2 * An async IO implementation for Linux
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
27 #include <linux/file.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
53 #define AIO_RING_MAGIC 0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES 1
55 #define AIO_RING_INCOMPAT_FEATURES 0
57 unsigned id; /* kernel internal index number */
58 unsigned nr; /* number of io_events */
59 unsigned head; /* Written to by userland or under ring_lock
60 * mutex by aio_read_events_ring(). */
64 unsigned compat_features;
65 unsigned incompat_features;
66 unsigned header_length; /* size of aio_ring */
69 struct io_event io_events[0];
70 }; /* 128 bytes + ring size */
72 #define AIO_RING_PAGES 8
77 struct kioctx __rcu *table[];
81 unsigned reqs_available;
85 struct completion comp;
90 struct percpu_ref users;
93 struct percpu_ref reqs;
95 unsigned long user_id;
97 struct __percpu kioctx_cpu *cpu;
100 * For percpu reqs_available, number of slots we move to/from global
105 * This is what userspace passed to io_setup(), it's not used for
106 * anything but counting against the global max_reqs quota.
108 * The real limit is nr_events - 1, which will be larger (see
113 /* Size of ringbuffer, in units of struct io_event */
116 unsigned long mmap_base;
117 unsigned long mmap_size;
119 struct page **ring_pages;
122 struct rcu_work free_rwork; /* see free_ioctx() */
125 * signals when all in-flight requests are done
127 struct ctx_rq_wait *rq_wait;
131 * This counts the number of available slots in the ringbuffer,
132 * so we avoid overflowing it: it's decremented (if positive)
133 * when allocating a kiocb and incremented when the resulting
134 * io_event is pulled off the ringbuffer.
136 * We batch accesses to it with a percpu version.
138 atomic_t reqs_available;
139 } ____cacheline_aligned_in_smp;
143 struct list_head active_reqs; /* used for cancellation */
144 } ____cacheline_aligned_in_smp;
147 struct mutex ring_lock;
148 wait_queue_head_t wait;
149 } ____cacheline_aligned_in_smp;
153 unsigned completed_events;
154 spinlock_t completion_lock;
155 } ____cacheline_aligned_in_smp;
157 struct page *internal_pages[AIO_RING_PAGES];
158 struct file *aio_ring_file;
164 struct work_struct work;
171 struct wait_queue_head *head;
175 struct wait_queue_entry wait;
176 struct work_struct work;
182 struct fsync_iocb fsync;
183 struct poll_iocb poll;
186 struct kioctx *ki_ctx;
187 kiocb_cancel_fn *ki_cancel;
189 struct iocb __user *ki_user_iocb; /* user's aiocb */
190 __u64 ki_user_data; /* user's data for completion */
192 struct list_head ki_list; /* the aio core uses this
193 * for cancellation */
194 refcount_t ki_refcnt;
197 * If the aio_resfd field of the userspace iocb is not zero,
198 * this is the underlying eventfd context to deliver events to.
200 struct eventfd_ctx *ki_eventfd;
203 /*------ sysctl variables----*/
204 static DEFINE_SPINLOCK(aio_nr_lock);
205 unsigned long aio_nr; /* current system wide number of aio requests */
206 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
207 /*----end sysctl variables---*/
209 static struct kmem_cache *kiocb_cachep;
210 static struct kmem_cache *kioctx_cachep;
212 static struct vfsmount *aio_mnt;
214 static const struct file_operations aio_ring_fops;
215 static const struct address_space_operations aio_ctx_aops;
217 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
219 struct qstr this = QSTR_INIT("[aio]", 5);
222 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
224 return ERR_CAST(inode);
226 inode->i_mapping->a_ops = &aio_ctx_aops;
227 inode->i_mapping->private_data = ctx;
228 inode->i_size = PAGE_SIZE * nr_pages;
230 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
233 return ERR_PTR(-ENOMEM);
235 path.mnt = mntget(aio_mnt);
237 d_instantiate(path.dentry, inode);
238 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
244 file->f_flags = O_RDWR;
248 static struct dentry *aio_mount(struct file_system_type *fs_type,
249 int flags, const char *dev_name, void *data)
251 static const struct dentry_operations ops = {
252 .d_dname = simple_dname,
254 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
258 root->d_sb->s_iflags |= SB_I_NOEXEC;
263 * Creates the slab caches used by the aio routines, panic on
264 * failure as this is done early during the boot sequence.
266 static int __init aio_setup(void)
268 static struct file_system_type aio_fs = {
271 .kill_sb = kill_anon_super,
273 aio_mnt = kern_mount(&aio_fs);
275 panic("Failed to create aio fs mount.");
277 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
281 __initcall(aio_setup);
283 static void put_aio_ring_file(struct kioctx *ctx)
285 struct file *aio_ring_file = ctx->aio_ring_file;
286 struct address_space *i_mapping;
289 truncate_setsize(file_inode(aio_ring_file), 0);
291 /* Prevent further access to the kioctx from migratepages */
292 i_mapping = aio_ring_file->f_mapping;
293 spin_lock(&i_mapping->private_lock);
294 i_mapping->private_data = NULL;
295 ctx->aio_ring_file = NULL;
296 spin_unlock(&i_mapping->private_lock);
302 static void aio_free_ring(struct kioctx *ctx)
306 /* Disconnect the kiotx from the ring file. This prevents future
307 * accesses to the kioctx from page migration.
