1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/export.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
44 #include <linux/syscall_user_dispatch.h>
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/time_namespace.h>
51 #include <linux/binfmts.h>
53 #include <linux/sched.h>
54 #include <linux/sched/autogroup.h>
55 #include <linux/sched/loadavg.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/coredump.h>
59 #include <linux/sched/task.h>
60 #include <linux/sched/cputime.h>
61 #include <linux/rcupdate.h>
62 #include <linux/uidgid.h>
63 #include <linux/cred.h>
65 #include <linux/nospec.h>
67 #include <linux/kmsg_dump.h>
68 /* Move somewhere else to avoid recompiling? */
69 #include <generated/utsrelease.h>
71 #include <linux/uaccess.h>
73 #include <asm/unistd.h>
77 #ifndef SET_UNALIGN_CTL
78 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
80 #ifndef GET_UNALIGN_CTL
81 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
84 # define SET_FPEMU_CTL(a, b) (-EINVAL)
87 # define GET_FPEMU_CTL(a, b) (-EINVAL)
90 # define SET_FPEXC_CTL(a, b) (-EINVAL)
93 # define GET_FPEXC_CTL(a, b) (-EINVAL)
96 # define GET_ENDIAN(a, b) (-EINVAL)
99 # define SET_ENDIAN(a, b) (-EINVAL)
102 # define GET_TSC_CTL(a) (-EINVAL)
105 # define SET_TSC_CTL(a) (-EINVAL)
108 # define GET_FP_MODE(a) (-EINVAL)
111 # define SET_FP_MODE(a,b) (-EINVAL)
114 # define SVE_SET_VL(a) (-EINVAL)
117 # define SVE_GET_VL() (-EINVAL)
119 #ifndef PAC_RESET_KEYS
120 # define PAC_RESET_KEYS(a, b) (-EINVAL)
122 #ifndef PAC_SET_ENABLED_KEYS
123 # define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
125 #ifndef PAC_GET_ENABLED_KEYS
126 # define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
128 #ifndef SET_TAGGED_ADDR_CTRL
129 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
131 #ifndef GET_TAGGED_ADDR_CTRL
132 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
136 * this is where the system-wide overflow UID and GID are defined, for
137 * architectures that now have 32-bit UID/GID but didn't in the past
140 int overflowuid = DEFAULT_OVERFLOWUID;
141 int overflowgid = DEFAULT_OVERFLOWGID;
143 EXPORT_SYMBOL(overflowuid);
144 EXPORT_SYMBOL(overflowgid);
147 * the same as above, but for filesystems which can only store a 16-bit
148 * UID and GID. as such, this is needed on all architectures
151 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
152 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
154 EXPORT_SYMBOL(fs_overflowuid);
155 EXPORT_SYMBOL(fs_overflowgid);
158 * Returns true if current's euid is same as p's uid or euid,
159 * or has CAP_SYS_NICE to p's user_ns.
161 * Called with rcu_read_lock, creds are safe
163 static bool set_one_prio_perm(struct task_struct *p)
165 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
167 if (uid_eq(pcred->uid, cred->euid) ||
168 uid_eq(pcred->euid, cred->euid))
170 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
176 * set the priority of a task
177 * - the caller must hold the RCU read lock
179 static int set_one_prio(struct task_struct *p, int niceval, int error)
183 if (!set_one_prio_perm(p)) {
187 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
191 no_nice = security_task_setnice(p, niceval);
198 set_user_nice(p, niceval);
203 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
205 struct task_struct *g, *p;
206 struct user_struct *user;
207 const struct cred *cred = current_cred();
212 if (which > PRIO_USER || which < PRIO_PROCESS)
215 /* normalize: avoid signed division (rounding problems) */
217 if (niceval < MIN_NICE)
219 if (niceval > MAX_NICE)
226 p = find_task_by_vpid(who);
230 error = set_one_prio(p, niceval, error);
234 pgrp = find_vpid(who);
236 pgrp = task_pgrp(current);
237 read_lock(&tasklist_lock);
238 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
239 error = set_one_prio(p, niceval, error);
240 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
241 read_unlock(&tasklist_lock);
244 uid = make_kuid(cred->user_ns, who);
248 else if (!uid_eq(uid, cred->uid)) {
249 user = find_user(uid);
251 goto out_unlock; /* No processes for this user */
253 for_each_process_thread(g, p) {
254 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
255 error = set_one_prio(p, niceval, error);
257 if (!uid_eq(uid, cred->uid))
258 free_uid(user); /* For find_user() */
268 * Ugh. To avoid negative return values, "getpriority()" will
269 * not return the normal nice-value, but a negated value that
270 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
271 * to stay compatible.
273 SYSCALL_DEFINE2(getpriority, int, which, int, who)
275 struct task_struct *g, *p;
276 struct user_struct *user;
277 const struct cred *cred = current_cred();
278 long niceval, retval = -ESRCH;
282 if (which > PRIO_USER || which < PRIO_PROCESS)
289 p = find_task_by_vpid(who);
293 niceval = nice_to_rlimit(task_nice(p));
294 if (niceval > retval)
300 pgrp = find_vpid(who);
302 pgrp = task_pgrp(current);
303 read_lock(&tasklist_lock);
304 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
305 niceval = nice_to_rlimit(task_nice(p));
306 if (niceval > retval)
308 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
309 read_unlock(&tasklist_lock);
312 uid = make_kuid(cred->user_ns, who);
316 else if (!uid_eq(uid, cred->uid)) {
317 user = find_user(uid);
319 goto out_unlock; /* No processes for this user */
321 for_each_process_thread(g, p) {
322 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
323 niceval = nice_to_rlimit(task_nice(p));
324 if (niceval > retval)
328 if (!uid_eq(uid, cred->uid))
329 free_uid(user); /* for find_user() */
339 * Unprivileged users may change the real gid to the effective gid
340 * or vice versa. (BSD-style)
342 * If you set the real gid at all, or set the effective gid to a value not
343 * equal to the real gid, then the saved gid is set to the new effective gid.
