1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
12 #include <linux/pagemap.h>
13 #include <linux/rmap.h>
14 #include <linux/tracepoint-defs.h>
19 * The set of flags that only affect watermark checking and reclaim
20 * behaviour. This is used by the MM to obey the caller constraints
21 * about IO, FS and watermark checking while ignoring placement
22 * hints such as HIGHMEM usage.
24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
29 /* The GFP flags allowed during early boot */
30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
32 /* Control allocation cpuset and node placement constraints */
33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
35 /* Do not use these with a slab allocator */
36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
39 * Different from WARN_ON_ONCE(), no warning will be issued
40 * when we specify __GFP_NOWARN.
42 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \
43 static bool __section(".data.once") __warned; \
44 int __ret_warn_once = !!(cond); \
46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
50 unlikely(__ret_warn_once); \
53 void page_writeback_init(void);
56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
57 * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently
59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
61 #define ENTIRELY_MAPPED 0x800000
62 #define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1)
65 * Flags passed to __show_mem() and show_free_areas() to suppress output in
68 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
71 * How many individual pages have an elevated _mapcount. Excludes
72 * the folio's entire_mapcount.
74 static inline int folio_nr_pages_mapped(struct folio *folio)
76 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
79 static inline void *folio_raw_mapping(struct folio *folio)
81 unsigned long mapping = (unsigned long)folio->mapping;
83 return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
88 /* Flags for folio_pte_batch(). */
89 typedef int __bitwise fpb_t;
91 /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
92 #define FPB_IGNORE_DIRTY ((__force fpb_t)BIT(0))
94 /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
95 #define FPB_IGNORE_SOFT_DIRTY ((__force fpb_t)BIT(1))
97 static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
99 if (flags & FPB_IGNORE_DIRTY)
100 pte = pte_mkclean(pte);
101 if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
102 pte = pte_clear_soft_dirty(pte);
103 return pte_wrprotect(pte_mkold(pte));
107 * folio_pte_batch - detect a PTE batch for a large folio
108 * @folio: The large folio to detect a PTE batch for.
109 * @addr: The user virtual address the first page is mapped at.
110 * @start_ptep: Page table pointer for the first entry.
111 * @pte: Page table entry for the first page.
112 * @max_nr: The maximum number of table entries to consider.
113 * @flags: Flags to modify the PTE batch semantics.
114 * @any_writable: Optional pointer to indicate whether any entry except the
115 * first one is writable.
117 * Detect a PTE batch: consecutive (present) PTEs that map consecutive
118 * pages of the same large folio.
120 * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
121 * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
122 * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
124 * start_ptep must map any page of the folio. max_nr must be at least one and
125 * must be limited by the caller so scanning cannot exceed a single page table.
127 * Return: the number of table entries in the batch.
129 static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
130 pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
133 unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
134 const pte_t *end_ptep = start_ptep + max_nr;
135 pte_t expected_pte, *ptep;
140 *any_writable = false;
142 VM_WARN_ON_FOLIO(!pte_present(pte), folio);
143 VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
144 VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
146 nr = pte_batch_hint(start_ptep, pte);
147 expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
148 ptep = start_ptep + nr;
150 while (ptep < end_ptep) {
151 pte = ptep_get(ptep);
153 writable = !!pte_write(pte);
154 pte = __pte_batch_clear_ignored(pte, flags);
156 if (!pte_same(pte, expected_pte))
160 * Stop immediately once we reached the end of the folio. In
161 * corner cases the next PFN might fall into a different
164 if (pte_pfn(pte) >= folio_end_pfn)
168 *any_writable |= writable;
170 nr = pte_batch_hint(ptep, pte);
171 expected_pte = pte_advance_pfn(expected_pte, nr);
175 return min(ptep - start_ptep, max_nr);
177 #endif /* CONFIG_MMU */
179 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
181 static inline void acct_reclaim_writeback(struct folio *folio)
183 pg_data_t *pgdat = folio_pgdat(folio);
184 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
187 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
190 static inline void wake_throttle_isolated(pg_data_t *pgdat)
192 wait_queue_head_t *wqh;
194 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
195 if (waitqueue_active(wqh))
199 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf);
200 vm_fault_t do_swap_page(struct vm_fault *vmf);
201 void folio_rotate_reclaimable(struct folio *folio);
202 bool __folio_end_writeback(struct folio *folio);
203 void deactivate_file_folio(struct folio *folio);
204 void folio_activate(struct folio *folio);
206 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
207 struct vm_area_struct *start_vma, unsigned long floor,
208 unsigned long ceiling, bool mm_wr_locked);
209 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
212 void unmap_page_range(struct mmu_gather *tlb,
213 struct vm_area_struct *vma,
214 unsigned long addr, unsigned long end,
215 struct zap_details *details);
217 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
219 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
220 static inline void force_page_cache_readahead(struct address_space *mapping,
221 struct file *file, pgoff_t index, unsigned long nr_to_read)
223 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
224 force_page_cache_ra(&ractl, nr_to_read);
227 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
228 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
229 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
230 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
231 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
232 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
233 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
235 long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
236 unsigned long mapping_try_invalidate(struct address_space *mapping,
237 pgoff_t start, pgoff_t end, unsigned long *nr_failed);
240 * folio_evictable - Test whether a folio is evictable.