309 put_aio_ring_file(ctx);
311 for (i = 0; i < ctx->nr_pages; i++) {
313 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
314 page_count(ctx->ring_pages[i]));
315 page = ctx->ring_pages[i];
318 ctx->ring_pages[i] = NULL;
322 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
323 kfree(ctx->ring_pages);
324 ctx->ring_pages = NULL;
328 static int aio_ring_mremap(struct vm_area_struct *vma)
330 struct file *file = vma->vm_file;
331 struct mm_struct *mm = vma->vm_mm;
332 struct kioctx_table *table;
333 int i, res = -EINVAL;
335 spin_lock(&mm->ioctx_lock);
337 table = rcu_dereference(mm->ioctx_table);
338 for (i = 0; i < table->nr; i++) {
341 ctx = rcu_dereference(table->table[i]);
342 if (ctx && ctx->aio_ring_file == file) {
343 if (!atomic_read(&ctx->dead)) {
344 ctx->user_id = ctx->mmap_base = vma->vm_start;
352 spin_unlock(&mm->ioctx_lock);
356 static const struct vm_operations_struct aio_ring_vm_ops = {
357 .mremap = aio_ring_mremap,
358 #if IS_ENABLED(CONFIG_MMU)
359 .fault = filemap_fault,
360 .map_pages = filemap_map_pages,
361 .page_mkwrite = filemap_page_mkwrite,
365 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
367 vma->vm_flags |= VM_DONTEXPAND;
368 vma->vm_ops = &aio_ring_vm_ops;
372 static const struct file_operations aio_ring_fops = {
373 .mmap = aio_ring_mmap,
376 #if IS_ENABLED(CONFIG_MIGRATION)
377 static int aio_migratepage(struct address_space *mapping, struct page *new,
378 struct page *old, enum migrate_mode mode)
386 * We cannot support the _NO_COPY case here, because copy needs to
387 * happen under the ctx->completion_lock. That does not work with the
388 * migration workflow of MIGRATE_SYNC_NO_COPY.
390 if (mode == MIGRATE_SYNC_NO_COPY)
395 /* mapping->private_lock here protects against the kioctx teardown. */
396 spin_lock(&mapping->private_lock);
397 ctx = mapping->private_data;
403 /* The ring_lock mutex. The prevents aio_read_events() from writing
404 * to the ring's head, and prevents page migration from mucking in
405 * a partially initialized kiotx.
407 if (!mutex_trylock(&ctx->ring_lock)) {
413 if (idx < (pgoff_t)ctx->nr_pages) {
414 /* Make sure the old page hasn't already been changed */
415 if (ctx->ring_pages[idx] != old)
423 /* Writeback must be complete */
424 BUG_ON(PageWriteback(old));
427 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
428 if (rc != MIGRATEPAGE_SUCCESS) {
433 /* Take completion_lock to prevent other writes to the ring buffer
434 * while the old page is copied to the new. This prevents new
435 * events from being lost.
437 spin_lock_irqsave(&ctx->completion_lock, flags);
438 migrate_page_copy(new, old);
439 BUG_ON(ctx->ring_pages[idx] != old);
440 ctx->ring_pages[idx] = new;
441 spin_unlock_irqrestore(&ctx->completion_lock, flags);
443 /* The old page is no longer accessible. */
447 mutex_unlock(&ctx->ring_lock);
449 spin_unlock(&mapping->private_lock);
454 static const struct address_space_operations aio_ctx_aops = {
455 .set_page_dirty = __set_page_dirty_no_writeback,
456 #if IS_ENABLED(CONFIG_MIGRATION)
457 .migratepage = aio_migratepage,
461 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
463 struct aio_ring *ring;
464 struct mm_struct *mm = current->mm;
465 unsigned long size, unused;
470 /* Compensate for the ring buffer's head/tail overlap entry */
471 nr_events += 2; /* 1 is required, 2 for good luck */
473 size = sizeof(struct aio_ring);
474 size += sizeof(struct io_event) * nr_events;
476 nr_pages = PFN_UP(size);
480 file = aio_private_file(ctx, nr_pages);
482 ctx->aio_ring_file = NULL;
486 ctx->aio_ring_file = file;
487 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
488 / sizeof(struct io_event);
490 ctx->ring_pages = ctx->internal_pages;
491 if (nr_pages > AIO_RING_PAGES) {
492 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
494 if (!ctx->ring_pages) {
495 put_aio_ring_file(ctx);
500 for (i = 0; i < nr_pages; i++) {
502 page = find_or_create_page(file->f_mapping,
503 i, GFP_HIGHUSER | __GFP_ZERO);
506 pr_debug("pid(%d) page[%d]->count=%d\n",
507 current->pid, i, page_count(page));
508 SetPageUptodate(page);
511 ctx->ring_pages[i] = page;
515 if (unlikely(i != nr_pages)) {
520 ctx->mmap_size = nr_pages * PAGE_SIZE;
521 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
523 if (down_write_killable(&mm->mmap_sem)) {
529 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
530 PROT_READ | PROT_WRITE,
531 MAP_SHARED, 0, &unused, NULL);
532 up_write(&mm->mmap_sem);
533 if (IS_ERR((void *)ctx->mmap_base)) {
539 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
541 ctx->user_id = ctx->mmap_base;
542 ctx->nr_events = nr_events; /* trusted copy */
544 ring = kmap_atomic(ctx->ring_pages[0]);
545 ring->nr = nr_events; /* user copy */
547 ring->head = ring->tail = 0;
548 ring->magic = AIO_RING_MAGIC;
549 ring->compat_features = AIO_RING_COMPAT_FEATURES;
550 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
551 ring->header_length = sizeof(struct aio_ring);
553 flush_dcache_page(ctx->ring_pages[0]);
558 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
559 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
560 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
562 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
564 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
565 struct kioctx *ctx = req->ki_ctx;
568 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
571 spin_lock_irqsave(&ctx->ctx_lock, flags);
572 list_add_tail(&req->ki_list, &ctx->active_reqs);
573 req->ki_cancel = cancel;
574 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
576 EXPORT_SYMBOL(kiocb_set_cancel_fn);
579 * free_ioctx() should be RCU delayed to synchronize against the RCU
580 * protected lookup_ioctx() and also needs process context to call
581 * aio_free_ring(). Use rcu_work.
