1 // SPDX-License-Identifier: GPL-2.0
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
18 #include <linux/pci.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
37 DEFINE_MUTEX(pci_slot_mutex);
39 const char *pci_power_names[] = {
40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
42 EXPORT_SYMBOL_GPL(pci_power_names);
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
50 EXPORT_SYMBOL(pci_pci_problems);
52 unsigned int pci_pm_d3hot_delay;
54 static void pci_pme_list_scan(struct work_struct *work);
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
60 struct pci_pme_device {
61 struct list_head list;
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
68 * Following exit from Conventional Reset, devices must be ready within 1 sec
69 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
70 * Reset (PCIe r6.0 sec 5.8).
72 #define PCI_RESET_WAIT 1000 /* msec */
75 * Devices may extend the 1 sec period through Request Retry Status
76 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
77 * limit, but 60 sec ought to be enough for any device to become
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
84 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
88 /* Use a 20% upper bound, 1ms minimum */
89 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 usleep_range(delay_ms * USEC_PER_MSEC,
91 (delay_ms + upper) * USEC_PER_MSEC);
95 bool pci_reset_supported(struct pci_dev *dev)
97 return dev->reset_methods[0] != 0;
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
104 #define DEFAULT_CARDBUS_IO_SIZE (256)
105 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
110 #define DEFAULT_HOTPLUG_IO_SIZE (256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
116 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118 * pci=hpmemsize=nnM overrides both
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
123 #define DEFAULT_HOTPLUG_BUS_SIZE 1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
141 * The default CLS is used if arch didn't set CLS explicitly and not
142 * all pci devices agree on the same value. Arch can override either
143 * the dfl or actual value as it sees fit. Don't forget this is
144 * measured in 32-bit words, not bytes.
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
150 * If we set up a device for bus mastering, we need to check the latency
151 * timer as certain BIOSes forget to set it properly.
153 unsigned int pcibios_max_latency = 255;
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
161 /* If set, the PCI config space of each device is printed during boot. */
164 bool pci_ats_disabled(void)
166 return pcie_ats_disabled;
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
175 static int __init pcie_port_pm_setup(char *str)
177 if (!strcmp(str, "off"))
178 pci_bridge_d3_disable = true;
179 else if (!strcmp(str, "force"))
180 pci_bridge_d3_force = true;
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
186 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187 * @bus: pointer to PCI bus structure to search
189 * Given a PCI bus, returns the highest PCI bus number present in the set
190 * including the given PCI bus and its list of child PCI buses.
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
195 unsigned char max, n;
197 max = bus->busn_res.end;
198 list_for_each_entry(tmp, &bus->children, node) {
199 n = pci_bus_max_busnr(tmp);
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
208 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209 * @pdev: the PCI device
211 * Returns error bits set in PCI_STATUS and clears them.
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
218 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 if (ret != PCIBIOS_SUCCESSFUL)
222 status &= PCI_STATUS_ERROR_BITS;
224 pci_write_config_word(pdev, PCI_STATUS, status);
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
234 struct resource *res = &pdev->resource[bar];
235 resource_size_t start = res->start;
236 resource_size_t size = resource_size(res);
239 * Make sure the BAR is actually a memory resource, not an IO resource
241 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
247 return ioremap_wc(start, size);
249 return ioremap(start, size);
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
254 return __pci_ioremap_resource(pdev, bar, false);
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
260 return __pci_ioremap_resource(pdev, bar, true);
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
266 * pci_dev_str_match_path - test if a path string matches a device
267 * @dev: the PCI device to test
268 * @path: string to match the device against
269 * @endptr: pointer to the string after the match
271 * Test if a string (typically from a kernel parameter) formatted as a
272 * path of device/function addresses matches a PCI device. The string must
275 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
277 * A path for a device can be obtained using 'lspci -t'. Using a path
278 * is more robust against bus renumbering than using only a single bus,
279 * device and function address.
281 * Returns 1 if the string matches the device, 0 if it does not and
282 * a negative error code if it fails to parse the string.
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
288 unsigned int seg, bus, slot, func;
292 *endptr = strchrnul(path, ';');
294 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
299 p = strrchr(wpath, '/');
302 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
308 if (dev->devfn != PCI_DEVFN(slot, func)) {
314 * Note: we don't need to get a reference to the upstream
315 * bridge because we hold a reference to the top level
316 * device which should hold a reference to the bridge,
319 dev = pci_upstream_bridge(dev);
328 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
332 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
339 ret = (seg == pci_domain_nr(dev->bus) &&
340 bus == dev->bus->number &&
341 dev->devfn == PCI_DEVFN(slot, func));
349 * pci_dev_str_match - test if a string matches a device
350 * @dev: the PCI device to test
351 * @p: string to match the device against
352 * @endptr: pointer to the string after the match
354 * Test if a string (typically from a kernel parameter) matches a specified
355 * PCI device. The string may be of one of the following formats:
357 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
360 * The first format specifies a PCI bus/device/function address which
361 * may change if new hardware is inserted, if motherboard firmware changes,
362 * or due to changes caused in kernel parameters. If the domain is
363 * left unspecified, it is taken to be 0. In order to be robust against
364 * bus renumbering issues, a path of PCI device/function numbers may be used
365 * to address the specific device. The path for a device can be determined
366 * through the use of 'lspci -t'.
368 * The second format matches devices using IDs in the configuration
369 * space which may match multiple devices in the system. A value of 0
370 * for any field will match all devices. (Note: this differs from
371 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372 * legacy reasons and convenience so users don't have to specify
373 * FFFFFFFFs on the command line.)
375 * Returns 1 if the string matches the device, 0 if it does not and
376 * a negative error code if the string cannot be parsed.
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
383 unsigned short vendor, device, subsystem_vendor, subsystem_device;
385 if (strncmp(p, "pci:", 4) == 0) {
386 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
388 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 &subsystem_vendor, &subsystem_device, &count);
391 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
395 subsystem_vendor = 0;
396 subsystem_device = 0;
401 if ((!vendor || vendor == dev->vendor) &&
402 (!device || device == dev->device) &&
403 (!subsystem_vendor ||
404 subsystem_vendor == dev->subsystem_vendor) &&
405 (!subsystem_device ||
406 subsystem_device == dev->subsystem_device))
410 * PCI Bus, Device, Function IDs are specified
411 * (optionally, may include a path of devfns following it)
413 ret = pci_dev_str_match_path(dev, p, &p);
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 u8 pos, int cap, int *ttl)
434 pci_bus_read_config_byte(bus, devfn, pos, &pos);
440 pci_bus_read_config_word(bus, devfn, pos, &ent);
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
455 int ttl = PCI_FIND_CAP_TTL;
457 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
462 return __pci_find_next_cap(dev->bus, dev->devfn,
463 pos + PCI_CAP_LIST_NEXT, cap);
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 unsigned int devfn, u8 hdr_type)
472 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 if (!(status & PCI_STATUS_CAP_LIST))
477 case PCI_HEADER_TYPE_NORMAL:
478 case PCI_HEADER_TYPE_BRIDGE:
479 return PCI_CAPABILITY_LIST;
480 case PCI_HEADER_TYPE_CARDBUS:
481 return PCI_CB_CAPABILITY_LIST;
488 * pci_find_capability - query for devices' capabilities
489 * @dev: PCI device to query
490 * @cap: capability code
492 * Tell if a device supports a given PCI capability.
493 * Returns the address of the requested capability structure within the
494 * device's PCI configuration space or 0 in case the device does not
495 * support it. Possible values for @cap include:
497 * %PCI_CAP_ID_PM Power Management
498 * %PCI_CAP_ID_AGP Accelerated Graphics Port
499 * %PCI_CAP_ID_VPD Vital Product Data
500 * %PCI_CAP_ID_SLOTID Slot Identification
501 * %PCI_CAP_ID_MSI Message Signalled Interrupts
502 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
503 * %PCI_CAP_ID_PCIX PCI-X
504 * %PCI_CAP_ID_EXP PCI Express
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
510 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
512 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
516 EXPORT_SYMBOL(pci_find_capability);
519 * pci_bus_find_capability - query for devices' capabilities
520 * @bus: the PCI bus to query
521 * @devfn: PCI device to query
522 * @cap: capability code
524 * Like pci_find_capability() but works for PCI devices that do not have a
525 * pci_dev structure set up yet.
527 * Returns the address of the requested capability structure within the
528 * device's PCI configuration space or 0 in case the device does not
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
535 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
537 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
539 pos = __pci_find_next_cap(bus, devfn, pos, cap);
543 EXPORT_SYMBOL(pci_bus_find_capability);
546 * pci_find_next_ext_capability - Find an extended capability
547 * @dev: PCI device to query
548 * @start: address at which to start looking (0 to start at beginning of list)
549 * @cap: capability code
551 * Returns the address of the next matching extended capability structure
552 * within the device's PCI configuration space or 0 if the device does
553 * not support it. Some capabilities can occur several times, e.g., the
554 * vendor-specific capability, and this provides a way to find them all.
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
560 u16 pos = PCI_CFG_SPACE_SIZE;
562 /* minimum 8 bytes per capability */
563 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
565 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
571 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
575 * If we have no capabilities, this is indicated by cap ID,
576 * cap version and next pointer all being 0.
582 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
585 pos = PCI_EXT_CAP_NEXT(header);
586 if (pos < PCI_CFG_SPACE_SIZE)
589 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
598 * pci_find_ext_capability - Find an extended capability
599 * @dev: PCI device to query
600 * @cap: capability code
602 * Returns the address of the requested extended capability structure
603 * within the device's PCI configuration space or 0 if the device does
604 * not support it. Possible values for @cap include:
606 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
607 * %PCI_EXT_CAP_ID_VC Virtual Channel
608 * %PCI_EXT_CAP_ID_DSN Device Serial Number
609 * %PCI_EXT_CAP_ID_PWR Power Budgeting
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
613 return pci_find_next_ext_capability(dev, 0, cap);
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
618 * pci_get_dsn - Read and return the 8-byte Device Serial Number
619 * @dev: PCI device to query
621 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
624 * Returns the DSN, or zero if the capability does not exist.
626 u64 pci_get_dsn(struct pci_dev *dev)
632 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
637 * The Device Serial Number is two dwords offset 4 bytes from the
638 * capability position. The specification says that the first dword is
639 * the lower half, and the second dword is the upper half.
642 pci_read_config_dword(dev, pos, &dword);
644 pci_read_config_dword(dev, pos + 4, &dword);
645 dsn |= ((u64)dword) << 32;
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
653 int rc, ttl = PCI_FIND_CAP_TTL;
656 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 mask = HT_3BIT_CAP_MASK;
659 mask = HT_5BIT_CAP_MASK;
661 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 PCI_CAP_ID_HT, &ttl);
664 rc = pci_read_config_byte(dev, pos + 3, &cap);
665 if (rc != PCIBIOS_SUCCESSFUL)
668 if ((cap & mask) == ht_cap)
671 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 pos + PCI_CAP_LIST_NEXT,
673 PCI_CAP_ID_HT, &ttl);
680 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681 * @dev: PCI device to query
682 * @pos: Position from which to continue searching
683 * @ht_cap: HyperTransport capability code
685 * To be used in conjunction with pci_find_ht_capability() to search for
686 * all capabilities matching @ht_cap. @pos should always be a value returned
687 * from pci_find_ht_capability().
689 * NB. To be 100% safe against broken PCI devices, the caller should take
690 * steps to avoid an infinite loop.
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
694 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
699 * pci_find_ht_capability - query a device's HyperTransport capabilities
700 * @dev: PCI device to query
701 * @ht_cap: HyperTransport capability code
703 * Tell if a device supports a given HyperTransport capability.
704 * Returns an address within the device's PCI configuration space
705 * or 0 in case the device does not support the request capability.
706 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707 * which has a HyperTransport capability matching @ht_cap.
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
713 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
715 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
722 * pci_find_vsec_capability - Find a vendor-specific extended capability
723 * @dev: PCI device to query
724 * @vendor: Vendor ID for which capability is defined
725 * @cap: Vendor-specific capability ID
727 * If @dev has Vendor ID @vendor, search for a VSEC capability with
728 * VSEC ID @cap. If found, return the capability offset in
729 * config space; otherwise return 0.
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
736 if (vendor != dev->vendor)
739 while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 PCI_EXT_CAP_ID_VNDR))) {
741 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
742 &header) == PCIBIOS_SUCCESSFUL &&
743 PCI_VNDR_HEADER_ID(header) == cap)
749 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
752 * pci_find_dvsec_capability - Find DVSEC for vendor
753 * @dev: PCI device to query
754 * @vendor: Vendor ID to match for the DVSEC
755 * @dvsec: Designated Vendor-specific capability ID
757 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
758 * offset in config space; otherwise return 0.
760 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
764 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
771 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
772 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
773 if (vendor == v && dvsec == id)
776 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
781 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
784 * pci_find_parent_resource - return resource region of parent bus of given
786 * @dev: PCI device structure contains resources to be searched
787 * @res: child resource record for which parent is sought
789 * For given resource region of given device, return the resource region of
790 * parent bus the given region is contained in.
792 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
793 struct resource *res)
795 const struct pci_bus *bus = dev->bus;
798 pci_bus_for_each_resource(bus, r) {
801 if (resource_contains(r, res)) {
804 * If the window is prefetchable but the BAR is
805 * not, the allocator made a mistake.
807 if (r->flags & IORESOURCE_PREFETCH &&
808 !(res->flags & IORESOURCE_PREFETCH))
812 * If we're below a transparent bridge, there may
813 * be both a positively-decoded aperture and a
814 * subtractively-decoded region that contain the BAR.
815 * We want the positively-decoded one, so this depends
816 * on pci_bus_for_each_resource() giving us those
824 EXPORT_SYMBOL(pci_find_parent_resource);
827 * pci_find_resource - Return matching PCI device resource
828 * @dev: PCI device to query
829 * @res: Resource to look for
831 * Goes over standard PCI resources (BARs) and checks if the given resource
832 * is partially or fully contained in any of them. In that case the
833 * matching resource is returned, %NULL otherwise.
835 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
839 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
840 struct resource *r = &dev->resource[i];
842 if (r->start && resource_contains(r, res))
848 EXPORT_SYMBOL(pci_find_resource);
851 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
852 * @dev: the PCI device to operate on
853 * @pos: config space offset of status word
854 * @mask: mask of bit(s) to care about in status word
856 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
858 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
862 /* Wait for Transaction Pending bit clean */
863 for (i = 0; i < 4; i++) {
866 msleep((1 << (i - 1)) * 100);
868 pci_read_config_word(dev, pos, &status);
869 if (!(status & mask))
876 static int pci_acs_enable;
879 * pci_request_acs - ask for ACS to be enabled if supported
881 void pci_request_acs(void)
886 static const char *disable_acs_redir_param;
889 * pci_disable_acs_redir - disable ACS redirect capabilities
890 * @dev: the PCI device
892 * For only devices specified in the disable_acs_redir parameter.
894 static void pci_disable_acs_redir(struct pci_dev *dev)
901 if (!disable_acs_redir_param)
904 p = disable_acs_redir_param;
906 ret = pci_dev_str_match(dev, p, &p);
908 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
909 disable_acs_redir_param);
912 } else if (ret == 1) {
917 if (*p != ';' && *p != ',') {
918 /* End of param or invalid format */
927 if (!pci_dev_specific_disable_acs_redir(dev))
932 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
936 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
938 /* P2P Request & Completion Redirect */
939 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
941 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
943 pci_info(dev, "disabled ACS redirect\n");
947 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
948 * @dev: the PCI device
950 static void pci_std_enable_acs(struct pci_dev *dev)
960 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
961 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
963 /* Source Validation */
964 ctrl |= (cap & PCI_ACS_SV);
966 /* P2P Request Redirect */
967 ctrl |= (cap & PCI_ACS_RR);
969 /* P2P Completion Redirect */
970 ctrl |= (cap & PCI_ACS_CR);
972 /* Upstream Forwarding */
973 ctrl |= (cap & PCI_ACS_UF);
975 /* Enable Translation Blocking for external devices and noats */
976 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
977 ctrl |= (cap & PCI_ACS_TB);
979 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
983 * pci_enable_acs - enable ACS if hardware support it
984 * @dev: the PCI device
986 static void pci_enable_acs(struct pci_dev *dev)
989 goto disable_acs_redir;
991 if (!pci_dev_specific_enable_acs(dev))
992 goto disable_acs_redir;
994 pci_std_enable_acs(dev);
998 * Note: pci_disable_acs_redir() must be called even if ACS was not
999 * enabled by the kernel because it may have been enabled by
1000 * platform firmware. So if we are told to disable it, we should
1001 * always disable it after setting the kernel's default
1004 pci_disable_acs_redir(dev);
1008 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1009 * @dev: PCI device to have its BARs restored
1011 * Restore the BAR values for a given device, so as to make it
1012 * accessible by its driver.
1014 static void pci_restore_bars(struct pci_dev *dev)
1018 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1019 pci_update_resource(dev, i);
1022 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1024 if (pci_use_mid_pm())
1027 return acpi_pci_power_manageable(dev);
1030 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1033 if (pci_use_mid_pm())
1034 return mid_pci_set_power_state(dev, t);
1036 return acpi_pci_set_power_state(dev, t);
1039 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1041 if (pci_use_mid_pm())
1042 return mid_pci_get_power_state(dev);
1044 return acpi_pci_get_power_state(dev);
1047 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1049 if (!pci_use_mid_pm())
1050 acpi_pci_refresh_power_state(dev);
1053 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1055 if (pci_use_mid_pm())
1056 return PCI_POWER_ERROR;
1058 return acpi_pci_choose_state(dev);
1061 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1063 if (pci_use_mid_pm())
1064 return PCI_POWER_ERROR;
1066 return acpi_pci_wakeup(dev, enable);
1069 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1071 if (pci_use_mid_pm())
1074 return acpi_pci_need_resume(dev);
1077 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1079 if (pci_use_mid_pm())
1082 return acpi_pci_bridge_d3(dev);
1086 * pci_update_current_state - Read power state of given device and cache it
1087 * @dev: PCI device to handle.
