4 #include <linux/errno.h>
8 #include <linux/mmdebug.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
29 struct anon_vma_chain;
32 struct writeback_control;
35 void init_mm_internals(void);
37 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
38 extern unsigned long max_mapnr;
40 static inline void set_max_mapnr(unsigned long limit)
45 static inline void set_max_mapnr(unsigned long limit) { }
48 extern unsigned long totalram_pages;
49 extern void * high_memory;
50 extern int page_cluster;
53 extern int sysctl_legacy_va_layout;
55 #define sysctl_legacy_va_layout 0
58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59 extern const int mmap_rnd_bits_min;
60 extern const int mmap_rnd_bits_max;
61 extern int mmap_rnd_bits __read_mostly;
63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64 extern const int mmap_rnd_compat_bits_min;
65 extern const int mmap_rnd_compat_bits_max;
66 extern int mmap_rnd_compat_bits __read_mostly;
70 #include <asm/pgtable.h>
71 #include <asm/processor.h>
74 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
78 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
82 #define lm_alias(x) __va(__pa_symbol(x))
86 * To prevent common memory management code establishing
87 * a zero page mapping on a read fault.
88 * This macro should be defined within <asm/pgtable.h>.
89 * s390 does this to prevent multiplexing of hardware bits
90 * related to the physical page in case of virtualization.
92 #ifndef mm_forbids_zeropage
93 #define mm_forbids_zeropage(X) (0)
97 * Default maximum number of active map areas, this limits the number of vmas
98 * per mm struct. Users can overwrite this number by sysctl but there is a
101 * When a program's coredump is generated as ELF format, a section is created
102 * per a vma. In ELF, the number of sections is represented in unsigned short.
103 * This means the number of sections should be smaller than 65535 at coredump.
104 * Because the kernel adds some informative sections to a image of program at
105 * generating coredump, we need some margin. The number of extra sections is
106 * 1-3 now and depends on arch. We use "5" as safe margin, here.
108 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
109 * not a hard limit any more. Although some userspace tools can be surprised by
112 #define MAPCOUNT_ELF_CORE_MARGIN (5)
113 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
115 extern int sysctl_max_map_count;
117 extern unsigned long sysctl_user_reserve_kbytes;
118 extern unsigned long sysctl_admin_reserve_kbytes;
120 extern int sysctl_overcommit_memory;
121 extern int sysctl_overcommit_ratio;
122 extern unsigned long sysctl_overcommit_kbytes;
124 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
126 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
129 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
131 /* to align the pointer to the (next) page boundary */
132 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
134 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
135 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
138 * Linux kernel virtual memory manager primitives.
139 * The idea being to have a "virtual" mm in the same way
140 * we have a virtual fs - giving a cleaner interface to the
141 * mm details, and allowing different kinds of memory mappings
142 * (from shared memory to executable loading to arbitrary
146 extern struct kmem_cache *vm_area_cachep;
149 extern struct rb_root nommu_region_tree;
150 extern struct rw_semaphore nommu_region_sem;
152 extern unsigned int kobjsize(const void *objp);
156 * vm_flags in vm_area_struct, see mm_types.h.
157 * When changing, update also include/trace/events/mmflags.h
159 #define VM_NONE 0x00000000
161 #define VM_READ 0x00000001 /* currently active flags */
162 #define VM_WRITE 0x00000002
163 #define VM_EXEC 0x00000004
164 #define VM_SHARED 0x00000008
166 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
167 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
168 #define VM_MAYWRITE 0x00000020
169 #define VM_MAYEXEC 0x00000040
170 #define VM_MAYSHARE 0x00000080
172 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
173 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
174 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
175 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
176 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
178 #define VM_LOCKED 0x00002000
179 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
181 /* Used by sys_madvise() */
182 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
183 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
185 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
186 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
187 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
188 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
189 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
190 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
191 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
192 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
193 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
195 #ifdef CONFIG_MEM_SOFT_DIRTY
196 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
198 # define VM_SOFTDIRTY 0
201 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
202 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
203 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
204 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
206 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
207 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
208 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
209 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
210 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
211 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
212 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
213 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
214 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
215 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
216 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
217 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
219 #if defined(CONFIG_X86)
220 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
221 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
222 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
223 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
224 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
225 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
226 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
228 #elif defined(CONFIG_PPC)
229 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
230 #elif defined(CONFIG_PARISC)
231 # define VM_GROWSUP VM_ARCH_1
232 #elif defined(CONFIG_METAG)
233 # define VM_GROWSUP VM_ARCH_1
234 #elif defined(CONFIG_IA64)
235 # define VM_GROWSUP VM_ARCH_1
236 #elif !defined(CONFIG_MMU)
237 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
240 #if defined(CONFIG_X86_INTEL_MPX)
241 /* MPX specific bounds table or bounds directory */
242 # define VM_MPX VM_HIGH_ARCH_BIT_4
244 # define VM_MPX VM_NONE
248 # define VM_GROWSUP VM_NONE
251 /* Bits set in the VMA until the stack is in its final location */
252 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
254 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
255 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
258 #ifdef CONFIG_STACK_GROWSUP
259 #define VM_STACK VM_GROWSUP
261 #define VM_STACK VM_GROWSDOWN
264 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
267 * Special vmas that are non-mergable, non-mlock()able.
268 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
270 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
272 /* This mask defines which mm->def_flags a process can inherit its parent */
273 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
275 /* This mask is used to clear all the VMA flags used by mlock */
276 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
279 * mapping from the currently active vm_flags protection bits (the
280 * low four bits) to a page protection mask..
282 extern pgprot_t protection_map[16];
284 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
285 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
286 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
287 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
288 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
289 #define FAULT_FLAG_TRIED 0x20 /* Second try */
290 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
291 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
292 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
294 #define FAULT_FLAG_TRACE \
295 { FAULT_FLAG_WRITE, "WRITE" }, \
296 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
297 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
298 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
299 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
300 { FAULT_FLAG_TRIED, "TRIED" }, \
301 { FAULT_FLAG_USER, "USER" }, \
302 { FAULT_FLAG_REMOTE, "REMOTE" }, \
303 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }
306 * vm_fault is filled by the the pagefault handler and passed to the vma's
307 * ->fault function. The vma's ->fault is responsible for returning a bitmask
308 * of VM_FAULT_xxx flags that give details about how the fault was handled.
310 * MM layer fills up gfp_mask for page allocations but fault handler might
311 * alter it if its implementation requires a different allocation context.
313 * pgoff should be used in favour of virtual_address, if possible.
316 struct vm_area_struct *vma; /* Target VMA */
317 unsigned int flags; /* FAULT_FLAG_xxx flags */
318 gfp_t gfp_mask; /* gfp mask to be used for allocations */
319 pgoff_t pgoff; /* Logical page offset based on vma */
320 unsigned long address; /* Faulting virtual address */
321 pmd_t *pmd; /* Pointer to pmd entry matching
323 pud_t *pud; /* Pointer to pud entry matching
326 pte_t orig_pte; /* Value of PTE at the time of fault */
328 struct page *cow_page; /* Page handler may use for COW fault */
329 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
330 struct page *page; /* ->fault handlers should return a
331 * page here, unless VM_FAULT_NOPAGE
332 * is set (which is also implied by
335 /* These three entries are valid only while holding ptl lock */
336 pte_t *pte; /* Pointer to pte entry matching
337 * the 'address'. NULL if the page
338 * table hasn't been allocated.
340 spinlock_t *ptl; /* Page table lock.
