2 * Copyright (C) 2010-2011 Neil Brown
3 * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
8 #include <linux/slab.h>
9 #include <linux/module.h>
16 #include <linux/device-mapper.h>
18 #define DM_MSG_PREFIX "raid"
21 * The following flags are used by dm-raid.c to set up the array state.
22 * They must be cleared before md_run is called.
24 #define FirstUse 10 /* rdev flag */
28 * Two DM devices, one to hold metadata and one to hold the
29 * actual data/parity. The reason for this is to not confuse
30 * ti->len and give more flexibility in altering size and
33 * While it is possible for this device to be associated
34 * with a different physical device than the data_dev, it
35 * is intended for it to be the same.
36 * |--------- Physical Device ---------|
37 * |- meta_dev -|------ data_dev ------|
39 struct dm_dev *meta_dev;
40 struct dm_dev *data_dev;
45 * Flags for rs->print_flags field.
48 #define DMPF_NOSYNC 0x2
49 #define DMPF_REBUILD 0x4
50 #define DMPF_DAEMON_SLEEP 0x8
51 #define DMPF_MIN_RECOVERY_RATE 0x10
52 #define DMPF_MAX_RECOVERY_RATE 0x20
53 #define DMPF_MAX_WRITE_BEHIND 0x40
54 #define DMPF_STRIPE_CACHE 0x80
55 #define DMPF_REGION_SIZE 0X100
59 uint32_t bitmap_loaded;
63 struct raid_type *raid_type;
64 struct dm_target_callbacks callbacks;
66 struct raid_dev dev[0];
69 /* Supported raid types and properties. */
70 static struct raid_type {
71 const char *name; /* RAID algorithm. */
72 const char *descr; /* Descriptor text for logging. */
73 const unsigned parity_devs; /* # of parity devices. */
74 const unsigned minimal_devs; /* minimal # of devices in set. */
75 const unsigned level; /* RAID level. */
76 const unsigned algorithm; /* RAID algorithm. */
78 {"raid1", "RAID1 (mirroring)", 0, 2, 1, 0 /* NONE */},
79 {"raid4", "RAID4 (dedicated parity disk)", 1, 2, 5, ALGORITHM_PARITY_0},
80 {"raid5_la", "RAID5 (left asymmetric)", 1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
81 {"raid5_ra", "RAID5 (right asymmetric)", 1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
82 {"raid5_ls", "RAID5 (left symmetric)", 1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
83 {"raid5_rs", "RAID5 (right symmetric)", 1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
84 {"raid6_zr", "RAID6 (zero restart)", 2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
85 {"raid6_nr", "RAID6 (N restart)", 2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
86 {"raid6_nc", "RAID6 (N continue)", 2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
89 static struct raid_type *get_raid_type(char *name)
93 for (i = 0; i < ARRAY_SIZE(raid_types); i++)
94 if (!strcmp(raid_types[i].name, name))
95 return &raid_types[i];
100 static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
105 if (raid_devs <= raid_type->parity_devs) {
106 ti->error = "Insufficient number of devices";
107 return ERR_PTR(-EINVAL);
110 rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
112 ti->error = "Cannot allocate raid context";
113 return ERR_PTR(-ENOMEM);
119 rs->raid_type = raid_type;
120 rs->md.raid_disks = raid_devs;
121 rs->md.level = raid_type->level;
122 rs->md.new_level = rs->md.level;
123 rs->md.layout = raid_type->algorithm;
124 rs->md.new_layout = rs->md.layout;
125 rs->md.delta_disks = 0;
126 rs->md.recovery_cp = 0;
128 for (i = 0; i < raid_devs; i++)
129 md_rdev_init(&rs->dev[i].rdev);
132 * Remaining items to be initialized by further RAID params:
135 * rs->md.chunk_sectors
136 * rs->md.new_chunk_sectors
143 static void context_free(struct raid_set *rs)
147 for (i = 0; i < rs->md.raid_disks; i++) {
148 if (rs->dev[i].meta_dev)
149 dm_put_device(rs->ti, rs->dev[i].meta_dev);
150 md_rdev_clear(&rs->dev[i].rdev);
151 if (rs->dev[i].data_dev)
152 dm_put_device(rs->ti, rs->dev[i].data_dev);
159 * For every device we have two words
160 * <meta_dev>: meta device name or '-' if missing
161 * <data_dev>: data device name or '-' if missing
163 * The following are permitted:
166 * <meta_dev> <data_dev>
168 * The following is not allowed:
171 * This code parses those words. If there is a failure,
172 * the caller must use context_free to unwind the operations.