1088 * @state: State to cache in case the device doesn't have the PM capability
1090 * The power state is read from the PMCSR register, which however is
1091 * inaccessible in D3cold. The platform firmware is therefore queried first
1092 * to detect accessibility of the register. In case the platform firmware
1093 * reports an incorrect state or the device isn't power manageable by the
1094 * platform at all, we try to detect D3cold by testing accessibility of the
1095 * vendor ID in config space.
1097 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1099 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1100 dev->current_state = PCI_D3cold;
1101 } else if (dev->pm_cap) {
1104 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1105 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1106 dev->current_state = PCI_D3cold;
1109 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1111 dev->current_state = state;
1116 * pci_refresh_power_state - Refresh the given device's power state data
1117 * @dev: Target PCI device.
1119 * Ask the platform to refresh the devices power state information and invoke
1120 * pci_update_current_state() to update its current PCI power state.
1122 void pci_refresh_power_state(struct pci_dev *dev)
1124 platform_pci_refresh_power_state(dev);
1125 pci_update_current_state(dev, dev->current_state);
1129 * pci_platform_power_transition - Use platform to change device power state
1130 * @dev: PCI device to handle.
1131 * @state: State to put the device into.
1133 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1137 error = platform_pci_set_power_state(dev, state);
1139 pci_update_current_state(dev, state);
1140 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1141 dev->current_state = PCI_D0;
1145 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1147 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1149 pm_request_resume(&pci_dev->dev);
1154 * pci_resume_bus - Walk given bus and runtime resume devices on it
1155 * @bus: Top bus of the subtree to walk.
1157 void pci_resume_bus(struct pci_bus *bus)
1160 pci_walk_bus(bus, pci_resume_one, NULL);
1163 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1166 bool retrain = false;
1167 struct pci_dev *bridge;
1169 if (pci_is_pcie(dev)) {
1170 bridge = pci_upstream_bridge(dev);
1176 * After reset, the device should not silently discard config
1177 * requests, but it may still indicate that it needs more time by
1178 * responding to them with CRS completions. The Root Port will
1179 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1180 * the read (except when CRS SV is enabled and the read was for the
1181 * Vendor ID; in that case it synthesizes 0x0001 data).
1183 * Wait for the device to return a non-CRS completion. Read the
1184 * Command register instead of Vendor ID so we don't have to
1185 * contend with the CRS SV value.
1190 pci_read_config_dword(dev, PCI_COMMAND, &id);
1191 if (!PCI_POSSIBLE_ERROR(id))
1194 if (delay > timeout) {
1195 pci_warn(dev, "not ready %dms after %s; giving up\n",
1196 delay - 1, reset_type);
1200 if (delay > PCI_RESET_WAIT) {
1203 if (pcie_failed_link_retrain(bridge)) {
1208 pci_info(dev, "not ready %dms after %s; waiting\n",
1209 delay - 1, reset_type);
1216 if (delay > PCI_RESET_WAIT)
1217 pci_info(dev, "ready %dms after %s\n", delay - 1,
1224 * pci_power_up - Put the given device into D0
1225 * @dev: PCI device to power up
1227 * On success, return 0 or 1, depending on whether or not it is necessary to
1228 * restore the device's BARs subsequently (1 is returned in that case).
1230 int pci_power_up(struct pci_dev *dev)
1236 platform_pci_set_power_state(dev, PCI_D0);
1239 state = platform_pci_get_power_state(dev);
1240 if (state == PCI_UNKNOWN)
1241 dev->current_state = PCI_D0;
1243 dev->current_state = state;
1245 if (state == PCI_D0)
1251 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1252 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1253 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1254 pci_power_name(dev->current_state));
1255 dev->current_state = PCI_D3cold;
1259 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1261 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1262 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1264 if (state == PCI_D0)
1268 * Force the entire word to 0. This doesn't affect PME_Status, disables
1269 * PME_En, and sets PowerState to 0.
1271 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1273 /* Mandatory transition delays; see PCI PM 1.2. */
1274 if (state == PCI_D3hot)
1275 pci_dev_d3_sleep(dev);
1276 else if (state == PCI_D2)
1277 udelay(PCI_PM_D2_DELAY);
1280 dev->current_state = PCI_D0;
1288 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1289 * @dev: PCI device to power up
1291 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1292 * to confirm the state change, restore its BARs if they might be lost and
1293 * reconfigure ASPM in acordance with the new power state.
1295 * If pci_restore_state() is going to be called right after a power state change
1296 * to D0, it is more efficient to use pci_power_up() directly instead of this
1299 static int pci_set_full_power_state(struct pci_dev *dev)
1304 ret = pci_power_up(dev);
1308 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1309 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1310 if (dev->current_state != PCI_D0) {
1311 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1312 pci_power_name(dev->current_state));
1313 } else if (ret > 0) {
1315 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1316 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1317 * from D3hot to D0 _may_ perform an internal reset, thereby
1318 * going to "D0 Uninitialized" rather than "D0 Initialized".
1319 * For example, at least some versions of the 3c905B and the
1320 * 3c556B exhibit this behaviour.
1322 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1323 * devices in a D3hot state at boot. Consequently, we need to
1324 * restore at least the BARs so that the device will be
1325 * accessible to its driver.
1327 pci_restore_bars(dev);
1334 * __pci_dev_set_current_state - Set current state of a PCI device
1335 * @dev: Device to handle
1336 * @data: pointer to state to be set
1338 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1340 pci_power_t state = *(pci_power_t *)data;
1342 dev->current_state = state;
1347 * pci_bus_set_current_state - Walk given bus and set current state of devices
1348 * @bus: Top bus of the subtree to walk.
1349 * @state: state to be set
1351 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1354 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1358 * pci_set_low_power_state - Put a PCI device into a low-power state.
1359 * @dev: PCI device to handle.
1360 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1362 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1365 * -EINVAL if the requested state is invalid.
1366 * -EIO if device does not support PCI PM or its PM capabilities register has a
1367 * wrong version, or device doesn't support the requested state.
1368 * 0 if device already is in the requested state.
1369 * 0 if device's power state has been successfully changed.
1371 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1379 * Validate transition: We can enter D0 from any state, but if
1380 * we're already in a low-power state, we can only go deeper. E.g.,
1381 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1382 * we'd have to go from D3 to D0, then to D1.
1384 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1385 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1386 pci_power_name(dev->current_state),
1387 pci_power_name(state));
1391 /* Check if this device supports the desired state */
1392 if ((state == PCI_D1 && !dev->d1_support)
1393 || (state == PCI_D2 && !dev->d2_support))
1396 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1397 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1398 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1399 pci_power_name(dev->current_state),
1400 pci_power_name(state));
1401 dev->current_state = PCI_D3cold;
1405 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1408 /* Enter specified state */
1409 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1411 /* Mandatory power management transition delays; see PCI PM 1.2. */
1412 if (state == PCI_D3hot)
1413 pci_dev_d3_sleep(dev);
1414 else if (state == PCI_D2)
1415 udelay(PCI_PM_D2_DELAY);
1417 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1418 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1419 if (dev->current_state != state)
1420 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1421 pci_power_name(dev->current_state),
1422 pci_power_name(state));
1428 * pci_set_power_state - Set the power state of a PCI device
1429 * @dev: PCI device to handle.
1430 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1432 * Transition a device to a new power state, using the platform firmware and/or
1433 * the device's PCI PM registers.
1436 * -EINVAL if the requested state is invalid.
1437 * -EIO if device does not support PCI PM or its PM capabilities register has a
1438 * wrong version, or device doesn't support the requested state.
1439 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1440 * 0 if device already is in the requested state.
1441 * 0 if the transition is to D3 but D3 is not supported.
1442 * 0 if device's power state has been successfully changed.
1444 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1448 /* Bound the state we're entering */
1449 if (state > PCI_D3cold)
1451 else if (state < PCI_D0)
1453 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1456 * If the device or the parent bridge do not support PCI
1457 * PM, ignore the request if we're doing anything other
1458 * than putting it into D0 (which would only happen on
1463 /* Check if we're already there */
1464 if (dev->current_state == state)
1467 if (state == PCI_D0)
1468 return pci_set_full_power_state(dev);
1471 * This device is quirked not to be put into D3, so don't put it in
1474 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1477 if (state == PCI_D3cold) {
1479 * To put the device in D3cold, put it into D3hot in the native
1480 * way, then put it into D3cold using platform ops.
1482 error = pci_set_low_power_state(dev, PCI_D3hot);
1484 if (pci_platform_power_transition(dev, PCI_D3cold))
1487 /* Powering off a bridge may power off the whole hierarchy */
1488 if (dev->current_state == PCI_D3cold)
1489 pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1491 error = pci_set_low_power_state(dev, state);
1493 if (pci_platform_power_transition(dev, state))
1499 EXPORT_SYMBOL(pci_set_power_state);
1501 #define PCI_EXP_SAVE_REGS 7
1503 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1504 u16 cap, bool extended)
1506 struct pci_cap_saved_state *tmp;
1508 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1509 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1515 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1517 return _pci_find_saved_cap(dev, cap, false);
1520 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1522 return _pci_find_saved_cap(dev, cap, true);
1525 static int pci_save_pcie_state(struct pci_dev *dev)
1528 struct pci_cap_saved_state *save_state;
1531 if (!pci_is_pcie(dev))
1534 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1536 pci_err(dev, "buffer not found in %s\n", __func__);
1540 cap = (u16 *)&save_state->cap.data[0];
1541 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1542 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1543 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1544 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1545 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1546 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1547 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1552 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1554 #ifdef CONFIG_PCIEASPM
1555 struct pci_dev *bridge;
1558 bridge = pci_upstream_bridge(dev);
1559 if (bridge && bridge->ltr_path) {
1560 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1561 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1562 pci_dbg(bridge, "re-enabling LTR\n");
1563 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1564 PCI_EXP_DEVCTL2_LTR_EN);
1570 static void pci_restore_pcie_state(struct pci_dev *dev)
1573 struct pci_cap_saved_state *save_state;
1576 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1581 * Downstream ports reset the LTR enable bit when link goes down.
1582 * Check and re-configure the bit here before restoring device.
1583 * PCIe r5.0, sec 7.5.3.16.
1585 pci_bridge_reconfigure_ltr(dev);
1587 cap = (u16 *)&save_state->cap.data[0];
1588 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1589 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1590 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1591 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1592 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1593 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1594 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1597 static int pci_save_pcix_state(struct pci_dev *dev)
1600 struct pci_cap_saved_state *save_state;
1602 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1606 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1608 pci_err(dev, "buffer not found in %s\n", __func__);
1612 pci_read_config_word(dev, pos + PCI_X_CMD,
1613 (u16 *)save_state->cap.data);
1618 static void pci_restore_pcix_state(struct pci_dev *dev)
1621 struct pci_cap_saved_state *save_state;
1624 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1625 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1626 if (!save_state || !pos)
1628 cap = (u16 *)&save_state->cap.data[0];
1630 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1633 static void pci_save_ltr_state(struct pci_dev *dev)
1636 struct pci_cap_saved_state *save_state;
1639 if (!pci_is_pcie(dev))
1642 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1646 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1648 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1652 /* Some broken devices only support dword access to LTR */
1653 cap = &save_state->cap.data[0];
1654 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1657 static void pci_restore_ltr_state(struct pci_dev *dev)
1659 struct pci_cap_saved_state *save_state;
1663 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1664 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1665 if (!save_state || !ltr)
1668 /* Some broken devices only support dword access to LTR */
1669 cap = &save_state->cap.data[0];
1670 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1674 * pci_save_state - save the PCI configuration space of a device before
1676 * @dev: PCI device that we're dealing with
1678 int pci_save_state(struct pci_dev *dev)
1681 /* XXX: 100% dword access ok here? */
1682 for (i = 0; i < 16; i++) {
1683 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1684 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1685 i * 4, dev->saved_config_space[i]);
1687 dev->state_saved = true;
1689 i = pci_save_pcie_state(dev);
1693 i = pci_save_pcix_state(dev);
1697 pci_save_ltr_state(dev);
1698 pci_save_dpc_state(dev);
1699 pci_save_aer_state(dev);
1700 pci_save_ptm_state(dev);
1701 return pci_save_vc_state(dev);
1703 EXPORT_SYMBOL(pci_save_state);
1705 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1706 u32 saved_val, int retry, bool force)
1710 pci_read_config_dword(pdev, offset, &val);
1711 if (!force && val == saved_val)
1715 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1716 offset, val, saved_val);
1717 pci_write_config_dword(pdev, offset, saved_val);
1721 pci_read_config_dword(pdev, offset, &val);
1722 if (val == saved_val)
1729 static void pci_restore_config_space_range(struct pci_dev *pdev,
1730 int start, int end, int retry,
1735 for (index = end; index >= start; index--)
1736 pci_restore_config_dword(pdev, 4 * index,
1737 pdev->saved_config_space[index],
1741 static void pci_restore_config_space(struct pci_dev *pdev)
1743 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1744 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1745 /* Restore BARs before the command register. */
1746 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1747 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1748 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1749 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1752 * Force rewriting of prefetch registers to avoid S3 resume
1753 * issues on Intel PCI bridges that occur when these
1754 * registers are not explicitly written.
1756 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1757 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1759 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1763 static void pci_restore_rebar_state(struct pci_dev *pdev)
1765 unsigned int pos, nbars, i;
1768 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1772 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1773 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1774 PCI_REBAR_CTRL_NBAR_SHIFT;
1776 for (i = 0; i < nbars; i++, pos += 8) {
1777 struct resource *res;
1780 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1781 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1782 res = pdev->resource + bar_idx;
1783 size = pci_rebar_bytes_to_size(resource_size(res));
1784 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1785 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1786 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1791 * pci_restore_state - Restore the saved state of a PCI device
1792 * @dev: PCI device that we're dealing with
1794 void pci_restore_state(struct pci_dev *dev)
1796 if (!dev->state_saved)
1800 * Restore max latencies (in the LTR capability) before enabling
1801 * LTR itself (in the PCIe capability).
1803 pci_restore_ltr_state(dev);
1805 pci_restore_pcie_state(dev);
1806 pci_restore_pasid_state(dev);
1807 pci_restore_pri_state(dev);
1808 pci_restore_ats_state(dev);
1809 pci_restore_vc_state(dev);
1810 pci_restore_rebar_state(dev);
1811 pci_restore_dpc_state(dev);
1812 pci_restore_ptm_state(dev);
1814 pci_aer_clear_status(dev);
1815 pci_restore_aer_state(dev);
1817 pci_restore_config_space(dev);
1819 pci_restore_pcix_state(dev);
1820 pci_restore_msi_state(dev);
1822 /* Restore ACS and IOV configuration state */
1823 pci_enable_acs(dev);
1824 pci_restore_iov_state(dev);
1826 dev->state_saved = false;
1828 EXPORT_SYMBOL(pci_restore_state);
1830 struct pci_saved_state {
1831 u32 config_space[16];
1832 struct pci_cap_saved_data cap[];
1836 * pci_store_saved_state - Allocate and return an opaque struct containing
1837 * the device saved state.
1838 * @dev: PCI device that we're dealing with
1840 * Return NULL if no state or error.
1842 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1844 struct pci_saved_state *state;
1845 struct pci_cap_saved_state *tmp;
1846 struct pci_cap_saved_data *cap;
1849 if (!dev->state_saved)
1852 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1854 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1855 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1857 state = kzalloc(size, GFP_KERNEL);
1861 memcpy(state->config_space, dev->saved_config_space,
1862 sizeof(state->config_space));
1865 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1866 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1867 memcpy(cap, &tmp->cap, len);
1868 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1870 /* Empty cap_save terminates list */
1874 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1877 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1878 * @dev: PCI device that we're dealing with
1879 * @state: Saved state returned from pci_store_saved_state()
1881 int pci_load_saved_state(struct pci_dev *dev,
1882 struct pci_saved_state *state)
1884 struct pci_cap_saved_data *cap;
1886 dev->state_saved = false;
1891 memcpy(dev->saved_config_space, state->config_space,
1892 sizeof(state->config_space));
1896 struct pci_cap_saved_state *tmp;
1898 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1899 if (!tmp || tmp->cap.size != cap->size)
1902 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1903 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1904 sizeof(struct pci_cap_saved_data) + cap->size);
1907 dev->state_saved = true;
1910 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1913 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1914 * and free the memory allocated for it.
1915 * @dev: PCI device that we're dealing with
1916 * @state: Pointer to saved state returned from pci_store_saved_state()
1918 int pci_load_and_free_saved_state(struct pci_dev *dev,
1919 struct pci_saved_state **state)
1921 int ret = pci_load_saved_state(dev, *state);
1926 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1928 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1930 return pci_enable_resources(dev, bars);
1933 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1936 struct pci_dev *bridge;
1940 err = pci_set_power_state(dev, PCI_D0);
1941 if (err < 0 && err != -EIO)
1944 bridge = pci_upstream_bridge(dev);
1946 pcie_aspm_powersave_config_link(bridge);
1948 err = pcibios_enable_device(dev, bars);
1951 pci_fixup_device(pci_fixup_enable, dev);
1953 if (dev->msi_enabled || dev->msix_enabled)
1956 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1958 pci_read_config_word(dev, PCI_COMMAND, &cmd);
1959 if (cmd & PCI_COMMAND_INTX_DISABLE)
1960 pci_write_config_word(dev, PCI_COMMAND,
1961 cmd & ~PCI_COMMAND_INTX_DISABLE);
1968 * pci_reenable_device - Resume abandoned device
1969 * @dev: PCI device to be resumed
1971 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1972 * to be called by normal code, write proper resume handler and use it instead.