345 * This makes it possible for a setgid program to completely drop its
346 * privileges, which is often a useful assertion to make when you are doing
347 * a security audit over a program.
349 * The general idea is that a program which uses just setregid() will be
350 * 100% compatible with BSD. A program which uses just setgid() will be
351 * 100% compatible with POSIX with saved IDs.
353 * SMP: There are not races, the GIDs are checked only by filesystem
354 * operations (as far as semantic preservation is concerned).
356 #ifdef CONFIG_MULTIUSER
357 long __sys_setregid(gid_t rgid, gid_t egid)
359 struct user_namespace *ns = current_user_ns();
360 const struct cred *old;
365 krgid = make_kgid(ns, rgid);
366 kegid = make_kgid(ns, egid);
368 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
370 if ((egid != (gid_t) -1) && !gid_valid(kegid))
373 new = prepare_creds();
376 old = current_cred();
379 if (rgid != (gid_t) -1) {
380 if (gid_eq(old->gid, krgid) ||
381 gid_eq(old->egid, krgid) ||
382 ns_capable_setid(old->user_ns, CAP_SETGID))
387 if (egid != (gid_t) -1) {
388 if (gid_eq(old->gid, kegid) ||
389 gid_eq(old->egid, kegid) ||
390 gid_eq(old->sgid, kegid) ||
391 ns_capable_setid(old->user_ns, CAP_SETGID))
397 if (rgid != (gid_t) -1 ||
398 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
399 new->sgid = new->egid;
400 new->fsgid = new->egid;
402 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
406 return commit_creds(new);
413 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
415 return __sys_setregid(rgid, egid);
419 * setgid() is implemented like SysV w/ SAVED_IDS
421 * SMP: Same implicit races as above.
423 long __sys_setgid(gid_t gid)
425 struct user_namespace *ns = current_user_ns();
426 const struct cred *old;
431 kgid = make_kgid(ns, gid);
432 if (!gid_valid(kgid))
435 new = prepare_creds();
438 old = current_cred();
441 if (ns_capable_setid(old->user_ns, CAP_SETGID))
442 new->gid = new->egid = new->sgid = new->fsgid = kgid;
443 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
444 new->egid = new->fsgid = kgid;
448 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
452 return commit_creds(new);
459 SYSCALL_DEFINE1(setgid, gid_t, gid)
461 return __sys_setgid(gid);
465 * change the user struct in a credentials set to match the new UID
467 static int set_user(struct cred *new)
469 struct user_struct *new_user;
471 new_user = alloc_uid(new->uid);
476 new->user = new_user;
480 static void flag_nproc_exceeded(struct cred *new)
482 if (new->ucounts == current_ucounts())
486 * We don't fail in case of NPROC limit excess here because too many
487 * poorly written programs don't check set*uid() return code, assuming
488 * it never fails if called by root. We may still enforce NPROC limit
489 * for programs doing set*uid()+execve() by harmlessly deferring the
490 * failure to the execve() stage.
492 if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
493 new->user != INIT_USER)
494 current->flags |= PF_NPROC_EXCEEDED;
496 current->flags &= ~PF_NPROC_EXCEEDED;
500 * Unprivileged users may change the real uid to the effective uid
501 * or vice versa. (BSD-style)
503 * If you set the real uid at all, or set the effective uid to a value not
504 * equal to the real uid, then the saved uid is set to the new effective uid.
506 * This makes it possible for a setuid program to completely drop its
507 * privileges, which is often a useful assertion to make when you are doing
508 * a security audit over a program.
510 * The general idea is that a program which uses just setreuid() will be
511 * 100% compatible with BSD. A program which uses just setuid() will be
512 * 100% compatible with POSIX with saved IDs.
514 long __sys_setreuid(uid_t ruid, uid_t euid)
516 struct user_namespace *ns = current_user_ns();
517 const struct cred *old;
522 kruid = make_kuid(ns, ruid);
523 keuid = make_kuid(ns, euid);
525 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
527 if ((euid != (uid_t) -1) && !uid_valid(keuid))
530 new = prepare_creds();
533 old = current_cred();
536 if (ruid != (uid_t) -1) {
538 if (!uid_eq(old->uid, kruid) &&
539 !uid_eq(old->euid, kruid) &&
540 !ns_capable_setid(old->user_ns, CAP_SETUID))
544 if (euid != (uid_t) -1) {
546 if (!uid_eq(old->uid, keuid) &&
547 !uid_eq(old->euid, keuid) &&
548 !uid_eq(old->suid, keuid) &&
549 !ns_capable_setid(old->user_ns, CAP_SETUID))
553 if (!uid_eq(new->uid, old->uid)) {
554 retval = set_user(new);
558 if (ruid != (uid_t) -1 ||
559 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
560 new->suid = new->euid;
561 new->fsuid = new->euid;
563 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
567 retval = set_cred_ucounts(new);
571 flag_nproc_exceeded(new);
572 return commit_creds(new);
579 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
581 return __sys_setreuid(ruid, euid);
585 * setuid() is implemented like SysV with SAVED_IDS
587 * Note that SAVED_ID's is deficient in that a setuid root program
588 * like sendmail, for example, cannot set its uid to be a normal
589 * user and then switch back, because if you're root, setuid() sets
590 * the saved uid too. If you don't like this, blame the bright people
591 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
592 * will allow a root program to temporarily drop privileges and be able to
593 * regain them by swapping the real and effective uid.