241 * @folio: The folio to test.
243 * Test whether @folio is evictable -- i.e., should be placed on
244 * active/inactive lists vs unevictable list.
246 * Reasons folio might not be evictable:
247 * 1. folio's mapping marked unevictable
248 * 2. One of the pages in the folio is part of an mlocked VMA
250 static inline bool folio_evictable(struct folio *folio)
254 /* Prevent address_space of inode and swap cache from being freed */
256 ret = !mapping_unevictable(folio_mapping(folio)) &&
257 !folio_test_mlocked(folio);
263 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
266 static inline void set_page_refcounted(struct page *page)
268 VM_BUG_ON_PAGE(PageTail(page), page);
269 VM_BUG_ON_PAGE(page_ref_count(page), page);
270 set_page_count(page, 1);
274 * Return true if a folio needs ->release_folio() calling upon it.
276 static inline bool folio_needs_release(struct folio *folio)
278 struct address_space *mapping = folio_mapping(folio);
280 return folio_has_private(folio) ||
281 (mapping && mapping_release_always(mapping));
284 extern unsigned long highest_memmap_pfn;
287 * Maximum number of reclaim retries without progress before the OOM
288 * killer is consider the only way forward.
290 #define MAX_RECLAIM_RETRIES 16
295 bool isolate_lru_page(struct page *page);
296 bool folio_isolate_lru(struct folio *folio);
297 void putback_lru_page(struct page *page);
298 void folio_putback_lru(struct folio *folio);
299 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
304 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
309 #define K(x) ((x) << (PAGE_SHIFT-10))
311 extern char * const zone_names[MAX_NR_ZONES];
313 /* perform sanity checks on struct pages being allocated or freed */
314 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
316 extern int min_free_kbytes;
318 void setup_per_zone_wmarks(void);
319 void calculate_min_free_kbytes(void);
320 int __meminit init_per_zone_wmark_min(void);
321 void page_alloc_sysctl_init(void);
324 * Structure for holding the mostly immutable allocation parameters passed
325 * between functions involved in allocations, including the alloc_pages*
326 * family of functions.
328 * nodemask, migratetype and highest_zoneidx are initialized only once in
329 * __alloc_pages() and then never change.
331 * zonelist, preferred_zone and highest_zoneidx are set first in
332 * __alloc_pages() for the fast path, and might be later changed
333 * in __alloc_pages_slowpath(). All other functions pass the whole structure
334 * by a const pointer.
336 struct alloc_context {
337 struct zonelist *zonelist;
338 nodemask_t *nodemask;
339 struct zoneref *preferred_zoneref;
343 * highest_zoneidx represents highest usable zone index of
344 * the allocation request. Due to the nature of the zone,
345 * memory on lower zone than the highest_zoneidx will be
346 * protected by lowmem_reserve[highest_zoneidx].
348 * highest_zoneidx is also used by reclaim/compaction to limit
349 * the target zone since higher zone than this index cannot be
350 * usable for this allocation request.