174 static int dev_parms(struct raid_set *rs, char **argv)
178 int metadata_available = 0;
181 for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
182 rs->dev[i].rdev.raid_disk = i;
184 rs->dev[i].meta_dev = NULL;
185 rs->dev[i].data_dev = NULL;
188 * There are no offsets, since there is a separate device
189 * for data and metadata.
191 rs->dev[i].rdev.data_offset = 0;
192 rs->dev[i].rdev.mddev = &rs->md;
194 if (strcmp(argv[0], "-")) {
195 ret = dm_get_device(rs->ti, argv[0],
196 dm_table_get_mode(rs->ti->table),
197 &rs->dev[i].meta_dev);
198 rs->ti->error = "RAID metadata device lookup failure";
202 rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
203 if (!rs->dev[i].rdev.sb_page)
207 if (!strcmp(argv[1], "-")) {
208 if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
209 (!rs->dev[i].rdev.recovery_offset)) {
210 rs->ti->error = "Drive designated for rebuild not specified";
214 rs->ti->error = "No data device supplied with metadata device";
215 if (rs->dev[i].meta_dev)
221 ret = dm_get_device(rs->ti, argv[1],
222 dm_table_get_mode(rs->ti->table),
223 &rs->dev[i].data_dev);
225 rs->ti->error = "RAID device lookup failure";
229 if (rs->dev[i].meta_dev) {
230 metadata_available = 1;
231 rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
233 rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
234 list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
235 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
239 if (metadata_available) {
241 rs->md.persistent = 1;
242 rs->md.major_version = 2;
243 } else if (rebuild && !rs->md.recovery_cp) {
245 * Without metadata, we will not be able to tell if the array
246 * is in-sync or not - we must assume it is not. Therefore,
247 * it is impossible to rebuild a drive.
249 * Even if there is metadata, the on-disk information may
250 * indicate that the array is not in-sync and it will then
253 * User could specify 'nosync' option if desperate.
255 DMERR("Unable to rebuild drive while array is not in-sync");
256 rs->ti->error = "RAID device lookup failure";
264 * validate_region_size
266 * @region_size: region size in sectors. If 0, pick a size (4MiB default).
268 * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
269 * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
271 * Returns: 0 on success, -EINVAL on failure.
273 static int validate_region_size(struct raid_set *rs, unsigned long region_size)
275 unsigned long min_region_size = rs->ti->len / (1 << 21);
279 * Choose a reasonable default. All figures in sectors.
281 if (min_region_size > (1 << 13)) {
282 DMINFO("Choosing default region size of %lu sectors",
284 region_size = min_region_size;
286 DMINFO("Choosing default region size of 4MiB");
287 region_size = 1 << 13; /* sectors */
291 * Validate user-supplied value.
293 if (region_size > rs->ti->len) {
294 rs->ti->error = "Supplied region size is too large";
298 if (region_size < min_region_size) {
299 DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
300 region_size, min_region_size);
301 rs->ti->error = "Supplied region size is too small";
305 if (!is_power_of_2(region_size)) {
306 rs->ti->error = "Region size is not a power of 2";
310 if (region_size < rs->md.chunk_sectors) {
311 rs->ti->error = "Region size is smaller than the chunk size";
317 * Convert sectors to bytes.
319 rs->md.bitmap_info.chunksize = (region_size << 9);
325 * Possible arguments are...