595 long __sys_setuid(uid_t uid)
597 struct user_namespace *ns = current_user_ns();
598 const struct cred *old;
603 kuid = make_kuid(ns, uid);
604 if (!uid_valid(kuid))
607 new = prepare_creds();
610 old = current_cred();
613 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
614 new->suid = new->uid = kuid;
615 if (!uid_eq(kuid, old->uid)) {
616 retval = set_user(new);
620 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
624 new->fsuid = new->euid = kuid;
626 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
630 retval = set_cred_ucounts(new);
634 flag_nproc_exceeded(new);
635 return commit_creds(new);
642 SYSCALL_DEFINE1(setuid, uid_t, uid)
644 return __sys_setuid(uid);
649 * This function implements a generic ability to update ruid, euid,
650 * and suid. This allows you to implement the 4.4 compatible seteuid().
652 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
654 struct user_namespace *ns = current_user_ns();
655 const struct cred *old;
658 kuid_t kruid, keuid, ksuid;
660 kruid = make_kuid(ns, ruid);
661 keuid = make_kuid(ns, euid);
662 ksuid = make_kuid(ns, suid);
664 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
667 if ((euid != (uid_t) -1) && !uid_valid(keuid))
670 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
673 new = prepare_creds();
677 old = current_cred();
680 if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
681 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
682 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
684 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
685 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
687 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
688 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
692 if (ruid != (uid_t) -1) {
694 if (!uid_eq(kruid, old->uid)) {
695 retval = set_user(new);
700 if (euid != (uid_t) -1)
702 if (suid != (uid_t) -1)
704 new->fsuid = new->euid;
706 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
710 retval = set_cred_ucounts(new);
714 flag_nproc_exceeded(new);
715 return commit_creds(new);
722 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
724 return __sys_setresuid(ruid, euid, suid);
727 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
729 const struct cred *cred = current_cred();
731 uid_t ruid, euid, suid;
733 ruid = from_kuid_munged(cred->user_ns, cred->uid);
734 euid = from_kuid_munged(cred->user_ns, cred->euid);
735 suid = from_kuid_munged(cred->user_ns, cred->suid);
737 retval = put_user(ruid, ruidp);
739 retval = put_user(euid, euidp);
741 return put_user(suid, suidp);
747 * Same as above, but for rgid, egid, sgid.
749 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
751 struct user_namespace *ns = current_user_ns();
752 const struct cred *old;
755 kgid_t krgid, kegid, ksgid;
757 krgid = make_kgid(ns, rgid);
758 kegid = make_kgid(ns, egid);
759 ksgid = make_kgid(ns, sgid);
761 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
763 if ((egid != (gid_t) -1) && !gid_valid(kegid))
765 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
768 new = prepare_creds();
771 old = current_cred();
774 if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
775 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
776 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
778 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
779 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
781 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
782 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
786 if (rgid != (gid_t) -1)
788 if (egid != (gid_t) -1)
790 if (sgid != (gid_t) -1)
792 new->fsgid = new->egid;
794 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
798 return commit_creds(new);
805 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
807 return __sys_setresgid(rgid, egid, sgid);
810 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
812 const struct cred *cred = current_cred();
814 gid_t rgid, egid, sgid;
816 rgid = from_kgid_munged(cred->user_ns, cred->gid);
817 egid = from_kgid_munged(cred->user_ns, cred->egid);
818 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
820 retval = put_user(rgid, rgidp);
822 retval = put_user(egid, egidp);
824 retval = put_user(sgid, sgidp);
832 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
833 * is used for "access()" and for the NFS daemon (letting nfsd stay at
834 * whatever uid it wants to). It normally shadows "euid", except when
835 * explicitly set by setfsuid() or for access..
837 long __sys_setfsuid(uid_t uid)
839 const struct cred *old;
844 old = current_cred();
845 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
847 kuid = make_kuid(old->user_ns, uid);
848 if (!uid_valid(kuid))
851 new = prepare_creds();
855 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
856 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
857 ns_capable_setid(old->user_ns, CAP_SETUID)) {
858 if (!uid_eq(kuid, old->fsuid)) {
860 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
873 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
875 return __sys_setfsuid(uid);
879 * Samma på svenska..
881 long __sys_setfsgid(gid_t gid)
883 const struct cred *old;
888 old = current_cred();
889 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
891 kgid = make_kgid(old->user_ns, gid);
892 if (!gid_valid(kgid))
895 new = prepare_creds();
899 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
900 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
901 ns_capable_setid(old->user_ns, CAP_SETGID)) {
902 if (!gid_eq(kgid, old->fsgid)) {
904 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
917 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
919 return __sys_setfsgid(gid);
921 #endif /* CONFIG_MULTIUSER */
924 * sys_getpid - return the thread group id of the current process
926 * Note, despite the name, this returns the tgid not the pid. The tgid and
927 * the pid are identical unless CLONE_THREAD was specified on clone() in
928 * which case the tgid is the same in all threads of the same group.
930 * This is SMP safe as current->tgid does not change.
932 SYSCALL_DEFINE0(getpid)
934 return task_tgid_vnr(current);
937 /* Thread ID - the internal kernel "pid" */
938 SYSCALL_DEFINE0(gettid)
940 return task_pid_vnr(current);
944 * Accessing ->real_parent is not SMP-safe, it could
945 * change from under us. However, we can use a stale
946 * value of ->real_parent under rcu_read_lock(), see
947 * release_task()->call_rcu(delayed_put_task_struct).