352 enum zone_type highest_zoneidx;
353 bool spread_dirty_pages;
357 * This function returns the order of a free page in the buddy system. In
358 * general, page_zone(page)->lock must be held by the caller to prevent the
359 * page from being allocated in parallel and returning garbage as the order.
360 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
361 * page cannot be allocated or merged in parallel. Alternatively, it must
362 * handle invalid values gracefully, and use buddy_order_unsafe() below.
364 static inline unsigned int buddy_order(struct page *page)
366 /* PageBuddy() must be checked by the caller */
367 return page_private(page);
371 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
372 * PageBuddy() should be checked first by the caller to minimize race window,
373 * and invalid values must be handled gracefully.
375 * READ_ONCE is used so that if the caller assigns the result into a local
376 * variable and e.g. tests it for valid range before using, the compiler cannot
377 * decide to remove the variable and inline the page_private(page) multiple
378 * times, potentially observing different values in the tests and the actual
381 #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
384 * This function checks whether a page is free && is the buddy
385 * we can coalesce a page and its buddy if
386 * (a) the buddy is not in a hole (check before calling!) &&
387 * (b) the buddy is in the buddy system &&
388 * (c) a page and its buddy have the same order &&
389 * (d) a page and its buddy are in the same zone.
391 * For recording whether a page is in the buddy system, we set PageBuddy.
392 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
394 * For recording page's order, we use page_private(page).
396 static inline bool page_is_buddy(struct page *page, struct page *buddy,
399 if (!page_is_guard(buddy) && !PageBuddy(buddy))
402 if (buddy_order(buddy) != order)
406 * zone check is done late to avoid uselessly calculating
407 * zone/node ids for pages that could never merge.
409 if (page_zone_id(page) != page_zone_id(buddy))
412 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
424 * For example, if the starting buddy (buddy2) is #8 its order
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
432 * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
434 static inline unsigned long
435 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
437 return page_pfn ^ (1 << order);
441 * Find the buddy of @page and validate it.
442 * @page: The input page
443 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
444 * function is used in the performance-critical __free_one_page().
445 * @order: The order of the page
446 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
449 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
450 * not the same as @page. The validation is necessary before use it.
452 * Return: the found buddy page or NULL if not found.
454 static inline struct page *find_buddy_page_pfn(struct page *page,
455 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
457 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
460 buddy = page + (__buddy_pfn - pfn);
462 *buddy_pfn = __buddy_pfn;
464 if (page_is_buddy(page, buddy, order))
469 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
470 unsigned long end_pfn, struct zone *zone);
472 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
473 unsigned long end_pfn, struct zone *zone)
475 if (zone->contiguous)
476 return pfn_to_page(start_pfn);
478 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
481 void set_zone_contiguous(struct zone *zone);
483 static inline void clear_zone_contiguous(struct zone *zone)
485 zone->contiguous = false;
488 extern int __isolate_free_page(struct page *page, unsigned int order);
489 extern void __putback_isolated_page(struct page *page, unsigned int order,
491 extern void memblock_free_pages(struct page *page, unsigned long pfn,
493 extern void __free_pages_core(struct page *page, unsigned int order);
496 * This will have no effect, other than possibly generating a warning, if the
497 * caller passes in a non-large folio.