1974 int pci_reenable_device(struct pci_dev *dev)
1976 if (pci_is_enabled(dev))
1977 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1980 EXPORT_SYMBOL(pci_reenable_device);
1982 static void pci_enable_bridge(struct pci_dev *dev)
1984 struct pci_dev *bridge;
1987 bridge = pci_upstream_bridge(dev);
1989 pci_enable_bridge(bridge);
1991 if (pci_is_enabled(dev)) {
1992 if (!dev->is_busmaster)
1993 pci_set_master(dev);
1997 retval = pci_enable_device(dev);
1999 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2001 pci_set_master(dev);
2004 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2006 struct pci_dev *bridge;
2011 * Power state could be unknown at this point, either due to a fresh
2012 * boot or a device removal call. So get the current power state
2013 * so that things like MSI message writing will behave as expected
2014 * (e.g. if the device really is in D0 at enable time).
2016 pci_update_current_state(dev, dev->current_state);
2018 if (atomic_inc_return(&dev->enable_cnt) > 1)
2019 return 0; /* already enabled */
2021 bridge = pci_upstream_bridge(dev);
2023 pci_enable_bridge(bridge);
2025 /* only skip sriov related */
2026 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2027 if (dev->resource[i].flags & flags)
2029 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2030 if (dev->resource[i].flags & flags)
2033 err = do_pci_enable_device(dev, bars);
2035 atomic_dec(&dev->enable_cnt);
2040 * pci_enable_device_io - Initialize a device for use with IO space
2041 * @dev: PCI device to be initialized
2043 * Initialize device before it's used by a driver. Ask low-level code
2044 * to enable I/O resources. Wake up the device if it was suspended.
2045 * Beware, this function can fail.
2047 int pci_enable_device_io(struct pci_dev *dev)
2049 return pci_enable_device_flags(dev, IORESOURCE_IO);
2051 EXPORT_SYMBOL(pci_enable_device_io);
2054 * pci_enable_device_mem - Initialize a device for use with Memory space
2055 * @dev: PCI device to be initialized
2057 * Initialize device before it's used by a driver. Ask low-level code
2058 * to enable Memory resources. Wake up the device if it was suspended.
2059 * Beware, this function can fail.
2061 int pci_enable_device_mem(struct pci_dev *dev)
2063 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2065 EXPORT_SYMBOL(pci_enable_device_mem);
2068 * pci_enable_device - Initialize device before it's used by a driver.
2069 * @dev: PCI device to be initialized
2071 * Initialize device before it's used by a driver. Ask low-level code
2072 * to enable I/O and memory. Wake up the device if it was suspended.
2073 * Beware, this function can fail.
2075 * Note we don't actually enable the device many times if we call
2076 * this function repeatedly (we just increment the count).
2078 int pci_enable_device(struct pci_dev *dev)
2080 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2082 EXPORT_SYMBOL(pci_enable_device);
2085 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X
2086 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so
2087 * there's no need to track it separately. pci_devres is initialized
2088 * when a device is enabled using managed PCI device enable interface.
2091 unsigned int enabled:1;
2092 unsigned int pinned:1;
2093 unsigned int orig_intx:1;
2094 unsigned int restore_intx:1;
2099 static void pcim_release(struct device *gendev, void *res)
2101 struct pci_dev *dev = to_pci_dev(gendev);
2102 struct pci_devres *this = res;
2105 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2106 if (this->region_mask & (1 << i))
2107 pci_release_region(dev, i);
2112 if (this->restore_intx)
2113 pci_intx(dev, this->orig_intx);
2115 if (this->enabled && !this->pinned)
2116 pci_disable_device(dev);
2119 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2121 struct pci_devres *dr, *new_dr;
2123 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2127 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2130 return devres_get(&pdev->dev, new_dr, NULL, NULL);
2133 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2135 if (pci_is_managed(pdev))
2136 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2141 * pcim_enable_device - Managed pci_enable_device()
2142 * @pdev: PCI device to be initialized
2144 * Managed pci_enable_device().
2146 int pcim_enable_device(struct pci_dev *pdev)
2148 struct pci_devres *dr;
2151 dr = get_pci_dr(pdev);
2157 rc = pci_enable_device(pdev);
2159 pdev->is_managed = 1;
2164 EXPORT_SYMBOL(pcim_enable_device);
2167 * pcim_pin_device - Pin managed PCI device
2168 * @pdev: PCI device to pin
2170 * Pin managed PCI device @pdev. Pinned device won't be disabled on
2171 * driver detach. @pdev must have been enabled with
2172 * pcim_enable_device().
2174 void pcim_pin_device(struct pci_dev *pdev)
2176 struct pci_devres *dr;
2178 dr = find_pci_dr(pdev);
2179 WARN_ON(!dr || !dr->enabled);
2183 EXPORT_SYMBOL(pcim_pin_device);
2186 * pcibios_device_add - provide arch specific hooks when adding device dev
2187 * @dev: the PCI device being added
2189 * Permits the platform to provide architecture specific functionality when
2190 * devices are added. This is the default implementation. Architecture
2191 * implementations can override this.
2193 int __weak pcibios_device_add(struct pci_dev *dev)
2199 * pcibios_release_device - provide arch specific hooks when releasing
2201 * @dev: the PCI device being released
2203 * Permits the platform to provide architecture specific functionality when
2204 * devices are released. This is the default implementation. Architecture
2205 * implementations can override this.
2207 void __weak pcibios_release_device(struct pci_dev *dev) {}
2210 * pcibios_disable_device - disable arch specific PCI resources for device dev
2211 * @dev: the PCI device to disable
2213 * Disables architecture specific PCI resources for the device. This
2214 * is the default implementation. Architecture implementations can
2217 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2220 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2221 * @irq: ISA IRQ to penalize
2222 * @active: IRQ active or not
2224 * Permits the platform to provide architecture-specific functionality when
2225 * penalizing ISA IRQs. This is the default implementation. Architecture
2226 * implementations can override this.
2228 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2230 static void do_pci_disable_device(struct pci_dev *dev)
2234 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2235 if (pci_command & PCI_COMMAND_MASTER) {
2236 pci_command &= ~PCI_COMMAND_MASTER;
2237 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2240 pcibios_disable_device(dev);
2244 * pci_disable_enabled_device - Disable device without updating enable_cnt
2245 * @dev: PCI device to disable
2247 * NOTE: This function is a backend of PCI power management routines and is
2248 * not supposed to be called drivers.
2250 void pci_disable_enabled_device(struct pci_dev *dev)
2252 if (pci_is_enabled(dev))
2253 do_pci_disable_device(dev);
2257 * pci_disable_device - Disable PCI device after use
2258 * @dev: PCI device to be disabled
2260 * Signal to the system that the PCI device is not in use by the system
2261 * anymore. This only involves disabling PCI bus-mastering, if active.
2263 * Note we don't actually disable the device until all callers of
2264 * pci_enable_device() have called pci_disable_device().
2266 void pci_disable_device(struct pci_dev *dev)
2268 struct pci_devres *dr;
2270 dr = find_pci_dr(dev);
2274 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2275 "disabling already-disabled device");
2277 if (atomic_dec_return(&dev->enable_cnt) != 0)
2280 do_pci_disable_device(dev);
2282 dev->is_busmaster = 0;
2284 EXPORT_SYMBOL(pci_disable_device);
2287 * pcibios_set_pcie_reset_state - set reset state for device dev
2288 * @dev: the PCIe device reset
2289 * @state: Reset state to enter into
2291 * Set the PCIe reset state for the device. This is the default
2292 * implementation. Architecture implementations can override this.
2294 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2295 enum pcie_reset_state state)
2301 * pci_set_pcie_reset_state - set reset state for device dev
2302 * @dev: the PCIe device reset
2303 * @state: Reset state to enter into
2305 * Sets the PCI reset state for the device.
2307 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2309 return pcibios_set_pcie_reset_state(dev, state);
2311 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2313 #ifdef CONFIG_PCIEAER
2314 void pcie_clear_device_status(struct pci_dev *dev)
2318 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2319 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2324 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2325 * @dev: PCIe root port or event collector.
2327 void pcie_clear_root_pme_status(struct pci_dev *dev)
2329 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2333 * pci_check_pme_status - Check if given device has generated PME.
2334 * @dev: Device to check.
2336 * Check the PME status of the device and if set, clear it and clear PME enable
2337 * (if set). Return 'true' if PME status and PME enable were both set or
2338 * 'false' otherwise.
2340 bool pci_check_pme_status(struct pci_dev *dev)
2349 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2350 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2351 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2354 /* Clear PME status. */
2355 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2356 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2357 /* Disable PME to avoid interrupt flood. */
2358 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2362 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2368 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2369 * @dev: Device to handle.
2370 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2372 * Check if @dev has generated PME and queue a resume request for it in that
2375 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2377 if (pme_poll_reset && dev->pme_poll)
2378 dev->pme_poll = false;
2380 if (pci_check_pme_status(dev)) {
2381 pci_wakeup_event(dev);
2382 pm_request_resume(&dev->dev);
2388 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2389 * @bus: Top bus of the subtree to walk.
2391 void pci_pme_wakeup_bus(struct pci_bus *bus)
2394 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2399 * pci_pme_capable - check the capability of PCI device to generate PME#
2400 * @dev: PCI device to handle.
2401 * @state: PCI state from which device will issue PME#.
2403 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2408 return !!(dev->pme_support & (1 << state));
2410 EXPORT_SYMBOL(pci_pme_capable);
2412 static void pci_pme_list_scan(struct work_struct *work)
2414 struct pci_pme_device *pme_dev, *n;
2416 mutex_lock(&pci_pme_list_mutex);
2417 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2418 if (pme_dev->dev->pme_poll) {
2419 struct pci_dev *bridge;
2421 bridge = pme_dev->dev->bus->self;
2423 * If bridge is in low power state, the
2424 * configuration space of subordinate devices
2425 * may be not accessible
2427 if (bridge && bridge->current_state != PCI_D0)
2430 * If the device is in D3cold it should not be
2433 if (pme_dev->dev->current_state == PCI_D3cold)
2436 pci_pme_wakeup(pme_dev->dev, NULL);
2438 list_del(&pme_dev->list);
2442 if (!list_empty(&pci_pme_list))
2443 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2444 msecs_to_jiffies(PME_TIMEOUT));
2445 mutex_unlock(&pci_pme_list_mutex);
2448 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2452 if (!dev->pme_support)
2455 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2456 /* Clear PME_Status by writing 1 to it and enable PME# */
2457 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2459 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2461 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2465 * pci_pme_restore - Restore PME configuration after config space restore.
2466 * @dev: PCI device to update.
2468 void pci_pme_restore(struct pci_dev *dev)
2472 if (!dev->pme_support)
2475 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2476 if (dev->wakeup_prepared) {
2477 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2478 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2480 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2481 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2483 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2487 * pci_pme_active - enable or disable PCI device's PME# function
2488 * @dev: PCI device to handle.
2489 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2491 * The caller must verify that the device is capable of generating PME# before
2492 * calling this function with @enable equal to 'true'.
2494 void pci_pme_active(struct pci_dev *dev, bool enable)
2496 __pci_pme_active(dev, enable);
2499 * PCI (as opposed to PCIe) PME requires that the device have
2500 * its PME# line hooked up correctly. Not all hardware vendors
2501 * do this, so the PME never gets delivered and the device
2502 * remains asleep. The easiest way around this is to
2503 * periodically walk the list of suspended devices and check
2504 * whether any have their PME flag set. The assumption is that
2505 * we'll wake up often enough anyway that this won't be a huge
2506 * hit, and the power savings from the devices will still be a
2509 * Although PCIe uses in-band PME message instead of PME# line
2510 * to report PME, PME does not work for some PCIe devices in
2511 * reality. For example, there are devices that set their PME
2512 * status bits, but don't really bother to send a PME message;
2513 * there are PCI Express Root Ports that don't bother to
2514 * trigger interrupts when they receive PME messages from the
2515 * devices below. So PME poll is used for PCIe devices too.
2518 if (dev->pme_poll) {
2519 struct pci_pme_device *pme_dev;
2521 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2524 pci_warn(dev, "can't enable PME#\n");
2528 mutex_lock(&pci_pme_list_mutex);
2529 list_add(&pme_dev->list, &pci_pme_list);
2530 if (list_is_singular(&pci_pme_list))
2531 queue_delayed_work(system_freezable_wq,
2533 msecs_to_jiffies(PME_TIMEOUT));
2534 mutex_unlock(&pci_pme_list_mutex);
2536 mutex_lock(&pci_pme_list_mutex);
2537 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2538 if (pme_dev->dev == dev) {
2539 list_del(&pme_dev->list);
2544 mutex_unlock(&pci_pme_list_mutex);
2548 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2550 EXPORT_SYMBOL(pci_pme_active);
2553 * __pci_enable_wake - enable PCI device as wakeup event source
2554 * @dev: PCI device affected
2555 * @state: PCI state from which device will issue wakeup events
2556 * @enable: True to enable event generation; false to disable
2558 * This enables the device as a wakeup event source, or disables it.
2559 * When such events involves platform-specific hooks, those hooks are
2560 * called automatically by this routine.
2562 * Devices with legacy power management (no standard PCI PM capabilities)
2563 * always require such platform hooks.
2566 * 0 is returned on success
2567 * -EINVAL is returned if device is not supposed to wake up the system
2568 * Error code depending on the platform is returned if both the platform and
2569 * the native mechanism fail to enable the generation of wake-up events
2571 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2576 * Bridges that are not power-manageable directly only signal
2577 * wakeup on behalf of subordinate devices which is set up
2578 * elsewhere, so skip them. However, bridges that are
2579 * power-manageable may signal wakeup for themselves (for example,
2580 * on a hotplug event) and they need to be covered here.
2582 if (!pci_power_manageable(dev))
2585 /* Don't do the same thing twice in a row for one device. */
2586 if (!!enable == !!dev->wakeup_prepared)
2590 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2591 * Anderson we should be doing PME# wake enable followed by ACPI wake
2592 * enable. To disable wake-up we call the platform first, for symmetry.
2599 * Enable PME signaling if the device can signal PME from
2600 * D3cold regardless of whether or not it can signal PME from
2601 * the current target state, because that will allow it to
2602 * signal PME when the hierarchy above it goes into D3cold and
2603 * the device itself ends up in D3cold as a result of that.
2605 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2606 pci_pme_active(dev, true);
2609 error = platform_pci_set_wakeup(dev, true);
2613 dev->wakeup_prepared = true;
2615 platform_pci_set_wakeup(dev, false);
2616 pci_pme_active(dev, false);
2617 dev->wakeup_prepared = false;
2624 * pci_enable_wake - change wakeup settings for a PCI device
2625 * @pci_dev: Target device
2626 * @state: PCI state from which device will issue wakeup events
2627 * @enable: Whether or not to enable event generation
2629 * If @enable is set, check device_may_wakeup() for the device before calling
2630 * __pci_enable_wake() for it.
2632 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2634 if (enable && !device_may_wakeup(&pci_dev->dev))
2637 return __pci_enable_wake(pci_dev, state, enable);
2639 EXPORT_SYMBOL(pci_enable_wake);
2642 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2643 * @dev: PCI device to prepare
2644 * @enable: True to enable wake-up event generation; false to disable
2646 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2647 * and this function allows them to set that up cleanly - pci_enable_wake()
2648 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2649 * ordering constraints.
2651 * This function only returns error code if the device is not allowed to wake
2652 * up the system from sleep or it is not capable of generating PME# from both
2653 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2655 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2657 return pci_pme_capable(dev, PCI_D3cold) ?
2658 pci_enable_wake(dev, PCI_D3cold, enable) :
2659 pci_enable_wake(dev, PCI_D3hot, enable);
2661 EXPORT_SYMBOL(pci_wake_from_d3);
2664 * pci_target_state - find an appropriate low power state for a given PCI dev
2666 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2668 * Use underlying platform code to find a supported low power state for @dev.
2669 * If the platform can't manage @dev, return the deepest state from which it
2670 * can generate wake events, based on any available PME info.
2672 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2674 if (platform_pci_power_manageable(dev)) {
2676 * Call the platform to find the target state for the device.
2678 pci_power_t state = platform_pci_choose_state(dev);
2681 case PCI_POWER_ERROR:
2687 if (pci_no_d1d2(dev))
2695 * If the device is in D3cold even though it's not power-manageable by
2696 * the platform, it may have been powered down by non-standard means.
2697 * Best to let it slumber.
2699 if (dev->current_state == PCI_D3cold)
2701 else if (!dev->pm_cap)
2704 if (wakeup && dev->pme_support) {
2705 pci_power_t state = PCI_D3hot;
2708 * Find the deepest state from which the device can generate
2711 while (state && !(dev->pme_support & (1 << state)))
2716 else if (dev->pme_support & 1)
2724 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2725 * into a sleep state
2726 * @dev: Device to handle.
2728 * Choose the power state appropriate for the device depending on whether
2729 * it can wake up the system and/or is power manageable by the platform
2730 * (PCI_D3hot is the default) and put the device into that state.
2732 int pci_prepare_to_sleep(struct pci_dev *dev)
2734 bool wakeup = device_may_wakeup(&dev->dev);
2735 pci_power_t target_state = pci_target_state(dev, wakeup);
2738 if (target_state == PCI_POWER_ERROR)
2741 pci_enable_wake(dev, target_state, wakeup);
2743 error = pci_set_power_state(dev, target_state);
2746 pci_enable_wake(dev, target_state, false);
2750 EXPORT_SYMBOL(pci_prepare_to_sleep);
2753 * pci_back_from_sleep - turn PCI device on during system-wide transition
2754 * into working state
2755 * @dev: Device to handle.
2757 * Disable device's system wake-up capability and put it into D0.
2759 int pci_back_from_sleep(struct pci_dev *dev)
2761 int ret = pci_set_power_state(dev, PCI_D0);
2766 pci_enable_wake(dev, PCI_D0, false);
2769 EXPORT_SYMBOL(pci_back_from_sleep);
2772 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2773 * @dev: PCI device being suspended.