326 * <chunk_size> [optional_args]
328 * Argument definitions
329 * <chunk_size> The number of sectors per disk that
330 * will form the "stripe"
331 * [[no]sync] Force or prevent recovery of the
333 * [rebuild <idx>] Rebuild the drive indicated by the index
334 * [daemon_sleep <ms>] Time between bitmap daemon work to
336 * [min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
337 * [max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
338 * [write_mostly <idx>] Indicate a write mostly drive via index
339 * [max_write_behind <sectors>] See '-write-behind=' (man mdadm)
340 * [stripe_cache <sectors>] Stripe cache size for higher RAIDs
341 * [region_size <sectors>] Defines granularity of bitmap
343 static int parse_raid_params(struct raid_set *rs, char **argv,
344 unsigned num_raid_params)
346 unsigned i, rebuild_cnt = 0;
347 unsigned long value, region_size = 0;
348 sector_t sectors_per_dev = rs->ti->len;
353 * First, parse the in-order required arguments
354 * "chunk_size" is the only argument of this type.
356 if ((strict_strtoul(argv[0], 10, &value) < 0)) {
357 rs->ti->error = "Bad chunk size";
359 } else if (rs->raid_type->level == 1) {
361 DMERR("Ignoring chunk size parameter for RAID 1");
363 } else if (!is_power_of_2(value)) {
364 rs->ti->error = "Chunk size must be a power of 2";
366 } else if (value < 8) {
367 rs->ti->error = "Chunk size value is too small";
371 rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
376 * We set each individual device as In_sync with a completed
377 * 'recovery_offset'. If there has been a device failure or
378 * replacement then one of the following cases applies:
380 * 1) User specifies 'rebuild'.
381 * - Device is reset when param is read.
382 * 2) A new device is supplied.
383 * - No matching superblock found, resets device.
384 * 3) Device failure was transient and returns on reload.
385 * - Failure noticed, resets device for bitmap replay.
386 * 4) Device hadn't completed recovery after previous failure.
387 * - Superblock is read and overrides recovery_offset.
389 * What is found in the superblocks of the devices is always
390 * authoritative, unless 'rebuild' or '[no]sync' was specified.
392 for (i = 0; i < rs->md.raid_disks; i++) {
393 set_bit(In_sync, &rs->dev[i].rdev.flags);
394 rs->dev[i].rdev.recovery_offset = MaxSector;
398 * Second, parse the unordered optional arguments
400 for (i = 0; i < num_raid_params; i++) {
401 if (!strcasecmp(argv[i], "nosync")) {
402 rs->md.recovery_cp = MaxSector;
403 rs->print_flags |= DMPF_NOSYNC;
406 if (!strcasecmp(argv[i], "sync")) {
407 rs->md.recovery_cp = 0;
408 rs->print_flags |= DMPF_SYNC;
412 /* The rest of the optional arguments come in key/value pairs */
413 if ((i + 1) >= num_raid_params) {
414 rs->ti->error = "Wrong number of raid parameters given";
419 if (strict_strtoul(argv[i], 10, &value) < 0) {
420 rs->ti->error = "Bad numerical argument given in raid params";
424 if (!strcasecmp(key, "rebuild")) {
427 switch (rs->raid_type->level) {
429 if (rebuild_cnt >= rs->md.raid_disks) {
430 rs->ti->error = "Too many rebuild devices specified";
437 if (rebuild_cnt > rs->raid_type->parity_devs) {
438 rs->ti->error = "Too many rebuild devices specified for given RAID type";
443 DMERR("The rebuild parameter is not supported for %s", rs->raid_type->name);
444 rs->ti->error = "Rebuild not supported for this RAID type";
448 if (value > rs->md.raid_disks) {
449 rs->ti->error = "Invalid rebuild index given";
452 clear_bit(In_sync, &rs->dev[value].rdev.flags);
453 rs->dev[value].rdev.recovery_offset = 0;
454 rs->print_flags |= DMPF_REBUILD;
455 } else if (!strcasecmp(key, "write_mostly")) {
456 if (rs->raid_type->level != 1) {
457 rs->ti->error = "write_mostly option is only valid for RAID1";