499 static inline void folio_set_order(struct folio *folio, unsigned int order)
501 if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
504 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
506 folio->_folio_nr_pages = 1U << order;
510 void folio_undo_large_rmappable(struct folio *folio);
512 static inline struct folio *page_rmappable_folio(struct page *page)
514 struct folio *folio = (struct folio *)page;
516 folio_prep_large_rmappable(folio);
520 static inline void prep_compound_head(struct page *page, unsigned int order)
522 struct folio *folio = (struct folio *)page;
524 folio_set_order(folio, order);
525 atomic_set(&folio->_entire_mapcount, -1);
526 atomic_set(&folio->_nr_pages_mapped, 0);
527 atomic_set(&folio->_pincount, 0);
530 static inline void prep_compound_tail(struct page *head, int tail_idx)
532 struct page *p = head + tail_idx;
534 p->mapping = TAIL_MAPPING;
535 set_compound_head(p, head);
536 set_page_private(p, 0);
539 extern void prep_compound_page(struct page *page, unsigned int order);
541 extern void post_alloc_hook(struct page *page, unsigned int order,
543 extern bool free_pages_prepare(struct page *page, unsigned int order);
545 extern int user_min_free_kbytes;
547 void free_unref_page(struct page *page, unsigned int order);
548 void free_unref_folios(struct folio_batch *fbatch);
550 extern void zone_pcp_reset(struct zone *zone);
551 extern void zone_pcp_disable(struct zone *zone);
552 extern void zone_pcp_enable(struct zone *zone);
553 extern void zone_pcp_init(struct zone *zone);
555 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
556 phys_addr_t min_addr,
557 int nid, bool exact_nid);
559 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
560 unsigned long, enum meminit_context, struct vmem_altmap *, int);
563 int split_free_page(struct page *free_page,
564 unsigned int order, unsigned long split_pfn_offset);
566 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
572 * compact_control is used to track pages being migrated and the free pages
573 * they are being migrated to during memory compaction. The free_pfn starts
574 * at the end of a zone and migrate_pfn begins at the start. Movable pages
575 * are moved to the end of a zone during a compaction run and the run
576 * completes when free_pfn <= migrate_pfn
578 struct compact_control {
579 struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */
580 struct list_head migratepages; /* List of pages being migrated */
581 unsigned int nr_freepages; /* Number of isolated free pages */
582 unsigned int nr_migratepages; /* Number of pages to migrate */
583 unsigned long free_pfn; /* isolate_freepages search base */
585 * Acts as an in/out parameter to page isolation for migration.
586 * isolate_migratepages uses it as a search base.
587 * isolate_migratepages_block will update the value to the next pfn
588 * after the last isolated one.
590 unsigned long migrate_pfn;
591 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
593 unsigned long total_migrate_scanned;
594 unsigned long total_free_scanned;
595 unsigned short fast_search_fail;/* failures to use free list searches */
596 short search_order; /* order to start a fast search at */
597 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
598 int order; /* order a direct compactor needs */
599 int migratetype; /* migratetype of direct compactor */
600 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
601 const int highest_zoneidx; /* zone index of a direct compactor */
602 enum migrate_mode mode; /* Async or sync migration mode */
603 bool ignore_skip_hint; /* Scan blocks even if marked skip */
604 bool no_set_skip_hint; /* Don't mark blocks for skipping */
605 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
606 bool direct_compaction; /* False from kcompactd or /proc/... */
607 bool proactive_compaction; /* kcompactd proactive compaction */
608 bool whole_zone; /* Whole zone should/has been scanned */
609 bool contended; /* Signal lock contention */
610 bool finish_pageblock; /* Scan the remainder of a pageblock. Used
611 * when there are potentially transient
612 * isolation or migration failures to
613 * ensure forward progress.
615 bool alloc_contig; /* alloc_contig_range allocation */
619 * Used in direct compaction when a page should be taken from the freelists
620 * immediately when one is created during the free path.
622 struct capture_control {
623 struct compact_control *cc;
628 isolate_freepages_range(struct compact_control *cc,
629 unsigned long start_pfn, unsigned long end_pfn);
631 isolate_migratepages_range(struct compact_control *cc,
632 unsigned long low_pfn, unsigned long end_pfn);
634 int __alloc_contig_migrate_range(struct compact_control *cc,
635 unsigned long start, unsigned long end,
638 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
639 void init_cma_reserved_pageblock(struct page *page);
641 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
643 int find_suitable_fallback(struct free_area *area, unsigned int order,
644 int migratetype, bool only_stealable, bool *can_steal);
646 static inline bool free_area_empty(struct free_area *area, int migratetype)
648 return list_empty(&area->free_list[migratetype]);
652 * These three helpers classifies VMAs for virtual memory accounting.
656 * Executable code area - executable, not writable, not stack
658 static inline bool is_exec_mapping(vm_flags_t flags)
660 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
664 * Stack area (including shadow stacks)
666 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
667 * do_mmap() forbids all other combinations.