2775 * Prepare @dev to generate wake-up events at run time and put it into a low
2778 int pci_finish_runtime_suspend(struct pci_dev *dev)
2780 pci_power_t target_state;
2783 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2784 if (target_state == PCI_POWER_ERROR)
2787 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2789 error = pci_set_power_state(dev, target_state);
2792 pci_enable_wake(dev, target_state, false);
2798 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2799 * @dev: Device to check.
2801 * Return true if the device itself is capable of generating wake-up events
2802 * (through the platform or using the native PCIe PME) or if the device supports
2803 * PME and one of its upstream bridges can generate wake-up events.
2805 bool pci_dev_run_wake(struct pci_dev *dev)
2807 struct pci_bus *bus = dev->bus;
2809 if (!dev->pme_support)
2812 /* PME-capable in principle, but not from the target power state */
2813 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2816 if (device_can_wakeup(&dev->dev))
2819 while (bus->parent) {
2820 struct pci_dev *bridge = bus->self;
2822 if (device_can_wakeup(&bridge->dev))
2828 /* We have reached the root bus. */
2830 return device_can_wakeup(bus->bridge);
2834 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2837 * pci_dev_need_resume - Check if it is necessary to resume the device.
2838 * @pci_dev: Device to check.
2840 * Return 'true' if the device is not runtime-suspended or it has to be
2841 * reconfigured due to wakeup settings difference between system and runtime
2842 * suspend, or the current power state of it is not suitable for the upcoming
2843 * (system-wide) transition.
2845 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2847 struct device *dev = &pci_dev->dev;
2848 pci_power_t target_state;
2850 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2853 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2856 * If the earlier platform check has not triggered, D3cold is just power
2857 * removal on top of D3hot, so no need to resume the device in that
2860 return target_state != pci_dev->current_state &&
2861 target_state != PCI_D3cold &&
2862 pci_dev->current_state != PCI_D3hot;
2866 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2867 * @pci_dev: Device to check.
2869 * If the device is suspended and it is not configured for system wakeup,
2870 * disable PME for it to prevent it from waking up the system unnecessarily.
2872 * Note that if the device's power state is D3cold and the platform check in
2873 * pci_dev_need_resume() has not triggered, the device's configuration need not
2876 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2878 struct device *dev = &pci_dev->dev;
2880 spin_lock_irq(&dev->power.lock);
2882 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2883 pci_dev->current_state < PCI_D3cold)
2884 __pci_pme_active(pci_dev, false);
2886 spin_unlock_irq(&dev->power.lock);
2890 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2891 * @pci_dev: Device to handle.
2893 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2894 * it might have been disabled during the prepare phase of system suspend if
2895 * the device was not configured for system wakeup.
2897 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2899 struct device *dev = &pci_dev->dev;
2901 if (!pci_dev_run_wake(pci_dev))
2904 spin_lock_irq(&dev->power.lock);
2906 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2907 __pci_pme_active(pci_dev, true);
2909 spin_unlock_irq(&dev->power.lock);
2913 * pci_choose_state - Choose the power state of a PCI device.
2914 * @dev: Target PCI device.
2915 * @state: Target state for the whole system.
2917 * Returns PCI power state suitable for @dev and @state.
2919 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2921 if (state.event == PM_EVENT_ON)
2924 return pci_target_state(dev, false);
2926 EXPORT_SYMBOL(pci_choose_state);
2928 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2930 struct device *dev = &pdev->dev;
2931 struct device *parent = dev->parent;
2934 pm_runtime_get_sync(parent);
2935 pm_runtime_get_noresume(dev);
2937 * pdev->current_state is set to PCI_D3cold during suspending,
2938 * so wait until suspending completes
2940 pm_runtime_barrier(dev);
2942 * Only need to resume devices in D3cold, because config
2943 * registers are still accessible for devices suspended but
2946 if (pdev->current_state == PCI_D3cold)
2947 pm_runtime_resume(dev);
2950 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2952 struct device *dev = &pdev->dev;
2953 struct device *parent = dev->parent;
2955 pm_runtime_put(dev);
2957 pm_runtime_put_sync(parent);
2960 static const struct dmi_system_id bridge_d3_blacklist[] = {
2964 * Gigabyte X299 root port is not marked as hotplug capable
2965 * which allows Linux to power manage it. However, this
2966 * confuses the BIOS SMI handler so don't power manage root
2967 * ports on that system.
2969 .ident = "X299 DESIGNARE EX-CF",
2971 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2972 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2977 * Downstream device is not accessible after putting a root port
2978 * into D3cold and back into D0 on Elo Continental Z2 board
2980 .ident = "Elo Continental Z2",
2982 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2983 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2984 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2992 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2993 * @bridge: Bridge to check
2995 * This function checks if it is possible to move the bridge to D3.
2996 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2998 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3000 if (!pci_is_pcie(bridge))
3003 switch (pci_pcie_type(bridge)) {
3004 case PCI_EXP_TYPE_ROOT_PORT:
3005 case PCI_EXP_TYPE_UPSTREAM:
3006 case PCI_EXP_TYPE_DOWNSTREAM:
3007 if (pci_bridge_d3_disable)
3011 * Hotplug ports handled by firmware in System Management Mode
3012 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3014 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3017 if (pci_bridge_d3_force)
3020 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3021 if (bridge->is_thunderbolt)
3024 /* Platform might know better if the bridge supports D3 */
3025 if (platform_pci_bridge_d3(bridge))
3029 * Hotplug ports handled natively by the OS were not validated
3030 * by vendors for runtime D3 at least until 2018 because there
3031 * was no OS support.
3033 if (bridge->is_hotplug_bridge)
3036 if (dmi_check_system(bridge_d3_blacklist))
3040 * It should be safe to put PCIe ports from 2015 or newer
3043 if (dmi_get_bios_year() >= 2015)
3051 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3053 bool *d3cold_ok = data;
3055 if (/* The device needs to be allowed to go D3cold ... */
3056 dev->no_d3cold || !dev->d3cold_allowed ||
3058 /* ... and if it is wakeup capable to do so from D3cold. */
3059 (device_may_wakeup(&dev->dev) &&
3060 !pci_pme_capable(dev, PCI_D3cold)) ||
3062 /* If it is a bridge it must be allowed to go to D3. */
3063 !pci_power_manageable(dev))
3071 * pci_bridge_d3_update - Update bridge D3 capabilities
3072 * @dev: PCI device which is changed
3074 * Update upstream bridge PM capabilities accordingly depending on if the
3075 * device PM configuration was changed or the device is being removed. The
3076 * change is also propagated upstream.
3078 void pci_bridge_d3_update(struct pci_dev *dev)
3080 bool remove = !device_is_registered(&dev->dev);
3081 struct pci_dev *bridge;
3082 bool d3cold_ok = true;
3084 bridge = pci_upstream_bridge(dev);
3085 if (!bridge || !pci_bridge_d3_possible(bridge))
3089 * If D3 is currently allowed for the bridge, removing one of its
3090 * children won't change that.
3092 if (remove && bridge->bridge_d3)
3096 * If D3 is currently allowed for the bridge and a child is added or
3097 * changed, disallowance of D3 can only be caused by that child, so
3098 * we only need to check that single device, not any of its siblings.
3100 * If D3 is currently not allowed for the bridge, checking the device
3101 * first may allow us to skip checking its siblings.
3104 pci_dev_check_d3cold(dev, &d3cold_ok);
3107 * If D3 is currently not allowed for the bridge, this may be caused
3108 * either by the device being changed/removed or any of its siblings,
3109 * so we need to go through all children to find out if one of them
3110 * continues to block D3.
3112 if (d3cold_ok && !bridge->bridge_d3)
3113 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3116 if (bridge->bridge_d3 != d3cold_ok) {
3117 bridge->bridge_d3 = d3cold_ok;
3118 /* Propagate change to upstream bridges */
3119 pci_bridge_d3_update(bridge);
3124 * pci_d3cold_enable - Enable D3cold for device
3125 * @dev: PCI device to handle
3127 * This function can be used in drivers to enable D3cold from the device
3128 * they handle. It also updates upstream PCI bridge PM capabilities
3131 void pci_d3cold_enable(struct pci_dev *dev)
3133 if (dev->no_d3cold) {
3134 dev->no_d3cold = false;
3135 pci_bridge_d3_update(dev);
3138 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3141 * pci_d3cold_disable - Disable D3cold for device
3142 * @dev: PCI device to handle
3144 * This function can be used in drivers to disable D3cold from the device
3145 * they handle. It also updates upstream PCI bridge PM capabilities
3148 void pci_d3cold_disable(struct pci_dev *dev)
3150 if (!dev->no_d3cold) {
3151 dev->no_d3cold = true;
3152 pci_bridge_d3_update(dev);
3155 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3158 * pci_pm_init - Initialize PM functions of given PCI device
3159 * @dev: PCI device to handle.
3161 void pci_pm_init(struct pci_dev *dev)
3167 pm_runtime_forbid(&dev->dev);
3168 pm_runtime_set_active(&dev->dev);
3169 pm_runtime_enable(&dev->dev);
3170 device_enable_async_suspend(&dev->dev);
3171 dev->wakeup_prepared = false;
3174 dev->pme_support = 0;
3176 /* find PCI PM capability in list */
3177 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3180 /* Check device's ability to generate PME# */
3181 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3183 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3184 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3185 pmc & PCI_PM_CAP_VER_MASK);
3190 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3191 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3192 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3193 dev->d3cold_allowed = true;
3195 dev->d1_support = false;
3196 dev->d2_support = false;
3197 if (!pci_no_d1d2(dev)) {
3198 if (pmc & PCI_PM_CAP_D1)
3199 dev->d1_support = true;
3200 if (pmc & PCI_PM_CAP_D2)
3201 dev->d2_support = true;
3203 if (dev->d1_support || dev->d2_support)
3204 pci_info(dev, "supports%s%s\n",
3205 dev->d1_support ? " D1" : "",
3206 dev->d2_support ? " D2" : "");
3209 pmc &= PCI_PM_CAP_PME_MASK;
3211 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3212 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3213 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3214 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3215 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3216 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3217 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3218 dev->pme_poll = true;
3220 * Make device's PM flags reflect the wake-up capability, but
3221 * let the user space enable it to wake up the system as needed.
3223 device_set_wakeup_capable(&dev->dev, true);
3224 /* Disable the PME# generation functionality */
3225 pci_pme_active(dev, false);
3228 pci_read_config_word(dev, PCI_STATUS, &status);
3229 if (status & PCI_STATUS_IMM_READY)
3233 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3235 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3239 case PCI_EA_P_VF_MEM:
3240 flags |= IORESOURCE_MEM;
3242 case PCI_EA_P_MEM_PREFETCH:
3243 case PCI_EA_P_VF_MEM_PREFETCH:
3244 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3247 flags |= IORESOURCE_IO;
3256 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3259 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3260 return &dev->resource[bei];
3261 #ifdef CONFIG_PCI_IOV
3262 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3263 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3264 return &dev->resource[PCI_IOV_RESOURCES +
3265 bei - PCI_EA_BEI_VF_BAR0];
3267 else if (bei == PCI_EA_BEI_ROM)
3268 return &dev->resource[PCI_ROM_RESOURCE];
3273 /* Read an Enhanced Allocation (EA) entry */
3274 static int pci_ea_read(struct pci_dev *dev, int offset)
3276 struct resource *res;
3277 int ent_size, ent_offset = offset;
3278 resource_size_t start, end;
3279 unsigned long flags;
3280 u32 dw0, bei, base, max_offset;
3282 bool support_64 = (sizeof(resource_size_t) >= 8);
3284 pci_read_config_dword(dev, ent_offset, &dw0);
3287 /* Entry size field indicates DWORDs after 1st */
3288 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3290 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3293 bei = (dw0 & PCI_EA_BEI) >> 4;
3294 prop = (dw0 & PCI_EA_PP) >> 8;
3297 * If the Property is in the reserved range, try the Secondary
3300 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3301 prop = (dw0 & PCI_EA_SP) >> 16;
3302 if (prop > PCI_EA_P_BRIDGE_IO)
3305 res = pci_ea_get_resource(dev, bei, prop);
3307 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3311 flags = pci_ea_flags(dev, prop);
3313 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3318 pci_read_config_dword(dev, ent_offset, &base);
3319 start = (base & PCI_EA_FIELD_MASK);
3322 /* Read MaxOffset */
3323 pci_read_config_dword(dev, ent_offset, &max_offset);
3326 /* Read Base MSBs (if 64-bit entry) */
3327 if (base & PCI_EA_IS_64) {
3330 pci_read_config_dword(dev, ent_offset, &base_upper);
3333 flags |= IORESOURCE_MEM_64;
3335 /* entry starts above 32-bit boundary, can't use */
3336 if (!support_64 && base_upper)
3340 start |= ((u64)base_upper << 32);
3343 end = start + (max_offset | 0x03);
3345 /* Read MaxOffset MSBs (if 64-bit entry) */
3346 if (max_offset & PCI_EA_IS_64) {
3347 u32 max_offset_upper;
3349 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3352 flags |= IORESOURCE_MEM_64;
3354 /* entry too big, can't use */
3355 if (!support_64 && max_offset_upper)
3359 end += ((u64)max_offset_upper << 32);
3363 pci_err(dev, "EA Entry crosses address boundary\n");
3367 if (ent_size != ent_offset - offset) {
3368 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3369 ent_size, ent_offset - offset);
3373 res->name = pci_name(dev);
3378 if (bei <= PCI_EA_BEI_BAR5)
3379 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3381 else if (bei == PCI_EA_BEI_ROM)
3382 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3384 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3385 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3386 bei - PCI_EA_BEI_VF_BAR0, res, prop);
3388 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3392 return offset + ent_size;
3395 /* Enhanced Allocation Initialization */
3396 void pci_ea_init(struct pci_dev *dev)
3403 /* find PCI EA capability in list */
3404 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3408 /* determine the number of entries */
3409 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3411 num_ent &= PCI_EA_NUM_ENT_MASK;
3413 offset = ea + PCI_EA_FIRST_ENT;
3415 /* Skip DWORD 2 for type 1 functions */
3416 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3419 /* parse each EA entry */
3420 for (i = 0; i < num_ent; ++i)
3421 offset = pci_ea_read(dev, offset);
3424 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3425 struct pci_cap_saved_state *new_cap)
3427 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3431 * _pci_add_cap_save_buffer - allocate buffer for saving given
3432 * capability registers
3433 * @dev: the PCI device
3434 * @cap: the capability to allocate the buffer for
3435 * @extended: Standard or Extended capability ID
3436 * @size: requested size of the buffer
3438 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3439 bool extended, unsigned int size)
3442 struct pci_cap_saved_state *save_state;
3445 pos = pci_find_ext_capability(dev, cap);
3447 pos = pci_find_capability(dev, cap);
3452 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3456 save_state->cap.cap_nr = cap;
3457 save_state->cap.cap_extended = extended;
3458 save_state->cap.size = size;
3459 pci_add_saved_cap(dev, save_state);
3464 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3466 return _pci_add_cap_save_buffer(dev, cap, false, size);
3469 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3471 return _pci_add_cap_save_buffer(dev, cap, true, size);
3475 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3476 * @dev: the PCI device
3478 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3482 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3483 PCI_EXP_SAVE_REGS * sizeof(u16));
3485 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3487 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3489 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3491 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3494 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3496 pci_allocate_vc_save_buffers(dev);
3499 void pci_free_cap_save_buffers(struct pci_dev *dev)
3501 struct pci_cap_saved_state *tmp;
3502 struct hlist_node *n;
3504 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3509 * pci_configure_ari - enable or disable ARI forwarding
3510 * @dev: the PCI device
3512 * If @dev and its upstream bridge both support ARI, enable ARI in the
3513 * bridge. Otherwise, disable ARI in the bridge.
3515 void pci_configure_ari(struct pci_dev *dev)
3518 struct pci_dev *bridge;
3520 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3523 bridge = dev->bus->self;
3527 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3528 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3531 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3532 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3533 PCI_EXP_DEVCTL2_ARI);
3534 bridge->ari_enabled = 1;
3536 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3537 PCI_EXP_DEVCTL2_ARI);
3538 bridge->ari_enabled = 0;
3542 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3547 pos = pdev->acs_cap;
3552 * Except for egress control, capabilities are either required
3553 * or only required if controllable. Features missing from the
3554 * capability field can therefore be assumed as hard-wired enabled.
3556 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3557 acs_flags &= (cap | PCI_ACS_EC);
3559 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3560 return (ctrl & acs_flags) == acs_flags;
3564 * pci_acs_enabled - test ACS against required flags for a given device
3565 * @pdev: device to test
3566 * @acs_flags: required PCI ACS flags
3568 * Return true if the device supports the provided flags. Automatically
3569 * filters out flags that are not implemented on multifunction devices.
3571 * Note that this interface checks the effective ACS capabilities of the
3572 * device rather than the actual capabilities. For instance, most single
3573 * function endpoints are not required to support ACS because they have no
3574 * opportunity for peer-to-peer access. We therefore return 'true'
3575 * regardless of whether the device exposes an ACS capability. This makes
3576 * it much easier for callers of this function to ignore the actual type
3577 * or topology of the device when testing ACS support.
3579 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3583 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3588 * Conventional PCI and PCI-X devices never support ACS, either
3589 * effectively or actually. The shared bus topology implies that
3590 * any device on the bus can receive or snoop DMA.
3592 if (!pci_is_pcie(pdev))
3595 switch (pci_pcie_type(pdev)) {
3597 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3598 * but since their primary interface is PCI/X, we conservatively
3599 * handle them as we would a non-PCIe device.
3601 case PCI_EXP_TYPE_PCIE_BRIDGE:
3603 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3604 * applicable... must never implement an ACS Extended Capability...".
3605 * This seems arbitrary, but we take a conservative interpretation
3606 * of this statement.
3608 case PCI_EXP_TYPE_PCI_BRIDGE:
3609 case PCI_EXP_TYPE_RC_EC:
3612 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3613 * implement ACS in order to indicate their peer-to-peer capabilities,
3614 * regardless of whether they are single- or multi-function devices.