460 if (value >= rs->md.raid_disks) {
461 rs->ti->error = "Invalid write_mostly drive index given";
464 set_bit(WriteMostly, &rs->dev[value].rdev.flags);
465 } else if (!strcasecmp(key, "max_write_behind")) {
466 if (rs->raid_type->level != 1) {
467 rs->ti->error = "max_write_behind option is only valid for RAID1";
470 rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
473 * In device-mapper, we specify things in sectors, but
474 * MD records this value in kB
477 if (value > COUNTER_MAX) {
478 rs->ti->error = "Max write-behind limit out of range";
481 rs->md.bitmap_info.max_write_behind = value;
482 } else if (!strcasecmp(key, "daemon_sleep")) {
483 rs->print_flags |= DMPF_DAEMON_SLEEP;
484 if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
485 rs->ti->error = "daemon sleep period out of range";
488 rs->md.bitmap_info.daemon_sleep = value;
489 } else if (!strcasecmp(key, "stripe_cache")) {
490 rs->print_flags |= DMPF_STRIPE_CACHE;
493 * In device-mapper, we specify things in sectors, but
494 * MD records this value in kB
498 if (rs->raid_type->level < 5) {
499 rs->ti->error = "Inappropriate argument: stripe_cache";
502 if (raid5_set_cache_size(&rs->md, (int)value)) {
503 rs->ti->error = "Bad stripe_cache size";
506 } else if (!strcasecmp(key, "min_recovery_rate")) {
507 rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
508 if (value > INT_MAX) {
509 rs->ti->error = "min_recovery_rate out of range";
512 rs->md.sync_speed_min = (int)value;
513 } else if (!strcasecmp(key, "max_recovery_rate")) {
514 rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
515 if (value > INT_MAX) {
516 rs->ti->error = "max_recovery_rate out of range";
519 rs->md.sync_speed_max = (int)value;
520 } else if (!strcasecmp(key, "region_size")) {
521 rs->print_flags |= DMPF_REGION_SIZE;
524 DMERR("Unable to parse RAID parameter: %s", key);
525 rs->ti->error = "Unable to parse RAID parameters";
530 if (validate_region_size(rs, region_size))
533 if (rs->md.chunk_sectors)
534 max_io_len = rs->md.chunk_sectors;
536 max_io_len = region_size;
538 if (dm_set_target_max_io_len(rs->ti, max_io_len))
541 if ((rs->raid_type->level > 1) &&
542 sector_div(sectors_per_dev, (rs->md.raid_disks - rs->raid_type->parity_devs))) {
543 rs->ti->error = "Target length not divisible by number of data devices";
546 rs->md.dev_sectors = sectors_per_dev;
548 /* Assume there are no metadata devices until the drives are parsed */
549 rs->md.persistent = 0;
555 static void do_table_event(struct work_struct *ws)
557 struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
559 dm_table_event(rs->ti->table);
562 static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
564 struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
566 if (rs->raid_type->level == 1)
567 return md_raid1_congested(&rs->md, bits);
569 return md_raid5_congested(&rs->md, bits);
573 * This structure is never routinely used by userspace, unlike md superblocks.
574 * Devices with this superblock should only ever be accessed via device-mapper.
576 #define DM_RAID_MAGIC 0x64526D44
577 struct dm_raid_superblock {
578 __le32 magic; /* "DmRd" */
579 __le32 features; /* Used to indicate possible future changes */
581 __le32 num_devices; /* Number of devices in this array. (Max 64) */
582 __le32 array_position; /* The position of this drive in the array */
584 __le64 events; /* Incremented by md when superblock updated */
585 __le64 failed_devices; /* Bit field of devices to indicate failures */
588 * This offset tracks the progress of the repair or replacement of
589 * an individual drive.
591 __le64 disk_recovery_offset;
594 * This offset tracks the progress of the initial array
595 * synchronisation/parity calculation.