341 * Protects pte page table if 'pte'
342 * is not NULL, otherwise pmd.
344 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
345 * vm_ops->map_pages() calls
346 * alloc_set_pte() from atomic context.
347 * do_fault_around() pre-allocates
348 * page table to avoid allocation from
353 /* page entry size for vm->huge_fault() */
354 enum page_entry_size {
361 * These are the virtual MM functions - opening of an area, closing and
362 * unmapping it (needed to keep files on disk up-to-date etc), pointer
363 * to the functions called when a no-page or a wp-page exception occurs.
365 struct vm_operations_struct {
366 void (*open)(struct vm_area_struct * area);
367 void (*close)(struct vm_area_struct * area);
368 int (*mremap)(struct vm_area_struct * area);
369 int (*fault)(struct vm_fault *vmf);
370 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
371 void (*map_pages)(struct vm_fault *vmf,
372 pgoff_t start_pgoff, pgoff_t end_pgoff);
374 /* notification that a previously read-only page is about to become
375 * writable, if an error is returned it will cause a SIGBUS */
376 int (*page_mkwrite)(struct vm_fault *vmf);
378 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
379 int (*pfn_mkwrite)(struct vm_fault *vmf);
381 /* called by access_process_vm when get_user_pages() fails, typically
382 * for use by special VMAs that can switch between memory and hardware
384 int (*access)(struct vm_area_struct *vma, unsigned long addr,
385 void *buf, int len, int write);
387 /* Called by the /proc/PID/maps code to ask the vma whether it
388 * has a special name. Returning non-NULL will also cause this
389 * vma to be dumped unconditionally. */
390 const char *(*name)(struct vm_area_struct *vma);
394 * set_policy() op must add a reference to any non-NULL @new mempolicy
395 * to hold the policy upon return. Caller should pass NULL @new to
396 * remove a policy and fall back to surrounding context--i.e. do not
397 * install a MPOL_DEFAULT policy, nor the task or system default
400 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
403 * get_policy() op must add reference [mpol_get()] to any policy at
404 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
405 * in mm/mempolicy.c will do this automatically.
406 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
407 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
408 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
409 * must return NULL--i.e., do not "fallback" to task or system default
412 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
416 * Called by vm_normal_page() for special PTEs to find the
417 * page for @addr. This is useful if the default behavior
418 * (using pte_page()) would not find the correct page.
420 struct page *(*find_special_page)(struct vm_area_struct *vma,
427 #define page_private(page) ((page)->private)
428 #define set_page_private(page, v) ((page)->private = (v))
430 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
431 static inline int pmd_devmap(pmd_t pmd)
435 static inline int pud_devmap(pud_t pud)
439 static inline int pgd_devmap(pgd_t pgd)
446 * FIXME: take this include out, include page-flags.h in
447 * files which need it (119 of them)
449 #include <linux/page-flags.h>
450 #include <linux/huge_mm.h>
453 * Methods to modify the page usage count.
455 * What counts for a page usage:
456 * - cache mapping (page->mapping)
457 * - private data (page->private)
458 * - page mapped in a task's page tables, each mapping
459 * is counted separately
461 * Also, many kernel routines increase the page count before a critical
462 * routine so they can be sure the page doesn't go away from under them.
466 * Drop a ref, return true if the refcount fell to zero (the page has no users)
468 static inline int put_page_testzero(struct page *page)
470 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
471 return page_ref_dec_and_test(page);
475 * Try to grab a ref unless the page has a refcount of zero, return false if
477 * This can be called when MMU is off so it must not access
478 * any of the virtual mappings.
480 static inline int get_page_unless_zero(struct page *page)
482 return page_ref_add_unless(page, 1, 0);
485 extern int page_is_ram(unsigned long pfn);
493 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
496 /* Support for virtually mapped pages */
497 struct page *vmalloc_to_page(const void *addr);
498 unsigned long vmalloc_to_pfn(const void *addr);
501 * Determine if an address is within the vmalloc range
503 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
504 * is no special casing required.
506 static inline bool is_vmalloc_addr(const void *x)
509 unsigned long addr = (unsigned long)x;
511 return addr >= VMALLOC_START && addr < VMALLOC_END;
517 extern int is_vmalloc_or_module_addr(const void *x);
519 static inline int is_vmalloc_or_module_addr(const void *x)
525 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
526 static inline void *kvmalloc(size_t size, gfp_t flags)
528 return kvmalloc_node(size, flags, NUMA_NO_NODE);
530 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
532 return kvmalloc_node(size, flags | __GFP_ZERO, node);
534 static inline void *kvzalloc(size_t size, gfp_t flags)
536 return kvmalloc(size, flags | __GFP_ZERO);
539 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
541 if (size != 0 && n > SIZE_MAX / size)
544 return kvmalloc(n * size, flags);
547 extern void kvfree(const void *addr);
549 static inline atomic_t *compound_mapcount_ptr(struct page *page)
551 return &page[1].compound_mapcount;
554 static inline int compound_mapcount(struct page *page)
556 VM_BUG_ON_PAGE(!PageCompound(page), page);
557 page = compound_head(page);
558 return atomic_read(compound_mapcount_ptr(page)) + 1;
562 * The atomic page->_mapcount, starts from -1: so that transitions
563 * both from it and to it can be tracked, using atomic_inc_and_test
564 * and atomic_add_negative(-1).
566 static inline void page_mapcount_reset(struct page *page)
568 atomic_set(&(page)->_mapcount, -1);
571 int __page_mapcount(struct page *page);
573 static inline int page_mapcount(struct page *page)
575 VM_BUG_ON_PAGE(PageSlab(page), page);
577 if (unlikely(PageCompound(page)))
578 return __page_mapcount(page);
579 return atomic_read(&page->_mapcount) + 1;
582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
583 int total_mapcount(struct page *page);
584 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
586 static inline int total_mapcount(struct page *page)
588 return page_mapcount(page);
590 static inline int page_trans_huge_mapcount(struct page *page,
593 int mapcount = page_mapcount(page);
595 *total_mapcount = mapcount;
600 static inline struct page *virt_to_head_page(const void *x)
602 struct page *page = virt_to_page(x);
604 return compound_head(page);
607 void __put_page(struct page *page);
609 void put_pages_list(struct list_head *pages);
611 void split_page(struct page *page, unsigned int order);
614 * Compound pages have a destructor function. Provide a
615 * prototype for that function and accessor functions.
616 * These are _only_ valid on the head of a compound page.
618 typedef void compound_page_dtor(struct page *);
620 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
621 enum compound_dtor_id {
624 #ifdef CONFIG_HUGETLB_PAGE
627 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
632 extern compound_page_dtor * const compound_page_dtors[];
634 static inline void set_compound_page_dtor(struct page *page,
635 enum compound_dtor_id compound_dtor)
637 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
638 page[1].compound_dtor = compound_dtor;
641 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
643 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
644 return compound_page_dtors[page[1].compound_dtor];
647 static inline unsigned int compound_order(struct page *page)
651 return page[1].compound_order;
654 static inline void set_compound_order(struct page *page, unsigned int order)
656 page[1].compound_order = order;
659 void free_compound_page(struct page *page);
663 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
664 * servicing faults for write access. In the normal case, do always want
665 * pte_mkwrite. But get_user_pages can cause write faults for mappings
666 * that do not have writing enabled, when used by access_process_vm.
