2 * Copyright © 2012 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
28 #include <linux/cpufreq.h>
30 #include "intel_drv.h"
31 #include "../../../platform/x86/intel_ips.h"
32 #include <linux/module.h>
34 #define FORCEWAKE_ACK_TIMEOUT_MS 2
36 /* FBC, or Frame Buffer Compression, is a technique employed to compress the
37 * framebuffer contents in-memory, aiming at reducing the required bandwidth
38 * during in-memory transfers and, therefore, reduce the power packet.
40 * The benefits of FBC are mostly visible with solid backgrounds and
41 * variation-less patterns.
43 * FBC-related functionality can be enabled by the means of the
44 * i915.i915_enable_fbc parameter
47 static void i8xx_disable_fbc(struct drm_device *dev)
49 struct drm_i915_private *dev_priv = dev->dev_private;
52 /* Disable compression */
53 fbc_ctl = I915_READ(FBC_CONTROL);
54 if ((fbc_ctl & FBC_CTL_EN) == 0)
57 fbc_ctl &= ~FBC_CTL_EN;
58 I915_WRITE(FBC_CONTROL, fbc_ctl);
60 /* Wait for compressing bit to clear */
61 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
62 DRM_DEBUG_KMS("FBC idle timed out\n");
66 DRM_DEBUG_KMS("disabled FBC\n");
69 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
71 struct drm_device *dev = crtc->dev;
72 struct drm_i915_private *dev_priv = dev->dev_private;
73 struct drm_framebuffer *fb = crtc->fb;
74 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
75 struct drm_i915_gem_object *obj = intel_fb->obj;
76 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
79 u32 fbc_ctl, fbc_ctl2;
81 cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
82 if (fb->pitches[0] < cfb_pitch)
83 cfb_pitch = fb->pitches[0];
85 /* FBC_CTL wants 64B units */
86 cfb_pitch = (cfb_pitch / 64) - 1;
87 plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
90 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
91 I915_WRITE(FBC_TAG + (i * 4), 0);
94 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
96 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
97 I915_WRITE(FBC_FENCE_OFF, crtc->y);
100 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
102 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
103 fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
104 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
105 fbc_ctl |= obj->fence_reg;
106 I915_WRITE(FBC_CONTROL, fbc_ctl);
108 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
109 cfb_pitch, crtc->y, intel_crtc->plane);
112 static bool i8xx_fbc_enabled(struct drm_device *dev)
114 struct drm_i915_private *dev_priv = dev->dev_private;
116 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
119 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
121 struct drm_device *dev = crtc->dev;
122 struct drm_i915_private *dev_priv = dev->dev_private;
123 struct drm_framebuffer *fb = crtc->fb;
124 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
125 struct drm_i915_gem_object *obj = intel_fb->obj;
126 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
127 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
128 unsigned long stall_watermark = 200;
131 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
132 dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
133 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
135 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
136 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
137 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
138 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
141 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
143 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
146 static void g4x_disable_fbc(struct drm_device *dev)
148 struct drm_i915_private *dev_priv = dev->dev_private;
151 /* Disable compression */
152 dpfc_ctl = I915_READ(DPFC_CONTROL);
153 if (dpfc_ctl & DPFC_CTL_EN) {
154 dpfc_ctl &= ~DPFC_CTL_EN;
155 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
157 DRM_DEBUG_KMS("disabled FBC\n");
161 static bool g4x_fbc_enabled(struct drm_device *dev)
163 struct drm_i915_private *dev_priv = dev->dev_private;
165 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
168 static void sandybridge_blit_fbc_update(struct drm_device *dev)
170 struct drm_i915_private *dev_priv = dev->dev_private;
173 /* Make sure blitter notifies FBC of writes */
174 gen6_gt_force_wake_get(dev_priv);
175 blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
176 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
177 GEN6_BLITTER_LOCK_SHIFT;
178 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
179 blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
180 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
181 blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
182 GEN6_BLITTER_LOCK_SHIFT);
183 I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
184 POSTING_READ(GEN6_BLITTER_ECOSKPD);
185 gen6_gt_force_wake_put(dev_priv);
188 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
190 struct drm_device *dev = crtc->dev;
191 struct drm_i915_private *dev_priv = dev->dev_private;
192 struct drm_framebuffer *fb = crtc->fb;
193 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
194 struct drm_i915_gem_object *obj = intel_fb->obj;
195 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
196 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
197 unsigned long stall_watermark = 200;
200 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
201 dpfc_ctl &= DPFC_RESERVED;
202 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
203 /* Set persistent mode for front-buffer rendering, ala X. */
204 dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
205 dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
206 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
208 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
209 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
210 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
211 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
212 I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
214 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
217 I915_WRITE(SNB_DPFC_CTL_SA,
218 SNB_CPU_FENCE_ENABLE | obj->fence_reg);
219 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
220 sandybridge_blit_fbc_update(dev);
223 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
226 static void ironlake_disable_fbc(struct drm_device *dev)
228 struct drm_i915_private *dev_priv = dev->dev_private;
231 /* Disable compression */
232 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
233 if (dpfc_ctl & DPFC_CTL_EN) {
234 dpfc_ctl &= ~DPFC_CTL_EN;
235 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
237 DRM_DEBUG_KMS("disabled FBC\n");
241 static bool ironlake_fbc_enabled(struct drm_device *dev)
243 struct drm_i915_private *dev_priv = dev->dev_private;
245 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
248 bool intel_fbc_enabled(struct drm_device *dev)
250 struct drm_i915_private *dev_priv = dev->dev_private;
252 if (!dev_priv->display.fbc_enabled)
255 return dev_priv->display.fbc_enabled(dev);
258 static void intel_fbc_work_fn(struct work_struct *__work)
260 struct intel_fbc_work *work =
261 container_of(to_delayed_work(__work),
262 struct intel_fbc_work, work);
263 struct drm_device *dev = work->crtc->dev;
264 struct drm_i915_private *dev_priv = dev->dev_private;
266 mutex_lock(&dev->struct_mutex);
267 if (work == dev_priv->fbc_work) {
268 /* Double check that we haven't switched fb without cancelling
271 if (work->crtc->fb == work->fb) {
272 dev_priv->display.enable_fbc(work->crtc,
275 dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
276 dev_priv->cfb_fb = work->crtc->fb->base.id;
277 dev_priv->cfb_y = work->crtc->y;
280 dev_priv->fbc_work = NULL;
282 mutex_unlock(&dev->struct_mutex);
287 static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
289 if (dev_priv->fbc_work == NULL)
292 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
294 /* Synchronisation is provided by struct_mutex and checking of
295 * dev_priv->fbc_work, so we can perform the cancellation
296 * entirely asynchronously.
298 if (cancel_delayed_work(&dev_priv->fbc_work->work))
299 /* tasklet was killed before being run, clean up */
300 kfree(dev_priv->fbc_work);
302 /* Mark the work as no longer wanted so that if it does
303 * wake-up (because the work was already running and waiting
304 * for our mutex), it will discover that is no longer
307 dev_priv->fbc_work = NULL;
310 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
312 struct intel_fbc_work *work;
313 struct drm_device *dev = crtc->dev;
314 struct drm_i915_private *dev_priv = dev->dev_private;
316 if (!dev_priv->display.enable_fbc)
319 intel_cancel_fbc_work(dev_priv);
321 work = kzalloc(sizeof *work, GFP_KERNEL);
323 dev_priv->display.enable_fbc(crtc, interval);
329 work->interval = interval;
330 INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
332 dev_priv->fbc_work = work;
334 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
336 /* Delay the actual enabling to let pageflipping cease and the
337 * display to settle before starting the compression. Note that
338 * this delay also serves a second purpose: it allows for a
339 * vblank to pass after disabling the FBC before we attempt
340 * to modify the control registers.
342 * A more complicated solution would involve tracking vblanks
343 * following the termination of the page-flipping sequence
344 * and indeed performing the enable as a co-routine and not
345 * waiting synchronously upon the vblank.
347 schedule_delayed_work(&work->work, msecs_to_jiffies(50));
350 void intel_disable_fbc(struct drm_device *dev)
352 struct drm_i915_private *dev_priv = dev->dev_private;
354 intel_cancel_fbc_work(dev_priv);
356 if (!dev_priv->display.disable_fbc)
359 dev_priv->display.disable_fbc(dev);
360 dev_priv->cfb_plane = -1;
364 * intel_update_fbc - enable/disable FBC as needed
365 * @dev: the drm_device
367 * Set up the framebuffer compression hardware at mode set time. We
368 * enable it if possible:
369 * - plane A only (on pre-965)
370 * - no pixel mulitply/line duplication
371 * - no alpha buffer discard
373 * - framebuffer <= 2048 in width, 1536 in height
375 * We can't assume that any compression will take place (worst case),
376 * so the compressed buffer has to be the same size as the uncompressed
377 * one. It also must reside (along with the line length buffer) in
380 * We need to enable/disable FBC on a global basis.
382 void intel_update_fbc(struct drm_device *dev)
384 struct drm_i915_private *dev_priv = dev->dev_private;
385 struct drm_crtc *crtc = NULL, *tmp_crtc;
386 struct intel_crtc *intel_crtc;
387 struct drm_framebuffer *fb;
388 struct intel_framebuffer *intel_fb;
389 struct drm_i915_gem_object *obj;
395 if (!I915_HAS_FBC(dev))
399 * If FBC is already on, we just have to verify that we can
400 * keep it that way...
401 * Need to disable if:
402 * - more than one pipe is active
403 * - changing FBC params (stride, fence, mode)
404 * - new fb is too large to fit in compressed buffer
405 * - going to an unsupported config (interlace, pixel multiply, etc.)
407 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
408 if (tmp_crtc->enabled &&
409 !to_intel_crtc(tmp_crtc)->primary_disabled &&
412 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
413 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
420 if (!crtc || crtc->fb == NULL) {
421 DRM_DEBUG_KMS("no output, disabling\n");
422 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
426 intel_crtc = to_intel_crtc(crtc);
428 intel_fb = to_intel_framebuffer(fb);
431 enable_fbc = i915_enable_fbc;
432 if (enable_fbc < 0) {
433 DRM_DEBUG_KMS("fbc set to per-chip default\n");
435 if (INTEL_INFO(dev)->gen <= 6)
439 DRM_DEBUG_KMS("fbc disabled per module param\n");
440 dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
443 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
444 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
445 DRM_DEBUG_KMS("mode incompatible with compression, "
447 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
450 if ((crtc->mode.hdisplay > 2048) ||
451 (crtc->mode.vdisplay > 1536)) {
452 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
453 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
456 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
457 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
458 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
462 /* The use of a CPU fence is mandatory in order to detect writes
463 * by the CPU to the scanout and trigger updates to the FBC.
465 if (obj->tiling_mode != I915_TILING_X ||
466 obj->fence_reg == I915_FENCE_REG_NONE) {
467 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
468 dev_priv->no_fbc_reason = FBC_NOT_TILED;
472 /* If the kernel debugger is active, always disable compression */
476 if (i915_gem_stolen_setup_compression(dev, intel_fb->obj->base.size)) {
477 DRM_INFO("not enough stolen space for compressed buffer (need %zd bytes), disabling\n", intel_fb->obj->base.size);
478 DRM_INFO("hint: you may be able to increase stolen memory size in the BIOS to avoid this\n");
479 DRM_DEBUG_KMS("framebuffer too large, disabling compression\n");
480 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
484 /* If the scanout has not changed, don't modify the FBC settings.
485 * Note that we make the fundamental assumption that the fb->obj
486 * cannot be unpinned (and have its GTT offset and fence revoked)
487 * without first being decoupled from the scanout and FBC disabled.
489 if (dev_priv->cfb_plane == intel_crtc->plane &&
490 dev_priv->cfb_fb == fb->base.id &&
491 dev_priv->cfb_y == crtc->y)
494 if (intel_fbc_enabled(dev)) {
495 /* We update FBC along two paths, after changing fb/crtc
496 * configuration (modeswitching) and after page-flipping
497 * finishes. For the latter, we know that not only did
498 * we disable the FBC at the start of the page-flip
499 * sequence, but also more than one vblank has passed.
501 * For the former case of modeswitching, it is possible
502 * to switch between two FBC valid configurations
503 * instantaneously so we do need to disable the FBC
504 * before we can modify its control registers. We also
505 * have to wait for the next vblank for that to take
506 * effect. However, since we delay enabling FBC we can
507 * assume that a vblank has passed since disabling and
508 * that we can safely alter the registers in the deferred
511 * In the scenario that we go from a valid to invalid
512 * and then back to valid FBC configuration we have
513 * no strict enforcement that a vblank occurred since
514 * disabling the FBC. However, along all current pipe
515 * disabling paths we do need to wait for a vblank at
516 * some point. And we wait before enabling FBC anyway.