669 static inline bool is_stack_mapping(vm_flags_t flags)
671 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
675 * Data area - private, writable, not stack
677 static inline bool is_data_mapping(vm_flags_t flags)
679 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
683 struct anon_vma *folio_anon_vma(struct folio *folio);
686 void unmap_mapping_folio(struct folio *folio);
687 extern long populate_vma_page_range(struct vm_area_struct *vma,
688 unsigned long start, unsigned long end, int *locked);
689 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
690 unsigned long end, bool write, int *locked);
691 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
692 unsigned long bytes);
695 * NOTE: This function can't tell whether the folio is "fully mapped" in the
697 * "fully mapped" means all the pages of folio is associated with the page
698 * table of range while this function just check whether the folio range is
699 * within the range [start, end). Function caller needs to do page table
700 * check if it cares about the page table association.
702 * Typical usage (like mlock or madvise) is:
703 * Caller knows at least 1 page of folio is associated with page table of VMA
704 * and the range [start, end) is intersect with the VMA range. Caller wants
705 * to know whether the folio is fully associated with the range. It calls
706 * this function to check whether the folio is in the range first. Then checks
707 * the page table to know whether the folio is fully mapped to the range.
710 folio_within_range(struct folio *folio, struct vm_area_struct *vma,
711 unsigned long start, unsigned long end)
714 unsigned long vma_pglen = vma_pages(vma);
716 VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
720 if (start < vma->vm_start)
721 start = vma->vm_start;
723 if (end > vma->vm_end)
726 pgoff = folio_pgoff(folio);
728 /* if folio start address is not in vma range */
729 if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
732 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
734 return !(addr < start || end - addr < folio_size(folio));
738 folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
740 return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
744 * mlock_vma_folio() and munlock_vma_folio():
745 * should be called with vma's mmap_lock held for read or write,
746 * under page table lock for the pte/pmd being added or removed.
748 * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
749 * the end of folio_remove_rmap_*(); but new anon folios are managed by
750 * folio_add_lru_vma() calling mlock_new_folio().
752 void mlock_folio(struct folio *folio);
753 static inline void mlock_vma_folio(struct folio *folio,
754 struct vm_area_struct *vma)
757 * The VM_SPECIAL check here serves two purposes.
758 * 1) VM_IO check prevents migration from double-counting during mlock.
759 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
760 * is never left set on a VM_SPECIAL vma, there is an interval while
761 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
762 * still be set while VM_SPECIAL bits are added: so ignore it then.
764 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
768 void munlock_folio(struct folio *folio);
769 static inline void munlock_vma_folio(struct folio *folio,
770 struct vm_area_struct *vma)
773 * munlock if the function is called. Ideally, we should only
774 * do munlock if any page of folio is unmapped from VMA and
775 * cause folio not fully mapped to VMA.
777 * But it's not easy to confirm that's the situation. So we
778 * always munlock the folio and page reclaim will correct it
781 if (unlikely(vma->vm_flags & VM_LOCKED))
782 munlock_folio(folio);
785 void mlock_new_folio(struct folio *folio);
786 bool need_mlock_drain(int cpu);
787 void mlock_drain_local(void);
788 void mlock_drain_remote(int cpu);
790 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
793 * Return the start of user virtual address at the specific offset within
796 static inline unsigned long
797 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
798 struct vm_area_struct *vma)
800 unsigned long address;
802 if (pgoff >= vma->vm_pgoff) {
803 address = vma->vm_start +
804 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
805 /* Check for address beyond vma (or wrapped through 0?) */
806 if (address < vma->vm_start || address >= vma->vm_end)
808 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
809 /* Test above avoids possibility of wrap to 0 on 32-bit */
810 address = vma->vm_start;
818 * Return the start of user virtual address of a page within a vma.
819 * Returns -EFAULT if all of the page is outside the range of vma.
820 * If page is a compound head, the entire compound page is considered.
822 static inline unsigned long
823 vma_address(struct page *page, struct vm_area_struct *vma)
825 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
826 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
830 * Then at what user virtual address will none of the range be found in vma?
831 * Assumes that vma_address() already returned a good starting address.