583 static void free_ioctx(struct work_struct *work)
585 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
587 pr_debug("freeing %p\n", ctx);
590 free_percpu(ctx->cpu);
591 percpu_ref_exit(&ctx->reqs);
592 percpu_ref_exit(&ctx->users);
593 kmem_cache_free(kioctx_cachep, ctx);
596 static void free_ioctx_reqs(struct percpu_ref *ref)
598 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
600 /* At this point we know that there are no any in-flight requests */
601 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
602 complete(&ctx->rq_wait->comp);
604 /* Synchronize against RCU protected table->table[] dereferences */
605 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
606 queue_rcu_work(system_wq, &ctx->free_rwork);
610 * When this function runs, the kioctx has been removed from the "hash table"
611 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
612 * now it's safe to cancel any that need to be.
614 static void free_ioctx_users(struct percpu_ref *ref)
616 struct kioctx *ctx = container_of(ref, struct kioctx, users);
617 struct aio_kiocb *req;
619 spin_lock_irq(&ctx->ctx_lock);
621 while (!list_empty(&ctx->active_reqs)) {
622 req = list_first_entry(&ctx->active_reqs,
623 struct aio_kiocb, ki_list);
624 req->ki_cancel(&req->rw);
625 list_del_init(&req->ki_list);
628 spin_unlock_irq(&ctx->ctx_lock);
630 percpu_ref_kill(&ctx->reqs);
631 percpu_ref_put(&ctx->reqs);
634 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
637 struct kioctx_table *table, *old;
638 struct aio_ring *ring;
640 spin_lock(&mm->ioctx_lock);
641 table = rcu_dereference_raw(mm->ioctx_table);
645 for (i = 0; i < table->nr; i++)
646 if (!rcu_access_pointer(table->table[i])) {
648 rcu_assign_pointer(table->table[i], ctx);
649 spin_unlock(&mm->ioctx_lock);
651 /* While kioctx setup is in progress,
652 * we are protected from page migration
653 * changes ring_pages by ->ring_lock.
655 ring = kmap_atomic(ctx->ring_pages[0]);
661 new_nr = (table ? table->nr : 1) * 4;
662 spin_unlock(&mm->ioctx_lock);
664 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
671 spin_lock(&mm->ioctx_lock);
672 old = rcu_dereference_raw(mm->ioctx_table);
675 rcu_assign_pointer(mm->ioctx_table, table);
676 } else if (table->nr > old->nr) {
677 memcpy(table->table, old->table,
678 old->nr * sizeof(struct kioctx *));
680 rcu_assign_pointer(mm->ioctx_table, table);
689 static void aio_nr_sub(unsigned nr)
691 spin_lock(&aio_nr_lock);
692 if (WARN_ON(aio_nr - nr > aio_nr))
696 spin_unlock(&aio_nr_lock);
700 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
702 static struct kioctx *ioctx_alloc(unsigned nr_events)
704 struct mm_struct *mm = current->mm;
709 * Store the original nr_events -- what userspace passed to io_setup(),
710 * for counting against the global limit -- before it changes.
712 unsigned int max_reqs = nr_events;
715 * We keep track of the number of available ringbuffer slots, to prevent
716 * overflow (reqs_available), and we also use percpu counters for this.
718 * So since up to half the slots might be on other cpu's percpu counters
719 * and unavailable, double nr_events so userspace sees what they
720 * expected: additionally, we move req_batch slots to/from percpu
721 * counters at a time, so make sure that isn't 0:
723 nr_events = max(nr_events, num_possible_cpus() * 4);
726 /* Prevent overflows */
727 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
728 pr_debug("ENOMEM: nr_events too high\n");
729 return ERR_PTR(-EINVAL);
732 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
733 return ERR_PTR(-EAGAIN);
735 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
737 return ERR_PTR(-ENOMEM);
739 ctx->max_reqs = max_reqs;
741 spin_lock_init(&ctx->ctx_lock);
742 spin_lock_init(&ctx->completion_lock);
743 mutex_init(&ctx->ring_lock);
744 /* Protect against page migration throughout kiotx setup by keeping
745 * the ring_lock mutex held until setup is complete. */
746 mutex_lock(&ctx->ring_lock);
747 init_waitqueue_head(&ctx->wait);
749 INIT_LIST_HEAD(&ctx->active_reqs);
751 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
754 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
757 ctx->cpu = alloc_percpu(struct kioctx_cpu);
761 err = aio_setup_ring(ctx, nr_events);
765 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
766 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
767 if (ctx->req_batch < 1)
770 /* limit the number of system wide aios */
771 spin_lock(&aio_nr_lock);
772 if (aio_nr + ctx->max_reqs > aio_max_nr ||
773 aio_nr + ctx->max_reqs < aio_nr) {
774 spin_unlock(&aio_nr_lock);
778 aio_nr += ctx->max_reqs;
779 spin_unlock(&aio_nr_lock);
781 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
782 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
784 err = ioctx_add_table(ctx, mm);
788 /* Release the ring_lock mutex now that all setup is complete. */
789 mutex_unlock(&ctx->ring_lock);
791 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
792 ctx, ctx->user_id, mm, ctx->nr_events);
796 aio_nr_sub(ctx->max_reqs);
798 atomic_set(&ctx->dead, 1);
800 vm_munmap(ctx->mmap_base, ctx->mmap_size);
803 mutex_unlock(&ctx->ring_lock);
804 free_percpu(ctx->cpu);
805 percpu_ref_exit(&ctx->reqs);
806 percpu_ref_exit(&ctx->users);
807 kmem_cache_free(kioctx_cachep, ctx);
808 pr_debug("error allocating ioctx %d\n", err);
813 * Cancels all outstanding aio requests on an aio context. Used
814 * when the processes owning a context have all exited to encourage
815 * the rapid destruction of the kioctx.