668 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
670 if (likely(vma->vm_flags & VM_WRITE))
671 pte = pte_mkwrite(pte);
675 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
677 int finish_fault(struct vm_fault *vmf);
678 int finish_mkwrite_fault(struct vm_fault *vmf);
682 * Multiple processes may "see" the same page. E.g. for untouched
683 * mappings of /dev/null, all processes see the same page full of
684 * zeroes, and text pages of executables and shared libraries have
685 * only one copy in memory, at most, normally.
687 * For the non-reserved pages, page_count(page) denotes a reference count.
688 * page_count() == 0 means the page is free. page->lru is then used for
689 * freelist management in the buddy allocator.
690 * page_count() > 0 means the page has been allocated.
692 * Pages are allocated by the slab allocator in order to provide memory
693 * to kmalloc and kmem_cache_alloc. In this case, the management of the
694 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
695 * unless a particular usage is carefully commented. (the responsibility of
696 * freeing the kmalloc memory is the caller's, of course).
698 * A page may be used by anyone else who does a __get_free_page().
699 * In this case, page_count still tracks the references, and should only
700 * be used through the normal accessor functions. The top bits of page->flags
701 * and page->virtual store page management information, but all other fields
702 * are unused and could be used privately, carefully. The management of this
703 * page is the responsibility of the one who allocated it, and those who have
704 * subsequently been given references to it.
706 * The other pages (we may call them "pagecache pages") are completely
707 * managed by the Linux memory manager: I/O, buffers, swapping etc.
708 * The following discussion applies only to them.
710 * A pagecache page contains an opaque `private' member, which belongs to the
711 * page's address_space. Usually, this is the address of a circular list of
712 * the page's disk buffers. PG_private must be set to tell the VM to call
713 * into the filesystem to release these pages.
715 * A page may belong to an inode's memory mapping. In this case, page->mapping
716 * is the pointer to the inode, and page->index is the file offset of the page,
717 * in units of PAGE_SIZE.
719 * If pagecache pages are not associated with an inode, they are said to be
720 * anonymous pages. These may become associated with the swapcache, and in that
721 * case PG_swapcache is set, and page->private is an offset into the swapcache.
723 * In either case (swapcache or inode backed), the pagecache itself holds one
724 * reference to the page. Setting PG_private should also increment the
725 * refcount. The each user mapping also has a reference to the page.
727 * The pagecache pages are stored in a per-mapping radix tree, which is
728 * rooted at mapping->page_tree, and indexed by offset.
729 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
730 * lists, we instead now tag pages as dirty/writeback in the radix tree.
732 * All pagecache pages may be subject to I/O:
733 * - inode pages may need to be read from disk,
734 * - inode pages which have been modified and are MAP_SHARED may need
735 * to be written back to the inode on disk,
736 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
737 * modified may need to be swapped out to swap space and (later) to be read
742 * The zone field is never updated after free_area_init_core()
743 * sets it, so none of the operations on it need to be atomic.
746 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
747 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
748 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
749 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
750 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
753 * Define the bit shifts to access each section. For non-existent
754 * sections we define the shift as 0; that plus a 0 mask ensures
755 * the compiler will optimise away reference to them.
757 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
758 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
759 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
760 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
762 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
763 #ifdef NODE_NOT_IN_PAGE_FLAGS
764 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
765 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
766 SECTIONS_PGOFF : ZONES_PGOFF)
768 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
769 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
770 NODES_PGOFF : ZONES_PGOFF)
773 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
775 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
776 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
779 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
780 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
781 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
782 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
783 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
785 static inline enum zone_type page_zonenum(const struct page *page)
787 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
790 #ifdef CONFIG_ZONE_DEVICE
791 static inline bool is_zone_device_page(const struct page *page)
793 return page_zonenum(page) == ZONE_DEVICE;
796 static inline bool is_zone_device_page(const struct page *page)
802 static inline void get_page(struct page *page)
804 page = compound_head(page);
806 * Getting a normal page or the head of a compound page
807 * requires to already have an elevated page->_refcount.
809 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
813 static inline void put_page(struct page *page)
815 page = compound_head(page);
817 if (put_page_testzero(page))
821 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
822 #define SECTION_IN_PAGE_FLAGS
826 * The identification function is mainly used by the buddy allocator for
827 * determining if two pages could be buddies. We are not really identifying
828 * the zone since we could be using the section number id if we do not have
829 * node id available in page flags.
830 * We only guarantee that it will return the same value for two combinable
833 static inline int page_zone_id(struct page *page)
835 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
838 static inline int zone_to_nid(struct zone *zone)
847 #ifdef NODE_NOT_IN_PAGE_FLAGS
848 extern int page_to_nid(const struct page *page);
850 static inline int page_to_nid(const struct page *page)
852 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
856 #ifdef CONFIG_NUMA_BALANCING
857 static inline int cpu_pid_to_cpupid(int cpu, int pid)
859 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
862 static inline int cpupid_to_pid(int cpupid)
864 return cpupid & LAST__PID_MASK;
867 static inline int cpupid_to_cpu(int cpupid)
869 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
872 static inline int cpupid_to_nid(int cpupid)
874 return cpu_to_node(cpupid_to_cpu(cpupid));
877 static inline bool cpupid_pid_unset(int cpupid)
879 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
882 static inline bool cpupid_cpu_unset(int cpupid)
884 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
887 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
889 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
892 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
893 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
894 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
896 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
899 static inline int page_cpupid_last(struct page *page)
901 return page->_last_cpupid;
903 static inline void page_cpupid_reset_last(struct page *page)
905 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
908 static inline int page_cpupid_last(struct page *page)
910 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
913 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
915 static inline void page_cpupid_reset_last(struct page *page)
917 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
919 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
920 #else /* !CONFIG_NUMA_BALANCING */
921 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
923 return page_to_nid(page); /* XXX */
926 static inline int page_cpupid_last(struct page *page)
928 return page_to_nid(page); /* XXX */
931 static inline int cpupid_to_nid(int cpupid)
936 static inline int cpupid_to_pid(int cpupid)
941 static inline int cpupid_to_cpu(int cpupid)
946 static inline int cpu_pid_to_cpupid(int nid, int pid)
951 static inline bool cpupid_pid_unset(int cpupid)
956 static inline void page_cpupid_reset_last(struct page *page)
960 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
964 #endif /* CONFIG_NUMA_BALANCING */
966 static inline struct zone *page_zone(const struct page *page)
968 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
971 static inline pg_data_t *page_pgdat(const struct page *page)
973 return NODE_DATA(page_to_nid(page));
976 #ifdef SECTION_IN_PAGE_FLAGS
977 static inline void set_page_section(struct page *page, unsigned long section)
979 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
980 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
983 static inline unsigned long page_to_section(const struct page *page)
985 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
989 static inline void set_page_zone(struct page *page, enum zone_type zone)
991 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
992 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
995 static inline void set_page_node(struct page *page, unsigned long node)
997 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
998 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1001 static inline void set_page_links(struct page *page, enum zone_type zone,
1002 unsigned long node, unsigned long pfn)
1004 set_page_zone(page, zone);
1005 set_page_node(page, node);
1006 #ifdef SECTION_IN_PAGE_FLAGS
1007 set_page_section(page, pfn_to_section_nr(pfn));
1012 static inline struct mem_cgroup *page_memcg(struct page *page)
1014 return page->mem_cgroup;
1016 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1018 WARN_ON_ONCE(!rcu_read_lock_held());
1019 return READ_ONCE(page->mem_cgroup);
1022 static inline struct mem_cgroup *page_memcg(struct page *page)
1026 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1028 WARN_ON_ONCE(!rcu_read_lock_held());
1034 * Some inline functions in vmstat.h depend on page_zone()
1036 #include <linux/vmstat.h>
1038 static __always_inline void *lowmem_page_address(const struct page *page)
1040 return page_to_virt(page);
1043 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1044 #define HASHED_PAGE_VIRTUAL
1047 #if defined(WANT_PAGE_VIRTUAL)
1048 static inline void *page_address(const struct page *page)
1050 return page->virtual;
1052 static inline void set_page_address(struct page *page, void *address)
1054 page->virtual = address;
1056 #define page_address_init() do { } while(0)
1059 #if defined(HASHED_PAGE_VIRTUAL)
1060 void *page_address(const struct page *page);
1061 void set_page_address(struct page *page, void *virtual);
1062 void page_address_init(void);
1065 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1066 #define page_address(page) lowmem_page_address(page)
1067 #define set_page_address(page, address) do { } while(0)
1068 #define page_address_init() do { } while(0)
1071 extern void *page_rmapping(struct page *page);
1072 extern struct anon_vma *page_anon_vma(struct page *page);
1073 extern struct address_space *page_mapping(struct page *page);
1075 extern struct address_space *__page_file_mapping(struct page *);
1078 struct address_space *page_file_mapping(struct page *page)
1080 if (unlikely(PageSwapCache(page)))
1081 return __page_file_mapping(page);
1083 return page->mapping;
1086 extern pgoff_t __page_file_index(struct page *page);
1089 * Return the pagecache index of the passed page. Regular pagecache pages
1090 * use ->index whereas swapcache pages use swp_offset(->private)
1092 static inline pgoff_t page_index(struct page *page)
1094 if (unlikely(PageSwapCache(page)))
1095 return __page_file_index(page);
1099 bool page_mapped(struct page *page);
1100 struct address_space *page_mapping(struct page *page);
1103 * Return true only if the page has been allocated with
1104 * ALLOC_NO_WATERMARKS and the low watermark was not
1105 * met implying that the system is under some pressure.