518 DRM_DEBUG_KMS("disabling active FBC for update\n");
519 intel_disable_fbc(dev);
522 intel_enable_fbc(crtc, 500);
526 /* Multiple disables should be harmless */
527 if (intel_fbc_enabled(dev)) {
528 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
529 intel_disable_fbc(dev);
531 i915_gem_stolen_cleanup_compression(dev);
534 static void i915_pineview_get_mem_freq(struct drm_device *dev)
536 drm_i915_private_t *dev_priv = dev->dev_private;
539 tmp = I915_READ(CLKCFG);
541 switch (tmp & CLKCFG_FSB_MASK) {
543 dev_priv->fsb_freq = 533; /* 133*4 */
546 dev_priv->fsb_freq = 800; /* 200*4 */
549 dev_priv->fsb_freq = 667; /* 167*4 */
552 dev_priv->fsb_freq = 400; /* 100*4 */
556 switch (tmp & CLKCFG_MEM_MASK) {
558 dev_priv->mem_freq = 533;
561 dev_priv->mem_freq = 667;
564 dev_priv->mem_freq = 800;
568 /* detect pineview DDR3 setting */
569 tmp = I915_READ(CSHRDDR3CTL);
570 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
573 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
575 drm_i915_private_t *dev_priv = dev->dev_private;
578 ddrpll = I915_READ16(DDRMPLL1);
579 csipll = I915_READ16(CSIPLL0);
581 switch (ddrpll & 0xff) {
583 dev_priv->mem_freq = 800;
586 dev_priv->mem_freq = 1066;
589 dev_priv->mem_freq = 1333;
592 dev_priv->mem_freq = 1600;
595 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
597 dev_priv->mem_freq = 0;
601 dev_priv->ips.r_t = dev_priv->mem_freq;
603 switch (csipll & 0x3ff) {
605 dev_priv->fsb_freq = 3200;
608 dev_priv->fsb_freq = 3733;
611 dev_priv->fsb_freq = 4266;
614 dev_priv->fsb_freq = 4800;
617 dev_priv->fsb_freq = 5333;
620 dev_priv->fsb_freq = 5866;
623 dev_priv->fsb_freq = 6400;
626 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
628 dev_priv->fsb_freq = 0;
632 if (dev_priv->fsb_freq == 3200) {
633 dev_priv->ips.c_m = 0;
634 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
635 dev_priv->ips.c_m = 1;
637 dev_priv->ips.c_m = 2;
641 static const struct cxsr_latency cxsr_latency_table[] = {
642 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
643 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
644 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
645 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
646 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
648 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
649 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
650 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
651 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
652 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
654 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
655 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
656 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
657 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
658 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
660 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
661 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
662 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
663 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
664 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
666 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
667 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
668 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
669 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
670 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
672 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
673 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
674 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
675 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
676 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
679 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
684 const struct cxsr_latency *latency;
687 if (fsb == 0 || mem == 0)
690 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
691 latency = &cxsr_latency_table[i];
692 if (is_desktop == latency->is_desktop &&
693 is_ddr3 == latency->is_ddr3 &&
694 fsb == latency->fsb_freq && mem == latency->mem_freq)
698 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
703 static void pineview_disable_cxsr(struct drm_device *dev)
705 struct drm_i915_private *dev_priv = dev->dev_private;
707 /* deactivate cxsr */
708 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
712 * Latency for FIFO fetches is dependent on several factors:
713 * - memory configuration (speed, channels)
715 * - current MCH state
716 * It can be fairly high in some situations, so here we assume a fairly
717 * pessimal value. It's a tradeoff between extra memory fetches (if we
718 * set this value too high, the FIFO will fetch frequently to stay full)
719 * and power consumption (set it too low to save power and we might see
720 * FIFO underruns and display "flicker").
722 * A value of 5us seems to be a good balance; safe for very low end
723 * platforms but not overly aggressive on lower latency configs.
725 static const int latency_ns = 5000;
727 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
729 struct drm_i915_private *dev_priv = dev->dev_private;
730 uint32_t dsparb = I915_READ(DSPARB);
733 size = dsparb & 0x7f;
735 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
737 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
738 plane ? "B" : "A", size);
743 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
745 struct drm_i915_private *dev_priv = dev->dev_private;
746 uint32_t dsparb = I915_READ(DSPARB);
749 size = dsparb & 0x1ff;
751 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
752 size >>= 1; /* Convert to cachelines */
754 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
755 plane ? "B" : "A", size);
760 static int i845_get_fifo_size(struct drm_device *dev, int plane)
762 struct drm_i915_private *dev_priv = dev->dev_private;
763 uint32_t dsparb = I915_READ(DSPARB);
766 size = dsparb & 0x7f;
767 size >>= 2; /* Convert to cachelines */
769 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
776 static int i830_get_fifo_size(struct drm_device *dev, int plane)
778 struct drm_i915_private *dev_priv = dev->dev_private;
779 uint32_t dsparb = I915_READ(DSPARB);
782 size = dsparb & 0x7f;
783 size >>= 1; /* Convert to cachelines */
785 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
786 plane ? "B" : "A", size);
791 /* Pineview has different values for various configs */
792 static const struct intel_watermark_params pineview_display_wm = {
793 PINEVIEW_DISPLAY_FIFO,
797 PINEVIEW_FIFO_LINE_SIZE
799 static const struct intel_watermark_params pineview_display_hplloff_wm = {
800 PINEVIEW_DISPLAY_FIFO,
802 PINEVIEW_DFT_HPLLOFF_WM,
804 PINEVIEW_FIFO_LINE_SIZE
806 static const struct intel_watermark_params pineview_cursor_wm = {
807 PINEVIEW_CURSOR_FIFO,
808 PINEVIEW_CURSOR_MAX_WM,
809 PINEVIEW_CURSOR_DFT_WM,
810 PINEVIEW_CURSOR_GUARD_WM,
811 PINEVIEW_FIFO_LINE_SIZE,
813 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
814 PINEVIEW_CURSOR_FIFO,
815 PINEVIEW_CURSOR_MAX_WM,
816 PINEVIEW_CURSOR_DFT_WM,
817 PINEVIEW_CURSOR_GUARD_WM,
818 PINEVIEW_FIFO_LINE_SIZE
820 static const struct intel_watermark_params g4x_wm_info = {
827 static const struct intel_watermark_params g4x_cursor_wm_info = {
834 static const struct intel_watermark_params valleyview_wm_info = {
835 VALLEYVIEW_FIFO_SIZE,
841 static const struct intel_watermark_params valleyview_cursor_wm_info = {
843 VALLEYVIEW_CURSOR_MAX_WM,
848 static const struct intel_watermark_params i965_cursor_wm_info = {
855 static const struct intel_watermark_params i945_wm_info = {
862 static const struct intel_watermark_params i915_wm_info = {
869 static const struct intel_watermark_params i855_wm_info = {
876 static const struct intel_watermark_params i830_wm_info = {
884 static const struct intel_watermark_params ironlake_display_wm_info = {
891 static const struct intel_watermark_params ironlake_cursor_wm_info = {
898 static const struct intel_watermark_params ironlake_display_srwm_info = {
900 ILK_DISPLAY_MAX_SRWM,
901 ILK_DISPLAY_DFT_SRWM,
905 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
913 static const struct intel_watermark_params sandybridge_display_wm_info = {
920 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
927 static const struct intel_watermark_params sandybridge_display_srwm_info = {
929 SNB_DISPLAY_MAX_SRWM,
930 SNB_DISPLAY_DFT_SRWM,
934 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
944 * intel_calculate_wm - calculate watermark level
945 * @clock_in_khz: pixel clock
946 * @wm: chip FIFO params
947 * @pixel_size: display pixel size
948 * @latency_ns: memory latency for the platform
950 * Calculate the watermark level (the level at which the display plane will
951 * start fetching from memory again). Each chip has a different display
952 * FIFO size and allocation, so the caller needs to figure that out and pass
953 * in the correct intel_watermark_params structure.
955 * As the pixel clock runs, the FIFO will be drained at a rate that depends
956 * on the pixel size. When it reaches the watermark level, it'll start
957 * fetching FIFO line sized based chunks from memory until the FIFO fills
958 * past the watermark point. If the FIFO drains completely, a FIFO underrun
959 * will occur, and a display engine hang could result.
961 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
962 const struct intel_watermark_params *wm,
965 unsigned long latency_ns)
967 long entries_required, wm_size;
970 * Note: we need to make sure we don't overflow for various clock &
972 * clocks go from a few thousand to several hundred thousand.
973 * latency is usually a few thousand
975 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
977 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
979 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
981 wm_size = fifo_size - (entries_required + wm->guard_size);
983 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
985 /* Don't promote wm_size to unsigned... */
986 if (wm_size > (long)wm->max_wm)
987 wm_size = wm->max_wm;
989 wm_size = wm->default_wm;
993 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
995 struct drm_crtc *crtc, *enabled = NULL;
997 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
998 if (crtc->enabled && crtc->fb) {
1008 static void pineview_update_wm(struct drm_device *dev)
1010 struct drm_i915_private *dev_priv = dev->dev_private;
1011 struct drm_crtc *crtc;
1012 const struct cxsr_latency *latency;
1016 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
1017 dev_priv->fsb_freq, dev_priv->mem_freq);
1019 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
1020 pineview_disable_cxsr(dev);
1024 crtc = single_enabled_crtc(dev);
1026 int clock = crtc->mode.clock;
1027 int pixel_size = crtc->fb->bits_per_pixel / 8;
1030 wm = intel_calculate_wm(clock, &pineview_display_wm,
1031 pineview_display_wm.fifo_size,
1032 pixel_size, latency->display_sr);
1033 reg = I915_READ(DSPFW1);
1034 reg &= ~DSPFW_SR_MASK;
1035 reg |= wm << DSPFW_SR_SHIFT;
1036 I915_WRITE(DSPFW1, reg);
1037 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
1040 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
1041 pineview_display_wm.fifo_size,
1042 pixel_size, latency->cursor_sr);
1043 reg = I915_READ(DSPFW3);
1044 reg &= ~DSPFW_CURSOR_SR_MASK;
1045 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
1046 I915_WRITE(DSPFW3, reg);
1048 /* Display HPLL off SR */
1049 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
1050 pineview_display_hplloff_wm.fifo_size,
1051 pixel_size, latency->display_hpll_disable);
1052 reg = I915_READ(DSPFW3);
1053 reg &= ~DSPFW_HPLL_SR_MASK;
1054 reg |= wm & DSPFW_HPLL_SR_MASK;
1055 I915_WRITE(DSPFW3, reg);
1057 /* cursor HPLL off SR */
1058 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
1059 pineview_display_hplloff_wm.fifo_size,
1060 pixel_size, latency->cursor_hpll_disable);
1061 reg = I915_READ(DSPFW3);
1062 reg &= ~DSPFW_HPLL_CURSOR_MASK;
1063 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
1064 I915_WRITE(DSPFW3, reg);
1065 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
1069 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
1070 DRM_DEBUG_KMS("Self-refresh is enabled\n");
1072 pineview_disable_cxsr(dev);
1073 DRM_DEBUG_KMS("Self-refresh is disabled\n");
1077 static bool g4x_compute_wm0(struct drm_device *dev,
1079 const struct intel_watermark_params *display,
1080 int display_latency_ns,
1081 const struct intel_watermark_params *cursor,
1082 int cursor_latency_ns,
1086 struct drm_crtc *crtc;
1087 int htotal, hdisplay, clock, pixel_size;
1088 int line_time_us, line_count;
1089 int entries, tlb_miss;
1091 crtc = intel_get_crtc_for_plane(dev, plane);
1092 if (crtc->fb == NULL || !crtc->enabled) {
1093 *cursor_wm = cursor->guard_size;
1094 *plane_wm = display->guard_size;
1098 htotal = crtc->mode.htotal;
1099 hdisplay = crtc->mode.hdisplay;
1100 clock = crtc->mode.clock;
1101 pixel_size = crtc->fb->bits_per_pixel / 8;
1103 /* Use the small buffer method to calculate plane watermark */
1104 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1105 tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
1107 entries += tlb_miss;
1108 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1109 *plane_wm = entries + display->guard_size;
1110 if (*plane_wm > (int)display->max_wm)
1111 *plane_wm = display->max_wm;
1113 /* Use the large buffer method to calculate cursor watermark */
1114 line_time_us = ((htotal * 1000) / clock);
1115 line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
1116 entries = line_count * 64 * pixel_size;
1117 tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
1119 entries += tlb_miss;
1120 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1121 *cursor_wm = entries + cursor->guard_size;
1122 if (*cursor_wm > (int)cursor->max_wm)
1123 *cursor_wm = (int)cursor->max_wm;
1129 * Check the wm result.