833 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
835 struct vm_area_struct *vma = pvmw->vma;
837 unsigned long address;
839 /* Common case, plus ->pgoff is invalid for KSM */
840 if (pvmw->nr_pages == 1)
841 return pvmw->address + PAGE_SIZE;
843 pgoff = pvmw->pgoff + pvmw->nr_pages;
844 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
845 /* Check for address beyond vma (or wrapped through 0?) */
846 if (address < vma->vm_start || address > vma->vm_end)
847 address = vma->vm_end;
851 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
854 int flags = vmf->flags;
860 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
861 * anything, so we only pin the file and drop the mmap_lock if only
862 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
864 if (fault_flag_allow_retry_first(flags) &&
865 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
866 fpin = get_file(vmf->vma->vm_file);
867 release_fault_lock(vmf);
871 #else /* !CONFIG_MMU */
872 static inline void unmap_mapping_folio(struct folio *folio) { }
873 static inline void mlock_new_folio(struct folio *folio) { }
874 static inline bool need_mlock_drain(int cpu) { return false; }
875 static inline void mlock_drain_local(void) { }
876 static inline void mlock_drain_remote(int cpu) { }
877 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
880 #endif /* !CONFIG_MMU */
882 /* Memory initialisation debug and verification */
883 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
884 DECLARE_STATIC_KEY_TRUE(deferred_pages);
886 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
887 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
895 #ifdef CONFIG_DEBUG_MEMORY_INIT
897 extern int mminit_loglevel;
899 #define mminit_dprintk(level, prefix, fmt, arg...) \
901 if (level < mminit_loglevel) { \
902 if (level <= MMINIT_WARNING) \
903 pr_warn("mminit::" prefix " " fmt, ##arg); \
905 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
909 extern void mminit_verify_pageflags_layout(void);
910 extern void mminit_verify_zonelist(void);
913 static inline void mminit_dprintk(enum mminit_level level,
914 const char *prefix, const char *fmt, ...)
918 static inline void mminit_verify_pageflags_layout(void)
922 static inline void mminit_verify_zonelist(void)
925 #endif /* CONFIG_DEBUG_MEMORY_INIT */
927 #define NODE_RECLAIM_NOSCAN -2
928 #define NODE_RECLAIM_FULL -1
929 #define NODE_RECLAIM_SOME 0
930 #define NODE_RECLAIM_SUCCESS 1
933 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
934 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
936 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
939 return NODE_RECLAIM_NOSCAN;
941 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
948 * mm/memory-failure.c
950 extern int hwpoison_filter(struct page *p);
952 extern u32 hwpoison_filter_dev_major;
953 extern u32 hwpoison_filter_dev_minor;
954 extern u64 hwpoison_filter_flags_mask;
955 extern u64 hwpoison_filter_flags_value;
956 extern u64 hwpoison_filter_memcg;
957 extern u32 hwpoison_filter_enable;
959 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
960 unsigned long, unsigned long,
961 unsigned long, unsigned long);
963 extern void set_pageblock_order(void);
964 unsigned long reclaim_pages(struct list_head *folio_list, bool ignore_references);
965 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
966 struct list_head *folio_list);
967 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
968 #define ALLOC_WMARK_MIN WMARK_MIN
969 #define ALLOC_WMARK_LOW WMARK_LOW
970 #define ALLOC_WMARK_HIGH WMARK_HIGH
971 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
973 /* Mask to get the watermark bits */
974 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
977 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
978 * cannot assume a reduced access to memory reserves is sufficient for
982 #define ALLOC_OOM 0x08
984 #define ALLOC_OOM ALLOC_NO_WATERMARKS
987 #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access
988 * to 25% of the min watermark or
989 * 62.5% if __GFP_HIGH is set.
991 #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50%
992 * of the min watermark.