1107 static inline bool page_is_pfmemalloc(struct page *page)
1110 * Page index cannot be this large so this must be
1111 * a pfmemalloc page.
1113 return page->index == -1UL;
1117 * Only to be called by the page allocator on a freshly allocated
1120 static inline void set_page_pfmemalloc(struct page *page)
1125 static inline void clear_page_pfmemalloc(struct page *page)
1131 * Different kinds of faults, as returned by handle_mm_fault().
1132 * Used to decide whether a process gets delivered SIGBUS or
1133 * just gets major/minor fault counters bumped up.
1136 #define VM_FAULT_OOM 0x0001
1137 #define VM_FAULT_SIGBUS 0x0002
1138 #define VM_FAULT_MAJOR 0x0004
1139 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1140 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1141 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1142 #define VM_FAULT_SIGSEGV 0x0040
1144 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1145 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1146 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1147 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1148 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
1150 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1152 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1153 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1156 #define VM_FAULT_RESULT_TRACE \
1157 { VM_FAULT_OOM, "OOM" }, \
1158 { VM_FAULT_SIGBUS, "SIGBUS" }, \
1159 { VM_FAULT_MAJOR, "MAJOR" }, \
1160 { VM_FAULT_WRITE, "WRITE" }, \
1161 { VM_FAULT_HWPOISON, "HWPOISON" }, \
1162 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \
1163 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \
1164 { VM_FAULT_NOPAGE, "NOPAGE" }, \
1165 { VM_FAULT_LOCKED, "LOCKED" }, \
1166 { VM_FAULT_RETRY, "RETRY" }, \
1167 { VM_FAULT_FALLBACK, "FALLBACK" }, \
1168 { VM_FAULT_DONE_COW, "DONE_COW" }
1170 /* Encode hstate index for a hwpoisoned large page */
1171 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1172 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1175 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1177 extern void pagefault_out_of_memory(void);
1179 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1182 * Flags passed to show_mem() and show_free_areas() to suppress output in
1185 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1187 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1189 extern bool can_do_mlock(void);
1190 extern int user_shm_lock(size_t, struct user_struct *);
1191 extern void user_shm_unlock(size_t, struct user_struct *);
1194 * Parameter block passed down to zap_pte_range in exceptional cases.
1196 struct zap_details {
1197 struct address_space *check_mapping; /* Check page->mapping if set */
1198 pgoff_t first_index; /* Lowest page->index to unmap */
1199 pgoff_t last_index; /* Highest page->index to unmap */
1202 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1204 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1207 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1208 unsigned long size);
1209 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1210 unsigned long size);
1211 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1212 unsigned long start, unsigned long end);
1215 * mm_walk - callbacks for walk_page_range
1216 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1217 * this handler should only handle pud_trans_huge() puds.
1218 * the pmd_entry or pte_entry callbacks will be used for
1220 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1221 * this handler is required to be able to handle
1222 * pmd_trans_huge() pmds. They may simply choose to
1223 * split_huge_page() instead of handling it explicitly.
1224 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1225 * @pte_hole: if set, called for each hole at all levels
1226 * @hugetlb_entry: if set, called for each hugetlb entry
1227 * @test_walk: caller specific callback function to determine whether
1228 * we walk over the current vma or not. Returning 0
1229 * value means "do page table walk over the current vma,"
1230 * and a negative one means "abort current page table walk
1231 * right now." 1 means "skip the current vma."