1131 * If any calculated watermark values is larger than the maximum value that
1132 * can be programmed into the associated watermark register, that watermark
1135 static bool g4x_check_srwm(struct drm_device *dev,
1136 int display_wm, int cursor_wm,
1137 const struct intel_watermark_params *display,
1138 const struct intel_watermark_params *cursor)
1140 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
1141 display_wm, cursor_wm);
1143 if (display_wm > display->max_wm) {
1144 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
1145 display_wm, display->max_wm);
1149 if (cursor_wm > cursor->max_wm) {
1150 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
1151 cursor_wm, cursor->max_wm);
1155 if (!(display_wm || cursor_wm)) {
1156 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
1163 static bool g4x_compute_srwm(struct drm_device *dev,
1166 const struct intel_watermark_params *display,
1167 const struct intel_watermark_params *cursor,
1168 int *display_wm, int *cursor_wm)
1170 struct drm_crtc *crtc;
1171 int hdisplay, htotal, pixel_size, clock;
1172 unsigned long line_time_us;
1173 int line_count, line_size;
1178 *display_wm = *cursor_wm = 0;
1182 crtc = intel_get_crtc_for_plane(dev, plane);
1183 hdisplay = crtc->mode.hdisplay;
1184 htotal = crtc->mode.htotal;
1185 clock = crtc->mode.clock;
1186 pixel_size = crtc->fb->bits_per_pixel / 8;
1188 line_time_us = (htotal * 1000) / clock;
1189 line_count = (latency_ns / line_time_us + 1000) / 1000;
1190 line_size = hdisplay * pixel_size;
1192 /* Use the minimum of the small and large buffer method for primary */
1193 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1194 large = line_count * line_size;
1196 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1197 *display_wm = entries + display->guard_size;
1199 /* calculate the self-refresh watermark for display cursor */
1200 entries = line_count * pixel_size * 64;
1201 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1202 *cursor_wm = entries + cursor->guard_size;
1204 return g4x_check_srwm(dev,
1205 *display_wm, *cursor_wm,
1209 static bool vlv_compute_drain_latency(struct drm_device *dev,
1211 int *plane_prec_mult,
1213 int *cursor_prec_mult,
1216 struct drm_crtc *crtc;
1217 int clock, pixel_size;
1220 crtc = intel_get_crtc_for_plane(dev, plane);
1221 if (crtc->fb == NULL || !crtc->enabled)
1224 clock = crtc->mode.clock; /* VESA DOT Clock */
1225 pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
1227 entries = (clock / 1000) * pixel_size;
1228 *plane_prec_mult = (entries > 256) ?
1229 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1230 *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
1233 entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
1234 *cursor_prec_mult = (entries > 256) ?
1235 DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
1236 *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
1242 * Update drain latency registers of memory arbiter
1244 * Valleyview SoC has a new memory arbiter and needs drain latency registers
1245 * to be programmed. Each plane has a drain latency multiplier and a drain
1249 static void vlv_update_drain_latency(struct drm_device *dev)
1251 struct drm_i915_private *dev_priv = dev->dev_private;
1252 int planea_prec, planea_dl, planeb_prec, planeb_dl;
1253 int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
1254 int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
1257 /* For plane A, Cursor A */
1258 if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
1259 &cursor_prec_mult, &cursora_dl)) {
1260 cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1261 DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
1262 planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1263 DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
1265 I915_WRITE(VLV_DDL1, cursora_prec |
1266 (cursora_dl << DDL_CURSORA_SHIFT) |
1267 planea_prec | planea_dl);
1270 /* For plane B, Cursor B */
1271 if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
1272 &cursor_prec_mult, &cursorb_dl)) {
1273 cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1274 DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
1275 planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
1276 DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
1278 I915_WRITE(VLV_DDL2, cursorb_prec |
1279 (cursorb_dl << DDL_CURSORB_SHIFT) |
1280 planeb_prec | planeb_dl);
1284 #define single_plane_enabled(mask) is_power_of_2(mask)
1286 static void valleyview_update_wm(struct drm_device *dev)
1288 static const int sr_latency_ns = 12000;
1289 struct drm_i915_private *dev_priv = dev->dev_private;
1290 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1291 int plane_sr, cursor_sr;
1292 unsigned int enabled = 0;
1294 vlv_update_drain_latency(dev);
1296 if (g4x_compute_wm0(dev, 0,
1297 &valleyview_wm_info, latency_ns,
1298 &valleyview_cursor_wm_info, latency_ns,
1299 &planea_wm, &cursora_wm))
1302 if (g4x_compute_wm0(dev, 1,
1303 &valleyview_wm_info, latency_ns,
1304 &valleyview_cursor_wm_info, latency_ns,
1305 &planeb_wm, &cursorb_wm))
1308 plane_sr = cursor_sr = 0;
1309 if (single_plane_enabled(enabled) &&
1310 g4x_compute_srwm(dev, ffs(enabled) - 1,
1312 &valleyview_wm_info,
1313 &valleyview_cursor_wm_info,
1314 &plane_sr, &cursor_sr))
1315 I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
1317 I915_WRITE(FW_BLC_SELF_VLV,
1318 I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
1320 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1321 planea_wm, cursora_wm,
1322 planeb_wm, cursorb_wm,
1323 plane_sr, cursor_sr);
1326 (plane_sr << DSPFW_SR_SHIFT) |
1327 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1328 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1331 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1332 (cursora_wm << DSPFW_CURSORA_SHIFT));
1334 (I915_READ(DSPFW3) | (cursor_sr << DSPFW_CURSOR_SR_SHIFT)));
1337 static void g4x_update_wm(struct drm_device *dev)
1339 static const int sr_latency_ns = 12000;
1340 struct drm_i915_private *dev_priv = dev->dev_private;
1341 int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1342 int plane_sr, cursor_sr;
1343 unsigned int enabled = 0;
1345 if (g4x_compute_wm0(dev, 0,
1346 &g4x_wm_info, latency_ns,
1347 &g4x_cursor_wm_info, latency_ns,
1348 &planea_wm, &cursora_wm))
1351 if (g4x_compute_wm0(dev, 1,
1352 &g4x_wm_info, latency_ns,
1353 &g4x_cursor_wm_info, latency_ns,
1354 &planeb_wm, &cursorb_wm))
1357 plane_sr = cursor_sr = 0;
1358 if (single_plane_enabled(enabled) &&
1359 g4x_compute_srwm(dev, ffs(enabled) - 1,
1362 &g4x_cursor_wm_info,
1363 &plane_sr, &cursor_sr))
1364 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1366 I915_WRITE(FW_BLC_SELF,
1367 I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
1369 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1370 planea_wm, cursora_wm,
1371 planeb_wm, cursorb_wm,
1372 plane_sr, cursor_sr);
1375 (plane_sr << DSPFW_SR_SHIFT) |
1376 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
1377 (planeb_wm << DSPFW_PLANEB_SHIFT) |
1380 (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
1381 (cursora_wm << DSPFW_CURSORA_SHIFT));
1382 /* HPLL off in SR has some issues on G4x... disable it */
1384 (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
1385 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1388 static void i965_update_wm(struct drm_device *dev)
1390 struct drm_i915_private *dev_priv = dev->dev_private;
1391 struct drm_crtc *crtc;
1395 /* Calc sr entries for one plane configs */
1396 crtc = single_enabled_crtc(dev);
1398 /* self-refresh has much higher latency */
1399 static const int sr_latency_ns = 12000;
1400 int clock = crtc->mode.clock;
1401 int htotal = crtc->mode.htotal;
1402 int hdisplay = crtc->mode.hdisplay;
1403 int pixel_size = crtc->fb->bits_per_pixel / 8;
1404 unsigned long line_time_us;
1407 line_time_us = ((htotal * 1000) / clock);
1409 /* Use ns/us then divide to preserve precision */
1410 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1411 pixel_size * hdisplay;
1412 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1413 srwm = I965_FIFO_SIZE - entries;
1417 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1420 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1422 entries = DIV_ROUND_UP(entries,
1423 i965_cursor_wm_info.cacheline_size);
1424 cursor_sr = i965_cursor_wm_info.fifo_size -
1425 (entries + i965_cursor_wm_info.guard_size);
1427 if (cursor_sr > i965_cursor_wm_info.max_wm)
1428 cursor_sr = i965_cursor_wm_info.max_wm;
1430 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1431 "cursor %d\n", srwm, cursor_sr);
1433 if (IS_CRESTLINE(dev))
1434 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
1436 /* Turn off self refresh if both pipes are enabled */
1437 if (IS_CRESTLINE(dev))
1438 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
1442 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1445 /* 965 has limitations... */
1446 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
1447 (8 << 16) | (8 << 8) | (8 << 0));
1448 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
1449 /* update cursor SR watermark */
1450 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
1453 static void i9xx_update_wm(struct drm_device *dev)
1455 struct drm_i915_private *dev_priv = dev->dev_private;
1456 const struct intel_watermark_params *wm_info;
1461 int planea_wm, planeb_wm;
1462 struct drm_crtc *crtc, *enabled = NULL;
1465 wm_info = &i945_wm_info;
1466 else if (!IS_GEN2(dev))
1467 wm_info = &i915_wm_info;
1469 wm_info = &i855_wm_info;
1471 fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1472 crtc = intel_get_crtc_for_plane(dev, 0);
1473 if (crtc->enabled && crtc->fb) {
1474 int cpp = crtc->fb->bits_per_pixel / 8;
1478 planea_wm = intel_calculate_wm(crtc->mode.clock,
1479 wm_info, fifo_size, cpp,
1483 planea_wm = fifo_size - wm_info->guard_size;
1485 fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1486 crtc = intel_get_crtc_for_plane(dev, 1);
1487 if (crtc->enabled && crtc->fb) {
1488 int cpp = crtc->fb->bits_per_pixel / 8;
1492 planeb_wm = intel_calculate_wm(crtc->mode.clock,
1493 wm_info, fifo_size, cpp,
1495 if (enabled == NULL)
1500 planeb_wm = fifo_size - wm_info->guard_size;
1502 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1505 * Overlay gets an aggressive default since video jitter is bad.
1509 /* Play safe and disable self-refresh before adjusting watermarks. */
1510 if (IS_I945G(dev) || IS_I945GM(dev))
1511 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
1512 else if (IS_I915GM(dev))
1513 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
1515 /* Calc sr entries for one plane configs */
1516 if (HAS_FW_BLC(dev) && enabled) {
1517 /* self-refresh has much higher latency */
1518 static const int sr_latency_ns = 6000;
1519 int clock = enabled->mode.clock;
1520 int htotal = enabled->mode.htotal;
1521 int hdisplay = enabled->mode.hdisplay;
1522 int pixel_size = enabled->fb->bits_per_pixel / 8;
1523 unsigned long line_time_us;
1526 line_time_us = (htotal * 1000) / clock;
1528 /* Use ns/us then divide to preserve precision */
1529 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1530 pixel_size * hdisplay;
1531 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1532 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1533 srwm = wm_info->fifo_size - entries;
1537 if (IS_I945G(dev) || IS_I945GM(dev))
1538 I915_WRITE(FW_BLC_SELF,
1539 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1540 else if (IS_I915GM(dev))
1541 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1544 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1545 planea_wm, planeb_wm, cwm, srwm);
1547 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1548 fwater_hi = (cwm & 0x1f);
1550 /* Set request length to 8 cachelines per fetch */
1551 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1552 fwater_hi = fwater_hi | (1 << 8);
1554 I915_WRITE(FW_BLC, fwater_lo);
1555 I915_WRITE(FW_BLC2, fwater_hi);
1557 if (HAS_FW_BLC(dev)) {
1559 if (IS_I945G(dev) || IS_I945GM(dev))
1560 I915_WRITE(FW_BLC_SELF,
1561 FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
1562 else if (IS_I915GM(dev))
1563 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
1564 DRM_DEBUG_KMS("memory self refresh enabled\n");
1566 DRM_DEBUG_KMS("memory self refresh disabled\n");
1570 static void i830_update_wm(struct drm_device *dev)
1572 struct drm_i915_private *dev_priv = dev->dev_private;
1573 struct drm_crtc *crtc;
1577 crtc = single_enabled_crtc(dev);
1581 planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
1582 dev_priv->display.get_fifo_size(dev, 0),
1584 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1585 fwater_lo |= (3<<8) | planea_wm;
1587 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1589 I915_WRITE(FW_BLC, fwater_lo);
1592 #define ILK_LP0_PLANE_LATENCY 700
1593 #define ILK_LP0_CURSOR_LATENCY 1300
1596 * Check the wm result.
1598 * If any calculated watermark values is larger than the maximum value that
1599 * can be programmed into the associated watermark register, that watermark
1602 static bool ironlake_check_srwm(struct drm_device *dev, int level,
1603 int fbc_wm, int display_wm, int cursor_wm,
1604 const struct intel_watermark_params *display,
1605 const struct intel_watermark_params *cursor)
1607 struct drm_i915_private *dev_priv = dev->dev_private;
1609 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
1610 " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
1612 if (fbc_wm > SNB_FBC_MAX_SRWM) {
1613 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
1614 fbc_wm, SNB_FBC_MAX_SRWM, level);
1616 /* fbc has it's own way to disable FBC WM */
1617 I915_WRITE(DISP_ARB_CTL,
1618 I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
1622 if (display_wm > display->max_wm) {
1623 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
1624 display_wm, SNB_DISPLAY_MAX_SRWM, level);
1628 if (cursor_wm > cursor->max_wm) {
1629 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
1630 cursor_wm, SNB_CURSOR_MAX_SRWM, level);
1634 if (!(fbc_wm || display_wm || cursor_wm)) {
1635 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
1643 * Compute watermark values of WM[1-3],
1645 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
1647 const struct intel_watermark_params *display,
1648 const struct intel_watermark_params *cursor,
1649 int *fbc_wm, int *display_wm, int *cursor_wm)
1651 struct drm_crtc *crtc;
1652 unsigned long line_time_us;
1653 int hdisplay, htotal, pixel_size, clock;
1654 int line_count, line_size;
1659 *fbc_wm = *display_wm = *cursor_wm = 0;
1663 crtc = intel_get_crtc_for_plane(dev, plane);
1664 hdisplay = crtc->mode.hdisplay;
1665 htotal = crtc->mode.htotal;
1666 clock = crtc->mode.clock;
1667 pixel_size = crtc->fb->bits_per_pixel / 8;
1669 line_time_us = (htotal * 1000) / clock;
1670 line_count = (latency_ns / line_time_us + 1000) / 1000;
1671 line_size = hdisplay * pixel_size;
1673 /* Use the minimum of the small and large buffer method for primary */
1674 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1675 large = line_count * line_size;
1677 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1678 *display_wm = entries + display->guard_size;
1682 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
1684 *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
1686 /* calculate the self-refresh watermark for display cursor */
1687 entries = line_count * pixel_size * 64;
1688 entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
1689 *cursor_wm = entries + cursor->guard_size;
1691 return ironlake_check_srwm(dev, level,
1692 *fbc_wm, *display_wm, *cursor_wm,
1696 static void ironlake_update_wm(struct drm_device *dev)
1698 struct drm_i915_private *dev_priv = dev->dev_private;
1699 int fbc_wm, plane_wm, cursor_wm;
1700 unsigned int enabled;
1703 if (g4x_compute_wm0(dev, 0,
1704 &ironlake_display_wm_info,
1705 ILK_LP0_PLANE_LATENCY,
1706 &ironlake_cursor_wm_info,
1707 ILK_LP0_CURSOR_LATENCY,
1708 &plane_wm, &cursor_wm)) {
1709 I915_WRITE(WM0_PIPEA_ILK,
1710 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1711 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1712 " plane %d, " "cursor: %d\n",
1713 plane_wm, cursor_wm);
1717 if (g4x_compute_wm0(dev, 1,
1718 &ironlake_display_wm_info,
1719 ILK_LP0_PLANE_LATENCY,
1720 &ironlake_cursor_wm_info,
1721 ILK_LP0_CURSOR_LATENCY,
1722 &plane_wm, &cursor_wm)) {
1723 I915_WRITE(WM0_PIPEB_ILK,
1724 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
1725 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1726 " plane %d, cursor: %d\n",
1727 plane_wm, cursor_wm);
1732 * Calculate and update the self-refresh watermark only when one
1733 * display plane is used.