3616 case PCI_EXP_TYPE_DOWNSTREAM:
3617 case PCI_EXP_TYPE_ROOT_PORT:
3618 return pci_acs_flags_enabled(pdev, acs_flags);
3620 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3621 * implemented by the remaining PCIe types to indicate peer-to-peer
3622 * capabilities, but only when they are part of a multifunction
3623 * device. The footnote for section 6.12 indicates the specific
3624 * PCIe types included here.
3626 case PCI_EXP_TYPE_ENDPOINT:
3627 case PCI_EXP_TYPE_UPSTREAM:
3628 case PCI_EXP_TYPE_LEG_END:
3629 case PCI_EXP_TYPE_RC_END:
3630 if (!pdev->multifunction)
3633 return pci_acs_flags_enabled(pdev, acs_flags);
3637 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3638 * to single function devices with the exception of downstream ports.
3644 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3645 * @start: starting downstream device
3646 * @end: ending upstream device or NULL to search to the root bus
3647 * @acs_flags: required flags
3649 * Walk up a device tree from start to end testing PCI ACS support. If
3650 * any step along the way does not support the required flags, return false.
3652 bool pci_acs_path_enabled(struct pci_dev *start,
3653 struct pci_dev *end, u16 acs_flags)
3655 struct pci_dev *pdev, *parent = start;
3660 if (!pci_acs_enabled(pdev, acs_flags))
3663 if (pci_is_root_bus(pdev->bus))
3664 return (end == NULL);
3666 parent = pdev->bus->self;
3667 } while (pdev != end);
3673 * pci_acs_init - Initialize ACS if hardware supports it
3674 * @dev: the PCI device
3676 void pci_acs_init(struct pci_dev *dev)
3678 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3681 * Attempt to enable ACS regardless of capability because some Root
3682 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3683 * the standard ACS capability but still support ACS via those
3686 pci_enable_acs(dev);
3690 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3694 * Helper to find the position of the ctrl register for a BAR.
3695 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3696 * Returns -ENOENT if no ctrl register for the BAR could be found.
3698 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3700 unsigned int pos, nbars, i;
3703 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3707 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3708 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3709 PCI_REBAR_CTRL_NBAR_SHIFT;
3711 for (i = 0; i < nbars; i++, pos += 8) {
3714 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3715 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3724 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3726 * @bar: BAR to query
3728 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3729 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3731 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3736 pos = pci_rebar_find_pos(pdev, bar);
3740 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3741 cap &= PCI_REBAR_CAP_SIZES;
3743 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3744 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3745 bar == 0 && cap == 0x7000)
3750 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3753 * pci_rebar_get_current_size - get the current size of a BAR
3755 * @bar: BAR to set size to
3757 * Read the size of a BAR from the resizable BAR config.
3758 * Returns size if found or negative error code.
3760 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3765 pos = pci_rebar_find_pos(pdev, bar);
3769 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3770 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3774 * pci_rebar_set_size - set a new size for a BAR
3776 * @bar: BAR to set size to
3777 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3779 * Set the new size of a BAR as defined in the spec.
3780 * Returns zero if resizing was successful, error code otherwise.
3782 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3787 pos = pci_rebar_find_pos(pdev, bar);
3791 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3792 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3793 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3794 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3799 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3800 * @dev: the PCI device
3801 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3802 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3803 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3804 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3806 * Return 0 if all upstream bridges support AtomicOp routing, egress
3807 * blocking is disabled on all upstream ports, and the root port supports
3808 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3809 * AtomicOp completion), or negative otherwise.
3811 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3813 struct pci_bus *bus = dev->bus;
3814 struct pci_dev *bridge;
3818 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3819 * in Device Control 2 is reserved in VFs and the PF value applies
3820 * to all associated VFs.
3825 if (!pci_is_pcie(dev))
3829 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3830 * AtomicOp requesters. For now, we only support endpoints as
3831 * requesters and root ports as completers. No endpoints as
3832 * completers, and no peer-to-peer.
3835 switch (pci_pcie_type(dev)) {
3836 case PCI_EXP_TYPE_ENDPOINT:
3837 case PCI_EXP_TYPE_LEG_END:
3838 case PCI_EXP_TYPE_RC_END:
3844 while (bus->parent) {
3847 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3849 switch (pci_pcie_type(bridge)) {
3850 /* Ensure switch ports support AtomicOp routing */
3851 case PCI_EXP_TYPE_UPSTREAM:
3852 case PCI_EXP_TYPE_DOWNSTREAM:
3853 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3857 /* Ensure root port supports all the sizes we care about */
3858 case PCI_EXP_TYPE_ROOT_PORT:
3859 if ((cap & cap_mask) != cap_mask)
3864 /* Ensure upstream ports don't block AtomicOps on egress */
3865 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3866 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3868 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3875 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3876 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3879 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3882 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3883 * @dev: the PCI device
3884 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3886 * Perform INTx swizzling for a device behind one level of bridge. This is
3887 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3888 * behind bridges on add-in cards. For devices with ARI enabled, the slot
3889 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3890 * the PCI Express Base Specification, Revision 2.1)
3892 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3896 if (pci_ari_enabled(dev->bus))
3899 slot = PCI_SLOT(dev->devfn);
3901 return (((pin - 1) + slot) % 4) + 1;
3904 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3912 while (!pci_is_root_bus(dev->bus)) {
3913 pin = pci_swizzle_interrupt_pin(dev, pin);
3914 dev = dev->bus->self;
3921 * pci_common_swizzle - swizzle INTx all the way to root bridge
3922 * @dev: the PCI device
3923 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3925 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3926 * bridges all the way up to a PCI root bus.
3928 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3932 while (!pci_is_root_bus(dev->bus)) {
3933 pin = pci_swizzle_interrupt_pin(dev, pin);
3934 dev = dev->bus->self;
3937 return PCI_SLOT(dev->devfn);
3939 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3942 * pci_release_region - Release a PCI bar
3943 * @pdev: PCI device whose resources were previously reserved by
3944 * pci_request_region()
3945 * @bar: BAR to release
3947 * Releases the PCI I/O and memory resources previously reserved by a
3948 * successful call to pci_request_region(). Call this function only
3949 * after all use of the PCI regions has ceased.
3951 void pci_release_region(struct pci_dev *pdev, int bar)
3953 struct pci_devres *dr;
3955 if (pci_resource_len(pdev, bar) == 0)
3957 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3958 release_region(pci_resource_start(pdev, bar),
3959 pci_resource_len(pdev, bar));
3960 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3961 release_mem_region(pci_resource_start(pdev, bar),
3962 pci_resource_len(pdev, bar));
3964 dr = find_pci_dr(pdev);
3966 dr->region_mask &= ~(1 << bar);
3968 EXPORT_SYMBOL(pci_release_region);
3971 * __pci_request_region - Reserved PCI I/O and memory resource
3972 * @pdev: PCI device whose resources are to be reserved
3973 * @bar: BAR to be reserved
3974 * @res_name: Name to be associated with resource.
3975 * @exclusive: whether the region access is exclusive or not
3977 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3978 * being reserved by owner @res_name. Do not access any
3979 * address inside the PCI regions unless this call returns
3982 * If @exclusive is set, then the region is marked so that userspace
3983 * is explicitly not allowed to map the resource via /dev/mem or
3984 * sysfs MMIO access.
3986 * Returns 0 on success, or %EBUSY on error. A warning
3987 * message is also printed on failure.
3989 static int __pci_request_region(struct pci_dev *pdev, int bar,
3990 const char *res_name, int exclusive)
3992 struct pci_devres *dr;
3994 if (pci_resource_len(pdev, bar) == 0)
3997 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3998 if (!request_region(pci_resource_start(pdev, bar),
3999 pci_resource_len(pdev, bar), res_name))
4001 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4002 if (!__request_mem_region(pci_resource_start(pdev, bar),
4003 pci_resource_len(pdev, bar), res_name,
4008 dr = find_pci_dr(pdev);
4010 dr->region_mask |= 1 << bar;
4015 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4016 &pdev->resource[bar]);
4021 * pci_request_region - Reserve PCI I/O and memory resource
4022 * @pdev: PCI device whose resources are to be reserved
4023 * @bar: BAR to be reserved
4024 * @res_name: Name to be associated with resource
4026 * Mark the PCI region associated with PCI device @pdev BAR @bar as
4027 * being reserved by owner @res_name. Do not access any
4028 * address inside the PCI regions unless this call returns
4031 * Returns 0 on success, or %EBUSY on error. A warning
4032 * message is also printed on failure.
4034 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4036 return __pci_request_region(pdev, bar, res_name, 0);
4038 EXPORT_SYMBOL(pci_request_region);
4041 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4042 * @pdev: PCI device whose resources were previously reserved
4043 * @bars: Bitmask of BARs to be released
4045 * Release selected PCI I/O and memory resources previously reserved.
4046 * Call this function only after all use of the PCI regions has ceased.
4048 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4052 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4053 if (bars & (1 << i))
4054 pci_release_region(pdev, i);
4056 EXPORT_SYMBOL(pci_release_selected_regions);
4058 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4059 const char *res_name, int excl)
4063 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4064 if (bars & (1 << i))
4065 if (__pci_request_region(pdev, i, res_name, excl))
4071 if (bars & (1 << i))
4072 pci_release_region(pdev, i);
4079 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4080 * @pdev: PCI device whose resources are to be reserved
4081 * @bars: Bitmask of BARs to be requested
4082 * @res_name: Name to be associated with resource
4084 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4085 const char *res_name)
4087 return __pci_request_selected_regions(pdev, bars, res_name, 0);
4089 EXPORT_SYMBOL(pci_request_selected_regions);
4091 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4092 const char *res_name)
4094 return __pci_request_selected_regions(pdev, bars, res_name,
4095 IORESOURCE_EXCLUSIVE);
4097 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4100 * pci_release_regions - Release reserved PCI I/O and memory resources
4101 * @pdev: PCI device whose resources were previously reserved by
4102 * pci_request_regions()
4104 * Releases all PCI I/O and memory resources previously reserved by a
4105 * successful call to pci_request_regions(). Call this function only
4106 * after all use of the PCI regions has ceased.
4109 void pci_release_regions(struct pci_dev *pdev)
4111 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4113 EXPORT_SYMBOL(pci_release_regions);
4116 * pci_request_regions - Reserve PCI I/O and memory resources
4117 * @pdev: PCI device whose resources are to be reserved
4118 * @res_name: Name to be associated with resource.
4120 * Mark all PCI regions associated with PCI device @pdev as
4121 * being reserved by owner @res_name. Do not access any
4122 * address inside the PCI regions unless this call returns
4125 * Returns 0 on success, or %EBUSY on error. A warning
4126 * message is also printed on failure.
4128 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4130 return pci_request_selected_regions(pdev,
4131 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4133 EXPORT_SYMBOL(pci_request_regions);
4136 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4137 * @pdev: PCI device whose resources are to be reserved
4138 * @res_name: Name to be associated with resource.
4140 * Mark all PCI regions associated with PCI device @pdev as being reserved
4141 * by owner @res_name. Do not access any address inside the PCI regions
4142 * unless this call returns successfully.
4144 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4145 * and the sysfs MMIO access will not be allowed.
4147 * Returns 0 on success, or %EBUSY on error. A warning message is also
4148 * printed on failure.
4150 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4152 return pci_request_selected_regions_exclusive(pdev,
4153 ((1 << PCI_STD_NUM_BARS) - 1), res_name);
4155 EXPORT_SYMBOL(pci_request_regions_exclusive);
4158 * Record the PCI IO range (expressed as CPU physical address + size).
4159 * Return a negative value if an error has occurred, zero otherwise
4161 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4162 resource_size_t size)
4166 struct logic_pio_hwaddr *range;
4168 if (!size || addr + size < addr)
4171 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4175 range->fwnode = fwnode;
4177 range->hw_start = addr;
4178 range->flags = LOGIC_PIO_CPU_MMIO;
4180 ret = logic_pio_register_range(range);
4184 /* Ignore duplicates due to deferred probing */
4192 phys_addr_t pci_pio_to_address(unsigned long pio)
4194 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4197 if (pio >= MMIO_UPPER_LIMIT)
4200 address = logic_pio_to_hwaddr(pio);
4205 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4207 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4210 return logic_pio_trans_cpuaddr(address);
4212 if (address > IO_SPACE_LIMIT)
4213 return (unsigned long)-1;
4215 return (unsigned long) address;
4220 * pci_remap_iospace - Remap the memory mapped I/O space
4221 * @res: Resource describing the I/O space
4222 * @phys_addr: physical address of range to be mapped
4224 * Remap the memory mapped I/O space described by the @res and the CPU
4225 * physical address @phys_addr into virtual address space. Only
4226 * architectures that have memory mapped IO functions defined (and the
4227 * PCI_IOBASE value defined) should call this function.
4229 #ifndef pci_remap_iospace
4230 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4232 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4233 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4235 if (!(res->flags & IORESOURCE_IO))
4238 if (res->end > IO_SPACE_LIMIT)
4241 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4242 pgprot_device(PAGE_KERNEL));
4245 * This architecture does not have memory mapped I/O space,
4246 * so this function should never be called
4248 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4252 EXPORT_SYMBOL(pci_remap_iospace);
4256 * pci_unmap_iospace - Unmap the memory mapped I/O space
4257 * @res: resource to be unmapped
4259 * Unmap the CPU virtual address @res from virtual address space. Only
4260 * architectures that have memory mapped IO functions defined (and the
4261 * PCI_IOBASE value defined) should call this function.
4263 void pci_unmap_iospace(struct resource *res)
4265 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4266 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4268 vunmap_range(vaddr, vaddr + resource_size(res));
4271 EXPORT_SYMBOL(pci_unmap_iospace);
4273 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4275 struct resource **res = ptr;
4277 pci_unmap_iospace(*res);
4281 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4282 * @dev: Generic device to remap IO address for
4283 * @res: Resource describing the I/O space
4284 * @phys_addr: physical address of range to be mapped
4286 * Managed pci_remap_iospace(). Map is automatically unmapped on driver
4289 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4290 phys_addr_t phys_addr)
4292 const struct resource **ptr;
4295 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4299 error = pci_remap_iospace(res, phys_addr);
4304 devres_add(dev, ptr);
4309 EXPORT_SYMBOL(devm_pci_remap_iospace);
4312 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4313 * @dev: Generic device to remap IO address for
4314 * @offset: Resource address to map
4315 * @size: Size of map
4317 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
4320 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4321 resource_size_t offset,
4322 resource_size_t size)
4324 void __iomem **ptr, *addr;
4326 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4330 addr = pci_remap_cfgspace(offset, size);
4333 devres_add(dev, ptr);
4339 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4342 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4343 * @dev: generic device to handle the resource for
4344 * @res: configuration space resource to be handled
4346 * Checks that a resource is a valid memory region, requests the memory
4347 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4348 * proper PCI configuration space memory attributes are guaranteed.
4350 * All operations are managed and will be undone on driver detach.
4352 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4353 * on failure. Usage example::
4355 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4356 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4358 * return PTR_ERR(base);
4360 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4361 struct resource *res)
4363 resource_size_t size;
4365 void __iomem *dest_ptr;
4369 if (!res || resource_type(res) != IORESOURCE_MEM) {
4370 dev_err(dev, "invalid resource\n");
4371 return IOMEM_ERR_PTR(-EINVAL);
4374 size = resource_size(res);
4377 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4380 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4382 return IOMEM_ERR_PTR(-ENOMEM);
4384 if (!devm_request_mem_region(dev, res->start, size, name)) {
4385 dev_err(dev, "can't request region for resource %pR\n", res);
4386 return IOMEM_ERR_PTR(-EBUSY);
4389 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4391 dev_err(dev, "ioremap failed for resource %pR\n", res);
4392 devm_release_mem_region(dev, res->start, size);
4393 dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4398 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4400 static void __pci_set_master(struct pci_dev *dev, bool enable)
4404 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4406 cmd = old_cmd | PCI_COMMAND_MASTER;
4408 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4409 if (cmd != old_cmd) {
4410 pci_dbg(dev, "%s bus mastering\n",
4411 enable ? "enabling" : "disabling");
4412 pci_write_config_word(dev, PCI_COMMAND, cmd);
4414 dev->is_busmaster = enable;
4418 * pcibios_setup - process "pci=" kernel boot arguments
4419 * @str: string used to pass in "pci=" kernel boot arguments
4421 * Process kernel boot arguments. This is the default implementation.
4422 * Architecture specific implementations can override this as necessary.
4424 char * __weak __init pcibios_setup(char *str)
4430 * pcibios_set_master - enable PCI bus-mastering for device dev
4431 * @dev: the PCI device to enable
4433 * Enables PCI bus-mastering for the device. This is the default
4434 * implementation. Architecture specific implementations can override
4435 * this if necessary.
4437 void __weak pcibios_set_master(struct pci_dev *dev)
4441 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4442 if (pci_is_pcie(dev))
4445 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4447 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4448 else if (lat > pcibios_max_latency)
4449 lat = pcibios_max_latency;
4453 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4457 * pci_set_master - enables bus-mastering for device dev
4458 * @dev: the PCI device to enable
4460 * Enables bus-mastering on the device and calls pcibios_set_master()
4461 * to do the needed arch specific settings.
4463 void pci_set_master(struct pci_dev *dev)
4465 __pci_set_master(dev, true);
4466 pcibios_set_master(dev);
4468 EXPORT_SYMBOL(pci_set_master);
4471 * pci_clear_master - disables bus-mastering for device dev
4472 * @dev: the PCI device to disable
4474 void pci_clear_master(struct pci_dev *dev)
4476 __pci_set_master(dev, false);
4478 EXPORT_SYMBOL(pci_clear_master);
4481 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4482 * @dev: the PCI device for which MWI is to be enabled
4484 * Helper function for pci_set_mwi.