597 __le64 array_resync_offset;
600 * RAID characteristics
604 __le32 stripe_sectors;
606 __u8 pad[452]; /* Round struct to 512 bytes. */
607 /* Always set to 0 when writing. */
610 static int read_disk_sb(struct md_rdev *rdev, int size)
612 BUG_ON(!rdev->sb_page);
617 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
618 DMERR("Failed to read superblock of device at position %d",
620 md_error(rdev->mddev, rdev);
629 static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
632 uint64_t failed_devices;
633 struct dm_raid_superblock *sb;
634 struct raid_set *rs = container_of(mddev, struct raid_set, md);
636 sb = page_address(rdev->sb_page);
637 failed_devices = le64_to_cpu(sb->failed_devices);
639 for (i = 0; i < mddev->raid_disks; i++)
640 if (!rs->dev[i].data_dev ||
641 test_bit(Faulty, &(rs->dev[i].rdev.flags)))
642 failed_devices |= (1ULL << i);
644 memset(sb, 0, sizeof(*sb));
646 sb->magic = cpu_to_le32(DM_RAID_MAGIC);
647 sb->features = cpu_to_le32(0); /* No features yet */
649 sb->num_devices = cpu_to_le32(mddev->raid_disks);
650 sb->array_position = cpu_to_le32(rdev->raid_disk);
652 sb->events = cpu_to_le64(mddev->events);
653 sb->failed_devices = cpu_to_le64(failed_devices);
655 sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
656 sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
658 sb->level = cpu_to_le32(mddev->level);
659 sb->layout = cpu_to_le32(mddev->layout);
660 sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
666 * This function creates a superblock if one is not found on the device
667 * and will decide which superblock to use if there's a choice.
669 * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
671 static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
674 struct dm_raid_superblock *sb;
675 struct dm_raid_superblock *refsb;
676 uint64_t events_sb, events_refsb;
679 rdev->sb_size = sizeof(*sb);
681 ret = read_disk_sb(rdev, rdev->sb_size);
685 sb = page_address(rdev->sb_page);
688 * Two cases that we want to write new superblocks and rebuild:
689 * 1) New device (no matching magic number)
690 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
692 if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
693 (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
694 super_sync(rdev->mddev, rdev);
696 set_bit(FirstUse, &rdev->flags);
698 /* Force writing of superblocks to disk */
699 set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
701 /* Any superblock is better than none, choose that if given */
702 return refdev ? 0 : 1;
708 events_sb = le64_to_cpu(sb->events);
710 refsb = page_address(refdev->sb_page);
711 events_refsb = le64_to_cpu(refsb->events);
713 return (events_sb > events_refsb) ? 1 : 0;
716 static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
719 struct raid_set *rs = container_of(mddev, struct raid_set, md);
721 uint64_t failed_devices;
722 struct dm_raid_superblock *sb;
723 uint32_t new_devs = 0;
724 uint32_t rebuilds = 0;
726 struct dm_raid_superblock *sb2;
728 sb = page_address(rdev->sb_page);
729 events_sb = le64_to_cpu(sb->events);
730 failed_devices = le64_to_cpu(sb->failed_devices);
733 * Initialise to 1 if this is a new superblock.
735 mddev->events = events_sb ? : 1;
738 * Reshaping is not currently allowed
740 if ((le32_to_cpu(sb->level) != mddev->level) ||
741 (le32_to_cpu(sb->layout) != mddev->layout) ||
742 (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
743 DMERR("Reshaping arrays not yet supported.");
747 /* We can only change the number of devices in RAID1 right now */
748 if ((rs->raid_type->level != 1) &&
749 (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
750 DMERR("Reshaping arrays not yet supported.");
754 if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
755 mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
758 * During load, we set FirstUse if a new superblock was written.
759 * There are two reasons we might not have a superblock:
760 * 1) The array is brand new - in which case, all of the
761 * devices must have their In_sync bit set. Also,
762 * recovery_cp must be 0, unless forced.
763 * 2) This is a new device being added to an old array
764 * and the new device needs to be rebuilt - in which
765 * case the In_sync bit will /not/ be set and
766 * recovery_cp must be MaxSector.