1735 I915_WRITE(WM3_LP_ILK, 0);
1736 I915_WRITE(WM2_LP_ILK, 0);
1737 I915_WRITE(WM1_LP_ILK, 0);
1739 if (!single_plane_enabled(enabled))
1741 enabled = ffs(enabled) - 1;
1744 if (!ironlake_compute_srwm(dev, 1, enabled,
1745 ILK_READ_WM1_LATENCY() * 500,
1746 &ironlake_display_srwm_info,
1747 &ironlake_cursor_srwm_info,
1748 &fbc_wm, &plane_wm, &cursor_wm))
1751 I915_WRITE(WM1_LP_ILK,
1753 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1754 (fbc_wm << WM1_LP_FBC_SHIFT) |
1755 (plane_wm << WM1_LP_SR_SHIFT) |
1759 if (!ironlake_compute_srwm(dev, 2, enabled,
1760 ILK_READ_WM2_LATENCY() * 500,
1761 &ironlake_display_srwm_info,
1762 &ironlake_cursor_srwm_info,
1763 &fbc_wm, &plane_wm, &cursor_wm))
1766 I915_WRITE(WM2_LP_ILK,
1768 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1769 (fbc_wm << WM1_LP_FBC_SHIFT) |
1770 (plane_wm << WM1_LP_SR_SHIFT) |
1774 * WM3 is unsupported on ILK, probably because we don't have latency
1775 * data for that power state
1779 static void sandybridge_update_wm(struct drm_device *dev)
1781 struct drm_i915_private *dev_priv = dev->dev_private;
1782 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
1784 int fbc_wm, plane_wm, cursor_wm;
1785 unsigned int enabled;
1788 if (g4x_compute_wm0(dev, 0,
1789 &sandybridge_display_wm_info, latency,
1790 &sandybridge_cursor_wm_info, latency,
1791 &plane_wm, &cursor_wm)) {
1792 val = I915_READ(WM0_PIPEA_ILK);
1793 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1794 I915_WRITE(WM0_PIPEA_ILK, val |
1795 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1796 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
1797 " plane %d, " "cursor: %d\n",
1798 plane_wm, cursor_wm);
1802 if (g4x_compute_wm0(dev, 1,
1803 &sandybridge_display_wm_info, latency,
1804 &sandybridge_cursor_wm_info, latency,
1805 &plane_wm, &cursor_wm)) {
1806 val = I915_READ(WM0_PIPEB_ILK);
1807 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1808 I915_WRITE(WM0_PIPEB_ILK, val |
1809 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1810 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
1811 " plane %d, cursor: %d\n",
1812 plane_wm, cursor_wm);
1816 if ((dev_priv->num_pipe == 3) &&
1817 g4x_compute_wm0(dev, 2,
1818 &sandybridge_display_wm_info, latency,
1819 &sandybridge_cursor_wm_info, latency,
1820 &plane_wm, &cursor_wm)) {
1821 val = I915_READ(WM0_PIPEC_IVB);
1822 val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
1823 I915_WRITE(WM0_PIPEC_IVB, val |
1824 ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
1825 DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
1826 " plane %d, cursor: %d\n",
1827 plane_wm, cursor_wm);
1832 * Calculate and update the self-refresh watermark only when one
1833 * display plane is used.
1835 * SNB support 3 levels of watermark.
1837 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
1838 * and disabled in the descending order
1841 I915_WRITE(WM3_LP_ILK, 0);
1842 I915_WRITE(WM2_LP_ILK, 0);
1843 I915_WRITE(WM1_LP_ILK, 0);
1845 if (!single_plane_enabled(enabled) ||
1846 dev_priv->sprite_scaling_enabled)
1848 enabled = ffs(enabled) - 1;
1851 if (!ironlake_compute_srwm(dev, 1, enabled,
1852 SNB_READ_WM1_LATENCY() * 500,
1853 &sandybridge_display_srwm_info,
1854 &sandybridge_cursor_srwm_info,
1855 &fbc_wm, &plane_wm, &cursor_wm))
1858 I915_WRITE(WM1_LP_ILK,
1860 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1861 (fbc_wm << WM1_LP_FBC_SHIFT) |
1862 (plane_wm << WM1_LP_SR_SHIFT) |
1866 if (!ironlake_compute_srwm(dev, 2, enabled,
1867 SNB_READ_WM2_LATENCY() * 500,
1868 &sandybridge_display_srwm_info,
1869 &sandybridge_cursor_srwm_info,
1870 &fbc_wm, &plane_wm, &cursor_wm))
1873 I915_WRITE(WM2_LP_ILK,
1875 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1876 (fbc_wm << WM1_LP_FBC_SHIFT) |
1877 (plane_wm << WM1_LP_SR_SHIFT) |
1881 if (!ironlake_compute_srwm(dev, 3, enabled,
1882 SNB_READ_WM3_LATENCY() * 500,
1883 &sandybridge_display_srwm_info,
1884 &sandybridge_cursor_srwm_info,
1885 &fbc_wm, &plane_wm, &cursor_wm))
1888 I915_WRITE(WM3_LP_ILK,
1890 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
1891 (fbc_wm << WM1_LP_FBC_SHIFT) |
1892 (plane_wm << WM1_LP_SR_SHIFT) |
1897 haswell_update_linetime_wm(struct drm_device *dev, int pipe,
1898 struct drm_display_mode *mode)
1900 struct drm_i915_private *dev_priv = dev->dev_private;
1903 temp = I915_READ(PIPE_WM_LINETIME(pipe));
1904 temp &= ~PIPE_WM_LINETIME_MASK;
1906 /* The WM are computed with base on how long it takes to fill a single
1907 * row at the given clock rate, multiplied by 8.
1909 temp |= PIPE_WM_LINETIME_TIME(
1910 ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
1912 /* IPS watermarks are only used by pipe A, and are ignored by
1913 * pipes B and C. They are calculated similarly to the common
1914 * linetime values, except that we are using CD clock frequency
1915 * in MHz instead of pixel rate for the division.
1917 * This is a placeholder for the IPS watermark calculation code.
1920 I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
1924 sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
1925 uint32_t sprite_width, int pixel_size,
1926 const struct intel_watermark_params *display,
1927 int display_latency_ns, int *sprite_wm)
1929 struct drm_crtc *crtc;
1931 int entries, tlb_miss;
1933 crtc = intel_get_crtc_for_plane(dev, plane);
1934 if (crtc->fb == NULL || !crtc->enabled) {
1935 *sprite_wm = display->guard_size;
1939 clock = crtc->mode.clock;
1941 /* Use the small buffer method to calculate the sprite watermark */
1942 entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
1943 tlb_miss = display->fifo_size*display->cacheline_size -
1946 entries += tlb_miss;
1947 entries = DIV_ROUND_UP(entries, display->cacheline_size);
1948 *sprite_wm = entries + display->guard_size;
1949 if (*sprite_wm > (int)display->max_wm)
1950 *sprite_wm = display->max_wm;
1956 sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
1957 uint32_t sprite_width, int pixel_size,
1958 const struct intel_watermark_params *display,
1959 int latency_ns, int *sprite_wm)
1961 struct drm_crtc *crtc;
1962 unsigned long line_time_us;
1964 int line_count, line_size;
1973 crtc = intel_get_crtc_for_plane(dev, plane);
1974 clock = crtc->mode.clock;
1980 line_time_us = (sprite_width * 1000) / clock;
1981 if (!line_time_us) {
1986 line_count = (latency_ns / line_time_us + 1000) / 1000;
1987 line_size = sprite_width * pixel_size;
1989 /* Use the minimum of the small and large buffer method for primary */
1990 small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
1991 large = line_count * line_size;
1993 entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
1994 *sprite_wm = entries + display->guard_size;
1996 return *sprite_wm > 0x3ff ? false : true;
1999 static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
2000 uint32_t sprite_width, int pixel_size)
2002 struct drm_i915_private *dev_priv = dev->dev_private;
2003 int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
2010 reg = WM0_PIPEA_ILK;
2013 reg = WM0_PIPEB_ILK;
2016 reg = WM0_PIPEC_IVB;
2019 return; /* bad pipe */
2022 ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
2023 &sandybridge_display_wm_info,
2024 latency, &sprite_wm);
2026 DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
2031 val = I915_READ(reg);
2032 val &= ~WM0_PIPE_SPRITE_MASK;
2033 I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
2034 DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
2037 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2039 &sandybridge_display_srwm_info,
2040 SNB_READ_WM1_LATENCY() * 500,
2043 DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
2047 I915_WRITE(WM1S_LP_ILK, sprite_wm);
2049 /* Only IVB has two more LP watermarks for sprite */
2050 if (!IS_IVYBRIDGE(dev))
2053 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2055 &sandybridge_display_srwm_info,
2056 SNB_READ_WM2_LATENCY() * 500,
2059 DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
2063 I915_WRITE(WM2S_LP_IVB, sprite_wm);
2065 ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
2067 &sandybridge_display_srwm_info,
2068 SNB_READ_WM3_LATENCY() * 500,
2071 DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
2075 I915_WRITE(WM3S_LP_IVB, sprite_wm);
2079 * intel_update_watermarks - update FIFO watermark values based on current modes
2081 * Calculate watermark values for the various WM regs based on current mode
2082 * and plane configuration.
2084 * There are several cases to deal with here:
2085 * - normal (i.e. non-self-refresh)
2086 * - self-refresh (SR) mode
2087 * - lines are large relative to FIFO size (buffer can hold up to 2)
2088 * - lines are small relative to FIFO size (buffer can hold more than 2
2089 * lines), so need to account for TLB latency
2091 * The normal calculation is:
2092 * watermark = dotclock * bytes per pixel * latency
2093 * where latency is platform & configuration dependent (we assume pessimal
2096 * The SR calculation is:
2097 * watermark = (trunc(latency/line time)+1) * surface width *
2100 * line time = htotal / dotclock
2101 * surface width = hdisplay for normal plane and 64 for cursor
2102 * and latency is assumed to be high, as above.
2104 * The final value programmed to the register should always be rounded up,
2105 * and include an extra 2 entries to account for clock crossings.
2107 * We don't use the sprite, so we can ignore that. And on Crestline we have
2108 * to set the non-SR watermarks to 8.