949 SYSCALL_DEFINE0(getppid)
954 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
960 SYSCALL_DEFINE0(getuid)
962 /* Only we change this so SMP safe */
963 return from_kuid_munged(current_user_ns(), current_uid());
966 SYSCALL_DEFINE0(geteuid)
968 /* Only we change this so SMP safe */
969 return from_kuid_munged(current_user_ns(), current_euid());
972 SYSCALL_DEFINE0(getgid)
974 /* Only we change this so SMP safe */
975 return from_kgid_munged(current_user_ns(), current_gid());
978 SYSCALL_DEFINE0(getegid)
980 /* Only we change this so SMP safe */
981 return from_kgid_munged(current_user_ns(), current_egid());
984 static void do_sys_times(struct tms *tms)
986 u64 tgutime, tgstime, cutime, cstime;
988 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
989 cutime = current->signal->cutime;
990 cstime = current->signal->cstime;
991 tms->tms_utime = nsec_to_clock_t(tgutime);
992 tms->tms_stime = nsec_to_clock_t(tgstime);
993 tms->tms_cutime = nsec_to_clock_t(cutime);
994 tms->tms_cstime = nsec_to_clock_t(cstime);
997 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1003 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1006 force_successful_syscall_return();
1007 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1010 #ifdef CONFIG_COMPAT
1011 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1013 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1016 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1020 struct compat_tms tmp;
1023 /* Convert our struct tms to the compat version. */
1024 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1025 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1026 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1027 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1028 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1031 force_successful_syscall_return();
1032 return compat_jiffies_to_clock_t(jiffies);
1037 * This needs some heavy checking ...
1038 * I just haven't the stomach for it. I also don't fully
1039 * understand sessions/pgrp etc. Let somebody who does explain it.
1041 * OK, I think I have the protection semantics right.... this is really
1042 * only important on a multi-user system anyway, to make sure one user
1043 * can't send a signal to a process owned by another. -TYT, 12/12/91
1045 * !PF_FORKNOEXEC check to conform completely to POSIX.
1047 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1049 struct task_struct *p;
1050 struct task_struct *group_leader = current->group_leader;
1055 pid = task_pid_vnr(group_leader);
1062 /* From this point forward we keep holding onto the tasklist lock
1063 * so that our parent does not change from under us. -DaveM
1065 write_lock_irq(&tasklist_lock);
1068 p = find_task_by_vpid(pid);
1073 if (!thread_group_leader(p))
1076 if (same_thread_group(p->real_parent, group_leader)) {
1078 if (task_session(p) != task_session(group_leader))
1081 if (!(p->flags & PF_FORKNOEXEC))
1085 if (p != group_leader)
1090 if (p->signal->leader)
1095 struct task_struct *g;
1097 pgrp = find_vpid(pgid);
1098 g = pid_task(pgrp, PIDTYPE_PGID);
1099 if (!g || task_session(g) != task_session(group_leader))
1103 err = security_task_setpgid(p, pgid);
1107 if (task_pgrp(p) != pgrp)
1108 change_pid(p, PIDTYPE_PGID, pgrp);
1112 /* All paths lead to here, thus we are safe. -DaveM */
1113 write_unlock_irq(&tasklist_lock);
1118 static int do_getpgid(pid_t pid)
1120 struct task_struct *p;
1126 grp = task_pgrp(current);
1129 p = find_task_by_vpid(pid);
1136 retval = security_task_getpgid(p);
1140 retval = pid_vnr(grp);
1146 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1148 return do_getpgid(pid);
1151 #ifdef __ARCH_WANT_SYS_GETPGRP
1153 SYSCALL_DEFINE0(getpgrp)
1155 return do_getpgid(0);
1160 SYSCALL_DEFINE1(getsid, pid_t, pid)
1162 struct task_struct *p;
1168 sid = task_session(current);
1171 p = find_task_by_vpid(pid);
1174 sid = task_session(p);
1178 retval = security_task_getsid(p);
1182 retval = pid_vnr(sid);
1188 static void set_special_pids(struct pid *pid)
1190 struct task_struct *curr = current->group_leader;
1192 if (task_session(curr) != pid)
1193 change_pid(curr, PIDTYPE_SID, pid);
1195 if (task_pgrp(curr) != pid)
1196 change_pid(curr, PIDTYPE_PGID, pid);
1199 int ksys_setsid(void)
1201 struct task_struct *group_leader = current->group_leader;
1202 struct pid *sid = task_pid(group_leader);
1203 pid_t session = pid_vnr(sid);
1206 write_lock_irq(&tasklist_lock);
1207 /* Fail if I am already a session leader */
1208 if (group_leader->signal->leader)
1211 /* Fail if a process group id already exists that equals the
1212 * proposed session id.
1214 if (pid_task(sid, PIDTYPE_PGID))
1217 group_leader->signal->leader = 1;
1218 set_special_pids(sid);
1220 proc_clear_tty(group_leader);
1224 write_unlock_irq(&tasklist_lock);
1226 proc_sid_connector(group_leader);
1227 sched_autogroup_create_attach(group_leader);
1232 SYSCALL_DEFINE0(setsid)
1234 return ksys_setsid();
1237 DECLARE_RWSEM(uts_sem);
1239 #ifdef COMPAT_UTS_MACHINE
1240 #define override_architecture(name) \
1241 (personality(current->personality) == PER_LINUX32 && \
1242 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1243 sizeof(COMPAT_UTS_MACHINE)))
1245 #define override_architecture(name) 0
1249 * Work around broken programs that cannot handle "Linux 3.0".
1250 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1251 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1254 static int override_release(char __user *release, size_t len)
1258 if (current->personality & UNAME26) {
1259 const char *rest = UTS_RELEASE;
1260 char buf[65] = { 0 };
1266 if (*rest == '.' && ++ndots >= 3)
1268 if (!isdigit(*rest) && *rest != '.')