768 rdev_for_each(r, mddev) {
769 if (!test_bit(In_sync, &r->flags)) {
770 DMINFO("Device %d specified for rebuild: "
771 "Clearing superblock", r->raid_disk);
773 } else if (test_bit(FirstUse, &r->flags))
778 if (new_devs == mddev->raid_disks) {
779 DMINFO("Superblocks created for new array");
780 set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
781 } else if (new_devs) {
782 DMERR("New device injected "
783 "into existing array without 'rebuild' "
784 "parameter specified");
787 } else if (new_devs) {
788 DMERR("'rebuild' devices cannot be "
789 "injected into an array with other first-time devices");
791 } else if (mddev->recovery_cp != MaxSector) {
792 DMERR("'rebuild' specified while array is not in-sync");
797 * Now we set the Faulty bit for those devices that are
798 * recorded in the superblock as failed.
800 rdev_for_each(r, mddev) {
803 sb2 = page_address(r->sb_page);
804 sb2->failed_devices = 0;
807 * Check for any device re-ordering.
809 if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
810 role = le32_to_cpu(sb2->array_position);
811 if (role != r->raid_disk) {
812 if (rs->raid_type->level != 1) {
813 rs->ti->error = "Cannot change device "
814 "positions in RAID array";
817 DMINFO("RAID1 device #%d now at position #%d",
822 * Partial recovery is performed on
823 * returning failed devices.
825 if (failed_devices & (1 << role))
826 set_bit(Faulty, &r->flags);
833 static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
835 struct dm_raid_superblock *sb = page_address(rdev->sb_page);
838 * If mddev->events is not set, we know we have not yet initialized
841 if (!mddev->events && super_init_validation(mddev, rdev))
844 mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
845 rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
846 if (!test_bit(FirstUse, &rdev->flags)) {
847 rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
848 if (rdev->recovery_offset != MaxSector)
849 clear_bit(In_sync, &rdev->flags);
853 * If a device comes back, set it as not In_sync and no longer faulty.
855 if (test_bit(Faulty, &rdev->flags)) {
856 clear_bit(Faulty, &rdev->flags);
857 clear_bit(In_sync, &rdev->flags);
858 rdev->saved_raid_disk = rdev->raid_disk;
859 rdev->recovery_offset = 0;
862 clear_bit(FirstUse, &rdev->flags);
868 * Analyse superblocks and select the freshest.
870 static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
873 unsigned redundancy = 0;
874 struct raid_dev *dev;
875 struct md_rdev *rdev, *tmp, *freshest;
876 struct mddev *mddev = &rs->md;
878 switch (rs->raid_type->level) {
880 redundancy = rs->md.raid_disks - 1;
885 redundancy = rs->raid_type->parity_devs;
888 ti->error = "Unknown RAID type";
893 rdev_for_each_safe(rdev, tmp, mddev) {
894 if (!rdev->meta_bdev)
897 ret = super_load(rdev, freshest);
906 dev = container_of(rdev, struct raid_dev, rdev);
909 dm_put_device(ti, dev->meta_dev);
911 dev->meta_dev = NULL;
912 rdev->meta_bdev = NULL;
915 put_page(rdev->sb_page);
917 rdev->sb_page = NULL;
922 * We might be able to salvage the data device
923 * even though the meta device has failed. For
924 * now, we behave as though '- -' had been
925 * set for this device in the table.
928 dm_put_device(ti, dev->data_dev);
930 dev->data_dev = NULL;
933 list_del(&rdev->same_set);
937 ti->error = "Failed to load superblock";
946 * Validation of the freshest device provides the source of
947 * validation for the remaining devices.
949 ti->error = "Unable to assemble array: Invalid superblocks";
950 if (super_validate(mddev, freshest))
953 rdev_for_each(rdev, mddev)
954 if ((rdev != freshest) && super_validate(mddev, rdev))
961 * Construct a RAID4/5/6 mapping:
963 * <raid_type> <#raid_params> <raid_params> \
964 * <#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
966 * <raid_params> varies by <raid_type>. See 'parse_raid_params' for
967 * details on possible <raid_params>.