1232 * @mm: mm_struct representing the target process of page table walk
1233 * @vma: vma currently walked (NULL if walking outside vmas)
1234 * @private: private data for callbacks' usage
1236 * (see the comment on walk_page_range() for more details)
1239 int (*pud_entry)(pud_t *pud, unsigned long addr,
1240 unsigned long next, struct mm_walk *walk);
1241 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1242 unsigned long next, struct mm_walk *walk);
1243 int (*pte_entry)(pte_t *pte, unsigned long addr,
1244 unsigned long next, struct mm_walk *walk);
1245 int (*pte_hole)(unsigned long addr, unsigned long next,
1246 struct mm_walk *walk);
1247 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1248 unsigned long addr, unsigned long next,
1249 struct mm_walk *walk);
1250 int (*test_walk)(unsigned long addr, unsigned long next,
1251 struct mm_walk *walk);
1252 struct mm_struct *mm;
1253 struct vm_area_struct *vma;
1257 int walk_page_range(unsigned long addr, unsigned long end,
1258 struct mm_walk *walk);
1259 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1260 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1261 unsigned long end, unsigned long floor, unsigned long ceiling);
1262 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1263 struct vm_area_struct *vma);
1264 void unmap_mapping_range(struct address_space *mapping,
1265 loff_t const holebegin, loff_t const holelen, int even_cows);
1266 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1267 unsigned long *start, unsigned long *end,
1268 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1269 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1270 unsigned long *pfn);
1271 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1272 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1273 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1274 void *buf, int len, int write);
1276 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1277 loff_t const holebegin, loff_t const holelen)
1279 unmap_mapping_range(mapping, holebegin, holelen, 0);
1282 extern void truncate_pagecache(struct inode *inode, loff_t new);
1283 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1284 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1285 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1286 int truncate_inode_page(struct address_space *mapping, struct page *page);
1287 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1288 int invalidate_inode_page(struct page *page);
1291 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1292 unsigned int flags);
1293 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1294 unsigned long address, unsigned int fault_flags,
1297 static inline int handle_mm_fault(struct vm_area_struct *vma,
1298 unsigned long address, unsigned int flags)
1300 /* should never happen if there's no MMU */
1302 return VM_FAULT_SIGBUS;
1304 static inline int fixup_user_fault(struct task_struct *tsk,
1305 struct mm_struct *mm, unsigned long address,
1306 unsigned int fault_flags, bool *unlocked)
1308 /* should never happen if there's no MMU */
1314 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1315 unsigned int gup_flags);
1316 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1317 void *buf, int len, unsigned int gup_flags);
1318 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1319 unsigned long addr, void *buf, int len, unsigned int gup_flags);
1321 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1322 unsigned long start, unsigned long nr_pages,
1323 unsigned int gup_flags, struct page **pages,
1324 struct vm_area_struct **vmas, int *locked);
1325 long get_user_pages(unsigned long start, unsigned long nr_pages,
1326 unsigned int gup_flags, struct page **pages,
1327 struct vm_area_struct **vmas);
1328 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1329 unsigned int gup_flags, struct page **pages, int *locked);
1330 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1331 struct page **pages, unsigned int gup_flags);
1332 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1333 struct page **pages);
1335 /* Container for pinned pfns / pages */
1336 struct frame_vector {
1337 unsigned int nr_allocated; /* Number of frames we have space for */
1338 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1339 bool got_ref; /* Did we pin pages by getting page ref? */
1340 bool is_pfns; /* Does array contain pages or pfns? */
1341 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1342 * pfns_vector_pages() or pfns_vector_pfns()
1346 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1347 void frame_vector_destroy(struct frame_vector *vec);
1348 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1349 unsigned int gup_flags, struct frame_vector *vec);
1350 void put_vaddr_frames(struct frame_vector *vec);
1351 int frame_vector_to_pages(struct frame_vector *vec);
1352 void frame_vector_to_pfns(struct frame_vector *vec);
1354 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1356 return vec->nr_frames;
1359 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1362 int err = frame_vector_to_pages(vec);
1365 return ERR_PTR(err);
1367 return (struct page **)(vec->ptrs);
1370 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1373 frame_vector_to_pfns(vec);
1374 return (unsigned long *)(vec->ptrs);
1378 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1379 struct page **pages);
1380 int get_kernel_page(unsigned long start, int write, struct page **pages);
1381 struct page *get_dump_page(unsigned long addr);
1383 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1384 extern void do_invalidatepage(struct page *page, unsigned int offset,
1385 unsigned int length);
1387 int __set_page_dirty_nobuffers(struct page *page);
1388 int __set_page_dirty_no_writeback(struct page *page);
1389 int redirty_page_for_writepage(struct writeback_control *wbc,
1391 void account_page_dirtied(struct page *page, struct address_space *mapping);
1392 void account_page_cleaned(struct page *page, struct address_space *mapping,
1393 struct bdi_writeback *wb);
1394 int set_page_dirty(struct page *page);
1395 int set_page_dirty_lock(struct page *page);
1396 void cancel_dirty_page(struct page *page);
1397 int clear_page_dirty_for_io(struct page *page);
1399 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1401 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1403 return !vma->vm_ops;
1408 * The vma_is_shmem is not inline because it is used only by slow
1409 * paths in userfault.
1411 bool vma_is_shmem(struct vm_area_struct *vma);
1413 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1416 int vma_is_stack_for_current(struct vm_area_struct *vma);
1418 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1419 unsigned long old_addr, struct vm_area_struct *new_vma,
1420 unsigned long new_addr, unsigned long len,
1421 bool need_rmap_locks);
1422 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1423 unsigned long end, pgprot_t newprot,
1424 int dirty_accountable, int prot_numa);
1425 extern int mprotect_fixup(struct vm_area_struct *vma,
1426 struct vm_area_struct **pprev, unsigned long start,
1427 unsigned long end, unsigned long newflags);
1430 * doesn't attempt to fault and will return short.
1432 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1433 struct page **pages);
1435 * per-process(per-mm_struct) statistics.
1437 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1439 long val = atomic_long_read(&mm->rss_stat.count[member]);
1441 #ifdef SPLIT_RSS_COUNTING
1443 * counter is updated in asynchronous manner and may go to minus.
1444 * But it's never be expected number for users.
1449 return (unsigned long)val;
1452 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1454 atomic_long_add(value, &mm->rss_stat.count[member]);
1457 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1459 atomic_long_inc(&mm->rss_stat.count[member]);
1462 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1464 atomic_long_dec(&mm->rss_stat.count[member]);
1467 /* Optimized variant when page is already known not to be PageAnon */
1468 static inline int mm_counter_file(struct page *page)
1470 if (PageSwapBacked(page))
1471 return MM_SHMEMPAGES;
1472 return MM_FILEPAGES;
1475 static inline int mm_counter(struct page *page)
1478 return MM_ANONPAGES;
1479 return mm_counter_file(page);
1482 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1484 return get_mm_counter(mm, MM_FILEPAGES) +
1485 get_mm_counter(mm, MM_ANONPAGES) +
1486 get_mm_counter(mm, MM_SHMEMPAGES);
1489 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1491 return max(mm->hiwater_rss, get_mm_rss(mm));
1494 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1496 return max(mm->hiwater_vm, mm->total_vm);
1499 static inline void update_hiwater_rss(struct mm_struct *mm)
1501 unsigned long _rss = get_mm_rss(mm);
1503 if ((mm)->hiwater_rss < _rss)
1504 (mm)->hiwater_rss = _rss;
1507 static inline void update_hiwater_vm(struct mm_struct *mm)
1509 if (mm->hiwater_vm < mm->total_vm)
1510 mm->hiwater_vm = mm->total_vm;
1513 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1515 mm->hiwater_rss = get_mm_rss(mm);
1518 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1519 struct mm_struct *mm)
1521 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1523 if (*maxrss < hiwater_rss)
1524 *maxrss = hiwater_rss;
1527 #if defined(SPLIT_RSS_COUNTING)
1528 void sync_mm_rss(struct mm_struct *mm);
1530 static inline void sync_mm_rss(struct mm_struct *mm)
1535 #ifndef __HAVE_ARCH_PTE_DEVMAP
1536 static inline int pte_devmap(pte_t pte)
1542 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1544 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1546 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1550 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1554 #ifdef __PAGETABLE_P4D_FOLDED
1555 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1556 unsigned long address)
1561 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1564 #ifdef __PAGETABLE_PUD_FOLDED
1565 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1566 unsigned long address)
1571 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1574 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1575 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1576 unsigned long address)
1581 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1583 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1588 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1589 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1592 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1594 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1596 atomic_long_set(&mm->nr_pmds, 0);
1599 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1601 return atomic_long_read(&mm->nr_pmds);
1604 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1606 atomic_long_inc(&mm->nr_pmds);
1609 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1611 atomic_long_dec(&mm->nr_pmds);
1615 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1616 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1619 * The following ifdef needed to get the 4level-fixup.h header to work.
1620 * Remove it when 4level-fixup.h has been removed.
1622 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1624 #ifndef __ARCH_HAS_5LEVEL_HACK
1625 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1626 unsigned long address)
1628 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1629 NULL : p4d_offset(pgd, address);
1632 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1633 unsigned long address)
1635 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1636 NULL : pud_offset(p4d, address);
1638 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1640 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1642 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1643 NULL: pmd_offset(pud, address);
1645 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1647 #if USE_SPLIT_PTE_PTLOCKS
1648 #if ALLOC_SPLIT_PTLOCKS
1649 void __init ptlock_cache_init(void);
1650 extern bool ptlock_alloc(struct page *page);
1651 extern void ptlock_free(struct page *page);
1653 static inline spinlock_t *ptlock_ptr(struct page *page)
1657 #else /* ALLOC_SPLIT_PTLOCKS */
1658 static inline void ptlock_cache_init(void)
1662 static inline bool ptlock_alloc(struct page *page)
1667 static inline void ptlock_free(struct page *page)
1671 static inline spinlock_t *ptlock_ptr(struct page *page)
1675 #endif /* ALLOC_SPLIT_PTLOCKS */
1677 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1679 return ptlock_ptr(pmd_page(*pmd));
1682 static inline bool ptlock_init(struct page *page)
1685 * prep_new_page() initialize page->private (and therefore page->ptl)
1686 * with 0. Make sure nobody took it in use in between.