1272 v = LINUX_VERSION_PATCHLEVEL + 60;
1273 copy = clamp_t(size_t, len, 1, sizeof(buf));
1274 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1275 ret = copy_to_user(release, buf, copy + 1);
1280 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1282 struct new_utsname tmp;
1284 down_read(&uts_sem);
1285 memcpy(&tmp, utsname(), sizeof(tmp));
1287 if (copy_to_user(name, &tmp, sizeof(tmp)))
1290 if (override_release(name->release, sizeof(name->release)))
1292 if (override_architecture(name))
1297 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1301 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1303 struct old_utsname tmp;
1308 down_read(&uts_sem);
1309 memcpy(&tmp, utsname(), sizeof(tmp));
1311 if (copy_to_user(name, &tmp, sizeof(tmp)))
1314 if (override_release(name->release, sizeof(name->release)))
1316 if (override_architecture(name))
1321 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1323 struct oldold_utsname tmp;
1328 memset(&tmp, 0, sizeof(tmp));
1330 down_read(&uts_sem);
1331 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1332 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1333 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1334 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1335 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1337 if (copy_to_user(name, &tmp, sizeof(tmp)))
1340 if (override_architecture(name))
1342 if (override_release(name->release, sizeof(name->release)))
1348 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1351 char tmp[__NEW_UTS_LEN];
1353 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1356 if (len < 0 || len > __NEW_UTS_LEN)
1359 if (!copy_from_user(tmp, name, len)) {
1360 struct new_utsname *u;
1362 down_write(&uts_sem);
1364 memcpy(u->nodename, tmp, len);
1365 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1367 uts_proc_notify(UTS_PROC_HOSTNAME);
1373 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1375 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1378 struct new_utsname *u;
1379 char tmp[__NEW_UTS_LEN + 1];
1383 down_read(&uts_sem);
1385 i = 1 + strlen(u->nodename);
1388 memcpy(tmp, u->nodename, i);
1390 if (copy_to_user(name, tmp, i))
1398 * Only setdomainname; getdomainname can be implemented by calling
1401 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1404 char tmp[__NEW_UTS_LEN];
1406 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1408 if (len < 0 || len > __NEW_UTS_LEN)
1412 if (!copy_from_user(tmp, name, len)) {
1413 struct new_utsname *u;
1415 down_write(&uts_sem);
1417 memcpy(u->domainname, tmp, len);
1418 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1420 uts_proc_notify(UTS_PROC_DOMAINNAME);
1426 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1428 struct rlimit value;
1431 ret = do_prlimit(current, resource, NULL, &value);
1433 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1438 #ifdef CONFIG_COMPAT
1440 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1441 struct compat_rlimit __user *, rlim)
1444 struct compat_rlimit r32;
1446 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1449 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1450 r.rlim_cur = RLIM_INFINITY;
1452 r.rlim_cur = r32.rlim_cur;
1453 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1454 r.rlim_max = RLIM_INFINITY;
1456 r.rlim_max = r32.rlim_max;
1457 return do_prlimit(current, resource, &r, NULL);
1460 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1461 struct compat_rlimit __user *, rlim)
1466 ret = do_prlimit(current, resource, NULL, &r);
1468 struct compat_rlimit r32;
1469 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1470 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1472 r32.rlim_cur = r.rlim_cur;
1473 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1474 r32.rlim_max = COMPAT_RLIM_INFINITY;
1476 r32.rlim_max = r.rlim_max;
1478 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1486 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1489 * Back compatibility for getrlimit. Needed for some apps.
1491 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1492 struct rlimit __user *, rlim)
1495 if (resource >= RLIM_NLIMITS)
1498 resource = array_index_nospec(resource, RLIM_NLIMITS);
1499 task_lock(current->group_leader);
1500 x = current->signal->rlim[resource];
1501 task_unlock(current->group_leader);
1502 if (x.rlim_cur > 0x7FFFFFFF)
1503 x.rlim_cur = 0x7FFFFFFF;
1504 if (x.rlim_max > 0x7FFFFFFF)
1505 x.rlim_max = 0x7FFFFFFF;
1506 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1509 #ifdef CONFIG_COMPAT
1510 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1511 struct compat_rlimit __user *, rlim)
1515 if (resource >= RLIM_NLIMITS)
1518 resource = array_index_nospec(resource, RLIM_NLIMITS);
1519 task_lock(current->group_leader);
1520 r = current->signal->rlim[resource];
1521 task_unlock(current->group_leader);
1522 if (r.rlim_cur > 0x7FFFFFFF)
1523 r.rlim_cur = 0x7FFFFFFF;
1524 if (r.rlim_max > 0x7FFFFFFF)
1525 r.rlim_max = 0x7FFFFFFF;
1527 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1528 put_user(r.rlim_max, &rlim->rlim_max))
1536 static inline bool rlim64_is_infinity(__u64 rlim64)
1538 #if BITS_PER_LONG < 64
1539 return rlim64 >= ULONG_MAX;
1541 return rlim64 == RLIM64_INFINITY;
1545 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1547 if (rlim->rlim_cur == RLIM_INFINITY)
1548 rlim64->rlim_cur = RLIM64_INFINITY;
1550 rlim64->rlim_cur = rlim->rlim_cur;
1551 if (rlim->rlim_max == RLIM_INFINITY)
1552 rlim64->rlim_max = RLIM64_INFINITY;
1554 rlim64->rlim_max = rlim->rlim_max;
1557 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1559 if (rlim64_is_infinity(rlim64->rlim_cur))
1560 rlim->rlim_cur = RLIM_INFINITY;
1562 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1563 if (rlim64_is_infinity(rlim64->rlim_max))
1564 rlim->rlim_max = RLIM_INFINITY;
1566 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1569 /* make sure you are allowed to change @tsk limits before calling this */
1570 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1571 struct rlimit *new_rlim, struct rlimit *old_rlim)
1573 struct rlimit *rlim;
1576 if (resource >= RLIM_NLIMITS)
1579 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1581 if (resource == RLIMIT_NOFILE &&
1582 new_rlim->rlim_max > sysctl_nr_open)
1586 /* protect tsk->signal and tsk->sighand from disappearing */
1587 read_lock(&tasklist_lock);
1588 if (!tsk->sighand) {
1593 rlim = tsk->signal->rlim + resource;
1594 task_lock(tsk->group_leader);
1596 /* Keep the capable check against init_user_ns until
1597 cgroups can contain all limits */
1598 if (new_rlim->rlim_max > rlim->rlim_max &&
1599 !capable(CAP_SYS_RESOURCE))
1602 retval = security_task_setrlimit(tsk, resource, new_rlim);
1610 task_unlock(tsk->group_leader);
1613 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1614 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1615 * ignores the rlimit.