817 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
818 struct ctx_rq_wait *wait)
820 struct kioctx_table *table;
822 spin_lock(&mm->ioctx_lock);
823 if (atomic_xchg(&ctx->dead, 1)) {
824 spin_unlock(&mm->ioctx_lock);
828 table = rcu_dereference_raw(mm->ioctx_table);
829 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
830 RCU_INIT_POINTER(table->table[ctx->id], NULL);
831 spin_unlock(&mm->ioctx_lock);
833 /* free_ioctx_reqs() will do the necessary RCU synchronization */
834 wake_up_all(&ctx->wait);
837 * It'd be more correct to do this in free_ioctx(), after all
838 * the outstanding kiocbs have finished - but by then io_destroy
839 * has already returned, so io_setup() could potentially return
840 * -EAGAIN with no ioctxs actually in use (as far as userspace
843 aio_nr_sub(ctx->max_reqs);
846 vm_munmap(ctx->mmap_base, ctx->mmap_size);
849 percpu_ref_kill(&ctx->users);
854 * exit_aio: called when the last user of mm goes away. At this point, there is
855 * no way for any new requests to be submited or any of the io_* syscalls to be
856 * called on the context.
858 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
861 void exit_aio(struct mm_struct *mm)
863 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
864 struct ctx_rq_wait wait;
870 atomic_set(&wait.count, table->nr);
871 init_completion(&wait.comp);
874 for (i = 0; i < table->nr; ++i) {
876 rcu_dereference_protected(table->table[i], true);
884 * We don't need to bother with munmap() here - exit_mmap(mm)
885 * is coming and it'll unmap everything. And we simply can't,
886 * this is not necessarily our ->mm.
887 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
888 * that it needs to unmap the area, just set it to 0.
891 kill_ioctx(mm, ctx, &wait);
894 if (!atomic_sub_and_test(skipped, &wait.count)) {
895 /* Wait until all IO for the context are done. */
896 wait_for_completion(&wait.comp);
899 RCU_INIT_POINTER(mm->ioctx_table, NULL);
903 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
905 struct kioctx_cpu *kcpu;
908 local_irq_save(flags);
909 kcpu = this_cpu_ptr(ctx->cpu);
910 kcpu->reqs_available += nr;
912 while (kcpu->reqs_available >= ctx->req_batch * 2) {
913 kcpu->reqs_available -= ctx->req_batch;
914 atomic_add(ctx->req_batch, &ctx->reqs_available);
917 local_irq_restore(flags);
920 static bool get_reqs_available(struct kioctx *ctx)
922 struct kioctx_cpu *kcpu;
926 local_irq_save(flags);
927 kcpu = this_cpu_ptr(ctx->cpu);
928 if (!kcpu->reqs_available) {
929 int old, avail = atomic_read(&ctx->reqs_available);
932 if (avail < ctx->req_batch)
936 avail = atomic_cmpxchg(&ctx->reqs_available,
937 avail, avail - ctx->req_batch);
938 } while (avail != old);
940 kcpu->reqs_available += ctx->req_batch;
944 kcpu->reqs_available--;
946 local_irq_restore(flags);
950 /* refill_reqs_available
951 * Updates the reqs_available reference counts used for tracking the
952 * number of free slots in the completion ring. This can be called
953 * from aio_complete() (to optimistically update reqs_available) or
954 * from aio_get_req() (the we're out of events case). It must be
955 * called holding ctx->completion_lock.
957 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
960 unsigned events_in_ring, completed;
962 /* Clamp head since userland can write to it. */
963 head %= ctx->nr_events;
965 events_in_ring = tail - head;
967 events_in_ring = ctx->nr_events - (head - tail);
969 completed = ctx->completed_events;
970 if (events_in_ring < completed)
971 completed -= events_in_ring;
978 ctx->completed_events -= completed;
979 put_reqs_available(ctx, completed);
982 /* user_refill_reqs_available
983 * Called to refill reqs_available when aio_get_req() encounters an
984 * out of space in the completion ring.
986 static void user_refill_reqs_available(struct kioctx *ctx)
988 spin_lock_irq(&ctx->completion_lock);
989 if (ctx->completed_events) {
990 struct aio_ring *ring;
993 /* Access of ring->head may race with aio_read_events_ring()
994 * here, but that's okay since whether we read the old version
995 * or the new version, and either will be valid. The important
996 * part is that head cannot pass tail since we prevent
997 * aio_complete() from updating tail by holding
998 * ctx->completion_lock. Even if head is invalid, the check
999 * against ctx->completed_events below will make sure we do the
1002 ring = kmap_atomic(ctx->ring_pages[0]);
1004 kunmap_atomic(ring);
1006 refill_reqs_available(ctx, head, ctx->tail);
1009 spin_unlock_irq(&ctx->completion_lock);
1013 * Allocate a slot for an aio request.
1014 * Returns NULL if no requests are free.
1016 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1018 struct aio_kiocb *req;
1020 if (!get_reqs_available(ctx)) {
1021 user_refill_reqs_available(ctx);
1022 if (!get_reqs_available(ctx))
1026 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1030 percpu_ref_get(&ctx->reqs);
1031 INIT_LIST_HEAD(&req->ki_list);
1032 refcount_set(&req->ki_refcnt, 0);
1036 put_reqs_available(ctx, 1);
1040 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1042 struct aio_ring __user *ring = (void __user *)ctx_id;
1043 struct mm_struct *mm = current->mm;
1044 struct kioctx *ctx, *ret = NULL;
1045 struct kioctx_table *table;
1048 if (get_user(id, &ring->id))
1052 table = rcu_dereference(mm->ioctx_table);
1054 if (!table || id >= table->nr)
1057 ctx = rcu_dereference(table->table[id]);
1058 if (ctx && ctx->user_id == ctx_id) {
1059 if (percpu_ref_tryget_live(&ctx->users))
1067 static inline void iocb_put(struct aio_kiocb *iocb)
1069 if (refcount_read(&iocb->ki_refcnt) == 0 ||
1070 refcount_dec_and_test(&iocb->ki_refcnt)) {
1071 percpu_ref_put(&iocb->ki_ctx->reqs);
1072 kmem_cache_free(kiocb_cachep, iocb);
1077 * Called when the io request on the given iocb is complete.
1079 static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1081 struct kioctx *ctx = iocb->ki_ctx;
1082 struct aio_ring *ring;
1083 struct io_event *ev_page, *event;
1084 unsigned tail, pos, head;
1085 unsigned long flags;
1088 * Add a completion event to the ring buffer. Must be done holding
1089 * ctx->completion_lock to prevent other code from messing with the tail
1090 * pointer since we might be called from irq context.