1688 * It can happen if arch try to use slab for page table allocation:
1689 * slab code uses page->slab_cache, which share storage with page->ptl.
1691 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1692 if (!ptlock_alloc(page))
1694 spin_lock_init(ptlock_ptr(page));
1698 /* Reset page->mapping so free_pages_check won't complain. */
1699 static inline void pte_lock_deinit(struct page *page)
1701 page->mapping = NULL;
1705 #else /* !USE_SPLIT_PTE_PTLOCKS */
1707 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1709 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1711 return &mm->page_table_lock;
1713 static inline void ptlock_cache_init(void) {}
1714 static inline bool ptlock_init(struct page *page) { return true; }
1715 static inline void pte_lock_deinit(struct page *page) {}
1716 #endif /* USE_SPLIT_PTE_PTLOCKS */
1718 static inline void pgtable_init(void)
1720 ptlock_cache_init();
1721 pgtable_cache_init();
1724 static inline bool pgtable_page_ctor(struct page *page)
1726 if (!ptlock_init(page))
1728 inc_zone_page_state(page, NR_PAGETABLE);
1732 static inline void pgtable_page_dtor(struct page *page)
1734 pte_lock_deinit(page);
1735 dec_zone_page_state(page, NR_PAGETABLE);
1738 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1740 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1741 pte_t *__pte = pte_offset_map(pmd, address); \
1747 #define pte_unmap_unlock(pte, ptl) do { \
1752 #define pte_alloc(mm, pmd, address) \
1753 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1755 #define pte_alloc_map(mm, pmd, address) \
1756 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1758 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1759 (pte_alloc(mm, pmd, address) ? \
1760 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1762 #define pte_alloc_kernel(pmd, address) \
1763 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1764 NULL: pte_offset_kernel(pmd, address))
1766 #if USE_SPLIT_PMD_PTLOCKS
1768 static struct page *pmd_to_page(pmd_t *pmd)
1770 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1771 return virt_to_page((void *)((unsigned long) pmd & mask));
1774 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1776 return ptlock_ptr(pmd_to_page(pmd));
1779 static inline bool pgtable_pmd_page_ctor(struct page *page)
1781 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1782 page->pmd_huge_pte = NULL;
1784 return ptlock_init(page);
1787 static inline void pgtable_pmd_page_dtor(struct page *page)
1789 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1790 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1795 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1799 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1801 return &mm->page_table_lock;
1804 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1805 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1807 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1811 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1813 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1819 * No scalability reason to split PUD locks yet, but follow the same pattern
1820 * as the PMD locks to make it easier if we decide to. The VM should not be
1821 * considered ready to switch to split PUD locks yet; there may be places
1822 * which need to be converted from page_table_lock.
1824 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1826 return &mm->page_table_lock;
1829 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1831 spinlock_t *ptl = pud_lockptr(mm, pud);
1837 extern void __init pagecache_init(void);
1838 extern void free_area_init(unsigned long * zones_size);
1839 extern void free_area_init_node(int nid, unsigned long * zones_size,
1840 unsigned long zone_start_pfn, unsigned long *zholes_size);
1841 extern void free_initmem(void);
1844 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1845 * into the buddy system. The freed pages will be poisoned with pattern
1846 * "poison" if it's within range [0, UCHAR_MAX].
1847 * Return pages freed into the buddy system.
1849 extern unsigned long free_reserved_area(void *start, void *end,
1850 int poison, char *s);
1852 #ifdef CONFIG_HIGHMEM
1854 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1855 * and totalram_pages.
1857 extern void free_highmem_page(struct page *page);
1860 extern void adjust_managed_page_count(struct page *page, long count);
1861 extern void mem_init_print_info(const char *str);
1863 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1865 /* Free the reserved page into the buddy system, so it gets managed. */
1866 static inline void __free_reserved_page(struct page *page)
1868 ClearPageReserved(page);
1869 init_page_count(page);
1873 static inline void free_reserved_page(struct page *page)
1875 __free_reserved_page(page);
1876 adjust_managed_page_count(page, 1);
1879 static inline void mark_page_reserved(struct page *page)
1881 SetPageReserved(page);
1882 adjust_managed_page_count(page, -1);
1886 * Default method to free all the __init memory into the buddy system.
1887 * The freed pages will be poisoned with pattern "poison" if it's within
1888 * range [0, UCHAR_MAX].
1889 * Return pages freed into the buddy system.
1891 static inline unsigned long free_initmem_default(int poison)
1893 extern char __init_begin[], __init_end[];
1895 return free_reserved_area(&__init_begin, &__init_end,
1896 poison, "unused kernel");
1899 static inline unsigned long get_num_physpages(void)
1902 unsigned long phys_pages = 0;
1904 for_each_online_node(nid)
1905 phys_pages += node_present_pages(nid);
1910 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1912 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1913 * zones, allocate the backing mem_map and account for memory holes in a more
1914 * architecture independent manner. This is a substitute for creating the
1915 * zone_sizes[] and zholes_size[] arrays and passing them to
1916 * free_area_init_node()
1918 * An architecture is expected to register range of page frames backed by
1919 * physical memory with memblock_add[_node]() before calling
1920 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1921 * usage, an architecture is expected to do something like
1923 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1925 * for_each_valid_physical_page_range()
1926 * memblock_add_node(base, size, nid)
1927 * free_area_init_nodes(max_zone_pfns);
1929 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1930 * registered physical page range. Similarly
1931 * sparse_memory_present_with_active_regions() calls memory_present() for
1932 * each range when SPARSEMEM is enabled.