2110 void intel_update_watermarks(struct drm_device *dev)
2112 struct drm_i915_private *dev_priv = dev->dev_private;
2114 if (dev_priv->display.update_wm)
2115 dev_priv->display.update_wm(dev);
2118 void intel_update_linetime_watermarks(struct drm_device *dev,
2119 int pipe, struct drm_display_mode *mode)
2121 struct drm_i915_private *dev_priv = dev->dev_private;
2123 if (dev_priv->display.update_linetime_wm)
2124 dev_priv->display.update_linetime_wm(dev, pipe, mode);
2127 void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
2128 uint32_t sprite_width, int pixel_size)
2130 struct drm_i915_private *dev_priv = dev->dev_private;
2132 if (dev_priv->display.update_sprite_wm)
2133 dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
2137 static struct drm_i915_gem_object *
2138 intel_alloc_context_page(struct drm_device *dev)
2140 struct drm_i915_gem_object *ctx;
2143 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2145 ctx = i915_gem_alloc_object(dev, 4096);
2147 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
2151 ret = i915_gem_object_pin(ctx, 4096, true, false);
2153 DRM_ERROR("failed to pin power context: %d\n", ret);
2157 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
2159 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
2166 i915_gem_object_unpin(ctx);
2168 drm_gem_object_unreference(&ctx->base);
2169 mutex_unlock(&dev->struct_mutex);
2174 * Lock protecting IPS related data structures
2176 DEFINE_SPINLOCK(mchdev_lock);
2178 /* Global for IPS driver to get at the current i915 device. Protected by
2180 static struct drm_i915_private *i915_mch_dev;
2182 bool ironlake_set_drps(struct drm_device *dev, u8 val)
2184 struct drm_i915_private *dev_priv = dev->dev_private;
2187 assert_spin_locked(&mchdev_lock);
2189 rgvswctl = I915_READ16(MEMSWCTL);
2190 if (rgvswctl & MEMCTL_CMD_STS) {
2191 DRM_DEBUG("gpu busy, RCS change rejected\n");
2192 return false; /* still busy with another command */
2195 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
2196 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
2197 I915_WRITE16(MEMSWCTL, rgvswctl);
2198 POSTING_READ16(MEMSWCTL);
2200 rgvswctl |= MEMCTL_CMD_STS;
2201 I915_WRITE16(MEMSWCTL, rgvswctl);
2206 static void ironlake_enable_drps(struct drm_device *dev)
2208 struct drm_i915_private *dev_priv = dev->dev_private;
2209 u32 rgvmodectl = I915_READ(MEMMODECTL);
2210 u8 fmax, fmin, fstart, vstart;
2212 spin_lock_irq(&mchdev_lock);
2214 /* Enable temp reporting */
2215 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
2216 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
2218 /* 100ms RC evaluation intervals */
2219 I915_WRITE(RCUPEI, 100000);
2220 I915_WRITE(RCDNEI, 100000);
2222 /* Set max/min thresholds to 90ms and 80ms respectively */
2223 I915_WRITE(RCBMAXAVG, 90000);
2224 I915_WRITE(RCBMINAVG, 80000);
2226 I915_WRITE(MEMIHYST, 1);
2228 /* Set up min, max, and cur for interrupt handling */
2229 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
2230 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
2231 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
2232 MEMMODE_FSTART_SHIFT;
2234 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
2237 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
2238 dev_priv->ips.fstart = fstart;
2240 dev_priv->ips.max_delay = fstart;
2241 dev_priv->ips.min_delay = fmin;
2242 dev_priv->ips.cur_delay = fstart;
2244 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
2245 fmax, fmin, fstart);
2247 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
2250 * Interrupts will be enabled in ironlake_irq_postinstall
2253 I915_WRITE(VIDSTART, vstart);
2254 POSTING_READ(VIDSTART);
2256 rgvmodectl |= MEMMODE_SWMODE_EN;
2257 I915_WRITE(MEMMODECTL, rgvmodectl);
2259 if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
2260 DRM_ERROR("stuck trying to change perf mode\n");
2263 ironlake_set_drps(dev, fstart);
2265 dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
2267 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
2268 dev_priv->ips.last_count2 = I915_READ(0x112f4);
2269 getrawmonotonic(&dev_priv->ips.last_time2);
2271 spin_unlock_irq(&mchdev_lock);
2274 static void ironlake_disable_drps(struct drm_device *dev)
2276 struct drm_i915_private *dev_priv = dev->dev_private;
2279 spin_lock_irq(&mchdev_lock);
2281 rgvswctl = I915_READ16(MEMSWCTL);
2283 /* Ack interrupts, disable EFC interrupt */
2284 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
2285 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
2286 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
2287 I915_WRITE(DEIIR, DE_PCU_EVENT);
2288 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
2290 /* Go back to the starting frequency */
2291 ironlake_set_drps(dev, dev_priv->ips.fstart);
2293 rgvswctl |= MEMCTL_CMD_STS;
2294 I915_WRITE(MEMSWCTL, rgvswctl);
2297 spin_unlock_irq(&mchdev_lock);
2300 /* There's a funny hw issue where the hw returns all 0 when reading from
2301 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
2302 * ourselves, instead of doing a rmw cycle (which might result in us clearing
2303 * all limits and the gpu stuck at whatever frequency it is at atm).
2305 static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
2311 if (*val >= dev_priv->rps.max_delay)
2312 *val = dev_priv->rps.max_delay;
2313 limits |= dev_priv->rps.max_delay << 24;
2315 /* Only set the down limit when we've reached the lowest level to avoid
2316 * getting more interrupts, otherwise leave this clear. This prevents a
2317 * race in the hw when coming out of rc6: There's a tiny window where
2318 * the hw runs at the minimal clock before selecting the desired
2319 * frequency, if the down threshold expires in that window we will not
2320 * receive a down interrupt. */
2321 if (*val <= dev_priv->rps.min_delay) {
2322 *val = dev_priv->rps.min_delay;
2323 limits |= dev_priv->rps.min_delay << 16;
2329 void gen6_set_rps(struct drm_device *dev, u8 val)
2331 struct drm_i915_private *dev_priv = dev->dev_private;
2332 u32 limits = gen6_rps_limits(dev_priv, &val);
2334 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2335 WARN_ON(val > dev_priv->rps.max_delay);
2336 WARN_ON(val < dev_priv->rps.min_delay);
2338 if (val == dev_priv->rps.cur_delay)
2341 I915_WRITE(GEN6_RPNSWREQ,
2342 GEN6_FREQUENCY(val) |
2344 GEN6_AGGRESSIVE_TURBO);
2346 /* Make sure we continue to get interrupts
2347 * until we hit the minimum or maximum frequencies.
2349 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
2351 POSTING_READ(GEN6_RPNSWREQ);
2353 dev_priv->rps.cur_delay = val;
2355 trace_intel_gpu_freq_change(val * 50);
2358 static void gen6_disable_rps(struct drm_device *dev)
2360 struct drm_i915_private *dev_priv = dev->dev_private;
2362 I915_WRITE(GEN6_RC_CONTROL, 0);
2363 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
2364 I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
2365 I915_WRITE(GEN6_PMIER, 0);
2366 /* Complete PM interrupt masking here doesn't race with the rps work
2367 * item again unmasking PM interrupts because that is using a different
2368 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
2369 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
2371 spin_lock_irq(&dev_priv->rps.lock);
2372 dev_priv->rps.pm_iir = 0;
2373 spin_unlock_irq(&dev_priv->rps.lock);
2375 I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
2378 int intel_enable_rc6(const struct drm_device *dev)
2380 /* Respect the kernel parameter if it is set */
2381 if (i915_enable_rc6 >= 0)
2382 return i915_enable_rc6;
2384 if (INTEL_INFO(dev)->gen == 5) {
2385 #ifdef CONFIG_INTEL_IOMMU
2386 /* Disable rc6 on ilk if VT-d is on. */
2387 if (intel_iommu_gfx_mapped)
2390 DRM_DEBUG_DRIVER("Ironlake: only RC6 available\n");
2391 return INTEL_RC6_ENABLE;
2394 if (IS_HASWELL(dev)) {
2395 DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
2396 return INTEL_RC6_ENABLE;
2399 /* snb/ivb have more than one rc6 state. */
2400 if (INTEL_INFO(dev)->gen == 6) {
2401 DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
2402 return INTEL_RC6_ENABLE;
2405 DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
2406 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
2409 static void gen6_enable_rps(struct drm_device *dev)
2411 struct drm_i915_private *dev_priv = dev->dev_private;
2412 struct intel_ring_buffer *ring;
2415 u32 rc6vids, pcu_mbox, rc6_mask = 0;
2420 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2422 /* Here begins a magic sequence of register writes to enable
2423 * auto-downclocking.
2425 * Perhaps there might be some value in exposing these to
2428 I915_WRITE(GEN6_RC_STATE, 0);
2430 /* Clear the DBG now so we don't confuse earlier errors */
2431 if ((gtfifodbg = I915_READ(GTFIFODBG))) {
2432 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
2433 I915_WRITE(GTFIFODBG, gtfifodbg);
2436 gen6_gt_force_wake_get(dev_priv);
2438 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
2439 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
2441 /* In units of 100MHz */
2442 dev_priv->rps.max_delay = rp_state_cap & 0xff;
2443 dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
2444 dev_priv->rps.cur_delay = 0;
2446 /* disable the counters and set deterministic thresholds */
2447 I915_WRITE(GEN6_RC_CONTROL, 0);
2449 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
2450 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
2451 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
2452 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
2453 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
2455 for_each_ring(ring, dev_priv, i)
2456 I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
2458 I915_WRITE(GEN6_RC_SLEEP, 0);
2459 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
2460 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
2461 I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
2462 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
2464 /* Check if we are enabling RC6 */
2465 rc6_mode = intel_enable_rc6(dev_priv->dev);
2466 if (rc6_mode & INTEL_RC6_ENABLE)
2467 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
2469 /* We don't use those on Haswell */
2470 if (!IS_HASWELL(dev)) {
2471 if (rc6_mode & INTEL_RC6p_ENABLE)
2472 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
2474 if (rc6_mode & INTEL_RC6pp_ENABLE)
2475 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
2478 DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
2479 (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
2480 (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
2481 (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
2483 I915_WRITE(GEN6_RC_CONTROL,
2485 GEN6_RC_CTL_EI_MODE(1) |
2486 GEN6_RC_CTL_HW_ENABLE);
2488 I915_WRITE(GEN6_RPNSWREQ,
2489 GEN6_FREQUENCY(10) |
2491 GEN6_AGGRESSIVE_TURBO);
2492 I915_WRITE(GEN6_RC_VIDEO_FREQ,
2493 GEN6_FREQUENCY(12));
2495 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
2496 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
2497 dev_priv->rps.max_delay << 24 |
2498 dev_priv->rps.min_delay << 16);
2500 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
2501 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
2502 I915_WRITE(GEN6_RP_UP_EI, 66000);
2503 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
2505 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
2506 I915_WRITE(GEN6_RP_CONTROL,
2507 GEN6_RP_MEDIA_TURBO |
2508 GEN6_RP_MEDIA_HW_NORMAL_MODE |
2509 GEN6_RP_MEDIA_IS_GFX |
2511 GEN6_RP_UP_BUSY_AVG |
2512 (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
2514 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
2517 ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
2518 if (ret && pcu_mbox & (1<<31)) { /* OC supported */
2519 dev_priv->rps.max_delay = pcu_mbox & 0xff;
2520 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
2523 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
2526 gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
2528 /* requires MSI enabled */
2529 I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
2530 spin_lock_irq(&dev_priv->rps.lock);
2531 WARN_ON(dev_priv->rps.pm_iir != 0);
2532 I915_WRITE(GEN6_PMIMR, 0);
2533 spin_unlock_irq(&dev_priv->rps.lock);
2534 /* enable all PM interrupts */
2535 I915_WRITE(GEN6_PMINTRMSK, 0);
2538 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
2539 if (IS_GEN6(dev) && ret) {
2540 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
2541 } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
2542 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
2543 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
2544 rc6vids &= 0xffff00;
2545 rc6vids |= GEN6_ENCODE_RC6_VID(450);
2546 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
2548 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
2551 gen6_gt_force_wake_put(dev_priv);
2554 static void gen6_update_ring_freq(struct drm_device *dev)
2556 struct drm_i915_private *dev_priv = dev->dev_private;
2559 unsigned int ia_freq, max_ia_freq;
2560 int scaling_factor = 180;
2562 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
2564 max_ia_freq = cpufreq_quick_get_max(0);
2566 * Default to measured freq if none found, PCU will ensure we don't go
2570 max_ia_freq = tsc_khz;
2572 /* Convert from kHz to MHz */
2573 max_ia_freq /= 1000;
2576 * For each potential GPU frequency, load a ring frequency we'd like
2577 * to use for memory access. We do this by specifying the IA frequency
2578 * the PCU should use as a reference to determine the ring frequency.