1617 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1618 new_rlim->rlim_cur != RLIM_INFINITY &&
1619 IS_ENABLED(CONFIG_POSIX_TIMERS))
1620 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1622 read_unlock(&tasklist_lock);
1626 /* rcu lock must be held */
1627 static int check_prlimit_permission(struct task_struct *task,
1630 const struct cred *cred = current_cred(), *tcred;
1633 if (current == task)
1636 tcred = __task_cred(task);
1637 id_match = (uid_eq(cred->uid, tcred->euid) &&
1638 uid_eq(cred->uid, tcred->suid) &&
1639 uid_eq(cred->uid, tcred->uid) &&
1640 gid_eq(cred->gid, tcred->egid) &&
1641 gid_eq(cred->gid, tcred->sgid) &&
1642 gid_eq(cred->gid, tcred->gid));
1643 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1646 return security_task_prlimit(cred, tcred, flags);
1649 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1650 const struct rlimit64 __user *, new_rlim,
1651 struct rlimit64 __user *, old_rlim)
1653 struct rlimit64 old64, new64;
1654 struct rlimit old, new;
1655 struct task_struct *tsk;
1656 unsigned int checkflags = 0;
1660 checkflags |= LSM_PRLIMIT_READ;
1663 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1665 rlim64_to_rlim(&new64, &new);
1666 checkflags |= LSM_PRLIMIT_WRITE;
1670 tsk = pid ? find_task_by_vpid(pid) : current;
1675 ret = check_prlimit_permission(tsk, checkflags);
1680 get_task_struct(tsk);
1683 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1684 old_rlim ? &old : NULL);
1686 if (!ret && old_rlim) {
1687 rlim_to_rlim64(&old, &old64);
1688 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1692 put_task_struct(tsk);
1696 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1698 struct rlimit new_rlim;
1700 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1702 return do_prlimit(current, resource, &new_rlim, NULL);
1706 * It would make sense to put struct rusage in the task_struct,
1707 * except that would make the task_struct be *really big*. After
1708 * task_struct gets moved into malloc'ed memory, it would
1709 * make sense to do this. It will make moving the rest of the information
1710 * a lot simpler! (Which we're not doing right now because we're not
1711 * measuring them yet).
1713 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1714 * races with threads incrementing their own counters. But since word
1715 * reads are atomic, we either get new values or old values and we don't
1716 * care which for the sums. We always take the siglock to protect reading
1717 * the c* fields from p->signal from races with exit.c updating those
1718 * fields when reaping, so a sample either gets all the additions of a
1719 * given child after it's reaped, or none so this sample is before reaping.
1722 * We need to take the siglock for CHILDEREN, SELF and BOTH
1723 * for the cases current multithreaded, non-current single threaded
1724 * non-current multithreaded. Thread traversal is now safe with
1726 * Strictly speaking, we donot need to take the siglock if we are current and
1727 * single threaded, as no one else can take our signal_struct away, no one
1728 * else can reap the children to update signal->c* counters, and no one else
1729 * can race with the signal-> fields. If we do not take any lock, the
1730 * signal-> fields could be read out of order while another thread was just
1731 * exiting. So we should place a read memory barrier when we avoid the lock.
1732 * On the writer side, write memory barrier is implied in __exit_signal
1733 * as __exit_signal releases the siglock spinlock after updating the signal->
1734 * fields. But we don't do this yet to keep things simple.
1738 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1740 r->ru_nvcsw += t->nvcsw;
1741 r->ru_nivcsw += t->nivcsw;
1742 r->ru_minflt += t->min_flt;
1743 r->ru_majflt += t->maj_flt;
1744 r->ru_inblock += task_io_get_inblock(t);
1745 r->ru_oublock += task_io_get_oublock(t);
1748 void getrusage(struct task_struct *p, int who, struct rusage *r)
1750 struct task_struct *t;
1751 unsigned long flags;
1752 u64 tgutime, tgstime, utime, stime;
1753 unsigned long maxrss = 0;
1755 memset((char *)r, 0, sizeof (*r));
1758 if (who == RUSAGE_THREAD) {
1759 task_cputime_adjusted(current, &utime, &stime);
1760 accumulate_thread_rusage(p, r);
1761 maxrss = p->signal->maxrss;
1765 if (!lock_task_sighand(p, &flags))
1770 case RUSAGE_CHILDREN:
1771 utime = p->signal->cutime;
1772 stime = p->signal->cstime;
1773 r->ru_nvcsw = p->signal->cnvcsw;
1774 r->ru_nivcsw = p->signal->cnivcsw;
1775 r->ru_minflt = p->signal->cmin_flt;
1776 r->ru_majflt = p->signal->cmaj_flt;
1777 r->ru_inblock = p->signal->cinblock;
1778 r->ru_oublock = p->signal->coublock;
1779 maxrss = p->signal->cmaxrss;
1781 if (who == RUSAGE_CHILDREN)
1786 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1789 r->ru_nvcsw += p->signal->nvcsw;
1790 r->ru_nivcsw += p->signal->nivcsw;
1791 r->ru_minflt += p->signal->min_flt;
1792 r->ru_majflt += p->signal->maj_flt;
1793 r->ru_inblock += p->signal->inblock;
1794 r->ru_oublock += p->signal->oublock;
1795 if (maxrss < p->signal->maxrss)
1796 maxrss = p->signal->maxrss;
1799 accumulate_thread_rusage(t, r);
1800 } while_each_thread(p, t);
1806 unlock_task_sighand(p, &flags);
1809 r->ru_utime = ns_to_kernel_old_timeval(utime);
1810 r->ru_stime = ns_to_kernel_old_timeval(stime);
1812 if (who != RUSAGE_CHILDREN) {
1813 struct mm_struct *mm = get_task_mm(p);
1816 setmax_mm_hiwater_rss(&maxrss, mm);
1820 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1823 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1827 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1828 who != RUSAGE_THREAD)
1831 getrusage(current, who, &r);
1832 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1835 #ifdef CONFIG_COMPAT
1836 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1840 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1841 who != RUSAGE_THREAD)
1844 getrusage(current, who, &r);
1845 return put_compat_rusage(&r, ru);
1849 SYSCALL_DEFINE1(umask, int, mask)
1851 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1855 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1858 struct inode *inode;
1865 inode = file_inode(exe.file);
1868 * Because the original mm->exe_file points to executable file, make
1869 * sure that this one is executable as well, to avoid breaking an
1873 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1876 err = file_permission(exe.file, MAY_EXEC);
1880 err = replace_mm_exe_file(mm, exe.file);
1887 * Check arithmetic relations of passed addresses.