4485 * Originally copied from drivers/net/acenic.c.
4488 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4490 int pci_set_cacheline_size(struct pci_dev *dev)
4494 if (!pci_cache_line_size)
4497 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4498 equal to or multiple of the right value. */
4499 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4500 if (cacheline_size >= pci_cache_line_size &&
4501 (cacheline_size % pci_cache_line_size) == 0)
4504 /* Write the correct value. */
4505 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4507 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4508 if (cacheline_size == pci_cache_line_size)
4511 pci_dbg(dev, "cache line size of %d is not supported\n",
4512 pci_cache_line_size << 2);
4516 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4519 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4520 * @dev: the PCI device for which MWI is enabled
4522 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4524 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4526 int pci_set_mwi(struct pci_dev *dev)
4528 #ifdef PCI_DISABLE_MWI
4534 rc = pci_set_cacheline_size(dev);
4538 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4539 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4540 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4541 cmd |= PCI_COMMAND_INVALIDATE;
4542 pci_write_config_word(dev, PCI_COMMAND, cmd);
4547 EXPORT_SYMBOL(pci_set_mwi);
4550 * pcim_set_mwi - a device-managed pci_set_mwi()
4551 * @dev: the PCI device for which MWI is enabled
4553 * Managed pci_set_mwi().
4555 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4557 int pcim_set_mwi(struct pci_dev *dev)
4559 struct pci_devres *dr;
4561 dr = find_pci_dr(dev);
4566 return pci_set_mwi(dev);
4568 EXPORT_SYMBOL(pcim_set_mwi);
4571 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4572 * @dev: the PCI device for which MWI is enabled
4574 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4575 * Callers are not required to check the return value.
4577 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4579 int pci_try_set_mwi(struct pci_dev *dev)
4581 #ifdef PCI_DISABLE_MWI
4584 return pci_set_mwi(dev);
4587 EXPORT_SYMBOL(pci_try_set_mwi);
4590 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4591 * @dev: the PCI device to disable
4593 * Disables PCI Memory-Write-Invalidate transaction on the device
4595 void pci_clear_mwi(struct pci_dev *dev)
4597 #ifndef PCI_DISABLE_MWI
4600 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4601 if (cmd & PCI_COMMAND_INVALIDATE) {
4602 cmd &= ~PCI_COMMAND_INVALIDATE;
4603 pci_write_config_word(dev, PCI_COMMAND, cmd);
4607 EXPORT_SYMBOL(pci_clear_mwi);
4610 * pci_disable_parity - disable parity checking for device
4611 * @dev: the PCI device to operate on
4613 * Disable parity checking for device @dev
4615 void pci_disable_parity(struct pci_dev *dev)
4619 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4620 if (cmd & PCI_COMMAND_PARITY) {
4621 cmd &= ~PCI_COMMAND_PARITY;
4622 pci_write_config_word(dev, PCI_COMMAND, cmd);
4627 * pci_intx - enables/disables PCI INTx for device dev
4628 * @pdev: the PCI device to operate on
4629 * @enable: boolean: whether to enable or disable PCI INTx
4631 * Enables/disables PCI INTx for device @pdev
4633 void pci_intx(struct pci_dev *pdev, int enable)
4635 u16 pci_command, new;
4637 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4640 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4642 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4644 if (new != pci_command) {
4645 struct pci_devres *dr;
4647 pci_write_config_word(pdev, PCI_COMMAND, new);
4649 dr = find_pci_dr(pdev);
4650 if (dr && !dr->restore_intx) {
4651 dr->restore_intx = 1;
4652 dr->orig_intx = !enable;
4656 EXPORT_SYMBOL_GPL(pci_intx);
4658 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4660 struct pci_bus *bus = dev->bus;
4661 bool mask_updated = true;
4662 u32 cmd_status_dword;
4663 u16 origcmd, newcmd;
4664 unsigned long flags;
4668 * We do a single dword read to retrieve both command and status.
4669 * Document assumptions that make this possible.
4671 BUILD_BUG_ON(PCI_COMMAND % 4);
4672 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4674 raw_spin_lock_irqsave(&pci_lock, flags);
4676 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4678 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4681 * Check interrupt status register to see whether our device
4682 * triggered the interrupt (when masking) or the next IRQ is
4683 * already pending (when unmasking).
4685 if (mask != irq_pending) {
4686 mask_updated = false;
4690 origcmd = cmd_status_dword;
4691 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4693 newcmd |= PCI_COMMAND_INTX_DISABLE;
4694 if (newcmd != origcmd)
4695 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4698 raw_spin_unlock_irqrestore(&pci_lock, flags);
4700 return mask_updated;
4704 * pci_check_and_mask_intx - mask INTx on pending interrupt
4705 * @dev: the PCI device to operate on
4707 * Check if the device dev has its INTx line asserted, mask it and return
4708 * true in that case. False is returned if no interrupt was pending.
4710 bool pci_check_and_mask_intx(struct pci_dev *dev)
4712 return pci_check_and_set_intx_mask(dev, true);
4714 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4717 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4718 * @dev: the PCI device to operate on
4720 * Check if the device dev has its INTx line asserted, unmask it if not and
4721 * return true. False is returned and the mask remains active if there was
4722 * still an interrupt pending.
4724 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4726 return pci_check_and_set_intx_mask(dev, false);
4728 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4731 * pci_wait_for_pending_transaction - wait for pending transaction
4732 * @dev: the PCI device to operate on
4734 * Return 0 if transaction is pending 1 otherwise.
4736 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4738 if (!pci_is_pcie(dev))
4741 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4742 PCI_EXP_DEVSTA_TRPND);
4744 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4747 * pcie_flr - initiate a PCIe function level reset
4748 * @dev: device to reset
4750 * Initiate a function level reset unconditionally on @dev without
4751 * checking any flags and DEVCAP
4753 int pcie_flr(struct pci_dev *dev)
4755 if (!pci_wait_for_pending_transaction(dev))
4756 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4758 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4764 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4765 * 100ms, but may silently discard requests while the FLR is in
4766 * progress. Wait 100ms before trying to access the device.
4770 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4772 EXPORT_SYMBOL_GPL(pcie_flr);
4775 * pcie_reset_flr - initiate a PCIe function level reset
4776 * @dev: device to reset
4777 * @probe: if true, return 0 if device can be reset this way
4779 * Initiate a function level reset on @dev.
4781 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4783 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4786 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4792 return pcie_flr(dev);
4794 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4796 static int pci_af_flr(struct pci_dev *dev, bool probe)
4801 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4805 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4808 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4809 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4816 * Wait for Transaction Pending bit to clear. A word-aligned test
4817 * is used, so we use the control offset rather than status and shift
4818 * the test bit to match.
4820 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4821 PCI_AF_STATUS_TP << 8))
4822 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4824 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4830 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4831 * updated 27 July 2006; a device must complete an FLR within
4832 * 100ms, but may silently discard requests while the FLR is in
4833 * progress. Wait 100ms before trying to access the device.
4837 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4841 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4842 * @dev: Device to reset.
4843 * @probe: if true, return 0 if the device can be reset this way.
4845 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4846 * unset, it will be reinitialized internally when going from PCI_D3hot to
4847 * PCI_D0. If that's the case and the device is not in a low-power state
4848 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4850 * NOTE: This causes the caller to sleep for twice the device power transition
4851 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4852 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4853 * Moreover, only devices in D0 can be reset by this function.
4855 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4859 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4862 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4863 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4869 if (dev->current_state != PCI_D0)
4872 csr &= ~PCI_PM_CTRL_STATE_MASK;
4874 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4875 pci_dev_d3_sleep(dev);
4877 csr &= ~PCI_PM_CTRL_STATE_MASK;
4879 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4880 pci_dev_d3_sleep(dev);
4882 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4886 * pcie_wait_for_link_status - Wait for link status change
4887 * @pdev: Device whose link to wait for.
4888 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4889 * @active: Waiting for active or inactive?
4891 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4892 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4894 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4895 bool use_lt, bool active)
4897 u16 lnksta_mask, lnksta_match;
4898 unsigned long end_jiffies;
4901 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4902 lnksta_match = active ? lnksta_mask : 0;
4904 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4906 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4907 if ((lnksta & lnksta_mask) == lnksta_match)
4910 } while (time_before(jiffies, end_jiffies));
4916 * pcie_retrain_link - Request a link retrain and wait for it to complete
4917 * @pdev: Device whose link to retrain.
4918 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4920 * Retrain completion status is retrieved from the Link Status Register
4921 * according to @use_lt. It is not verified whether the use of the DLLLA
4924 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4925 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4927 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4933 * Ensure the updated LNKCTL parameters are used during link
4934 * training by checking that there is no ongoing link training to
4935 * avoid LTSSM race as recommended in Implementation Note at the
4936 * end of PCIe r6.0.1 sec 7.5.3.7.
4938 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4942 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &lnkctl);
4943 lnkctl |= PCI_EXP_LNKCTL_RL;
4944 pcie_capability_write_word(pdev, PCI_EXP_LNKCTL, lnkctl);
4945 if (pdev->clear_retrain_link) {
4947 * Due to an erratum in some devices the Retrain Link bit
4948 * needs to be cleared again manually to allow the link
4949 * training to succeed.
4951 lnkctl &= ~PCI_EXP_LNKCTL_RL;
4952 pcie_capability_write_word(pdev, PCI_EXP_LNKCTL, lnkctl);
4955 return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4959 * pcie_wait_for_link_delay - Wait until link is active or inactive
4960 * @pdev: Bridge device
4961 * @active: waiting for active or inactive?
4962 * @delay: Delay to wait after link has become active (in ms)
4964 * Use this to wait till link becomes active or inactive.
4966 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4972 * Some controllers might not implement link active reporting. In this
4973 * case, we wait for 1000 ms + any delay requested by the caller.
4975 if (!pdev->link_active_reporting) {
4976 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4981 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4982 * after which we should expect an link active if the reset was
4983 * successful. If so, software must wait a minimum 100ms before sending
4984 * configuration requests to devices downstream this port.
4986 * If the link fails to activate, either the device was physically
4987 * removed or the link is permanently failed.
4991 rc = pcie_wait_for_link_status(pdev, false, active);
4994 rc = pcie_failed_link_retrain(pdev);
5009 * pcie_wait_for_link - Wait until link is active or inactive
5010 * @pdev: Bridge device
5011 * @active: waiting for active or inactive?
5013 * Use this to wait till link becomes active or inactive.
5015 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5017 return pcie_wait_for_link_delay(pdev, active, 100);
5021 * Find maximum D3cold delay required by all the devices on the bus. The
5022 * spec says 100 ms, but firmware can lower it and we allow drivers to
5023 * increase it as well.
5025 * Called with @pci_bus_sem locked for reading.
5027 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5029 const struct pci_dev *pdev;
5030 int min_delay = 100;
5033 list_for_each_entry(pdev, &bus->devices, bus_list) {
5034 if (pdev->d3cold_delay < min_delay)
5035 min_delay = pdev->d3cold_delay;
5036 if (pdev->d3cold_delay > max_delay)
5037 max_delay = pdev->d3cold_delay;
5040 return max(min_delay, max_delay);
5044 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5046 * @reset_type: reset type in human-readable form
5048 * Handle necessary delays before access to the devices on the secondary
5049 * side of the bridge are permitted after D3cold to D0 transition
5050 * or Conventional Reset.
5052 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5053 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5056 * Return 0 on success or -ENOTTY if the first device on the secondary bus
5057 * failed to become accessible.
5059 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5061 struct pci_dev *child;
5064 if (pci_dev_is_disconnected(dev))
5067 if (!pci_is_bridge(dev))
5070 down_read(&pci_bus_sem);
5073 * We only deal with devices that are present currently on the bus.
5074 * For any hot-added devices the access delay is handled in pciehp
5075 * board_added(). In case of ACPI hotplug the firmware is expected
5076 * to configure the devices before OS is notified.
5078 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5079 up_read(&pci_bus_sem);
5083 /* Take d3cold_delay requirements into account */
5084 delay = pci_bus_max_d3cold_delay(dev->subordinate);
5086 up_read(&pci_bus_sem);
5090 child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5092 up_read(&pci_bus_sem);
5095 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5096 * accessing the device after reset (that is 1000 ms + 100 ms).
5098 if (!pci_is_pcie(dev)) {
5099 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5100 msleep(1000 + delay);
5105 * For PCIe downstream and root ports that do not support speeds
5106 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5107 * speeds (gen3) we need to wait first for the data link layer to
5110 * However, 100 ms is the minimum and the PCIe spec says the
5111 * software must allow at least 1s before it can determine that the
5112 * device that did not respond is a broken device. Also device can
5113 * take longer than that to respond if it indicates so through Request
5114 * Retry Status completions.
5116 * Therefore we wait for 100 ms and check for the device presence
5117 * until the timeout expires.
5119 if (!pcie_downstream_port(dev))
5122 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5125 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5128 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5132 * If the port supports active link reporting we now check
5133 * whether the link is active and if not bail out early with
5134 * the assumption that the device is not present anymore.
5136 if (!dev->link_active_reporting)
5139 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5140 if (!(status & PCI_EXP_LNKSTA_DLLLA))
5143 return pci_dev_wait(child, reset_type,
5144 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5147 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5149 if (!pcie_wait_for_link_delay(dev, true, delay)) {
5150 /* Did not train, no need to wait any further */
5151 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5155 return pci_dev_wait(child, reset_type,
5156 PCIE_RESET_READY_POLL_MS - delay);
5159 void pci_reset_secondary_bus(struct pci_dev *dev)
5163 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5164 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5165 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5168 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
5169 * this to 2ms to ensure that we meet the minimum requirement.
5173 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5174 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5177 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5179 pci_reset_secondary_bus(dev);
5183 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5184 * @dev: Bridge device
5186 * Use the bridge control register to assert reset on the secondary bus.
5187 * Devices on the secondary bus are left in power-on state.
5189 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5191 pcibios_reset_secondary_bus(dev);
5193 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5195 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5197 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5199 struct pci_dev *pdev;
5201 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5202 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5205 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5212 return pci_bridge_secondary_bus_reset(dev->bus->self);
5215 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5219 if (!hotplug || !try_module_get(hotplug->owner))
5222 if (hotplug->ops->reset_slot)
5223 rc = hotplug->ops->reset_slot(hotplug, probe);
5225 module_put(hotplug->owner);
5230 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5232 if (dev->multifunction || dev->subordinate || !dev->slot ||
5233 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5236 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5239 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5243 rc = pci_dev_reset_slot_function(dev, probe);
5246 return pci_parent_bus_reset(dev, probe);
5249 void pci_dev_lock(struct pci_dev *dev)
5251 /* block PM suspend, driver probe, etc. */
5252 device_lock(&dev->dev);
5253 pci_cfg_access_lock(dev);
5255 EXPORT_SYMBOL_GPL(pci_dev_lock);
5257 /* Return 1 on successful lock, 0 on contention */
5258 int pci_dev_trylock(struct pci_dev *dev)
5260 if (device_trylock(&dev->dev)) {
5261 if (pci_cfg_access_trylock(dev))
5263 device_unlock(&dev->dev);
5268 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5270 void pci_dev_unlock(struct pci_dev *dev)
5272 pci_cfg_access_unlock(dev);
5273 device_unlock(&dev->dev);
5275 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5277 static void pci_dev_save_and_disable(struct pci_dev *dev)
5279 const struct pci_error_handlers *err_handler =
5280 dev->driver ? dev->driver->err_handler : NULL;
5283 * dev->driver->err_handler->reset_prepare() is protected against
5284 * races with ->remove() by the device lock, which must be held by
5287 if (err_handler && err_handler->reset_prepare)
5288 err_handler->reset_prepare(dev);
5291 * Wake-up device prior to save. PM registers default to D0 after
5292 * reset and a simple register restore doesn't reliably return
5293 * to a non-D0 state anyway.
5295 pci_set_power_state(dev, PCI_D0);
5297 pci_save_state(dev);
5299 * Disable the device by clearing the Command register, except for
5300 * INTx-disable which is set. This not only disables MMIO and I/O port
5301 * BARs, but also prevents the device from being Bus Master, preventing
5302 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5303 * compliant devices, INTx-disable prevents legacy interrupts.
5305 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5308 static void pci_dev_restore(struct pci_dev *dev)
5310 const struct pci_error_handlers *err_handler =
5311 dev->driver ? dev->driver->err_handler : NULL;
5313 pci_restore_state(dev);
5316 * dev->driver->err_handler->reset_done() is protected against
5317 * races with ->remove() by the device lock, which must be held by
5320 if (err_handler && err_handler->reset_done)
5321 err_handler->reset_done(dev);
5324 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5325 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5327 { pci_dev_specific_reset, .name = "device_specific" },
5328 { pci_dev_acpi_reset, .name = "acpi" },
5329 { pcie_reset_flr, .name = "flr" },
5330 { pci_af_flr, .name = "af_flr" },
5331 { pci_pm_reset, .name = "pm" },
5332 { pci_reset_bus_function, .name = "bus" },
5335 static ssize_t reset_method_show(struct device *dev,
5336 struct device_attribute *attr, char *buf)
5338 struct pci_dev *pdev = to_pci_dev(dev);
5342 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5343 m = pdev->reset_methods[i];
5347 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5348 pci_reset_fn_methods[m].name);
5352 len += sysfs_emit_at(buf, len, "\n");
5357 static int reset_method_lookup(const char *name)
5361 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5362 if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5366 return 0; /* not found */
5369 static ssize_t reset_method_store(struct device *dev,
5370 struct device_attribute *attr,
5371 const char *buf, size_t count)
5373 struct pci_dev *pdev = to_pci_dev(dev);
5374 char *options, *name;
5376 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5378 if (sysfs_streq(buf, "")) {
5379 pdev->reset_methods[0] = 0;
5380 pci_warn(pdev, "All device reset methods disabled by user");
5384 if (sysfs_streq(buf, "default")) {
5385 pci_init_reset_methods(pdev);
5389 options = kstrndup(buf, count, GFP_KERNEL);
5394 while ((name = strsep(&options, " ")) != NULL) {
5395 if (sysfs_streq(name, ""))
5400 m = reset_method_lookup(name);
5402 pci_err(pdev, "Invalid reset method '%s'", name);
5406 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5407 pci_err(pdev, "Unsupported reset method '%s'", name);
5411 if (n == PCI_NUM_RESET_METHODS - 1) {
5412 pci_err(pdev, "Too many reset methods\n");
5416 reset_methods[n++] = m;
5419 reset_methods[n] = 0;
5421 /* Warn if dev-specific supported but not highest priority */
5422 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5423 reset_methods[0] != 1)
5424 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5425 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5430 /* Leave previous methods unchanged */
5434 static DEVICE_ATTR_RW(reset_method);
5436 static struct attribute *pci_dev_reset_method_attrs[] = {
5437 &dev_attr_reset_method.attr,
5441 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5442 struct attribute *a, int n)
5444 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5446 if (!pci_reset_supported(pdev))
5452 const struct attribute_group pci_dev_reset_method_attr_group = {
5453 .attrs = pci_dev_reset_method_attrs,
5454 .is_visible = pci_dev_reset_method_attr_is_visible,
5458 * __pci_reset_function_locked - reset a PCI device function while holding
5459 * the @dev mutex lock.
