1906 }
1907
1908 extern struct task_struct *curr_task(int cpu);
1909 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1910
1911 void yield(void);
1912
1913 union thread_union {
1914         struct task_struct task;
1915 #ifndef CONFIG_THREAD_INFO_IN_TASK
1916         struct thread_info thread_info;
1917 #endif
1918         unsigned long stack[THREAD_SIZE/sizeof(long)];
1919 };
1920
1921 #ifndef CONFIG_THREAD_INFO_IN_TASK
1922 extern struct thread_info init_thread_info;
1923 #endif
1924
1925 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1926
1927 #ifdef CONFIG_THREAD_INFO_IN_TASK
1928 # define task_thread_info(task) (&(task)->thread_info)
1929 #else
1930 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1931 #endif
1932
1933 /*
1934  * find a task by one of its numerical ids
1935  *
1936  * find_task_by_pid_ns():
1937  *      finds a task by its pid in the specified namespace
1938  * find_task_by_vpid():
1939  *      finds a task by its virtual pid
1940  *
1941  * see also find_vpid() etc in include/linux/pid.h
1942  */
1943
1944 extern struct task_struct *find_task_by_vpid(pid_t nr);
1945 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1946
1947 /*
1948  * find a task by its virtual pid and get the task struct
1949  */
1950 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1951
1952 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1953 extern int wake_up_process(struct task_struct *tsk);
1954 extern void wake_up_new_task(struct task_struct *tsk);
1955
1956 #ifdef CONFIG_SMP
1957 extern void kick_process(struct task_struct *tsk);
1958 #else
1959 static inline void kick_process(struct task_struct *tsk) { }
1960 #endif
1961
1962 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1963 #define set_task_comm(tsk, from) ({                     \
1964         BUILD_BUG_ON(sizeof(from) != TASK_COMM_LEN);    \
1965         __set_task_comm(tsk, from, false);              \
1966 })
1967
1968 /*
1969  * - Why not use task_lock()?
1970  *   User space can randomly change their names anyway, so locking for readers
1971  *   doesn't make sense. For writers, locking is probably necessary, as a race
1972  *   condition could lead to long-term mixed results.
1973  *   The strscpy_pad() in __set_task_comm() can ensure that the task comm is
1974  *   always NUL-terminated and zero-padded. Therefore the race condition between
1975  *   reader and writer is not an issue.
1976  *
1977  * - BUILD_BUG_ON() can help prevent the buf from being truncated.
1978  *   Since the callers don't perform any return value checks, this safeguard is
1979  *   necessary.
1980  */
1981 #define get_task_comm(buf, tsk) ({                      \
1982         BUILD_BUG_ON(sizeof(buf) < TASK_COMM_LEN);      \
1983         strscpy_pad(buf, (tsk)->comm);                  \
1984         buf;                                            \
1985 })
1986
1987 #ifdef CONFIG_SMP
1988 static __always_inline void scheduler_ipi(void)
1989 {
1990         /*
1991          * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1992          * TIF_NEED_RESCHED remotely (for the first time) will also send
1993          * this IPI.
1994          */
1995         preempt_fold_need_resched();
1996 }
1997 #else
1998 static inline void scheduler_ipi(void) { }
1999 #endif
2000
2001 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2002
2003 /*
2004  * Set thread flags in other task's structures.
2005  * See asm/thread_info.h for TIF_xxxx flags available:
2006  */
2007 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2008 {
2009         set_ti_thread_flag(task_thread_info(tsk), flag);
2010 }
2011
2012 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2013 {
2014         clear_ti_thread_flag(task_thread_info(tsk), flag);
2015 }
2016
2017 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2018                                           bool value)
2019 {
2020         update_ti_thread_flag(task_thread_info(tsk), flag, value);
2021 }
2022
2023 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2024 {
2025         return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2026 }
2027
2028 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2029 {
2030         return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2031 }
2032
2033 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2034 {
2035         return test_ti_thread_flag(task_thread_info(tsk), flag);
2036 }
2037
2038 static inline void set_tsk_need_resched(struct task_struct *tsk)
2039 {
2040         set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2041 }
2042
2043 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2044 {
2045         atomic_long_andnot(_TIF_NEED_RESCHED | _TIF_NEED_RESCHED_LAZY,
2046                            (atomic_long_t *)&task_thread_info(tsk)->flags);
2047 }
2048
2049 static inline int test_tsk_need_resched(struct task_struct *tsk)
2050 {
2051         return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2052 }
2053
2054 /*
2055  * cond_resched() and cond_resched_lock(): latency reduction via
2056  * explicit rescheduling in places that are safe. The return
2057  * value indicates whether a reschedule was done in fact.