1934 * See mm/page_alloc.c for more information on each function exposed by
1935 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1937 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1938 unsigned long node_map_pfn_alignment(void);
1939 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1940 unsigned long end_pfn);
1941 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1942 unsigned long end_pfn);
1943 extern void get_pfn_range_for_nid(unsigned int nid,
1944 unsigned long *start_pfn, unsigned long *end_pfn);
1945 extern unsigned long find_min_pfn_with_active_regions(void);
1946 extern void free_bootmem_with_active_regions(int nid,
1947 unsigned long max_low_pfn);
1948 extern void sparse_memory_present_with_active_regions(int nid);
1950 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1952 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1953 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1954 static inline int __early_pfn_to_nid(unsigned long pfn,
1955 struct mminit_pfnnid_cache *state)
1960 /* please see mm/page_alloc.c */
1961 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1962 /* there is a per-arch backend function. */
1963 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1964 struct mminit_pfnnid_cache *state);
1967 extern void set_dma_reserve(unsigned long new_dma_reserve);
1968 extern void memmap_init_zone(unsigned long, int, unsigned long,
1969 unsigned long, enum memmap_context);
1970 extern void setup_per_zone_wmarks(void);
1971 extern int __meminit init_per_zone_wmark_min(void);
1972 extern void mem_init(void);
1973 extern void __init mmap_init(void);
1974 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
1975 extern long si_mem_available(void);
1976 extern void si_meminfo(struct sysinfo * val);
1977 extern void si_meminfo_node(struct sysinfo *val, int nid);
1978 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1979 extern unsigned long arch_reserved_kernel_pages(void);
1982 extern __printf(3, 4)
1983 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
1985 extern void setup_per_cpu_pageset(void);
1987 extern void zone_pcp_update(struct zone *zone);
1988 extern void zone_pcp_reset(struct zone *zone);
1991 extern int min_free_kbytes;
1992 extern int watermark_scale_factor;
1995 extern atomic_long_t mmap_pages_allocated;
1996 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1998 /* interval_tree.c */
1999 void vma_interval_tree_insert(struct vm_area_struct *node,
2000 struct rb_root *root);
2001 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2002 struct vm_area_struct *prev,
2003 struct rb_root *root);
2004 void vma_interval_tree_remove(struct vm_area_struct *node,
2005 struct rb_root *root);
2006 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
2007 unsigned long start, unsigned long last);
2008 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2009 unsigned long start, unsigned long last);
2011 #define vma_interval_tree_foreach(vma, root, start, last) \
2012 for (vma = vma_interval_tree_iter_first(root, start, last); \
2013 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2015 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2016 struct rb_root *root);
2017 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2018 struct rb_root *root);
2019 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2020 struct rb_root *root, unsigned long start, unsigned long last);
2021 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2022 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2023 #ifdef CONFIG_DEBUG_VM_RB
2024 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2027 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2028 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2029 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2032 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2033 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2034 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2035 struct vm_area_struct *expand);
2036 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2037 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2039 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2041 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2042 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2043 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2044 struct mempolicy *, struct vm_userfaultfd_ctx);
2045 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2046 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2047 unsigned long addr, int new_below);
2048 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2049 unsigned long addr, int new_below);
2050 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2051 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2052 struct rb_node **, struct rb_node *);
2053 extern void unlink_file_vma(struct vm_area_struct *);
2054 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2055 unsigned long addr, unsigned long len, pgoff_t pgoff,
2056 bool *need_rmap_locks);
2057 extern void exit_mmap(struct mm_struct *);
2059 static inline int check_data_rlimit(unsigned long rlim,
2061 unsigned long start,
2062 unsigned long end_data,
2063 unsigned long start_data)
2065 if (rlim < RLIM_INFINITY) {
2066 if (((new - start) + (end_data - start_data)) > rlim)
2073 extern int mm_take_all_locks(struct mm_struct *mm);
2074 extern void mm_drop_all_locks(struct mm_struct *mm);
2076 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2077 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2078 extern struct file *get_task_exe_file(struct task_struct *task);
2080 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2081 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2083 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2084 const struct vm_special_mapping *sm);
2085 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2086 unsigned long addr, unsigned long len,
2087 unsigned long flags,
2088 const struct vm_special_mapping *spec);
2089 /* This is an obsolete alternative to _install_special_mapping. */
2090 extern int install_special_mapping(struct mm_struct *mm,
2091 unsigned long addr, unsigned long len,
2092 unsigned long flags, struct page **pages);
2094 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2096 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2097 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2098 struct list_head *uf);
2099 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2100 unsigned long len, unsigned long prot, unsigned long flags,
2101 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2102 struct list_head *uf);
2103 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2104 struct list_head *uf);
2106 static inline unsigned long
2107 do_mmap_pgoff(struct file *file, unsigned long addr,
2108 unsigned long len, unsigned long prot, unsigned long flags,
2109 unsigned long pgoff, unsigned long *populate,
2110 struct list_head *uf)
2112 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2116 extern int __mm_populate(unsigned long addr, unsigned long len,
2118 static inline void mm_populate(unsigned long addr, unsigned long len)
2121 (void) __mm_populate(addr, len, 1);
2124 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2127 /* These take the mm semaphore themselves */
2128 extern int __must_check vm_brk(unsigned long, unsigned long);
2129 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2130 extern int vm_munmap(unsigned long, size_t);
2131 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2132 unsigned long, unsigned long,
2133 unsigned long, unsigned long);
2135 struct vm_unmapped_area_info {
2136 #define VM_UNMAPPED_AREA_TOPDOWN 1
2137 unsigned long flags;
2138 unsigned long length;
2139 unsigned long low_limit;
2140 unsigned long high_limit;
2141 unsigned long align_mask;
2142 unsigned long align_offset;
2145 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2146 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2149 * Search for an unmapped address range.
2151 * We are looking for a range that:
2152 * - does not intersect with any VMA;
2153 * - is contained within the [low_limit, high_limit) interval;
2154 * - is at least the desired size.
2155 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2157 static inline unsigned long
2158 vm_unmapped_area(struct vm_unmapped_area_info *info)
2160 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2161 return unmapped_area_topdown(info);
2163 return unmapped_area(info);
2167 extern void truncate_inode_pages(struct address_space *, loff_t);
2168 extern void truncate_inode_pages_range(struct address_space *,
2169 loff_t lstart, loff_t lend);
2170 extern void truncate_inode_pages_final(struct address_space *);
2172 /* generic vm_area_ops exported for stackable file systems */
2173 extern int filemap_fault(struct vm_fault *vmf);
2174 extern void filemap_map_pages(struct vm_fault *vmf,
2175 pgoff_t start_pgoff, pgoff_t end_pgoff);
2176 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2178 /* mm/page-writeback.c */
2179 int __must_check write_one_page(struct page *page);
2180 void task_dirty_inc(struct task_struct *tsk);
2183 #define VM_MAX_READAHEAD 128 /* kbytes */
2184 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
2186 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2187 pgoff_t offset, unsigned long nr_to_read);
2189 void page_cache_sync_readahead(struct address_space *mapping,
2190 struct file_ra_state *ra,
2193 unsigned long size);
2195 void page_cache_async_readahead(struct address_space *mapping,
2196 struct file_ra_state *ra,
2200 unsigned long size);
2202 extern unsigned long stack_guard_gap;
2203 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2204 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2206 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2207 extern int expand_downwards(struct vm_area_struct *vma,
2208 unsigned long address);
2210 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2212 #define expand_upwards(vma, address) (0)
2215 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2216 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2217 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2218 struct vm_area_struct **pprev);