5460 * @dev: PCI device to reset
5462 * Some devices allow an individual function to be reset without affecting
5463 * other functions in the same device. The PCI device must be responsive
5464 * to PCI config space in order to use this function.
5466 * The device function is presumed to be unused and the caller is holding
5467 * the device mutex lock when this function is called.
5469 * Resetting the device will make the contents of PCI configuration space
5470 * random, so any caller of this must be prepared to reinitialise the
5471 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5474 * Returns 0 if the device function was successfully reset or negative if the
5475 * device doesn't support resetting a single function.
5477 int __pci_reset_function_locked(struct pci_dev *dev)
5484 * A reset method returns -ENOTTY if it doesn't support this device and
5485 * we should try the next method.
5487 * If it returns 0 (success), we're finished. If it returns any other
5488 * error, we're also finished: this indicates that further reset
5489 * mechanisms might be broken on the device.
5491 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5492 m = dev->reset_methods[i];
5496 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5505 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5508 * pci_init_reset_methods - check whether device can be safely reset
5509 * and store supported reset mechanisms.
5510 * @dev: PCI device to check for reset mechanisms
5512 * Some devices allow an individual function to be reset without affecting
5513 * other functions in the same device. The PCI device must be in D0-D3hot
5516 * Stores reset mechanisms supported by device in reset_methods byte array
5517 * which is a member of struct pci_dev.
5519 void pci_init_reset_methods(struct pci_dev *dev)
5523 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5528 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5529 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5531 dev->reset_methods[i++] = m;
5532 else if (rc != -ENOTTY)
5536 dev->reset_methods[i] = 0;
5540 * pci_reset_function - quiesce and reset a PCI device function
5541 * @dev: PCI device to reset
5543 * Some devices allow an individual function to be reset without affecting
5544 * other functions in the same device. The PCI device must be responsive
5545 * to PCI config space in order to use this function.
5547 * This function does not just reset the PCI portion of a device, but
5548 * clears all the state associated with the device. This function differs
5549 * from __pci_reset_function_locked() in that it saves and restores device state
5550 * over the reset and takes the PCI device lock.
5552 * Returns 0 if the device function was successfully reset or negative if the
5553 * device doesn't support resetting a single function.
5555 int pci_reset_function(struct pci_dev *dev)
5559 if (!pci_reset_supported(dev))
5563 pci_dev_save_and_disable(dev);
5565 rc = __pci_reset_function_locked(dev);
5567 pci_dev_restore(dev);
5568 pci_dev_unlock(dev);
5572 EXPORT_SYMBOL_GPL(pci_reset_function);
5575 * pci_reset_function_locked - quiesce and reset a PCI device function
5576 * @dev: PCI device to reset
5578 * Some devices allow an individual function to be reset without affecting
5579 * other functions in the same device. The PCI device must be responsive
5580 * to PCI config space in order to use this function.
5582 * This function does not just reset the PCI portion of a device, but
5583 * clears all the state associated with the device. This function differs
5584 * from __pci_reset_function_locked() in that it saves and restores device state
5585 * over the reset. It also differs from pci_reset_function() in that it
5586 * requires the PCI device lock to be held.
5588 * Returns 0 if the device function was successfully reset or negative if the
5589 * device doesn't support resetting a single function.
5591 int pci_reset_function_locked(struct pci_dev *dev)
5595 if (!pci_reset_supported(dev))
5598 pci_dev_save_and_disable(dev);
5600 rc = __pci_reset_function_locked(dev);
5602 pci_dev_restore(dev);
5606 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5609 * pci_try_reset_function - quiesce and reset a PCI device function
5610 * @dev: PCI device to reset
5612 * Same as above, except return -EAGAIN if unable to lock device.
5614 int pci_try_reset_function(struct pci_dev *dev)
5618 if (!pci_reset_supported(dev))
5621 if (!pci_dev_trylock(dev))
5624 pci_dev_save_and_disable(dev);
5625 rc = __pci_reset_function_locked(dev);
5626 pci_dev_restore(dev);
5627 pci_dev_unlock(dev);
5631 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5633 /* Do any devices on or below this bus prevent a bus reset? */
5634 static bool pci_bus_resetable(struct pci_bus *bus)
5636 struct pci_dev *dev;
5639 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5642 list_for_each_entry(dev, &bus->devices, bus_list) {
5643 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5644 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5651 /* Lock devices from the top of the tree down */
5652 static void pci_bus_lock(struct pci_bus *bus)
5654 struct pci_dev *dev;
5656 list_for_each_entry(dev, &bus->devices, bus_list) {
5658 if (dev->subordinate)
5659 pci_bus_lock(dev->subordinate);
5663 /* Unlock devices from the bottom of the tree up */
5664 static void pci_bus_unlock(struct pci_bus *bus)
5666 struct pci_dev *dev;
5668 list_for_each_entry(dev, &bus->devices, bus_list) {
5669 if (dev->subordinate)
5670 pci_bus_unlock(dev->subordinate);
5671 pci_dev_unlock(dev);
5675 /* Return 1 on successful lock, 0 on contention */
5676 static int pci_bus_trylock(struct pci_bus *bus)
5678 struct pci_dev *dev;
5680 list_for_each_entry(dev, &bus->devices, bus_list) {
5681 if (!pci_dev_trylock(dev))
5683 if (dev->subordinate) {
5684 if (!pci_bus_trylock(dev->subordinate)) {
5685 pci_dev_unlock(dev);
5693 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5694 if (dev->subordinate)
5695 pci_bus_unlock(dev->subordinate);
5696 pci_dev_unlock(dev);
5701 /* Do any devices on or below this slot prevent a bus reset? */
5702 static bool pci_slot_resetable(struct pci_slot *slot)
5704 struct pci_dev *dev;
5706 if (slot->bus->self &&
5707 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5710 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5711 if (!dev->slot || dev->slot != slot)
5713 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5714 (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5721 /* Lock devices from the top of the tree down */
5722 static void pci_slot_lock(struct pci_slot *slot)
5724 struct pci_dev *dev;
5726 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5727 if (!dev->slot || dev->slot != slot)
5730 if (dev->subordinate)
5731 pci_bus_lock(dev->subordinate);
5735 /* Unlock devices from the bottom of the tree up */
5736 static void pci_slot_unlock(struct pci_slot *slot)
5738 struct pci_dev *dev;
5740 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5741 if (!dev->slot || dev->slot != slot)
5743 if (dev->subordinate)
5744 pci_bus_unlock(dev->subordinate);
5745 pci_dev_unlock(dev);
5749 /* Return 1 on successful lock, 0 on contention */
5750 static int pci_slot_trylock(struct pci_slot *slot)
5752 struct pci_dev *dev;
5754 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5755 if (!dev->slot || dev->slot != slot)
5757 if (!pci_dev_trylock(dev))
5759 if (dev->subordinate) {
5760 if (!pci_bus_trylock(dev->subordinate)) {
5761 pci_dev_unlock(dev);
5769 list_for_each_entry_continue_reverse(dev,
5770 &slot->bus->devices, bus_list) {
5771 if (!dev->slot || dev->slot != slot)
5773 if (dev->subordinate)
5774 pci_bus_unlock(dev->subordinate);
5775 pci_dev_unlock(dev);
5781 * Save and disable devices from the top of the tree down while holding
5782 * the @dev mutex lock for the entire tree.
5784 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5786 struct pci_dev *dev;
5788 list_for_each_entry(dev, &bus->devices, bus_list) {
5789 pci_dev_save_and_disable(dev);
5790 if (dev->subordinate)
5791 pci_bus_save_and_disable_locked(dev->subordinate);
5796 * Restore devices from top of the tree down while holding @dev mutex lock
5797 * for the entire tree. Parent bridges need to be restored before we can
5798 * get to subordinate devices.
5800 static void pci_bus_restore_locked(struct pci_bus *bus)
5802 struct pci_dev *dev;
5804 list_for_each_entry(dev, &bus->devices, bus_list) {
5805 pci_dev_restore(dev);
5806 if (dev->subordinate)
5807 pci_bus_restore_locked(dev->subordinate);
5812 * Save and disable devices from the top of the tree down while holding
5813 * the @dev mutex lock for the entire tree.
5815 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5817 struct pci_dev *dev;
5819 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5820 if (!dev->slot || dev->slot != slot)
5822 pci_dev_save_and_disable(dev);
5823 if (dev->subordinate)
5824 pci_bus_save_and_disable_locked(dev->subordinate);
5829 * Restore devices from top of the tree down while holding @dev mutex lock
5830 * for the entire tree. Parent bridges need to be restored before we can
5831 * get to subordinate devices.
5833 static void pci_slot_restore_locked(struct pci_slot *slot)
5835 struct pci_dev *dev;
5837 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5838 if (!dev->slot || dev->slot != slot)
5840 pci_dev_restore(dev);
5841 if (dev->subordinate)
5842 pci_bus_restore_locked(dev->subordinate);
5846 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5850 if (!slot || !pci_slot_resetable(slot))
5854 pci_slot_lock(slot);
5858 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5861 pci_slot_unlock(slot);
5867 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5868 * @slot: PCI slot to probe
5870 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5872 int pci_probe_reset_slot(struct pci_slot *slot)
5874 return pci_slot_reset(slot, PCI_RESET_PROBE);
5876 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5879 * __pci_reset_slot - Try to reset a PCI slot
5880 * @slot: PCI slot to reset
5882 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5883 * independent of other slots. For instance, some slots may support slot power
5884 * control. In the case of a 1:1 bus to slot architecture, this function may
5885 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5886 * Generally a slot reset should be attempted before a bus reset. All of the
5887 * function of the slot and any subordinate buses behind the slot are reset
5888 * through this function. PCI config space of all devices in the slot and
5889 * behind the slot is saved before and restored after reset.
5891 * Same as above except return -EAGAIN if the slot cannot be locked
5893 static int __pci_reset_slot(struct pci_slot *slot)
5897 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5901 if (pci_slot_trylock(slot)) {
5902 pci_slot_save_and_disable_locked(slot);
5904 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5905 pci_slot_restore_locked(slot);
5906 pci_slot_unlock(slot);
5913 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5917 if (!bus->self || !pci_bus_resetable(bus))
5927 ret = pci_bridge_secondary_bus_reset(bus->self);
5929 pci_bus_unlock(bus);
5935 * pci_bus_error_reset - reset the bridge's subordinate bus
5936 * @bridge: The parent device that connects to the bus to reset
5938 * This function will first try to reset the slots on this bus if the method is
5939 * available. If slot reset fails or is not available, this will fall back to a
5940 * secondary bus reset.
5942 int pci_bus_error_reset(struct pci_dev *bridge)
5944 struct pci_bus *bus = bridge->subordinate;
5945 struct pci_slot *slot;
5950 mutex_lock(&pci_slot_mutex);
5951 if (list_empty(&bus->slots))
5954 list_for_each_entry(slot, &bus->slots, list)
5955 if (pci_probe_reset_slot(slot))
5958 list_for_each_entry(slot, &bus->slots, list)
5959 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5962 mutex_unlock(&pci_slot_mutex);
5965 mutex_unlock(&pci_slot_mutex);
5966 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5970 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5971 * @bus: PCI bus to probe
5973 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5975 int pci_probe_reset_bus(struct pci_bus *bus)
5977 return pci_bus_reset(bus, PCI_RESET_PROBE);
5979 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5982 * __pci_reset_bus - Try to reset a PCI bus
5983 * @bus: top level PCI bus to reset
5985 * Same as above except return -EAGAIN if the bus cannot be locked
5987 static int __pci_reset_bus(struct pci_bus *bus)
5991 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5995 if (pci_bus_trylock(bus)) {
5996 pci_bus_save_and_disable_locked(bus);
5998 rc = pci_bridge_secondary_bus_reset(bus->self);
5999 pci_bus_restore_locked(bus);
6000 pci_bus_unlock(bus);
6008 * pci_reset_bus - Try to reset a PCI bus
6009 * @pdev: top level PCI device to reset via slot/bus
6011 * Same as above except return -EAGAIN if the bus cannot be locked
6013 int pci_reset_bus(struct pci_dev *pdev)
6015 return (!pci_probe_reset_slot(pdev->slot)) ?
6016 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6018 EXPORT_SYMBOL_GPL(pci_reset_bus);
6021 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6022 * @dev: PCI device to query
6024 * Returns mmrbc: maximum designed memory read count in bytes or
6025 * appropriate error value.
6027 int pcix_get_max_mmrbc(struct pci_dev *dev)
6032 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6036 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6039 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6041 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6044 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6045 * @dev: PCI device to query
6047 * Returns mmrbc: maximum memory read count in bytes or appropriate error
6050 int pcix_get_mmrbc(struct pci_dev *dev)
6055 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6059 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6062 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6064 EXPORT_SYMBOL(pcix_get_mmrbc);
6067 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6068 * @dev: PCI device to query
6069 * @mmrbc: maximum memory read count in bytes
6070 * valid values are 512, 1024, 2048, 4096
6072 * If possible sets maximum memory read byte count, some bridges have errata
6073 * that prevent this.
6075 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6081 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6084 v = ffs(mmrbc) - 10;
6086 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6090 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6093 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6096 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6099 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6101 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6104 cmd &= ~PCI_X_CMD_MAX_READ;
6106 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6111 EXPORT_SYMBOL(pcix_set_mmrbc);
6114 * pcie_get_readrq - get PCI Express read request size
6115 * @dev: PCI device to query
6117 * Returns maximum memory read request in bytes or appropriate error value.
6119 int pcie_get_readrq(struct pci_dev *dev)
6123 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6125 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6127 EXPORT_SYMBOL(pcie_get_readrq);
6130 * pcie_set_readrq - set PCI Express maximum memory read request
6131 * @dev: PCI device to query
6132 * @rq: maximum memory read count in bytes
6133 * valid values are 128, 256, 512, 1024, 2048, 4096
6135 * If possible sets maximum memory read request in bytes
6137 int pcie_set_readrq(struct pci_dev *dev, int rq)
6141 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6143 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6147 * If using the "performance" PCIe config, we clamp the read rq
6148 * size to the max packet size to keep the host bridge from
6149 * generating requests larger than we can cope with.
6151 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6152 int mps = pcie_get_mps(dev);
6158 v = (ffs(rq) - 8) << 12;
6160 if (bridge->no_inc_mrrs) {
6161 int max_mrrs = pcie_get_readrq(dev);
6163 if (rq > max_mrrs) {
6164 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6169 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6170 PCI_EXP_DEVCTL_READRQ, v);
6172 return pcibios_err_to_errno(ret);
6174 EXPORT_SYMBOL(pcie_set_readrq);
6177 * pcie_get_mps - get PCI Express maximum payload size
6178 * @dev: PCI device to query
6180 * Returns maximum payload size in bytes
6182 int pcie_get_mps(struct pci_dev *dev)
6186 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6188 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6190 EXPORT_SYMBOL(pcie_get_mps);
6193 * pcie_set_mps - set PCI Express maximum payload size
6194 * @dev: PCI device to query
6195 * @mps: maximum payload size in bytes
6196 * valid values are 128, 256, 512, 1024, 2048, 4096
6198 * If possible sets maximum payload size
6200 int pcie_set_mps(struct pci_dev *dev, int mps)
6205 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6209 if (v > dev->pcie_mpss)
6213 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6214 PCI_EXP_DEVCTL_PAYLOAD, v);
6216 return pcibios_err_to_errno(ret);
6218 EXPORT_SYMBOL(pcie_set_mps);
6221 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6222 * device and its bandwidth limitation
6223 * @dev: PCI device to query
6224 * @limiting_dev: storage for device causing the bandwidth limitation
6225 * @speed: storage for speed of limiting device
6226 * @width: storage for width of limiting device
6228 * Walk up the PCI device chain and find the point where the minimum
6229 * bandwidth is available. Return the bandwidth available there and (if
6230 * limiting_dev, speed, and width pointers are supplied) information about
6231 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6234 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6235 enum pci_bus_speed *speed,
6236 enum pcie_link_width *width)
6239 enum pci_bus_speed next_speed;
6240 enum pcie_link_width next_width;
6244 *speed = PCI_SPEED_UNKNOWN;
6246 *width = PCIE_LNK_WIDTH_UNKNOWN;
6251 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6253 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6254 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6255 PCI_EXP_LNKSTA_NLW_SHIFT;
6257 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6259 /* Check if current device limits the total bandwidth */
6260 if (!bw || next_bw <= bw) {
6264 *limiting_dev = dev;
6266 *speed = next_speed;
6268 *width = next_width;
6271 dev = pci_upstream_bridge(dev);
6276 EXPORT_SYMBOL(pcie_bandwidth_available);
6279 * pcie_get_speed_cap - query for the PCI device's link speed capability
6280 * @dev: PCI device to query
6282 * Query the PCI device speed capability. Return the maximum link speed
6283 * supported by the device.