1092 spin_lock_irqsave(&ctx->completion_lock, flags);
1095 pos = tail + AIO_EVENTS_OFFSET;
1097 if (++tail >= ctx->nr_events)
1100 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1101 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1103 event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1104 event->data = iocb->ki_user_data;
1108 kunmap_atomic(ev_page);
1109 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1111 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1112 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1115 /* after flagging the request as done, we
1116 * must never even look at it again
1118 smp_wmb(); /* make event visible before updating tail */
1122 ring = kmap_atomic(ctx->ring_pages[0]);
1125 kunmap_atomic(ring);
1126 flush_dcache_page(ctx->ring_pages[0]);
1128 ctx->completed_events++;
1129 if (ctx->completed_events > 1)
1130 refill_reqs_available(ctx, head, tail);
1131 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1133 pr_debug("added to ring %p at [%u]\n", iocb, tail);
1136 * Check if the user asked us to deliver the result through an
1137 * eventfd. The eventfd_signal() function is safe to be called
1140 if (iocb->ki_eventfd) {
1141 eventfd_signal(iocb->ki_eventfd, 1);
1142 eventfd_ctx_put(iocb->ki_eventfd);
1146 * We have to order our ring_info tail store above and test
1147 * of the wait list below outside the wait lock. This is
1148 * like in wake_up_bit() where clearing a bit has to be
1149 * ordered with the unlocked test.
1153 if (waitqueue_active(&ctx->wait))
1154 wake_up(&ctx->wait);
1158 /* aio_read_events_ring
1159 * Pull an event off of the ioctx's event ring. Returns the number of
1162 static long aio_read_events_ring(struct kioctx *ctx,
1163 struct io_event __user *event, long nr)
1165 struct aio_ring *ring;
1166 unsigned head, tail, pos;
1171 * The mutex can block and wake us up and that will cause
1172 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1173 * and repeat. This should be rare enough that it doesn't cause
1174 * peformance issues. See the comment in read_events() for more detail.
1176 sched_annotate_sleep();
1177 mutex_lock(&ctx->ring_lock);
1179 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1180 ring = kmap_atomic(ctx->ring_pages[0]);
1183 kunmap_atomic(ring);
1186 * Ensure that once we've read the current tail pointer, that
1187 * we also see the events that were stored up to the tail.
1191 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1196 head %= ctx->nr_events;
1197 tail %= ctx->nr_events;
1201 struct io_event *ev;
1204 avail = (head <= tail ? tail : ctx->nr_events) - head;
1208 pos = head + AIO_EVENTS_OFFSET;
1209 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1210 pos %= AIO_EVENTS_PER_PAGE;
1212 avail = min(avail, nr - ret);
1213 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1216 copy_ret = copy_to_user(event + ret, ev + pos,
1217 sizeof(*ev) * avail);
1220 if (unlikely(copy_ret)) {
1227 head %= ctx->nr_events;
1230 ring = kmap_atomic(ctx->ring_pages[0]);
1232 kunmap_atomic(ring);
1233 flush_dcache_page(ctx->ring_pages[0]);
1235 pr_debug("%li h%u t%u\n", ret, head, tail);
1237 mutex_unlock(&ctx->ring_lock);
1242 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1243 struct io_event __user *event, long *i)
1245 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1250 if (unlikely(atomic_read(&ctx->dead)))
1256 return ret < 0 || *i >= min_nr;
1259 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1260 struct io_event __user *event,
1266 * Note that aio_read_events() is being called as the conditional - i.e.
1267 * we're calling it after prepare_to_wait() has set task state to
1268 * TASK_INTERRUPTIBLE.
1270 * But aio_read_events() can block, and if it blocks it's going to flip
1271 * the task state back to TASK_RUNNING.
1273 * This should be ok, provided it doesn't flip the state back to
1274 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1275 * will only happen if the mutex_lock() call blocks, and we then find
1276 * the ringbuffer empty. So in practice we should be ok, but it's
1277 * something to be aware of when touching this code.
1280 aio_read_events(ctx, min_nr, nr, event, &ret);
1282 wait_event_interruptible_hrtimeout(ctx->wait,
1283 aio_read_events(ctx, min_nr, nr, event, &ret),
1289 * Create an aio_context capable of receiving at least nr_events.
1290 * ctxp must not point to an aio_context that already exists, and
1291 * must be initialized to 0 prior to the call. On successful
1292 * creation of the aio_context, *ctxp is filled in with the resulting
1293 * handle. May fail with -EINVAL if *ctxp is not initialized,
1294 * if the specified nr_events exceeds internal limits. May fail
1295 * with -EAGAIN if the specified nr_events exceeds the user's limit
1296 * of available events. May fail with -ENOMEM if insufficient kernel
1297 * resources are available. May fail with -EFAULT if an invalid
1298 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1301 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1303 struct kioctx *ioctx = NULL;
1307 ret = get_user(ctx, ctxp);
1312 if (unlikely(ctx || nr_events == 0)) {
1313 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1318 ioctx = ioctx_alloc(nr_events);
1319 ret = PTR_ERR(ioctx);
1320 if (!IS_ERR(ioctx)) {
1321 ret = put_user(ioctx->user_id, ctxp);
1323 kill_ioctx(current->mm, ioctx, NULL);
1324 percpu_ref_put(&ioctx->users);
1331 #ifdef CONFIG_COMPAT
1332 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1334 struct kioctx *ioctx = NULL;
1338 ret = get_user(ctx, ctx32p);
1343 if (unlikely(ctx || nr_events == 0)) {
1344 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1349 ioctx = ioctx_alloc(nr_events);
1350 ret = PTR_ERR(ioctx);
1351 if (!IS_ERR(ioctx)) {
1352 /* truncating is ok because it's a user address */
1353 ret = put_user((u32)ioctx->user_id, ctx32p);
1355 kill_ioctx(current->mm, ioctx, NULL);
1356 percpu_ref_put(&ioctx->users);
1365 * Destroy the aio_context specified. May cancel any outstanding
1366 * AIOs and block on completion. Will fail with -ENOSYS if not
1367 * implemented. May fail with -EINVAL if the context pointed to
1370 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1372 struct kioctx *ioctx = lookup_ioctx(ctx);
1373 if (likely(NULL != ioctx)) {
1374 struct ctx_rq_wait wait;
1377 init_completion(&wait.comp);
1378 atomic_set(&wait.count, 1);
1380 /* Pass requests_done to kill_ioctx() where it can be set
1381 * in a thread-safe way. If we try to set it here then we have
1382 * a race condition if two io_destroy() called simultaneously.