1889 * WARNING: we don't require any capability here so be very careful
1890 * in what is allowed for modification from userspace.
1892 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1894 unsigned long mmap_max_addr = TASK_SIZE;
1895 int error = -EINVAL, i;
1897 static const unsigned char offsets[] = {
1898 offsetof(struct prctl_mm_map, start_code),
1899 offsetof(struct prctl_mm_map, end_code),
1900 offsetof(struct prctl_mm_map, start_data),
1901 offsetof(struct prctl_mm_map, end_data),
1902 offsetof(struct prctl_mm_map, start_brk),
1903 offsetof(struct prctl_mm_map, brk),
1904 offsetof(struct prctl_mm_map, start_stack),
1905 offsetof(struct prctl_mm_map, arg_start),
1906 offsetof(struct prctl_mm_map, arg_end),
1907 offsetof(struct prctl_mm_map, env_start),
1908 offsetof(struct prctl_mm_map, env_end),
1912 * Make sure the members are not somewhere outside
1913 * of allowed address space.
1915 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1916 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1918 if ((unsigned long)val >= mmap_max_addr ||
1919 (unsigned long)val < mmap_min_addr)
1924 * Make sure the pairs are ordered.
1926 #define __prctl_check_order(__m1, __op, __m2) \
1927 ((unsigned long)prctl_map->__m1 __op \
1928 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1929 error = __prctl_check_order(start_code, <, end_code);
1930 error |= __prctl_check_order(start_data,<=, end_data);
1931 error |= __prctl_check_order(start_brk, <=, brk);
1932 error |= __prctl_check_order(arg_start, <=, arg_end);
1933 error |= __prctl_check_order(env_start, <=, env_end);
1936 #undef __prctl_check_order
1941 * Neither we should allow to override limits if they set.
1943 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1944 prctl_map->start_brk, prctl_map->end_data,
1945 prctl_map->start_data))
1953 #ifdef CONFIG_CHECKPOINT_RESTORE
1954 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1956 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1957 unsigned long user_auxv[AT_VECTOR_SIZE];
1958 struct mm_struct *mm = current->mm;
1961 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1962 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1964 if (opt == PR_SET_MM_MAP_SIZE)
1965 return put_user((unsigned int)sizeof(prctl_map),
1966 (unsigned int __user *)addr);
1968 if (data_size != sizeof(prctl_map))
1971 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1974 error = validate_prctl_map_addr(&prctl_map);
1978 if (prctl_map.auxv_size) {
1980 * Someone is trying to cheat the auxv vector.
1982 if (!prctl_map.auxv ||
1983 prctl_map.auxv_size > sizeof(mm->saved_auxv))
1986 memset(user_auxv, 0, sizeof(user_auxv));
1987 if (copy_from_user(user_auxv,
1988 (const void __user *)prctl_map.auxv,
1989 prctl_map.auxv_size))
1992 /* Last entry must be AT_NULL as specification requires */
1993 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1994 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1997 if (prctl_map.exe_fd != (u32)-1) {
1999 * Check if the current user is checkpoint/restore capable.
2000 * At the time of this writing, it checks for CAP_SYS_ADMIN
2001 * or CAP_CHECKPOINT_RESTORE.
2002 * Note that a user with access to ptrace can masquerade an
2003 * arbitrary program as any executable, even setuid ones.
2004 * This may have implications in the tomoyo subsystem.
2006 if (!checkpoint_restore_ns_capable(current_user_ns()))
2009 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2015 * arg_lock protects concurrent updates but we still need mmap_lock for
2016 * read to exclude races with sys_brk.