2220 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2221 NULL if none. Assume start_addr < end_addr. */
2222 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2224 struct vm_area_struct * vma = find_vma(mm,start_addr);
2226 if (vma && end_addr <= vma->vm_start)
2231 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2233 unsigned long vm_start = vma->vm_start;
2235 if (vma->vm_flags & VM_GROWSDOWN) {
2236 vm_start -= stack_guard_gap;
2237 if (vm_start > vma->vm_start)
2243 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2245 unsigned long vm_end = vma->vm_end;
2247 if (vma->vm_flags & VM_GROWSUP) {
2248 vm_end += stack_guard_gap;
2249 if (vm_end < vma->vm_end)
2250 vm_end = -PAGE_SIZE;
2255 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2257 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2260 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2261 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2262 unsigned long vm_start, unsigned long vm_end)
2264 struct vm_area_struct *vma = find_vma(mm, vm_start);
2266 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2273 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2274 void vma_set_page_prot(struct vm_area_struct *vma);
2276 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2280 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2282 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2286 #ifdef CONFIG_NUMA_BALANCING
2287 unsigned long change_prot_numa(struct vm_area_struct *vma,
2288 unsigned long start, unsigned long end);
2291 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2292 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2293 unsigned long pfn, unsigned long size, pgprot_t);
2294 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2295 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2297 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2298 unsigned long pfn, pgprot_t pgprot);
2299 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2301 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
2303 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2306 struct page *follow_page_mask(struct vm_area_struct *vma,
2307 unsigned long address, unsigned int foll_flags,
2308 unsigned int *page_mask);
2310 static inline struct page *follow_page(struct vm_area_struct *vma,
2311 unsigned long address, unsigned int foll_flags)
2313 unsigned int unused_page_mask;
2314 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2317 #define FOLL_WRITE 0x01 /* check pte is writable */
2318 #define FOLL_TOUCH 0x02 /* mark page accessed */
2319 #define FOLL_GET 0x04 /* do get_page on page */
2320 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2321 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2322 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2323 * and return without waiting upon it */
2324 #define FOLL_POPULATE 0x40 /* fault in page */
2325 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2326 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2327 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2328 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2329 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2330 #define FOLL_MLOCK 0x1000 /* lock present pages */
2331 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2332 #define FOLL_COW 0x4000 /* internal GUP flag */
2334 static inline int vm_fault_to_errno(int vm_fault, int foll_flags)
2336 if (vm_fault & VM_FAULT_OOM)
2338 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2339 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2340 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2345 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2347 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2348 unsigned long size, pte_fn_t fn, void *data);
2351 #ifdef CONFIG_PAGE_POISONING
2352 extern bool page_poisoning_enabled(void);
2353 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2354 extern bool page_is_poisoned(struct page *page);
2356 static inline bool page_poisoning_enabled(void) { return false; }
2357 static inline void kernel_poison_pages(struct page *page, int numpages,
2359 static inline bool page_is_poisoned(struct page *page) { return false; }
2362 #ifdef CONFIG_DEBUG_PAGEALLOC
2363 extern bool _debug_pagealloc_enabled;
2364 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2366 static inline bool debug_pagealloc_enabled(void)
2368 return _debug_pagealloc_enabled;
2372 kernel_map_pages(struct page *page, int numpages, int enable)
2374 if (!debug_pagealloc_enabled())
2377 __kernel_map_pages(page, numpages, enable);
2379 #ifdef CONFIG_HIBERNATION
2380 extern bool kernel_page_present(struct page *page);
2381 #endif /* CONFIG_HIBERNATION */
2382 #else /* CONFIG_DEBUG_PAGEALLOC */
2384 kernel_map_pages(struct page *page, int numpages, int enable) {}
2385 #ifdef CONFIG_HIBERNATION
2386 static inline bool kernel_page_present(struct page *page) { return true; }
2387 #endif /* CONFIG_HIBERNATION */
2388 static inline bool debug_pagealloc_enabled(void)
2392 #endif /* CONFIG_DEBUG_PAGEALLOC */
2394 #ifdef __HAVE_ARCH_GATE_AREA
2395 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2396 extern int in_gate_area_no_mm(unsigned long addr);
2397 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2399 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2403 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2404 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2408 #endif /* __HAVE_ARCH_GATE_AREA */
2410 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2412 #ifdef CONFIG_SYSCTL
2413 extern int sysctl_drop_caches;
2414 int drop_caches_sysctl_handler(struct ctl_table *, int,
2415 void __user *, size_t *, loff_t *);
2418 void drop_slab(void);
2419 void drop_slab_node(int nid);
2422 #define randomize_va_space 0
2424 extern int randomize_va_space;
2427 const char * arch_vma_name(struct vm_area_struct *vma);
2428 void print_vma_addr(char *prefix, unsigned long rip);
2430 void sparse_mem_maps_populate_node(struct page **map_map,
2431 unsigned long pnum_begin,
2432 unsigned long pnum_end,
2433 unsigned long map_count,
2436 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2437 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2438 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2439 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2440 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2441 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2442 void *vmemmap_alloc_block(unsigned long size, int node);
2444 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2445 struct vmem_altmap *altmap);
2446 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2448 return __vmemmap_alloc_block_buf(size, node, NULL);
2451 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2452 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2454 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2455 void vmemmap_populate_print_last(void);
2456 #ifdef CONFIG_MEMORY_HOTPLUG
2457 void vmemmap_free(unsigned long start, unsigned long end);
2459 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2460 unsigned long size);
2463 MF_COUNT_INCREASED = 1 << 0,
2464 MF_ACTION_REQUIRED = 1 << 1,
2465 MF_MUST_KILL = 1 << 2,
2466 MF_SOFT_OFFLINE = 1 << 3,
2468 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2469 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2470 extern int unpoison_memory(unsigned long pfn);
2471 extern int get_hwpoison_page(struct page *page);
2472 #define put_hwpoison_page(page) put_page(page)
2473 extern int sysctl_memory_failure_early_kill;
2474 extern int sysctl_memory_failure_recovery;
2475 extern void shake_page(struct page *p, int access);
2476 extern atomic_long_t num_poisoned_pages;
2477 extern int soft_offline_page(struct page *page, int flags);
2481 * Error handlers for various types of pages.
2484 MF_IGNORED, /* Error: cannot be handled */
2485 MF_FAILED, /* Error: handling failed */
2486 MF_DELAYED, /* Will be handled later */
2487 MF_RECOVERED, /* Successfully recovered */
2490 enum mf_action_page_type {
2492 MF_MSG_KERNEL_HIGH_ORDER,
2494 MF_MSG_DIFFERENT_COMPOUND,
2495 MF_MSG_POISONED_HUGE,
2498 MF_MSG_UNMAP_FAILED,
2499 MF_MSG_DIRTY_SWAPCACHE,
2500 MF_MSG_CLEAN_SWAPCACHE,
2501 MF_MSG_DIRTY_MLOCKED_LRU,
2502 MF_MSG_CLEAN_MLOCKED_LRU,
2503 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2504 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2507 MF_MSG_TRUNCATED_LRU,
2513 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2514 extern void clear_huge_page(struct page *page,
2515 unsigned long addr_hint,
2516 unsigned int pages_per_huge_page);
2517 extern void copy_user_huge_page(struct page *dst, struct page *src,
2518 unsigned long addr, struct vm_area_struct *vma,
2519 unsigned int pages_per_huge_page);
2520 extern long copy_huge_page_from_user(struct page *dst_page,
2521 const void __user *usr_src,
2522 unsigned int pages_per_huge_page,
2523 bool allow_pagefault);
2524 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2526 extern struct page_ext_operations debug_guardpage_ops;
2528 #ifdef CONFIG_DEBUG_PAGEALLOC
2529 extern unsigned int _debug_guardpage_minorder;
2530 extern bool _debug_guardpage_enabled;
2532 static inline unsigned int debug_guardpage_minorder(void)
2534 return _debug_guardpage_minorder;
2537 static inline bool debug_guardpage_enabled(void)
2539 return _debug_guardpage_enabled;
2542 static inline bool page_is_guard(struct page *page)
2544 struct page_ext *page_ext;
2546 if (!debug_guardpage_enabled())
2549 page_ext = lookup_page_ext(page);
2550 if (unlikely(!page_ext))
2553 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2556 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2557 static inline bool debug_guardpage_enabled(void) { return false; }
2558 static inline bool page_is_guard(struct page *page) { return false; }
2559 #endif /* CONFIG_DEBUG_PAGEALLOC */
2561 #if MAX_NUMNODES > 1
2562 void __init setup_nr_node_ids(void);
2564 static inline void setup_nr_node_ids(void) {}
2567 #endif /* __KERNEL__ */
2568 #endif /* _LINUX_MM_H */