1384 ret = kill_ioctx(current->mm, ioctx, &wait);
1385 percpu_ref_put(&ioctx->users);
1387 /* Wait until all IO for the context are done. Otherwise kernel
1388 * keep using user-space buffers even if user thinks the context
1392 wait_for_completion(&wait.comp);
1396 pr_debug("EINVAL: invalid context id\n");
1400 static void aio_remove_iocb(struct aio_kiocb *iocb)
1402 struct kioctx *ctx = iocb->ki_ctx;
1403 unsigned long flags;
1405 spin_lock_irqsave(&ctx->ctx_lock, flags);
1406 list_del(&iocb->ki_list);
1407 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1410 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1412 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1414 if (!list_empty_careful(&iocb->ki_list))
1415 aio_remove_iocb(iocb);
1417 if (kiocb->ki_flags & IOCB_WRITE) {
1418 struct inode *inode = file_inode(kiocb->ki_filp);
1421 * Tell lockdep we inherited freeze protection from submission
1424 if (S_ISREG(inode->i_mode))
1425 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1426 file_end_write(kiocb->ki_filp);
1429 fput(kiocb->ki_filp);
1430 aio_complete(iocb, res, res2);
1433 static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1437 req->ki_filp = fget(iocb->aio_fildes);
1438 if (unlikely(!req->ki_filp))
1440 req->ki_complete = aio_complete_rw;
1441 req->ki_pos = iocb->aio_offset;
1442 req->ki_flags = iocb_flags(req->ki_filp);
1443 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1444 req->ki_flags |= IOCB_EVENTFD;
1445 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1446 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1448 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1449 * aio_reqprio is interpreted as an I/O scheduling
1450 * class and priority.
1452 ret = ioprio_check_cap(iocb->aio_reqprio);
1454 pr_debug("aio ioprio check cap error: %d\n", ret);
1458 req->ki_ioprio = iocb->aio_reqprio;
1460 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1462 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1468 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1469 bool vectored, bool compat, struct iov_iter *iter)
1471 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1472 size_t len = iocb->aio_nbytes;
1475 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1479 #ifdef CONFIG_COMPAT
1481 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1484 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1487 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1493 case -ERESTARTNOINTR:
1494 case -ERESTARTNOHAND:
1495 case -ERESTART_RESTARTBLOCK:
1497 * There's no easy way to restart the syscall since other AIO's
1498 * may be already running. Just fail this IO with EINTR.
1503 aio_complete_rw(req, ret, 0);
1507 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1510 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1511 struct iov_iter iter;
1515 ret = aio_prep_rw(req, iocb);
1518 file = req->ki_filp;
1521 if (unlikely(!(file->f_mode & FMODE_READ)))
1524 if (unlikely(!file->f_op->read_iter))
1527 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1530 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1532 aio_rw_done(req, call_read_iter(file, req, &iter));
1540 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1543 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1544 struct iov_iter iter;
1548 ret = aio_prep_rw(req, iocb);
1551 file = req->ki_filp;
1554 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1557 if (unlikely(!file->f_op->write_iter))
1560 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1563 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1566 * Open-code file_start_write here to grab freeze protection,
1567 * which will be released by another thread in
1568 * aio_complete_rw(). Fool lockdep by telling it the lock got
1569 * released so that it doesn't complain about the held lock when
1570 * we return to userspace.
1572 if (S_ISREG(file_inode(file)->i_mode)) {
1573 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1574 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1576 req->ki_flags |= IOCB_WRITE;
1577 aio_rw_done(req, call_write_iter(file, req, &iter));
1586 static void aio_fsync_work(struct work_struct *work)
1588 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1591 ret = vfs_fsync(req->file, req->datasync);
1593 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1596 static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1598 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1599 iocb->aio_rw_flags))
1602 req->file = fget(iocb->aio_fildes);
1603 if (unlikely(!req->file))
1605 if (unlikely(!req->file->f_op->fsync)) {
1610 req->datasync = datasync;
1611 INIT_WORK(&req->work, aio_fsync_work);
1612 schedule_work(&req->work);
1616 static inline void aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1618 struct file *file = iocb->poll.file;
1620 aio_complete(iocb, mangle_poll(mask), 0);
1624 static void aio_poll_complete_work(struct work_struct *work)
1626 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1627 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1628 struct poll_table_struct pt = { ._key = req->events };
1629 struct kioctx *ctx = iocb->ki_ctx;
1632 if (!READ_ONCE(req->cancelled))
1633 mask = vfs_poll(req->file, &pt) & req->events;
1636 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1637 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1638 * synchronize with them. In the cancellation case the list_del_init
1639 * itself is not actually needed, but harmless so we keep it in to
1640 * avoid further branches in the fast path.