994 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
995 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
996 #ifdef CONFIG_ZONE_DMA32
997 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
999 #define ALLOC_NOFRAGMENT 0x0
1001 #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1002 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1004 /* Flags that allow allocations below the min watermark. */
1005 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1008 struct tlbflush_unmap_batch;
1012 * only for MM internal work items which do not depend on
1013 * any allocations or locks which might depend on allocations
1015 extern struct workqueue_struct *mm_percpu_wq;
1017 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1018 void try_to_unmap_flush(void);
1019 void try_to_unmap_flush_dirty(void);
1020 void flush_tlb_batched_pending(struct mm_struct *mm);
1022 static inline void try_to_unmap_flush(void)
1025 static inline void try_to_unmap_flush_dirty(void)
1028 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1031 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1033 extern const struct trace_print_flags pageflag_names[];
1034 extern const struct trace_print_flags pagetype_names[];
1035 extern const struct trace_print_flags vmaflag_names[];
1036 extern const struct trace_print_flags gfpflag_names[];
1038 static inline bool is_migrate_highatomic(enum migratetype migratetype)
1040 return migratetype == MIGRATE_HIGHATOMIC;
1043 static inline bool is_migrate_highatomic_page(struct page *page)
1045 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
1048 void setup_zone_pageset(struct zone *zone);
1050 struct migration_target_control {
1051 int nid; /* preferred node id */
1059 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1060 struct folio *folio, loff_t fpos, size_t size);
1066 void __init vmalloc_init(void);
1067 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1068 pgprot_t prot, struct page **pages, unsigned int page_shift);
1070 static inline void vmalloc_init(void)
1075 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1076 pgprot_t prot, struct page **pages, unsigned int page_shift)
1082 int __must_check __vmap_pages_range_noflush(unsigned long addr,
1083 unsigned long end, pgprot_t prot,
1084 struct page **pages, unsigned int page_shift);
1086 void vunmap_range_noflush(unsigned long start, unsigned long end);
1088 void __vunmap_range_noflush(unsigned long start, unsigned long end);
1090 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
1091 unsigned long addr, int page_nid, int *flags);
1093 void free_zone_device_page(struct page *page);
1094 int migrate_device_coherent_page(struct page *page);
1099 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
1100 int __must_check try_grab_page(struct page *page, unsigned int flags);
1105 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1106 unsigned long addr, pmd_t *pmd,
1107 unsigned int flags);
1112 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1113 struct vm_area_struct *vma,
1114 unsigned long delta);
1117 /* mark page accessed */
1118 FOLL_TOUCH = 1 << 16,
1119 /* a retry, previous pass started an IO */
1120 FOLL_TRIED = 1 << 17,
1121 /* we are working on non-current tsk/mm */
1122 FOLL_REMOTE = 1 << 18,
1123 /* pages must be released via unpin_user_page */
1125 /* gup_fast: prevent fall-back to slow gup */
1126 FOLL_FAST_ONLY = 1 << 20,
1127 /* allow unlocking the mmap lock */
1128 FOLL_UNLOCKABLE = 1 << 21,
1129 /* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1130 FOLL_MADV_POPULATE = 1 << 22,
1133 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1134 FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1138 * Indicates for which pages that are write-protected in the page table,
1139 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1140 * GUP pin will remain consistent with the pages mapped into the page tables
1143 * Temporary unmapping of PageAnonExclusive() pages or clearing of
1144 * PageAnonExclusive() has to protect against concurrent GUP:
1145 * * Ordinary GUP: Using the PT lock
1146 * * GUP-fast and fork(): mm->write_protect_seq
1147 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1148 * folio_try_share_anon_rmap_*()
1150 * Must be called with the (sub)page that's actually referenced via the
1151 * page table entry, which might not necessarily be the head page for a
1154 * If the vma is NULL, we're coming from the GUP-fast path and might have
1155 * to fallback to the slow path just to lookup the vma.
1157 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1158 unsigned int flags, struct page *page)
1161 * FOLL_WRITE is implicitly handled correctly as the page table entry
1162 * has to be writable -- and if it references (part of) an anonymous
1163 * folio, that part is required to be marked exclusive.
1165 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1168 * Note: PageAnon(page) is stable until the page is actually getting
1171 if (!PageAnon(page)) {
1173 * We only care about R/O long-term pining: R/O short-term
1174 * pinning does not have the semantics to observe successive
1175 * changes through the process page tables.
1177 if (!(flags & FOLL_LONGTERM))
1180 /* We really need the vma ... */
1185 * ... because we only care about writable private ("COW")
1186 * mappings where we have to break COW early.