969 static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
972 struct raid_type *rt;
973 unsigned long num_raid_params, num_raid_devs;
974 struct raid_set *rs = NULL;
976 /* Must have at least <raid_type> <#raid_params> */
978 ti->error = "Too few arguments";
983 rt = get_raid_type(argv[0]);
985 ti->error = "Unrecognised raid_type";
991 /* number of RAID parameters */
992 if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
993 ti->error = "Cannot understand number of RAID parameters";
999 /* Skip over RAID params for now and find out # of devices */
1000 if (num_raid_params + 1 > argc) {
1001 ti->error = "Arguments do not agree with counts given";
1005 if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
1006 (num_raid_devs >= INT_MAX)) {
1007 ti->error = "Cannot understand number of raid devices";
1011 rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
1015 ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
1021 argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
1022 argv += num_raid_params + 1;
1024 if (argc != (num_raid_devs * 2)) {
1025 ti->error = "Supplied RAID devices does not match the count given";
1029 ret = dev_parms(rs, argv);
1033 rs->md.sync_super = super_sync;
1034 ret = analyse_superblocks(ti, rs);
1038 INIT_WORK(&rs->md.event_work, do_table_event);
1040 ti->num_flush_requests = 1;
1042 mutex_lock(&rs->md.reconfig_mutex);
1043 ret = md_run(&rs->md);
1044 rs->md.in_sync = 0; /* Assume already marked dirty */
1045 mutex_unlock(&rs->md.reconfig_mutex);
1048 ti->error = "Fail to run raid array";
1052 rs->callbacks.congested_fn = raid_is_congested;
1053 dm_table_add_target_callbacks(ti->table, &rs->callbacks);
1055 mddev_suspend(&rs->md);
1064 static void raid_dtr(struct dm_target *ti)
1066 struct raid_set *rs = ti->private;
1068 list_del_init(&rs->callbacks.list);
1073 static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
1075 struct raid_set *rs = ti->private;
1076 struct mddev *mddev = &rs->md;
1078 mddev->pers->make_request(mddev, bio);
1080 return DM_MAPIO_SUBMITTED;
1083 static int raid_status(struct dm_target *ti, status_type_t type,
1084 char *result, unsigned maxlen)
1086 struct raid_set *rs = ti->private;
1087 unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
1089 int i, array_in_sync = 0;
1093 case STATUSTYPE_INFO:
1094 DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
1096 if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
1097 sync = rs->md.curr_resync_completed;
1099 sync = rs->md.recovery_cp;
1101 if (sync >= rs->md.resync_max_sectors) {
1103 sync = rs->md.resync_max_sectors;
1106 * The array may be doing an initial sync, or it may
1107 * be rebuilding individual components. If all the
1108 * devices are In_sync, then it is the array that is
1109 * being initialized.
1111 for (i = 0; i < rs->md.raid_disks; i++)
1112 if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
1116 * Status characters:
1117 * 'D' = Dead/Failed device
1118 * 'a' = Alive but not in-sync
1119 * 'A' = Alive and in-sync
1121 for (i = 0; i < rs->md.raid_disks; i++) {
1122 if (test_bit(Faulty, &rs->dev[i].rdev.flags))
1124 else if (!array_in_sync ||
1125 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1133 * The in-sync ratio shows the progress of:
1134 * - Initializing the array
1135 * - Rebuilding a subset of devices of the array
1136 * The user can distinguish between the two by referring
1137 * to the status characters.