2580 for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
2582 int diff = dev_priv->rps.max_delay - gpu_freq;
2585 * For GPU frequencies less than 750MHz, just use the lowest
2588 if (gpu_freq < min_freq)
2591 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
2592 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
2593 ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
2595 sandybridge_pcode_write(dev_priv,
2596 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
2597 ia_freq | gpu_freq);
2601 void ironlake_teardown_rc6(struct drm_device *dev)
2603 struct drm_i915_private *dev_priv = dev->dev_private;
2605 if (dev_priv->ips.renderctx) {
2606 i915_gem_object_unpin(dev_priv->ips.renderctx);
2607 drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
2608 dev_priv->ips.renderctx = NULL;
2611 if (dev_priv->ips.pwrctx) {
2612 i915_gem_object_unpin(dev_priv->ips.pwrctx);
2613 drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
2614 dev_priv->ips.pwrctx = NULL;
2618 static void ironlake_disable_rc6(struct drm_device *dev)
2620 struct drm_i915_private *dev_priv = dev->dev_private;
2622 if (I915_READ(PWRCTXA)) {
2623 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
2624 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
2625 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
2628 I915_WRITE(PWRCTXA, 0);
2629 POSTING_READ(PWRCTXA);
2631 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2632 POSTING_READ(RSTDBYCTL);
2636 static int ironlake_setup_rc6(struct drm_device *dev)
2638 struct drm_i915_private *dev_priv = dev->dev_private;
2640 if (dev_priv->ips.renderctx == NULL)
2641 dev_priv->ips.renderctx = intel_alloc_context_page(dev);
2642 if (!dev_priv->ips.renderctx)
2645 if (dev_priv->ips.pwrctx == NULL)
2646 dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
2647 if (!dev_priv->ips.pwrctx) {
2648 ironlake_teardown_rc6(dev);
2655 static void ironlake_enable_rc6(struct drm_device *dev)
2657 struct drm_i915_private *dev_priv = dev->dev_private;
2658 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
2659 bool was_interruptible;
2662 /* rc6 disabled by default due to repeated reports of hanging during
2665 if (!intel_enable_rc6(dev))
2668 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2670 ret = ironlake_setup_rc6(dev);
2674 was_interruptible = dev_priv->mm.interruptible;
2675 dev_priv->mm.interruptible = false;
2678 * GPU can automatically power down the render unit if given a page
2681 ret = intel_ring_begin(ring, 6);
2683 ironlake_teardown_rc6(dev);
2684 dev_priv->mm.interruptible = was_interruptible;
2688 intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
2689 intel_ring_emit(ring, MI_SET_CONTEXT);
2690 intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
2692 MI_SAVE_EXT_STATE_EN |
2693 MI_RESTORE_EXT_STATE_EN |
2694 MI_RESTORE_INHIBIT);
2695 intel_ring_emit(ring, MI_SUSPEND_FLUSH);
2696 intel_ring_emit(ring, MI_NOOP);
2697 intel_ring_emit(ring, MI_FLUSH);
2698 intel_ring_advance(ring);
2701 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
2702 * does an implicit flush, combined with MI_FLUSH above, it should be
2703 * safe to assume that renderctx is valid
2705 ret = intel_ring_idle(ring);
2706 dev_priv->mm.interruptible = was_interruptible;
2708 DRM_ERROR("failed to enable ironlake power power savings\n");
2709 ironlake_teardown_rc6(dev);
2713 I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
2714 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
2717 static unsigned long intel_pxfreq(u32 vidfreq)
2720 int div = (vidfreq & 0x3f0000) >> 16;
2721 int post = (vidfreq & 0x3000) >> 12;
2722 int pre = (vidfreq & 0x7);
2727 freq = ((div * 133333) / ((1<<post) * pre));
2732 static const struct cparams {
2738 { 1, 1333, 301, 28664 },
2739 { 1, 1066, 294, 24460 },
2740 { 1, 800, 294, 25192 },
2741 { 0, 1333, 276, 27605 },
2742 { 0, 1066, 276, 27605 },
2743 { 0, 800, 231, 23784 },
2746 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
2748 u64 total_count, diff, ret;
2749 u32 count1, count2, count3, m = 0, c = 0;
2750 unsigned long now = jiffies_to_msecs(jiffies), diff1;
2753 assert_spin_locked(&mchdev_lock);
2755 diff1 = now - dev_priv->ips.last_time1;
2757 /* Prevent division-by-zero if we are asking too fast.
2758 * Also, we don't get interesting results if we are polling
2759 * faster than once in 10ms, so just return the saved value
2763 return dev_priv->ips.chipset_power;
2765 count1 = I915_READ(DMIEC);
2766 count2 = I915_READ(DDREC);
2767 count3 = I915_READ(CSIEC);
2769 total_count = count1 + count2 + count3;
2771 /* FIXME: handle per-counter overflow */
2772 if (total_count < dev_priv->ips.last_count1) {
2773 diff = ~0UL - dev_priv->ips.last_count1;
2774 diff += total_count;
2776 diff = total_count - dev_priv->ips.last_count1;
2779 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
2780 if (cparams[i].i == dev_priv->ips.c_m &&
2781 cparams[i].t == dev_priv->ips.r_t) {
2788 diff = div_u64(diff, diff1);
2789 ret = ((m * diff) + c);
2790 ret = div_u64(ret, 10);
2792 dev_priv->ips.last_count1 = total_count;
2793 dev_priv->ips.last_time1 = now;
2795 dev_priv->ips.chipset_power = ret;
2800 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
2804 if (dev_priv->info->gen != 5)
2807 spin_lock_irq(&mchdev_lock);
2809 val = __i915_chipset_val(dev_priv);
2811 spin_unlock_irq(&mchdev_lock);
2816 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
2818 unsigned long m, x, b;
2821 tsfs = I915_READ(TSFS);
2823 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
2824 x = I915_READ8(TR1);
2826 b = tsfs & TSFS_INTR_MASK;
2828 return ((m * x) / 127) - b;
2831 static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
2833 static const struct v_table {
2834 u16 vd; /* in .1 mil */
2835 u16 vm; /* in .1 mil */
2966 if (dev_priv->info->is_mobile)
2967 return v_table[pxvid].vm;
2969 return v_table[pxvid].vd;
2972 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
2974 struct timespec now, diff1;
2976 unsigned long diffms;
2979 assert_spin_locked(&mchdev_lock);
2981 getrawmonotonic(&now);
2982 diff1 = timespec_sub(now, dev_priv->ips.last_time2);
2984 /* Don't divide by 0 */
2985 diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
2989 count = I915_READ(GFXEC);
2991 if (count < dev_priv->ips.last_count2) {
2992 diff = ~0UL - dev_priv->ips.last_count2;
2995 diff = count - dev_priv->ips.last_count2;
2998 dev_priv->ips.last_count2 = count;
2999 dev_priv->ips.last_time2 = now;
3001 /* More magic constants... */
3003 diff = div_u64(diff, diffms * 10);
3004 dev_priv->ips.gfx_power = diff;
3007 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
3009 if (dev_priv->info->gen != 5)
3012 spin_lock_irq(&mchdev_lock);
3014 __i915_update_gfx_val(dev_priv);
3016 spin_unlock_irq(&mchdev_lock);
3019 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
3021 unsigned long t, corr, state1, corr2, state2;
3024 assert_spin_locked(&mchdev_lock);
3026 pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
3027 pxvid = (pxvid >> 24) & 0x7f;
3028 ext_v = pvid_to_extvid(dev_priv, pxvid);
3032 t = i915_mch_val(dev_priv);
3034 /* Revel in the empirically derived constants */
3036 /* Correction factor in 1/100000 units */
3038 corr = ((t * 2349) + 135940);
3040 corr = ((t * 964) + 29317);
3042 corr = ((t * 301) + 1004);
3044 corr = corr * ((150142 * state1) / 10000 - 78642);
3046 corr2 = (corr * dev_priv->ips.corr);
3048 state2 = (corr2 * state1) / 10000;
3049 state2 /= 100; /* convert to mW */
3051 __i915_update_gfx_val(dev_priv);
3053 return dev_priv->ips.gfx_power + state2;
3056 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
3060 if (dev_priv->info->gen != 5)
3063 spin_lock_irq(&mchdev_lock);
3065 val = __i915_gfx_val(dev_priv);
3067 spin_unlock_irq(&mchdev_lock);
3073 * i915_read_mch_val - return value for IPS use
3075 * Calculate and return a value for the IPS driver to use when deciding whether
3076 * we have thermal and power headroom to increase CPU or GPU power budget.
3078 unsigned long i915_read_mch_val(void)
3080 struct drm_i915_private *dev_priv;
3081 unsigned long chipset_val, graphics_val, ret = 0;
3083 spin_lock_irq(&mchdev_lock);
3086 dev_priv = i915_mch_dev;
3088 chipset_val = __i915_chipset_val(dev_priv);
3089 graphics_val = __i915_gfx_val(dev_priv);
3091 ret = chipset_val + graphics_val;
3094 spin_unlock_irq(&mchdev_lock);
3098 EXPORT_SYMBOL_GPL(i915_read_mch_val);
3101 * i915_gpu_raise - raise GPU frequency limit
3103 * Raise the limit; IPS indicates we have thermal headroom.
3105 bool i915_gpu_raise(void)
3107 struct drm_i915_private *dev_priv;
3110 spin_lock_irq(&mchdev_lock);
3111 if (!i915_mch_dev) {
3115 dev_priv = i915_mch_dev;
3117 if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
3118 dev_priv->ips.max_delay--;
3121 spin_unlock_irq(&mchdev_lock);
3125 EXPORT_SYMBOL_GPL(i915_gpu_raise);
3128 * i915_gpu_lower - lower GPU frequency limit
3130 * IPS indicates we're close to a thermal limit, so throttle back the GPU
3131 * frequency maximum.
3133 bool i915_gpu_lower(void)
3135 struct drm_i915_private *dev_priv;
3138 spin_lock_irq(&mchdev_lock);
3139 if (!i915_mch_dev) {
3143 dev_priv = i915_mch_dev;
3145 if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
3146 dev_priv->ips.max_delay++;
3149 spin_unlock_irq(&mchdev_lock);
3153 EXPORT_SYMBOL_GPL(i915_gpu_lower);
3156 * i915_gpu_busy - indicate GPU business to IPS
3158 * Tell the IPS driver whether or not the GPU is busy.
3160 bool i915_gpu_busy(void)
3162 struct drm_i915_private *dev_priv;
3163 struct intel_ring_buffer *ring;
3167 spin_lock_irq(&mchdev_lock);
3170 dev_priv = i915_mch_dev;
3172 for_each_ring(ring, dev_priv, i)
3173 ret |= !list_empty(&ring->request_list);
3176 spin_unlock_irq(&mchdev_lock);
3180 EXPORT_SYMBOL_GPL(i915_gpu_busy);
3183 * i915_gpu_turbo_disable - disable graphics turbo
3185 * Disable graphics turbo by resetting the max frequency and setting the
3186 * current frequency to the default.
3188 bool i915_gpu_turbo_disable(void)
3190 struct drm_i915_private *dev_priv;
3193 spin_lock_irq(&mchdev_lock);
3194 if (!i915_mch_dev) {
3198 dev_priv = i915_mch_dev;
3200 dev_priv->ips.max_delay = dev_priv->ips.fstart;
3202 if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
3206 spin_unlock_irq(&mchdev_lock);
3210 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
3213 * Tells the intel_ips driver that the i915 driver is now loaded, if
3214 * IPS got loaded first.
3216 * This awkward dance is so that neither module has to depend on the
3217 * other in order for IPS to do the appropriate communication of
3218 * GPU turbo limits to i915.
3221 ips_ping_for_i915_load(void)
3225 link = symbol_get(ips_link_to_i915_driver);
3228 symbol_put(ips_link_to_i915_driver);
3232 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
3234 /* We only register the i915 ips part with intel-ips once everything is
3235 * set up, to avoid intel-ips sneaking in and reading bogus values. */
3236 spin_lock_irq(&mchdev_lock);
3237 i915_mch_dev = dev_priv;
3238 spin_unlock_irq(&mchdev_lock);
3240 ips_ping_for_i915_load();
3243 void intel_gpu_ips_teardown(void)
3245 spin_lock_irq(&mchdev_lock);
3246 i915_mch_dev = NULL;
3247 spin_unlock_irq(&mchdev_lock);
3249 static void intel_init_emon(struct drm_device *dev)
3251 struct drm_i915_private *dev_priv = dev->dev_private;
3256 /* Disable to program */
3260 /* Program energy weights for various events */
3261 I915_WRITE(SDEW, 0x15040d00);
3262 I915_WRITE(CSIEW0, 0x007f0000);
3263 I915_WRITE(CSIEW1, 0x1e220004);
3264 I915_WRITE(CSIEW2, 0x04000004);
3266 for (i = 0; i < 5; i++)
3267 I915_WRITE(PEW + (i * 4), 0);
3268 for (i = 0; i < 3; i++)
3269 I915_WRITE(DEW + (i * 4), 0);
3271 /* Program P-state weights to account for frequency power adjustment */
3272 for (i = 0; i < 16; i++) {
3273 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
3274 unsigned long freq = intel_pxfreq(pxvidfreq);
3275 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
3280 val *= (freq / 1000);
3282 val /= (127*127*900);
3284 DRM_ERROR("bad pxval: %ld\n", val);
3287 /* Render standby states get 0 weight */
3291 for (i = 0; i < 4; i++) {
3292 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
3293 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
3294 I915_WRITE(PXW + (i * 4), val);
3297 /* Adjust magic regs to magic values (more experimental results) */
3298 I915_WRITE(OGW0, 0);
3299 I915_WRITE(OGW1, 0);
3300 I915_WRITE(EG0, 0x00007f00);
3301 I915_WRITE(EG1, 0x0000000e);
3302 I915_WRITE(EG2, 0x000e0000);
3303 I915_WRITE(EG3, 0x68000300);
3304 I915_WRITE(EG4, 0x42000000);
3305 I915_WRITE(EG5, 0x00140031);
3309 for (i = 0; i < 8; i++)
3310 I915_WRITE(PXWL + (i * 4), 0);
3312 /* Enable PMON + select events */
3313 I915_WRITE(ECR, 0x80000019);
3315 lcfuse = I915_READ(LCFUSE02);
3317 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
3320 void intel_disable_gt_powersave(struct drm_device *dev)
3322 struct drm_i915_private *dev_priv = dev->dev_private;
3324 if (IS_IRONLAKE_M(dev)) {
3325 ironlake_disable_drps(dev);
3326 ironlake_disable_rc6(dev);
3327 } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
3328 cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
3329 mutex_lock(&dev_priv->rps.hw_lock);
3330 gen6_disable_rps(dev);
3331 mutex_unlock(&dev_priv->rps.hw_lock);
3335 static void intel_gen6_powersave_work(struct work_struct *work)
3337 struct drm_i915_private *dev_priv =
3338 container_of(work, struct drm_i915_private,
3339 rps.delayed_resume_work.work);
3340 struct drm_device *dev = dev_priv->dev;
3342 mutex_lock(&dev_priv->rps.hw_lock);
3343 gen6_enable_rps(dev);
3344 gen6_update_ring_freq(dev);
3345 mutex_unlock(&dev_priv->rps.hw_lock);
3348 void intel_enable_gt_powersave(struct drm_device *dev)
3350 struct drm_i915_private *dev_priv = dev->dev_private;
3352 if (IS_IRONLAKE_M(dev)) {
3353 ironlake_enable_drps(dev);
3354 ironlake_enable_rc6(dev);
3355 intel_init_emon(dev);
3356 } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
3358 * PCU communication is slow and this doesn't need to be
3359 * done at any specific time, so do this out of our fast path
3360 * to make resume and init faster.