2058  * cond_resched_lock() will drop the spinlock before scheduling,
2059  */
2060 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2061 extern int __cond_resched(void);
2062
2063 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2064
2065 void sched_dynamic_klp_enable(void);
2066 void sched_dynamic_klp_disable(void);
2067
2068 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2069
2070 static __always_inline int _cond_resched(void)
2071 {
2072         return static_call_mod(cond_resched)();
2073 }
2074
2075 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2076
2077 extern int dynamic_cond_resched(void);
2078
2079 static __always_inline int _cond_resched(void)
2080 {
2081         return dynamic_cond_resched();
2082 }
2083
2084 #else /* !CONFIG_PREEMPTION */
2085
2086 static inline int _cond_resched(void)
2087 {
2088         klp_sched_try_switch();
2089         return __cond_resched();
2090 }
2091
2092 #endif /* PREEMPT_DYNAMIC && CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
2093
2094 #else /* CONFIG_PREEMPTION && !CONFIG_PREEMPT_DYNAMIC */
2095
2096 static inline int _cond_resched(void)
2097 {
2098         klp_sched_try_switch();
2099         return 0;
2100 }
2101
2102 #endif /* !CONFIG_PREEMPTION || CONFIG_PREEMPT_DYNAMIC */
2103
2104 #define cond_resched() ({                       \
2105         __might_resched(__FILE__, __LINE__, 0); \
2106         _cond_resched();                        \
2107 })
2108
2109 extern int __cond_resched_lock(spinlock_t *lock);
2110 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2111 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2112
2113 #define MIGHT_RESCHED_RCU_SHIFT         8
2114 #define MIGHT_RESCHED_PREEMPT_MASK      ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2115
2116 #ifndef CONFIG_PREEMPT_RT
2117 /*
2118  * Non RT kernels have an elevated preempt count due to the held lock,
2119  * but are not allowed to be inside a RCU read side critical section
2120  */
2121 # define PREEMPT_LOCK_RESCHED_OFFSETS   PREEMPT_LOCK_OFFSET
2122 #else
2123 /*
2124  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2125  * cond_resched*lock() has to take that into account because it checks for
2126  * preempt_count() and rcu_preempt_depth().
2127  */
2128 # define PREEMPT_LOCK_RESCHED_OFFSETS   \
2129         (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2130 #endif
2131
2132 #define cond_resched_lock(lock) ({                                              \
2133         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2134         __cond_resched_lock(lock);                                              \
2135 })
2136
2137 #define cond_resched_rwlock_read(lock) ({                                       \
2138         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2139         __cond_resched_rwlock_read(lock);                                       \
2140 })
2141
2142 #define cond_resched_rwlock_write(lock) ({                                      \
2143         __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);      \
2144         __cond_resched_rwlock_write(lock);                                      \
2145 })
2146
2147 static __always_inline bool need_resched(void)
2148 {
2149         return unlikely(tif_need_resched());
2150 }
2151
2152 /*
2153  * Wrappers for p->thread_info->cpu access. No-op on UP.
2154  */
2155 #ifdef CONFIG_SMP
2156
2157 static inline unsigned int task_cpu(const struct task_struct *p)
2158 {
2159         return READ_ONCE(task_thread_info(p)->cpu);
2160 }
2161
2162 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2163
2164 #else
2165
2166 static inline unsigned int task_cpu(const struct task_struct *p)
2167 {
2168         return 0;
2169 }
2170
2171 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2172 {
2173 }
2174
2175 #endif /* CONFIG_SMP */
2176
2177 static inline bool task_is_runnable(struct task_struct *p)
2178 {
2179         return p->on_rq && !p->se.sched_delayed;
2180 }
2181
2182 extern bool sched_task_on_rq(struct task_struct *p);
2183 extern unsigned long get_wchan(struct task_struct *p);
2184 extern struct task_struct *cpu_curr_snapshot(int cpu);
2185
2186 #include <linux/spinlock.h>
2187
2188 /*
2189  * In order to reduce various lock holder preemption latencies provide an
2190  * interface to see if a vCPU is currently running or not.
2191  *
2192  * This allows us to terminate optimistic spin loops and block, analogous to
2193  * the native optimistic spin heuristic of testing if the lock owner task is
2194  * running or not.
2195  */
2196 #ifndef vcpu_is_preempted
2197 static inline bool vcpu_is_preempted(int cpu)
2198 {
2199         return false;
2200 }
2201 #endif
2202
2203 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2204 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2205
2206 #ifndef TASK_SIZE_OF
2207 #define TASK_SIZE_OF(tsk)       TASK_SIZE
2208 #endif
2209
2210 #ifdef CONFIG_SMP
2211 static inline bool owner_on_cpu(struct task_struct *owner)
2212 {
2213         /*
2214          * As lock holder preemption issue, we both skip spinning if
2215          * task is not on cpu or its cpu is preempted
2216          */
2217         return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2218 }
2219
2220 /* Returns effective CPU energy utilization, as seen by the scheduler */
2221 unsigned long sched_cpu_util(int cpu);
2222 #endif /* CONFIG_SMP */
2223
2224 #ifdef CONFIG_SCHED_CORE
2225 extern void sched_core_free(struct task_struct *tsk);
2226 extern void sched_core_fork(struct task_struct *p);
2227 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2228                                 unsigned long uaddr);
2229 extern int sched_core_idle_cpu(int cpu);
2230 #else
2231 static inline void sched_core_free(struct task_struct *tsk) { }
2232 static inline void sched_core_fork(struct task_struct *p) { }
2233 static inline int sched_core_idle_cpu(int cpu) { return idle_cpu(cpu); }
2234 #endif
2235
2236 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2237
2238 #ifdef CONFIG_MEM_ALLOC_PROFILING
2239 static __always_inline struct alloc_tag *alloc_tag_save(struct alloc_tag *tag)
2240 {
2241         swap(current->alloc_tag, tag);
2242         return tag;
2243 }
2244
2245 static __always_inline void alloc_tag_restore(struct alloc_tag *tag, struct alloc_tag *old)
2246 {
2247 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2248         WARN(current->alloc_tag != tag, "current->alloc_tag was changed:\n");
2249 #endif
2250         current->alloc_tag = old;
2251 }
2252 #else
2253 #define alloc_tag_save(_tag)                    NULL
2254 #define alloc_tag_restore(_tag, _old)           do {} while (0)
2255 #endif
2256
2257 #endif
This page took 0.161994 seconds and 4 git commands to generate.