1139 DMEMIT(" %llu/%llu",
1140 (unsigned long long) sync,
1141 (unsigned long long) rs->md.resync_max_sectors);
1144 case STATUSTYPE_TABLE:
1145 /* The string you would use to construct this array */
1146 for (i = 0; i < rs->md.raid_disks; i++) {
1147 if ((rs->print_flags & DMPF_REBUILD) &&
1148 rs->dev[i].data_dev &&
1149 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1150 raid_param_cnt += 2; /* for rebuilds */
1151 if (rs->dev[i].data_dev &&
1152 test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1153 raid_param_cnt += 2;
1156 raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
1157 if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
1160 DMEMIT("%s %u %u", rs->raid_type->name,
1161 raid_param_cnt, rs->md.chunk_sectors);
1163 if ((rs->print_flags & DMPF_SYNC) &&
1164 (rs->md.recovery_cp == MaxSector))
1166 if (rs->print_flags & DMPF_NOSYNC)
1169 for (i = 0; i < rs->md.raid_disks; i++)
1170 if ((rs->print_flags & DMPF_REBUILD) &&
1171 rs->dev[i].data_dev &&
1172 !test_bit(In_sync, &rs->dev[i].rdev.flags))
1173 DMEMIT(" rebuild %u", i);
1175 if (rs->print_flags & DMPF_DAEMON_SLEEP)
1176 DMEMIT(" daemon_sleep %lu",
1177 rs->md.bitmap_info.daemon_sleep);
1179 if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
1180 DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
1182 if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
1183 DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
1185 for (i = 0; i < rs->md.raid_disks; i++)
1186 if (rs->dev[i].data_dev &&
1187 test_bit(WriteMostly, &rs->dev[i].rdev.flags))
1188 DMEMIT(" write_mostly %u", i);
1190 if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
1191 DMEMIT(" max_write_behind %lu",
1192 rs->md.bitmap_info.max_write_behind);
1194 if (rs->print_flags & DMPF_STRIPE_CACHE) {
1195 struct r5conf *conf = rs->md.private;
1197 /* convert from kiB to sectors */
1198 DMEMIT(" stripe_cache %d",
1199 conf ? conf->max_nr_stripes * 2 : 0);
1202 if (rs->print_flags & DMPF_REGION_SIZE)
1203 DMEMIT(" region_size %lu",
1204 rs->md.bitmap_info.chunksize >> 9);
1206 DMEMIT(" %d", rs->md.raid_disks);
1207 for (i = 0; i < rs->md.raid_disks; i++) {
1208 if (rs->dev[i].meta_dev)
1209 DMEMIT(" %s", rs->dev[i].meta_dev->name);
1213 if (rs->dev[i].data_dev)
1214 DMEMIT(" %s", rs->dev[i].data_dev->name);
1223 static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
1225 struct raid_set *rs = ti->private;
1229 for (i = 0; !ret && i < rs->md.raid_disks; i++)
1230 if (rs->dev[i].data_dev)
1232 rs->dev[i].data_dev,
1233 0, /* No offset on data devs */
1240 static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
1242 struct raid_set *rs = ti->private;
1243 unsigned chunk_size = rs->md.chunk_sectors << 9;
1244 struct r5conf *conf = rs->md.private;
1246 blk_limits_io_min(limits, chunk_size);
1247 blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
1250 static void raid_presuspend(struct dm_target *ti)
1252 struct raid_set *rs = ti->private;
1254 md_stop_writes(&rs->md);
1257 static void raid_postsuspend(struct dm_target *ti)
1259 struct raid_set *rs = ti->private;
1261 mddev_suspend(&rs->md);
1264 static void raid_resume(struct dm_target *ti)
1266 struct raid_set *rs = ti->private;
1268 set_bit(MD_CHANGE_DEVS, &rs->md.flags);
1269 if (!rs->bitmap_loaded) {
1270 bitmap_load(&rs->md);
1271 rs->bitmap_loaded = 1;
1274 clear_bit(MD_RECOVERY_FROZEN, &rs->md.recovery);
1275 mddev_resume(&rs->md);
1278 static struct target_type raid_target = {
1280 .version = {1, 2, 0},
1281 .module = THIS_MODULE,
1285 .status = raid_status,
1286 .iterate_devices = raid_iterate_devices,
1287 .io_hints = raid_io_hints,
1288 .presuspend = raid_presuspend,
1289 .postsuspend = raid_postsuspend,
1290 .resume = raid_resume,
1293 static int __init dm_raid_init(void)
1295 return dm_register_target(&raid_target);
1298 static void __exit dm_raid_exit(void)
1300 dm_unregister_target(&raid_target);
1303 module_init(dm_raid_init);
1304 module_exit(dm_raid_exit);
1306 MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
1307 MODULE_ALIAS("dm-raid4");
1308 MODULE_ALIAS("dm-raid5");
1309 MODULE_ALIAS("dm-raid6");
1311 MODULE_LICENSE("GPL");