3362 schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
3363 round_jiffies_up_relative(HZ));
3367 static void ibx_init_clock_gating(struct drm_device *dev)
3369 struct drm_i915_private *dev_priv = dev->dev_private;
3372 * On Ibex Peak and Cougar Point, we need to disable clock
3373 * gating for the panel power sequencer or it will fail to
3374 * start up when no ports are active.
3376 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3379 static void ironlake_init_clock_gating(struct drm_device *dev)
3381 struct drm_i915_private *dev_priv = dev->dev_private;
3382 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3384 /* Required for FBC */
3385 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
3386 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
3387 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
3389 I915_WRITE(PCH_3DCGDIS0,
3390 MARIUNIT_CLOCK_GATE_DISABLE |
3391 SVSMUNIT_CLOCK_GATE_DISABLE);
3392 I915_WRITE(PCH_3DCGDIS1,
3393 VFMUNIT_CLOCK_GATE_DISABLE);
3396 * According to the spec the following bits should be set in
3397 * order to enable memory self-refresh
3398 * The bit 22/21 of 0x42004
3399 * The bit 5 of 0x42020
3400 * The bit 15 of 0x45000
3402 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3403 (I915_READ(ILK_DISPLAY_CHICKEN2) |
3404 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
3405 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
3406 I915_WRITE(DISP_ARB_CTL,
3407 (I915_READ(DISP_ARB_CTL) |
3409 I915_WRITE(WM3_LP_ILK, 0);
3410 I915_WRITE(WM2_LP_ILK, 0);
3411 I915_WRITE(WM1_LP_ILK, 0);
3414 * Based on the document from hardware guys the following bits
3415 * should be set unconditionally in order to enable FBC.
3416 * The bit 22 of 0x42000
3417 * The bit 22 of 0x42004
3418 * The bit 7,8,9 of 0x42020.
3420 if (IS_IRONLAKE_M(dev)) {
3421 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3422 I915_READ(ILK_DISPLAY_CHICKEN1) |
3424 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3425 I915_READ(ILK_DISPLAY_CHICKEN2) |
3429 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3431 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3432 I915_READ(ILK_DISPLAY_CHICKEN2) |
3433 ILK_ELPIN_409_SELECT);
3434 I915_WRITE(_3D_CHICKEN2,
3435 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
3436 _3D_CHICKEN2_WM_READ_PIPELINED);
3438 /* WaDisableRenderCachePipelinedFlush */
3439 I915_WRITE(CACHE_MODE_0,
3440 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3442 ibx_init_clock_gating(dev);
3445 static void cpt_init_clock_gating(struct drm_device *dev)
3447 struct drm_i915_private *dev_priv = dev->dev_private;
3451 * On Ibex Peak and Cougar Point, we need to disable clock
3452 * gating for the panel power sequencer or it will fail to
3453 * start up when no ports are active.
3455 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
3456 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
3457 DPLS_EDP_PPS_FIX_DIS);
3458 /* WADP0ClockGatingDisable */
3459 for_each_pipe(pipe) {
3460 I915_WRITE(TRANS_CHICKEN1(pipe),
3461 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
3465 static void gen6_init_clock_gating(struct drm_device *dev)
3467 struct drm_i915_private *dev_priv = dev->dev_private;
3469 uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
3471 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
3473 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3474 I915_READ(ILK_DISPLAY_CHICKEN2) |
3475 ILK_ELPIN_409_SELECT);
3477 I915_WRITE(WM3_LP_ILK, 0);
3478 I915_WRITE(WM2_LP_ILK, 0);
3479 I915_WRITE(WM1_LP_ILK, 0);
3481 I915_WRITE(CACHE_MODE_0,
3482 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
3484 I915_WRITE(GEN6_UCGCTL1,
3485 I915_READ(GEN6_UCGCTL1) |
3486 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
3487 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
3489 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3490 * gating disable must be set. Failure to set it results in
3491 * flickering pixels due to Z write ordering failures after
3492 * some amount of runtime in the Mesa "fire" demo, and Unigine
3493 * Sanctuary and Tropics, and apparently anything else with
3494 * alpha test or pixel discard.
3496 * According to the spec, bit 11 (RCCUNIT) must also be set,
3497 * but we didn't debug actual testcases to find it out.
3499 * Also apply WaDisableVDSUnitClockGating and
3500 * WaDisableRCPBUnitClockGating.
3502 I915_WRITE(GEN6_UCGCTL2,
3503 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3504 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3505 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3507 /* Bspec says we need to always set all mask bits. */
3508 I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
3509 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
3512 * According to the spec the following bits should be
3513 * set in order to enable memory self-refresh and fbc:
3514 * The bit21 and bit22 of 0x42000
3515 * The bit21 and bit22 of 0x42004
3516 * The bit5 and bit7 of 0x42020
3517 * The bit14 of 0x70180
3518 * The bit14 of 0x71180
3520 I915_WRITE(ILK_DISPLAY_CHICKEN1,
3521 I915_READ(ILK_DISPLAY_CHICKEN1) |
3522 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
3523 I915_WRITE(ILK_DISPLAY_CHICKEN2,
3524 I915_READ(ILK_DISPLAY_CHICKEN2) |
3525 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
3526 I915_WRITE(ILK_DSPCLK_GATE_D,
3527 I915_READ(ILK_DSPCLK_GATE_D) |
3528 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
3529 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
3531 /* WaMbcDriverBootEnable */
3532 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3533 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3535 for_each_pipe(pipe) {
3536 I915_WRITE(DSPCNTR(pipe),
3537 I915_READ(DSPCNTR(pipe)) |
3538 DISPPLANE_TRICKLE_FEED_DISABLE);
3539 intel_flush_display_plane(dev_priv, pipe);
3542 /* The default value should be 0x200 according to docs, but the two
3543 * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
3544 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
3545 I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
3547 cpt_init_clock_gating(dev);
3550 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
3552 uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
3554 reg &= ~GEN7_FF_SCHED_MASK;
3555 reg |= GEN7_FF_TS_SCHED_HW;
3556 reg |= GEN7_FF_VS_SCHED_HW;
3557 reg |= GEN7_FF_DS_SCHED_HW;
3559 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
3562 static void lpt_init_clock_gating(struct drm_device *dev)
3564 struct drm_i915_private *dev_priv = dev->dev_private;
3567 * TODO: this bit should only be enabled when really needed, then
3568 * disabled when not needed anymore in order to save power.
3570 if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
3571 I915_WRITE(SOUTH_DSPCLK_GATE_D,
3572 I915_READ(SOUTH_DSPCLK_GATE_D) |
3573 PCH_LP_PARTITION_LEVEL_DISABLE);
3576 static void haswell_init_clock_gating(struct drm_device *dev)
3578 struct drm_i915_private *dev_priv = dev->dev_private;
3581 I915_WRITE(WM3_LP_ILK, 0);
3582 I915_WRITE(WM2_LP_ILK, 0);
3583 I915_WRITE(WM1_LP_ILK, 0);
3585 /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3586 * This implements the WaDisableRCZUnitClockGating workaround.
3588 I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
3590 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3591 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3592 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3594 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3595 I915_WRITE(GEN7_L3CNTLREG1,
3596 GEN7_WA_FOR_GEN7_L3_CONTROL);
3597 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3598 GEN7_WA_L3_CHICKEN_MODE);
3600 /* This is required by WaCatErrorRejectionIssue */
3601 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3602 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3603 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3605 for_each_pipe(pipe) {
3606 I915_WRITE(DSPCNTR(pipe),
3607 I915_READ(DSPCNTR(pipe)) |
3608 DISPPLANE_TRICKLE_FEED_DISABLE);
3609 intel_flush_display_plane(dev_priv, pipe);
3612 gen7_setup_fixed_func_scheduler(dev_priv);
3614 /* WaDisable4x2SubspanOptimization */
3615 I915_WRITE(CACHE_MODE_1,
3616 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3618 /* WaMbcDriverBootEnable */
3619 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3620 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3622 /* XXX: This is a workaround for early silicon revisions and should be
3627 WM_DBG_DISALLOW_MULTIPLE_LP |
3628 WM_DBG_DISALLOW_SPRITE |
3629 WM_DBG_DISALLOW_MAXFIFO);
3631 lpt_init_clock_gating(dev);
3634 static void ivybridge_init_clock_gating(struct drm_device *dev)
3636 struct drm_i915_private *dev_priv = dev->dev_private;
3640 I915_WRITE(WM3_LP_ILK, 0);
3641 I915_WRITE(WM2_LP_ILK, 0);
3642 I915_WRITE(WM1_LP_ILK, 0);
3644 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3646 /* WaDisableEarlyCull */
3647 I915_WRITE(_3D_CHICKEN3,
3648 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3650 /* WaDisableBackToBackFlipFix */
3651 I915_WRITE(IVB_CHICKEN3,
3652 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3653 CHICKEN3_DGMG_DONE_FIX_DISABLE);
3655 /* WaDisablePSDDualDispatchEnable */
3656 if (IS_IVB_GT1(dev))
3657 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3658 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3660 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
3661 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3663 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3664 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3665 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3667 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3668 I915_WRITE(GEN7_L3CNTLREG1,
3669 GEN7_WA_FOR_GEN7_L3_CONTROL);
3670 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
3671 GEN7_WA_L3_CHICKEN_MODE);
3672 if (IS_IVB_GT1(dev))
3673 I915_WRITE(GEN7_ROW_CHICKEN2,
3674 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3676 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
3677 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3680 /* WaForceL3Serialization */
3681 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3682 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3684 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3685 * gating disable must be set. Failure to set it results in
3686 * flickering pixels due to Z write ordering failures after
3687 * some amount of runtime in the Mesa "fire" demo, and Unigine
3688 * Sanctuary and Tropics, and apparently anything else with
3689 * alpha test or pixel discard.
3691 * According to the spec, bit 11 (RCCUNIT) must also be set,
3692 * but we didn't debug actual testcases to find it out.
3694 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3695 * This implements the WaDisableRCZUnitClockGating workaround.
3697 I915_WRITE(GEN6_UCGCTL2,
3698 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3699 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3701 /* This is required by WaCatErrorRejectionIssue */
3702 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3703 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3704 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3706 for_each_pipe(pipe) {
3707 I915_WRITE(DSPCNTR(pipe),
3708 I915_READ(DSPCNTR(pipe)) |
3709 DISPPLANE_TRICKLE_FEED_DISABLE);
3710 intel_flush_display_plane(dev_priv, pipe);
3713 /* WaMbcDriverBootEnable */
3714 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3715 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3717 gen7_setup_fixed_func_scheduler(dev_priv);
3719 /* WaDisable4x2SubspanOptimization */
3720 I915_WRITE(CACHE_MODE_1,
3721 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3723 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
3724 snpcr &= ~GEN6_MBC_SNPCR_MASK;
3725 snpcr |= GEN6_MBC_SNPCR_MED;
3726 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
3728 cpt_init_clock_gating(dev);
3731 static void valleyview_init_clock_gating(struct drm_device *dev)
3733 struct drm_i915_private *dev_priv = dev->dev_private;
3736 I915_WRITE(WM3_LP_ILK, 0);
3737 I915_WRITE(WM2_LP_ILK, 0);
3738 I915_WRITE(WM1_LP_ILK, 0);
3740 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
3742 /* WaDisableEarlyCull */
3743 I915_WRITE(_3D_CHICKEN3,
3744 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
3746 /* WaDisableBackToBackFlipFix */
3747 I915_WRITE(IVB_CHICKEN3,
3748 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
3749 CHICKEN3_DGMG_DONE_FIX_DISABLE);
3751 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
3752 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
3754 /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
3755 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
3756 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
3758 /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
3759 I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
3760 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
3762 /* WaForceL3Serialization */
3763 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3764 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3766 /* WaDisableDopClockGating */
3767 I915_WRITE(GEN7_ROW_CHICKEN2,
3768 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
3770 /* WaForceL3Serialization */
3771 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
3772 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
3774 /* This is required by WaCatErrorRejectionIssue */
3775 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
3776 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
3777 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
3779 /* WaMbcDriverBootEnable */
3780 I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
3781 GEN6_MBCTL_ENABLE_BOOT_FETCH);
3784 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
3785 * gating disable must be set. Failure to set it results in
3786 * flickering pixels due to Z write ordering failures after
3787 * some amount of runtime in the Mesa "fire" demo, and Unigine
3788 * Sanctuary and Tropics, and apparently anything else with
3789 * alpha test or pixel discard.
3791 * According to the spec, bit 11 (RCCUNIT) must also be set,
3792 * but we didn't debug actual testcases to find it out.
3794 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
3795 * This implements the WaDisableRCZUnitClockGating workaround.
3797 * Also apply WaDisableVDSUnitClockGating and
3798 * WaDisableRCPBUnitClockGating.