6285 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6287 u32 lnkcap2, lnkcap;
6290 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The
6291 * implementation note there recommends using the Supported Link
6292 * Speeds Vector in Link Capabilities 2 when supported.
6294 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6295 * should use the Supported Link Speeds field in Link Capabilities,
6296 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6298 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6300 /* PCIe r3.0-compliant */
6302 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6304 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6305 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6306 return PCIE_SPEED_5_0GT;
6307 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6308 return PCIE_SPEED_2_5GT;
6310 return PCI_SPEED_UNKNOWN;
6312 EXPORT_SYMBOL(pcie_get_speed_cap);
6315 * pcie_get_width_cap - query for the PCI device's link width capability
6316 * @dev: PCI device to query
6318 * Query the PCI device width capability. Return the maximum link width
6319 * supported by the device.
6321 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6325 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6327 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6329 return PCIE_LNK_WIDTH_UNKNOWN;
6331 EXPORT_SYMBOL(pcie_get_width_cap);
6334 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6336 * @speed: storage for link speed
6337 * @width: storage for link width
6339 * Calculate a PCI device's link bandwidth by querying for its link speed
6340 * and width, multiplying them, and applying encoding overhead. The result
6341 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6343 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6344 enum pcie_link_width *width)
6346 *speed = pcie_get_speed_cap(dev);
6347 *width = pcie_get_width_cap(dev);
6349 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6352 return *width * PCIE_SPEED2MBS_ENC(*speed);
6356 * __pcie_print_link_status - Report the PCI device's link speed and width
6357 * @dev: PCI device to query
6358 * @verbose: Print info even when enough bandwidth is available
6360 * If the available bandwidth at the device is less than the device is
6361 * capable of, report the device's maximum possible bandwidth and the
6362 * upstream link that limits its performance. If @verbose, always print
6363 * the available bandwidth, even if the device isn't constrained.
6365 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6367 enum pcie_link_width width, width_cap;
6368 enum pci_bus_speed speed, speed_cap;
6369 struct pci_dev *limiting_dev = NULL;
6370 u32 bw_avail, bw_cap;
6372 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6373 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6375 if (bw_avail >= bw_cap && verbose)
6376 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6377 bw_cap / 1000, bw_cap % 1000,
6378 pci_speed_string(speed_cap), width_cap);
6379 else if (bw_avail < bw_cap)
6380 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6381 bw_avail / 1000, bw_avail % 1000,
6382 pci_speed_string(speed), width,
6383 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6384 bw_cap / 1000, bw_cap % 1000,
6385 pci_speed_string(speed_cap), width_cap);
6389 * pcie_print_link_status - Report the PCI device's link speed and width
6390 * @dev: PCI device to query
6392 * Report the available bandwidth at the device.
6394 void pcie_print_link_status(struct pci_dev *dev)
6396 __pcie_print_link_status(dev, true);
6398 EXPORT_SYMBOL(pcie_print_link_status);
6401 * pci_select_bars - Make BAR mask from the type of resource
6402 * @dev: the PCI device for which BAR mask is made
6403 * @flags: resource type mask to be selected
6405 * This helper routine makes bar mask from the type of resource.
6407 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6410 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6411 if (pci_resource_flags(dev, i) & flags)
6415 EXPORT_SYMBOL(pci_select_bars);
6417 /* Some architectures require additional programming to enable VGA */
6418 static arch_set_vga_state_t arch_set_vga_state;
6420 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6422 arch_set_vga_state = func; /* NULL disables */
6425 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6426 unsigned int command_bits, u32 flags)
6428 if (arch_set_vga_state)
6429 return arch_set_vga_state(dev, decode, command_bits,
6435 * pci_set_vga_state - set VGA decode state on device and parents if requested
6436 * @dev: the PCI device
6437 * @decode: true = enable decoding, false = disable decoding
6438 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6439 * @flags: traverse ancestors and change bridges
6440 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6442 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6443 unsigned int command_bits, u32 flags)
6445 struct pci_bus *bus;
6446 struct pci_dev *bridge;
6450 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6452 /* ARCH specific VGA enables */
6453 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6457 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6458 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6460 cmd |= command_bits;
6462 cmd &= ~command_bits;
6463 pci_write_config_word(dev, PCI_COMMAND, cmd);
6466 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6473 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6476 cmd |= PCI_BRIDGE_CTL_VGA;
6478 cmd &= ~PCI_BRIDGE_CTL_VGA;
6479 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6488 bool pci_pr3_present(struct pci_dev *pdev)
6490 struct acpi_device *adev;
6495 adev = ACPI_COMPANION(&pdev->dev);
6499 return adev->power.flags.power_resources &&
6500 acpi_has_method(adev->handle, "_PR3");
6502 EXPORT_SYMBOL_GPL(pci_pr3_present);
6506 * pci_add_dma_alias - Add a DMA devfn alias for a device
6507 * @dev: the PCI device for which alias is added
6508 * @devfn_from: alias slot and function
6509 * @nr_devfns: number of subsequent devfns to alias
6511 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6512 * which is used to program permissible bus-devfn source addresses for DMA
6513 * requests in an IOMMU. These aliases factor into IOMMU group creation
6514 * and are useful for devices generating DMA requests beyond or different
6515 * from their logical bus-devfn. Examples include device quirks where the
6516 * device simply uses the wrong devfn, as well as non-transparent bridges
6517 * where the alias may be a proxy for devices in another domain.
6519 * IOMMU group creation is performed during device discovery or addition,
6520 * prior to any potential DMA mapping and therefore prior to driver probing
6521 * (especially for userspace assigned devices where IOMMU group definition
6522 * cannot be left as a userspace activity). DMA aliases should therefore
6523 * be configured via quirks, such as the PCI fixup header quirk.
6525 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6526 unsigned int nr_devfns)
6530 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6531 devfn_to = devfn_from + nr_devfns - 1;
6533 if (!dev->dma_alias_mask)
6534 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6535 if (!dev->dma_alias_mask) {
6536 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6540 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6543 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6544 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6545 else if (nr_devfns > 1)
6546 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6547 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6548 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6551 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6553 return (dev1->dma_alias_mask &&
6554 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6555 (dev2->dma_alias_mask &&
6556 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6557 pci_real_dma_dev(dev1) == dev2 ||
6558 pci_real_dma_dev(dev2) == dev1;
6561 bool pci_device_is_present(struct pci_dev *pdev)
6565 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6566 pdev = pci_physfn(pdev);
6567 if (pci_dev_is_disconnected(pdev))
6569 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6571 EXPORT_SYMBOL_GPL(pci_device_is_present);
6573 void pci_ignore_hotplug(struct pci_dev *dev)
6575 struct pci_dev *bridge = dev->bus->self;
6577 dev->ignore_hotplug = 1;
6578 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6580 bridge->ignore_hotplug = 1;
6582 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6585 * pci_real_dma_dev - Get PCI DMA device for PCI device
6586 * @dev: the PCI device that may have a PCI DMA alias
6588 * Permits the platform to provide architecture-specific functionality to
6589 * devices needing to alias DMA to another PCI device on another PCI bus. If
6590 * the PCI device is on the same bus, it is recommended to use
6591 * pci_add_dma_alias(). This is the default implementation. Architecture
6592 * implementations can override this.
6594 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6599 resource_size_t __weak pcibios_default_alignment(void)
6605 * Arches that don't want to expose struct resource to userland as-is in
6606 * sysfs and /proc can implement their own pci_resource_to_user().
6608 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6609 const struct resource *rsrc,
6610 resource_size_t *start, resource_size_t *end)
6612 *start = rsrc->start;
6616 static char *resource_alignment_param;
6617 static DEFINE_SPINLOCK(resource_alignment_lock);
6620 * pci_specified_resource_alignment - get resource alignment specified by user.
6621 * @dev: the PCI device to get
6622 * @resize: whether or not to change resources' size when reassigning alignment
6624 * RETURNS: Resource alignment if it is specified.
6625 * Zero if it is not specified.
6627 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6630 int align_order, count;
6631 resource_size_t align = pcibios_default_alignment();
6635 spin_lock(&resource_alignment_lock);
6636 p = resource_alignment_param;
6639 if (pci_has_flag(PCI_PROBE_ONLY)) {
6641 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6647 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6650 if (align_order > 63) {
6651 pr_err("PCI: Invalid requested alignment (order %d)\n",
6653 align_order = PAGE_SHIFT;
6656 align_order = PAGE_SHIFT;
6659 ret = pci_dev_str_match(dev, p, &p);
6662 align = 1ULL << align_order;
6664 } else if (ret < 0) {
6665 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6670 if (*p != ';' && *p != ',') {
6671 /* End of param or invalid format */
6677 spin_unlock(&resource_alignment_lock);
6681 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6682 resource_size_t align, bool resize)
6684 struct resource *r = &dev->resource[bar];
6685 resource_size_t size;
6687 if (!(r->flags & IORESOURCE_MEM))
6690 if (r->flags & IORESOURCE_PCI_FIXED) {
6691 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6692 bar, r, (unsigned long long)align);
6696 size = resource_size(r);
6701 * Increase the alignment of the resource. There are two ways we
6704 * 1) Increase the size of the resource. BARs are aligned on their
6705 * size, so when we reallocate space for this resource, we'll
6706 * allocate it with the larger alignment. This also prevents
6707 * assignment of any other BARs inside the alignment region, so
6708 * if we're requesting page alignment, this means no other BARs
6709 * will share the page.
6711 * The disadvantage is that this makes the resource larger than
6712 * the hardware BAR, which may break drivers that compute things
6713 * based on the resource size, e.g., to find registers at a
6714 * fixed offset before the end of the BAR.
6716 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6717 * set r->start to the desired alignment. By itself this
6718 * doesn't prevent other BARs being put inside the alignment
6719 * region, but if we realign *every* resource of every device in
6720 * the system, none of them will share an alignment region.
6722 * When the user has requested alignment for only some devices via
6723 * the "pci=resource_alignment" argument, "resize" is true and we
6724 * use the first method. Otherwise we assume we're aligning all
6725 * devices and we use the second.
6728 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6729 bar, r, (unsigned long long)align);
6735 r->flags &= ~IORESOURCE_SIZEALIGN;
6736 r->flags |= IORESOURCE_STARTALIGN;
6738 r->end = r->start + size - 1;
6740 r->flags |= IORESOURCE_UNSET;
6744 * This function disables memory decoding and releases memory resources
6745 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6746 * It also rounds up size to specified alignment.
6747 * Later on, the kernel will assign page-aligned memory resource back
6750 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6754 resource_size_t align;
6756 bool resize = false;
6759 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6760 * 3.4.1.11. Their resources are allocated from the space
6761 * described by the VF BARx register in the PF's SR-IOV capability.
6762 * We can't influence their alignment here.
6767 /* check if specified PCI is target device to reassign */
6768 align = pci_specified_resource_alignment(dev, &resize);
6772 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6773 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6774 pci_warn(dev, "Can't reassign resources to host bridge\n");
6778 pci_read_config_word(dev, PCI_COMMAND, &command);
6779 command &= ~PCI_COMMAND_MEMORY;
6780 pci_write_config_word(dev, PCI_COMMAND, command);
6782 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6783 pci_request_resource_alignment(dev, i, align, resize);
6786 * Need to disable bridge's resource window,
6787 * to enable the kernel to reassign new resource
6790 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6791 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6792 r = &dev->resource[i];
6793 if (!(r->flags & IORESOURCE_MEM))
6795 r->flags |= IORESOURCE_UNSET;
6796 r->end = resource_size(r) - 1;
6799 pci_disable_bridge_window(dev);
6803 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6807 spin_lock(&resource_alignment_lock);
6808 if (resource_alignment_param)
6809 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6810 spin_unlock(&resource_alignment_lock);
6815 static ssize_t resource_alignment_store(const struct bus_type *bus,
6816 const char *buf, size_t count)
6818 char *param, *old, *end;
6820 if (count >= (PAGE_SIZE - 1))
6823 param = kstrndup(buf, count, GFP_KERNEL);
6827 end = strchr(param, '\n');
6831 spin_lock(&resource_alignment_lock);
6832 old = resource_alignment_param;
6833 if (strlen(param)) {
6834 resource_alignment_param = param;
6837 resource_alignment_param = NULL;
6839 spin_unlock(&resource_alignment_lock);
6846 static BUS_ATTR_RW(resource_alignment);
6848 static int __init pci_resource_alignment_sysfs_init(void)
6850 return bus_create_file(&pci_bus_type,
6851 &bus_attr_resource_alignment);
6853 late_initcall(pci_resource_alignment_sysfs_init);
6855 static void pci_no_domains(void)
6857 #ifdef CONFIG_PCI_DOMAINS
6858 pci_domains_supported = 0;
6862 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6863 static DEFINE_IDA(pci_domain_nr_static_ida);
6864 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6866 static void of_pci_reserve_static_domain_nr(void)
6868 struct device_node *np;
6871 for_each_node_by_type(np, "pci") {
6872 domain_nr = of_get_pci_domain_nr(np);
6876 * Permanently allocate domain_nr in dynamic_ida
6877 * to prevent it from dynamic allocation.
6879 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6880 domain_nr, domain_nr, GFP_KERNEL);
6884 static int of_pci_bus_find_domain_nr(struct device *parent)
6886 static bool static_domains_reserved = false;
6889 /* On the first call scan device tree for static allocations. */
6890 if (!static_domains_reserved) {
6891 of_pci_reserve_static_domain_nr();
6892 static_domains_reserved = true;
6897 * If domain is in DT, allocate it in static IDA. This
6898 * prevents duplicate static allocations in case of errors
6901 domain_nr = of_get_pci_domain_nr(parent->of_node);
6903 return ida_alloc_range(&pci_domain_nr_static_ida,
6904 domain_nr, domain_nr,
6909 * If domain was not specified in DT, choose a free ID from dynamic
6910 * allocations. All domain numbers from DT are permanently in
6911 * dynamic allocations to prevent assigning them to other DT nodes
6912 * without static domain.
6914 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6917 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6919 if (bus->domain_nr < 0)
6922 /* Release domain from IDA where it was allocated. */
6923 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6924 ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6926 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6929 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6931 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6932 acpi_pci_bus_find_domain_nr(bus);
6935 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6939 of_pci_bus_release_domain_nr(bus, parent);
6944 * pci_ext_cfg_avail - can we access extended PCI config space?
6946 * Returns 1 if we can access PCI extended config space (offsets
6947 * greater than 0xff). This is the default implementation. Architecture
6948 * implementations can override this.
6950 int __weak pci_ext_cfg_avail(void)
6955 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6958 EXPORT_SYMBOL(pci_fixup_cardbus);
6960 static int __init pci_setup(char *str)
6963 char *k = strchr(str, ',');
6966 if (*str && (str = pcibios_setup(str)) && *str) {
6967 if (!strcmp(str, "nomsi")) {
6969 } else if (!strncmp(str, "noats", 5)) {
6970 pr_info("PCIe: ATS is disabled\n");
6971 pcie_ats_disabled = true;
6972 } else if (!strcmp(str, "noaer")) {
6974 } else if (!strcmp(str, "earlydump")) {
6975 pci_early_dump = true;
6976 } else if (!strncmp(str, "realloc=", 8)) {
6977 pci_realloc_get_opt(str + 8);
6978 } else if (!strncmp(str, "realloc", 7)) {
6979 pci_realloc_get_opt("on");
6980 } else if (!strcmp(str, "nodomains")) {
6982 } else if (!strncmp(str, "noari", 5)) {
6983 pcie_ari_disabled = true;
6984 } else if (!strncmp(str, "cbiosize=", 9)) {
6985 pci_cardbus_io_size = memparse(str + 9, &str);
6986 } else if (!strncmp(str, "cbmemsize=", 10)) {
6987 pci_cardbus_mem_size = memparse(str + 10, &str);
6988 } else if (!strncmp(str, "resource_alignment=", 19)) {
6989 resource_alignment_param = str + 19;
6990 } else if (!strncmp(str, "ecrc=", 5)) {
6991 pcie_ecrc_get_policy(str + 5);
6992 } else if (!strncmp(str, "hpiosize=", 9)) {
6993 pci_hotplug_io_size = memparse(str + 9, &str);
6994 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6995 pci_hotplug_mmio_size = memparse(str + 11, &str);
6996 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6997 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6998 } else if (!strncmp(str, "hpmemsize=", 10)) {
6999 pci_hotplug_mmio_size = memparse(str + 10, &str);
7000 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7001 } else if (!strncmp(str, "hpbussize=", 10)) {
7002 pci_hotplug_bus_size =
7003 simple_strtoul(str + 10, &str, 0);
7004 if (pci_hotplug_bus_size > 0xff)
7005 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7006 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7007 pcie_bus_config = PCIE_BUS_TUNE_OFF;
7008 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
7009 pcie_bus_config = PCIE_BUS_SAFE;
7010 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
7011 pcie_bus_config = PCIE_BUS_PERFORMANCE;
7012 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7013 pcie_bus_config = PCIE_BUS_PEER2PEER;
7014 } else if (!strncmp(str, "pcie_scan_all", 13)) {
7015 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7016 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
7017 disable_acs_redir_param = str + 18;
7019 pr_err("PCI: Unknown option `%s'\n", str);
7026 early_param("pci", pci_setup);
7029 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7030 * in pci_setup(), above, to point to data in the __initdata section which
7031 * will be freed after the init sequence is complete. We can't allocate memory
7032 * in pci_setup() because some architectures do not have any memory allocation
7033 * service available during an early_param() call. So we allocate memory and
7034 * copy the variable here before the init section is freed.
7037 static int __init pci_realloc_setup_params(void)
7039 resource_alignment_param = kstrdup(resource_alignment_param,
7041 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7045 pure_initcall(pci_realloc_setup_params);