1642 spin_lock_irq(&ctx->ctx_lock);
1643 if (!mask && !READ_ONCE(req->cancelled)) {
1644 add_wait_queue(req->head, &req->wait);
1645 spin_unlock_irq(&ctx->ctx_lock);
1648 list_del_init(&iocb->ki_list);
1649 spin_unlock_irq(&ctx->ctx_lock);
1651 aio_poll_complete(iocb, mask);
1654 /* assumes we are called with irqs disabled */
1655 static int aio_poll_cancel(struct kiocb *iocb)
1657 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1658 struct poll_iocb *req = &aiocb->poll;
1660 spin_lock(&req->head->lock);
1661 WRITE_ONCE(req->cancelled, true);
1662 if (!list_empty(&req->wait.entry)) {
1663 list_del_init(&req->wait.entry);
1664 schedule_work(&aiocb->poll.work);
1666 spin_unlock(&req->head->lock);
1671 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1674 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1675 __poll_t mask = key_to_poll(key);
1679 /* for instances that support it check for an event match first: */
1680 if (mask && !(mask & req->events))
1683 list_del_init(&req->wait.entry);
1684 schedule_work(&req->work);
1688 struct aio_poll_table {
1689 struct poll_table_struct pt;
1690 struct aio_kiocb *iocb;
1695 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1696 struct poll_table_struct *p)
1698 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1700 /* multiple wait queues per file are not supported */
1701 if (unlikely(pt->iocb->poll.head)) {
1702 pt->error = -EINVAL;
1707 pt->iocb->poll.head = head;
1708 add_wait_queue(head, &pt->iocb->poll.wait);
1711 static ssize_t aio_poll(struct aio_kiocb *aiocb, struct iocb *iocb)
1713 struct kioctx *ctx = aiocb->ki_ctx;
1714 struct poll_iocb *req = &aiocb->poll;
1715 struct aio_poll_table apt;
1718 /* reject any unknown events outside the normal event mask. */
1719 if ((u16)iocb->aio_buf != iocb->aio_buf)
1721 /* reject fields that are not defined for poll */
1722 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1725 INIT_WORK(&req->work, aio_poll_complete_work);
1726 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1727 req->file = fget(iocb->aio_fildes);
1728 if (unlikely(!req->file))
1731 apt.pt._qproc = aio_poll_queue_proc;
1732 apt.pt._key = req->events;
1734 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1736 /* initialized the list so that we can do list_empty checks */
1737 INIT_LIST_HEAD(&req->wait.entry);
1738 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1740 /* one for removal from waitqueue, one for this function */
1741 refcount_set(&aiocb->ki_refcnt, 2);
1743 mask = vfs_poll(req->file, &apt.pt) & req->events;
1744 if (unlikely(!req->head)) {
1745 /* we did not manage to set up a waitqueue, done */
1749 spin_lock_irq(&ctx->ctx_lock);
1750 spin_lock(&req->head->lock);
1752 /* wake_up context handles the rest */
1755 } else if (mask || apt.error) {
1756 /* if we get an error or a mask we are done */
1757 WARN_ON_ONCE(list_empty(&req->wait.entry));
1758 list_del_init(&req->wait.entry);
1760 /* actually waiting for an event */
1761 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1762 aiocb->ki_cancel = aio_poll_cancel;
1764 spin_unlock(&req->head->lock);
1765 spin_unlock_irq(&ctx->ctx_lock);
1768 if (unlikely(apt.error)) {
1774 aio_poll_complete(aiocb, mask);
1779 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1782 struct aio_kiocb *req;
1786 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1789 /* enforce forwards compatibility on users */
1790 if (unlikely(iocb.aio_reserved2)) {
1791 pr_debug("EINVAL: reserve field set\n");
1795 /* prevent overflows */
1797 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1798 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1799 ((ssize_t)iocb.aio_nbytes < 0)
1801 pr_debug("EINVAL: overflow check\n");
1805 req = aio_get_req(ctx);
1809 if (iocb.aio_flags & IOCB_FLAG_RESFD) {
1811 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1812 * instance of the file* now. The file descriptor must be
1813 * an eventfd() fd, and will be signaled for each completed
1814 * event using the eventfd_signal() function.
1816 req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
1817 if (IS_ERR(req->ki_eventfd)) {
1818 ret = PTR_ERR(req->ki_eventfd);
1819 req->ki_eventfd = NULL;
1824 ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1825 if (unlikely(ret)) {
1826 pr_debug("EFAULT: aio_key\n");
1830 req->ki_user_iocb = user_iocb;
1831 req->ki_user_data = iocb.aio_data;
1833 switch (iocb.aio_lio_opcode) {
1834 case IOCB_CMD_PREAD:
1835 ret = aio_read(&req->rw, &iocb, false, compat);
1837 case IOCB_CMD_PWRITE:
1838 ret = aio_write(&req->rw, &iocb, false, compat);
1840 case IOCB_CMD_PREADV:
1841 ret = aio_read(&req->rw, &iocb, true, compat);
1843 case IOCB_CMD_PWRITEV:
1844 ret = aio_write(&req->rw, &iocb, true, compat);
1846 case IOCB_CMD_FSYNC:
1847 ret = aio_fsync(&req->fsync, &iocb, false);
1849 case IOCB_CMD_FDSYNC:
1850 ret = aio_fsync(&req->fsync, &iocb, true);
1853 ret = aio_poll(req, &iocb);
1856 pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
1862 * If ret is 0, we'd either done aio_complete() ourselves or have
1863 * arranged for that to be done asynchronously. Anything non-zero
1864 * means that we need to destroy req ourselves.
1870 put_reqs_available(ctx, 1);
1871 percpu_ref_put(&ctx->reqs);
1872 if (req->ki_eventfd)
1873 eventfd_ctx_put(req->ki_eventfd);
1874 kmem_cache_free(kiocb_cachep, req);
1879 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1880 * the number of iocbs queued. May return -EINVAL if the aio_context
1881 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1882 * *iocbpp[0] is not properly initialized, if the operation specified
1883 * is invalid for the file descriptor in the iocb. May fail with
1884 * -EFAULT if any of the data structures point to invalid data. May
1885 * fail with -EBADF if the file descriptor specified in the first
1886 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1887 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1888 * fail with -ENOSYS if not implemented.