1188 return is_cow_mapping(vma->vm_flags);
1191 /* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1192 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
1196 * During GUP-fast we might not get called on the head page for a
1197 * hugetlb page that is mapped using cont-PTE, because GUP-fast does
1198 * not work with the abstracted hugetlb PTEs that always point at the
1199 * head page. For hugetlb, PageAnonExclusive only applies on the head
1200 * page (as it cannot be partially COW-shared), so lookup the head page.
1202 if (unlikely(!PageHead(page) && PageHuge(page)))
1203 page = compound_head(page);
1206 * Note that PageKsm() pages cannot be exclusive, and consequently,
1207 * cannot get pinned.
1209 return !PageAnonExclusive(page);
1212 extern bool mirrored_kernelcore;
1213 extern bool memblock_has_mirror(void);
1215 static __always_inline void vma_set_range(struct vm_area_struct *vma,
1216 unsigned long start, unsigned long end,
1219 vma->vm_start = start;
1221 vma->vm_pgoff = pgoff;
1224 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1227 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1228 * enablements, because when without soft-dirty being compiled in,
1229 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1230 * will be constantly true.
1232 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1236 * Soft-dirty is kind of special: its tracking is enabled when the
1237 * vma flags not set.
1239 return !(vma->vm_flags & VM_SOFTDIRTY);
1242 static inline void vma_iter_config(struct vma_iterator *vmi,
1243 unsigned long index, unsigned long last)
1245 __mas_set_range(&vmi->mas, index, last - 1);
1249 * VMA Iterator functions shared between nommu and mmap
1251 static inline int vma_iter_prealloc(struct vma_iterator *vmi,
1252 struct vm_area_struct *vma)
1254 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
1257 static inline void vma_iter_clear(struct vma_iterator *vmi)
1259 mas_store_prealloc(&vmi->mas, NULL);
1262 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
1264 return mas_walk(&vmi->mas);
1267 /* Store a VMA with preallocated memory */
1268 static inline void vma_iter_store(struct vma_iterator *vmi,
1269 struct vm_area_struct *vma)
1272 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1273 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
1274 vmi->mas.index > vma->vm_start)) {
1275 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
1276 vmi->mas.index, vma->vm_start, vma->vm_start,
1277 vma->vm_end, vmi->mas.index, vmi->mas.last);
1279 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
1280 vmi->mas.last < vma->vm_start)) {
1281 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
1282 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
1283 vmi->mas.index, vmi->mas.last);
1287 if (vmi->mas.status != ma_start &&
1288 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1289 vma_iter_invalidate(vmi);
1291 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1292 mas_store_prealloc(&vmi->mas, vma);
1295 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1296 struct vm_area_struct *vma, gfp_t gfp)
1298 if (vmi->mas.status != ma_start &&
1299 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1300 vma_iter_invalidate(vmi);
1302 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
1303 mas_store_gfp(&vmi->mas, vma, gfp);
1304 if (unlikely(mas_is_err(&vmi->mas)))
1311 * VMA lock generalization
1313 struct vma_prepare {
1314 struct vm_area_struct *vma;
1315 struct vm_area_struct *adj_next;
1317 struct address_space *mapping;
1318 struct anon_vma *anon_vma;
1319 struct vm_area_struct *insert;
1320 struct vm_area_struct *remove;
1321 struct vm_area_struct *remove2;
1324 void __meminit __init_single_page(struct page *page, unsigned long pfn,
1325 unsigned long zone, int nid);
1327 /* shrinker related functions */
1328 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1331 #ifdef CONFIG_SHRINKER_DEBUG
1332 static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1333 struct shrinker *shrinker, const char *fmt, va_list ap)
1335 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1337 return shrinker->name ? 0 : -ENOMEM;
1340 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1342 kfree_const(shrinker->name);
1343 shrinker->name = NULL;
1346 extern int shrinker_debugfs_add(struct shrinker *shrinker);
1347 extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1349 extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1351 #else /* CONFIG_SHRINKER_DEBUG */
1352 static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1356 static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1357 const char *fmt, va_list ap)
1361 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1364 static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1370 static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1374 #endif /* CONFIG_SHRINKER_DEBUG */
1376 /* Only track the nodes of mappings with shadow entries */
1377 void workingset_update_node(struct xa_node *node);
1378 extern struct list_lru shadow_nodes;
1380 #endif /* __MM_INTERNAL_H */