3800 I915_WRITE(GEN6_UCGCTL2,
3801 GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
3802 GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
3803 GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
3804 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
3805 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
3807 I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
3809 for_each_pipe(pipe) {
3810 I915_WRITE(DSPCNTR(pipe),
3811 I915_READ(DSPCNTR(pipe)) |
3812 DISPPLANE_TRICKLE_FEED_DISABLE);
3813 intel_flush_display_plane(dev_priv, pipe);
3816 I915_WRITE(CACHE_MODE_1,
3817 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
3820 * On ValleyView, the GUnit needs to signal the GT
3821 * when flip and other events complete. So enable
3822 * all the GUnit->GT interrupts here
3824 I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
3825 PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
3826 SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
3827 PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
3828 PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
3829 SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
3830 PLANEA_FLIPDONE_INT_EN);
3833 * WaDisableVLVClockGating_VBIIssue
3834 * Disable clock gating on th GCFG unit to prevent a delay
3835 * in the reporting of vblank events.
3837 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
3840 static void g4x_init_clock_gating(struct drm_device *dev)
3842 struct drm_i915_private *dev_priv = dev->dev_private;
3843 uint32_t dspclk_gate;
3845 I915_WRITE(RENCLK_GATE_D1, 0);
3846 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
3847 GS_UNIT_CLOCK_GATE_DISABLE |
3848 CL_UNIT_CLOCK_GATE_DISABLE);
3849 I915_WRITE(RAMCLK_GATE_D, 0);
3850 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
3851 OVRUNIT_CLOCK_GATE_DISABLE |
3852 OVCUNIT_CLOCK_GATE_DISABLE;
3854 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
3855 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
3857 /* WaDisableRenderCachePipelinedFlush */
3858 I915_WRITE(CACHE_MODE_0,
3859 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
3862 static void crestline_init_clock_gating(struct drm_device *dev)
3864 struct drm_i915_private *dev_priv = dev->dev_private;
3866 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
3867 I915_WRITE(RENCLK_GATE_D2, 0);
3868 I915_WRITE(DSPCLK_GATE_D, 0);
3869 I915_WRITE(RAMCLK_GATE_D, 0);
3870 I915_WRITE16(DEUC, 0);
3873 static void broadwater_init_clock_gating(struct drm_device *dev)
3875 struct drm_i915_private *dev_priv = dev->dev_private;
3877 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
3878 I965_RCC_CLOCK_GATE_DISABLE |
3879 I965_RCPB_CLOCK_GATE_DISABLE |
3880 I965_ISC_CLOCK_GATE_DISABLE |
3881 I965_FBC_CLOCK_GATE_DISABLE);
3882 I915_WRITE(RENCLK_GATE_D2, 0);
3885 static void gen3_init_clock_gating(struct drm_device *dev)
3887 struct drm_i915_private *dev_priv = dev->dev_private;
3888 u32 dstate = I915_READ(D_STATE);
3890 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
3891 DSTATE_DOT_CLOCK_GATING;
3892 I915_WRITE(D_STATE, dstate);
3894 if (IS_PINEVIEW(dev))
3895 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
3897 /* IIR "flip pending" means done if this bit is set */
3898 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
3901 static void i85x_init_clock_gating(struct drm_device *dev)
3903 struct drm_i915_private *dev_priv = dev->dev_private;
3905 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
3908 static void i830_init_clock_gating(struct drm_device *dev)
3910 struct drm_i915_private *dev_priv = dev->dev_private;
3912 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
3915 void intel_init_clock_gating(struct drm_device *dev)
3917 struct drm_i915_private *dev_priv = dev->dev_private;
3919 dev_priv->display.init_clock_gating(dev);
3922 /* Starting with Haswell, we have different power wells for
3923 * different parts of the GPU. This attempts to enable them all.
3925 void intel_init_power_wells(struct drm_device *dev)
3927 struct drm_i915_private *dev_priv = dev->dev_private;
3928 unsigned long power_wells[] = {
3935 if (!IS_HASWELL(dev))
3938 mutex_lock(&dev->struct_mutex);
3940 for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
3941 int well = I915_READ(power_wells[i]);
3943 if ((well & HSW_PWR_WELL_STATE) == 0) {
3944 I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
3945 if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
3946 DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
3950 mutex_unlock(&dev->struct_mutex);
3953 /* Set up chip specific power management-related functions */
3954 void intel_init_pm(struct drm_device *dev)
3956 struct drm_i915_private *dev_priv = dev->dev_private;
3958 if (I915_HAS_FBC(dev)) {
3959 if (HAS_PCH_SPLIT(dev)) {
3960 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
3961 dev_priv->display.enable_fbc = ironlake_enable_fbc;
3962 dev_priv->display.disable_fbc = ironlake_disable_fbc;
3963 } else if (IS_GM45(dev)) {
3964 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
3965 dev_priv->display.enable_fbc = g4x_enable_fbc;
3966 dev_priv->display.disable_fbc = g4x_disable_fbc;
3967 } else if (IS_CRESTLINE(dev)) {
3968 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
3969 dev_priv->display.enable_fbc = i8xx_enable_fbc;
3970 dev_priv->display.disable_fbc = i8xx_disable_fbc;
3972 /* 855GM needs testing */
3976 if (IS_PINEVIEW(dev))
3977 i915_pineview_get_mem_freq(dev);
3978 else if (IS_GEN5(dev))
3979 i915_ironlake_get_mem_freq(dev);
3981 /* For FIFO watermark updates */
3982 if (HAS_PCH_SPLIT(dev)) {
3984 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
3985 dev_priv->display.update_wm = ironlake_update_wm;
3987 DRM_DEBUG_KMS("Failed to get proper latency. "
3989 dev_priv->display.update_wm = NULL;
3991 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
3992 } else if (IS_GEN6(dev)) {
3993 if (SNB_READ_WM0_LATENCY()) {
3994 dev_priv->display.update_wm = sandybridge_update_wm;
3995 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
3997 DRM_DEBUG_KMS("Failed to read display plane latency. "
3999 dev_priv->display.update_wm = NULL;
4001 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
4002 } else if (IS_IVYBRIDGE(dev)) {
4003 /* FIXME: detect B0+ stepping and use auto training */
4004 if (SNB_READ_WM0_LATENCY()) {
4005 dev_priv->display.update_wm = sandybridge_update_wm;
4006 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4008 DRM_DEBUG_KMS("Failed to read display plane latency. "
4010 dev_priv->display.update_wm = NULL;
4012 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
4013 } else if (IS_HASWELL(dev)) {
4014 if (SNB_READ_WM0_LATENCY()) {
4015 dev_priv->display.update_wm = sandybridge_update_wm;
4016 dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
4017 dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
4019 DRM_DEBUG_KMS("Failed to read display plane latency. "
4021 dev_priv->display.update_wm = NULL;
4023 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
4025 dev_priv->display.update_wm = NULL;
4026 } else if (IS_VALLEYVIEW(dev)) {
4027 dev_priv->display.update_wm = valleyview_update_wm;
4028 dev_priv->display.init_clock_gating =
4029 valleyview_init_clock_gating;
4030 } else if (IS_PINEVIEW(dev)) {
4031 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
4034 dev_priv->mem_freq)) {
4035 DRM_INFO("failed to find known CxSR latency "
4036 "(found ddr%s fsb freq %d, mem freq %d), "
4038 (dev_priv->is_ddr3 == 1) ? "3" : "2",
4039 dev_priv->fsb_freq, dev_priv->mem_freq);
4040 /* Disable CxSR and never update its watermark again */
4041 pineview_disable_cxsr(dev);
4042 dev_priv->display.update_wm = NULL;
4044 dev_priv->display.update_wm = pineview_update_wm;
4045 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4046 } else if (IS_G4X(dev)) {
4047 dev_priv->display.update_wm = g4x_update_wm;
4048 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
4049 } else if (IS_GEN4(dev)) {
4050 dev_priv->display.update_wm = i965_update_wm;
4051 if (IS_CRESTLINE(dev))
4052 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
4053 else if (IS_BROADWATER(dev))
4054 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
4055 } else if (IS_GEN3(dev)) {
4056 dev_priv->display.update_wm = i9xx_update_wm;
4057 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4058 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
4059 } else if (IS_I865G(dev)) {
4060 dev_priv->display.update_wm = i830_update_wm;
4061 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4062 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4063 } else if (IS_I85X(dev)) {
4064 dev_priv->display.update_wm = i9xx_update_wm;
4065 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4066 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
4068 dev_priv->display.update_wm = i830_update_wm;
4069 dev_priv->display.init_clock_gating = i830_init_clock_gating;
4071 dev_priv->display.get_fifo_size = i845_get_fifo_size;
4073 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4077 static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
4079 u32 gt_thread_status_mask;
4081 if (IS_HASWELL(dev_priv->dev))
4082 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
4084 gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
4086 /* w/a for a sporadic read returning 0 by waiting for the GT
4087 * thread to wake up.
4089 if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
4090 DRM_ERROR("GT thread status wait timed out\n");
4093 static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
4095 I915_WRITE_NOTRACE(FORCEWAKE, 0);
4096 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4099 static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4103 if (IS_HASWELL(dev_priv->dev))
4104 forcewake_ack = FORCEWAKE_ACK_HSW;
4106 forcewake_ack = FORCEWAKE_ACK;
4108 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4109 FORCEWAKE_ACK_TIMEOUT_MS))
4110 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4112 I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
4113 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4115 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4116 FORCEWAKE_ACK_TIMEOUT_MS))
4117 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4119 __gen6_gt_wait_for_thread_c0(dev_priv);
4122 static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
4124 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
4125 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4128 static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
4132 if (IS_HASWELL(dev_priv->dev))
4133 forcewake_ack = FORCEWAKE_ACK_HSW;
4135 forcewake_ack = FORCEWAKE_MT_ACK;
4137 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
4138 FORCEWAKE_ACK_TIMEOUT_MS))
4139 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4141 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4142 POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
4144 if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
4145 FORCEWAKE_ACK_TIMEOUT_MS))
4146 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4148 __gen6_gt_wait_for_thread_c0(dev_priv);
4152 * Generally this is called implicitly by the register read function. However,
4153 * if some sequence requires the GT to not power down then this function should
4154 * be called at the beginning of the sequence followed by a call to
4155 * gen6_gt_force_wake_put() at the end of the sequence.
4157 void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
4159 unsigned long irqflags;
4161 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4162 if (dev_priv->forcewake_count++ == 0)
4163 dev_priv->gt.force_wake_get(dev_priv);
4164 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4167 void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
4170 gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
4171 if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
4172 "MMIO read or write has been dropped %x\n", gtfifodbg))
4173 I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
4176 static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4178 I915_WRITE_NOTRACE(FORCEWAKE, 0);
4179 /* gen6_gt_check_fifodbg doubles as the POSTING_READ */
4180 gen6_gt_check_fifodbg(dev_priv);
4183 static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
4185 I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4186 /* gen6_gt_check_fifodbg doubles as the POSTING_READ */
4187 gen6_gt_check_fifodbg(dev_priv);
4191 * see gen6_gt_force_wake_get()
4193 void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
4195 unsigned long irqflags;
4197 spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
4198 if (--dev_priv->forcewake_count == 0)
4199 dev_priv->gt.force_wake_put(dev_priv);
4200 spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
4203 int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
4207 if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
4209 u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4210 while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
4212 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
4214 if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
4216 dev_priv->gt_fifo_count = fifo;
4218 dev_priv->gt_fifo_count--;
4223 static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
4225 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
4228 static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
4230 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
4231 FORCEWAKE_ACK_TIMEOUT_MS))
4232 DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
4234 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
4236 if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
4237 FORCEWAKE_ACK_TIMEOUT_MS))
4238 DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
4240 __gen6_gt_wait_for_thread_c0(dev_priv);
4243 static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
4245 I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
4246 /* The below doubles as a POSTING_READ */
4247 gen6_gt_check_fifodbg(dev_priv);
4250 void intel_gt_reset(struct drm_device *dev)
4252 struct drm_i915_private *dev_priv = dev->dev_private;
4254 if (IS_VALLEYVIEW(dev)) {
4255 vlv_force_wake_reset(dev_priv);
4256 } else if (INTEL_INFO(dev)->gen >= 6) {
4257 __gen6_gt_force_wake_reset(dev_priv);
4258 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4259 __gen6_gt_force_wake_mt_reset(dev_priv);
4263 void intel_gt_init(struct drm_device *dev)
4265 struct drm_i915_private *dev_priv = dev->dev_private;
4267 spin_lock_init(&dev_priv->gt_lock);
4269 intel_gt_reset(dev);
4271 if (IS_VALLEYVIEW(dev)) {
4272 dev_priv->gt.force_wake_get = vlv_force_wake_get;
4273 dev_priv->gt.force_wake_put = vlv_force_wake_put;
4274 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4275 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
4276 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
4277 } else if (IS_GEN6(dev)) {
4278 dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
4279 dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
4281 INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
4282 intel_gen6_powersave_work);
4285 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
4287 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4289 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4290 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
4294 I915_WRITE(GEN6_PCODE_DATA, *val);
4295 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4297 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4299 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
4303 *val = I915_READ(GEN6_PCODE_DATA);
4304 I915_WRITE(GEN6_PCODE_DATA, 0);
4309 int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
4311 WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4313 if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
4314 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
4318 I915_WRITE(GEN6_PCODE_DATA, val);
4319 I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
4321 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
4323 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
4327 I915_WRITE(GEN6_PCODE_DATA, 0);