1890 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1891 struct iocb __user * __user *, iocbpp)
1896 struct blk_plug plug;
1898 if (unlikely(nr < 0))
1901 ctx = lookup_ioctx(ctx_id);
1902 if (unlikely(!ctx)) {
1903 pr_debug("EINVAL: invalid context id\n");
1907 if (nr > ctx->nr_events)
1908 nr = ctx->nr_events;
1910 blk_start_plug(&plug);
1911 for (i = 0; i < nr; i++) {
1912 struct iocb __user *user_iocb;
1914 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1919 ret = io_submit_one(ctx, user_iocb, false);
1923 blk_finish_plug(&plug);
1925 percpu_ref_put(&ctx->users);
1929 #ifdef CONFIG_COMPAT
1930 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1931 int, nr, compat_uptr_t __user *, iocbpp)
1936 struct blk_plug plug;
1938 if (unlikely(nr < 0))
1941 ctx = lookup_ioctx(ctx_id);
1942 if (unlikely(!ctx)) {
1943 pr_debug("EINVAL: invalid context id\n");
1947 if (nr > ctx->nr_events)
1948 nr = ctx->nr_events;
1950 blk_start_plug(&plug);
1951 for (i = 0; i < nr; i++) {
1952 compat_uptr_t user_iocb;
1954 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1959 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1963 blk_finish_plug(&plug);
1965 percpu_ref_put(&ctx->users);
1971 * Finds a given iocb for cancellation.
1973 static struct aio_kiocb *
1974 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1976 struct aio_kiocb *kiocb;
1978 assert_spin_locked(&ctx->ctx_lock);
1980 /* TODO: use a hash or array, this sucks. */
1981 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1982 if (kiocb->ki_user_iocb == iocb)
1989 * Attempts to cancel an iocb previously passed to io_submit. If
1990 * the operation is successfully cancelled, the resulting event is
1991 * copied into the memory pointed to by result without being placed
1992 * into the completion queue and 0 is returned. May fail with
1993 * -EFAULT if any of the data structures pointed to are invalid.
1994 * May fail with -EINVAL if aio_context specified by ctx_id is
1995 * invalid. May fail with -EAGAIN if the iocb specified was not
1996 * cancelled. Will fail with -ENOSYS if not implemented.
1998 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1999 struct io_event __user *, result)
2002 struct aio_kiocb *kiocb;
2006 if (unlikely(get_user(key, &iocb->aio_key)))
2008 if (unlikely(key != KIOCB_KEY))
2011 ctx = lookup_ioctx(ctx_id);
2015 spin_lock_irq(&ctx->ctx_lock);
2016 kiocb = lookup_kiocb(ctx, iocb);
2018 ret = kiocb->ki_cancel(&kiocb->rw);
2019 list_del_init(&kiocb->ki_list);
2021 spin_unlock_irq(&ctx->ctx_lock);
2025 * The result argument is no longer used - the io_event is
2026 * always delivered via the ring buffer. -EINPROGRESS indicates
2027 * cancellation is progress:
2032 percpu_ref_put(&ctx->users);
2037 static long do_io_getevents(aio_context_t ctx_id,
2040 struct io_event __user *events,
2041 struct timespec64 *ts)
2043 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2044 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2047 if (likely(ioctx)) {
2048 if (likely(min_nr <= nr && min_nr >= 0))
2049 ret = read_events(ioctx, min_nr, nr, events, until);
2050 percpu_ref_put(&ioctx->users);
2057 * Attempts to read at least min_nr events and up to nr events from
2058 * the completion queue for the aio_context specified by ctx_id. If
2059 * it succeeds, the number of read events is returned. May fail with
2060 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2061 * out of range, if timeout is out of range. May fail with -EFAULT
2062 * if any of the memory specified is invalid. May return 0 or
2063 * < min_nr if the timeout specified by timeout has elapsed
2064 * before sufficient events are available, where timeout == NULL
2065 * specifies an infinite timeout. Note that the timeout pointed to by
2066 * timeout is relative. Will fail with -ENOSYS if not implemented.
2068 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2071 struct io_event __user *, events,
2072 struct timespec __user *, timeout)
2074 struct timespec64 ts;
2077 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2080 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2081 if (!ret && signal_pending(current))
2086 struct __aio_sigset {
2087 const sigset_t __user *sigmask;
2091 SYSCALL_DEFINE6(io_pgetevents,
2092 aio_context_t, ctx_id,
2095 struct io_event __user *, events,
2096 struct timespec __user *, timeout,
2097 const struct __aio_sigset __user *, usig)
2099 struct __aio_sigset ksig = { NULL, };
2100 sigset_t ksigmask, sigsaved;
2101 struct timespec64 ts;
2104 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2107 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2111 if (ksig.sigsetsize != sizeof(sigset_t))
2113 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
2115 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2116 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2119 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2120 if (signal_pending(current)) {
2122 current->saved_sigmask = sigsaved;
2123 set_restore_sigmask();
2127 ret = -ERESTARTNOHAND;
2130 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2136 #ifdef CONFIG_COMPAT
2137 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2138 compat_long_t, min_nr,
2140 struct io_event __user *, events,
2141 struct compat_timespec __user *, timeout)
2143 struct timespec64 t;
2146 if (timeout && compat_get_timespec64(&t, timeout))
2149 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2150 if (!ret && signal_pending(current))
2156 struct __compat_aio_sigset {
2157 compat_sigset_t __user *sigmask;
2158 compat_size_t sigsetsize;
2161 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2162 compat_aio_context_t, ctx_id,
2163 compat_long_t, min_nr,
2165 struct io_event __user *, events,
2166 struct compat_timespec __user *, timeout,
2167 const struct __compat_aio_sigset __user *, usig)
2169 struct __compat_aio_sigset ksig = { NULL, };
2170 sigset_t ksigmask, sigsaved;
2171 struct timespec64 t;
2174 if (timeout && compat_get_timespec64(&t, timeout))
2177 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2181 if (ksig.sigsetsize != sizeof(compat_sigset_t))
2183 if (get_compat_sigset(&ksigmask, ksig.sigmask))
2185 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2186 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2189 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2190 if (signal_pending(current)) {
2192 current->saved_sigmask = sigsaved;
2193 set_restore_sigmask();
2196 ret = -ERESTARTNOHAND;
2199 sigprocmask(SIG_SETMASK, &sigsaved, NULL);