2021 * We don't validate if these members are pointing to
2022 * real present VMAs because application may have correspond
2023 * VMAs already unmapped and kernel uses these members for statistics
2024 * output in procfs mostly, except
2026 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2027 * for VMAs when updating these members so anything wrong written
2028 * here cause kernel to swear at userspace program but won't lead
2029 * to any problem in kernel itself
2032 spin_lock(&mm->arg_lock);
2033 mm->start_code = prctl_map.start_code;
2034 mm->end_code = prctl_map.end_code;
2035 mm->start_data = prctl_map.start_data;
2036 mm->end_data = prctl_map.end_data;
2037 mm->start_brk = prctl_map.start_brk;
2038 mm->brk = prctl_map.brk;
2039 mm->start_stack = prctl_map.start_stack;
2040 mm->arg_start = prctl_map.arg_start;
2041 mm->arg_end = prctl_map.arg_end;
2042 mm->env_start = prctl_map.env_start;
2043 mm->env_end = prctl_map.env_end;
2044 spin_unlock(&mm->arg_lock);
2047 * Note this update of @saved_auxv is lockless thus
2048 * if someone reads this member in procfs while we're
2049 * updating -- it may get partly updated results. It's
2050 * known and acceptable trade off: we leave it as is to
2051 * not introduce additional locks here making the kernel
2054 if (prctl_map.auxv_size)
2055 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2057 mmap_read_unlock(mm);
2060 #endif /* CONFIG_CHECKPOINT_RESTORE */
2062 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2066 * This doesn't move the auxiliary vector itself since it's pinned to
2067 * mm_struct, but it permits filling the vector with new values. It's
2068 * up to the caller to provide sane values here, otherwise userspace
2069 * tools which use this vector might be unhappy.
2071 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2073 if (len > sizeof(user_auxv))
2076 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2079 /* Make sure the last entry is always AT_NULL */
2080 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2081 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2083 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2086 memcpy(mm->saved_auxv, user_auxv, len);
2087 task_unlock(current);
2092 static int prctl_set_mm(int opt, unsigned long addr,
2093 unsigned long arg4, unsigned long arg5)
2095 struct mm_struct *mm = current->mm;
2096 struct prctl_mm_map prctl_map = {
2101 struct vm_area_struct *vma;
2104 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2105 opt != PR_SET_MM_MAP &&
2106 opt != PR_SET_MM_MAP_SIZE)))
2109 #ifdef CONFIG_CHECKPOINT_RESTORE
2110 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2111 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2114 if (!capable(CAP_SYS_RESOURCE))
2117 if (opt == PR_SET_MM_EXE_FILE)
2118 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2120 if (opt == PR_SET_MM_AUXV)
2121 return prctl_set_auxv(mm, addr, arg4);
2123 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2129 * arg_lock protects concurrent updates of arg boundaries, we need
2130 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2134 vma = find_vma(mm, addr);
2136 spin_lock(&mm->arg_lock);
2137 prctl_map.start_code = mm->start_code;
2138 prctl_map.end_code = mm->end_code;
2139 prctl_map.start_data = mm->start_data;
2140 prctl_map.end_data = mm->end_data;
2141 prctl_map.start_brk = mm->start_brk;
2142 prctl_map.brk = mm->brk;
2143 prctl_map.start_stack = mm->start_stack;
2144 prctl_map.arg_start = mm->arg_start;
2145 prctl_map.arg_end = mm->arg_end;
2146 prctl_map.env_start = mm->env_start;
2147 prctl_map.env_end = mm->env_end;
2150 case PR_SET_MM_START_CODE:
2151 prctl_map.start_code = addr;
2153 case PR_SET_MM_END_CODE:
2154 prctl_map.end_code = addr;
2156 case PR_SET_MM_START_DATA:
2157 prctl_map.start_data = addr;
2159 case PR_SET_MM_END_DATA:
2160 prctl_map.end_data = addr;
2162 case PR_SET_MM_START_STACK:
2163 prctl_map.start_stack = addr;
2165 case PR_SET_MM_START_BRK:
2166 prctl_map.start_brk = addr;
2169 prctl_map.brk = addr;
2171 case PR_SET_MM_ARG_START:
2172 prctl_map.arg_start = addr;
2174 case PR_SET_MM_ARG_END:
2175 prctl_map.arg_end = addr;
2177 case PR_SET_MM_ENV_START:
2178 prctl_map.env_start = addr;
2180 case PR_SET_MM_ENV_END:
2181 prctl_map.env_end = addr;
2187 error = validate_prctl_map_addr(&prctl_map);
2193 * If command line arguments and environment
2194 * are placed somewhere else on stack, we can
2195 * set them up here, ARG_START/END to setup
2196 * command line arguments and ENV_START/END
2199 case PR_SET_MM_START_STACK:
2200 case PR_SET_MM_ARG_START:
2201 case PR_SET_MM_ARG_END:
2202 case PR_SET_MM_ENV_START:
2203 case PR_SET_MM_ENV_END:
2210 mm->start_code = prctl_map.start_code;
2211 mm->end_code = prctl_map.end_code;
2212 mm->start_data = prctl_map.start_data;
2213 mm->end_data = prctl_map.end_data;
2214 mm->start_brk = prctl_map.start_brk;
2215 mm->brk = prctl_map.brk;
2216 mm->start_stack = prctl_map.start_stack;
2217 mm->arg_start = prctl_map.arg_start;
2218 mm->arg_end = prctl_map.arg_end;
2219 mm->env_start = prctl_map.env_start;
2220 mm->env_end = prctl_map.env_end;
2224 spin_unlock(&mm->arg_lock);
2225 mmap_read_unlock(mm);
2229 #ifdef CONFIG_CHECKPOINT_RESTORE
2230 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2232 return put_user(me->clear_child_tid, tid_addr);
2235 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2241 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2244 * If task has has_child_subreaper - all its descendants
2245 * already have these flag too and new descendants will
2246 * inherit it on fork, skip them.
2248 * If we've found child_reaper - skip descendants in
2249 * it's subtree as they will never get out pidns.
2251 if (p->signal->has_child_subreaper ||
2252 is_child_reaper(task_pid(p)))
2255 p->signal->has_child_subreaper = 1;
2259 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2264 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2270 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2272 #ifdef CONFIG_ANON_VMA_NAME
2274 #define ANON_VMA_NAME_MAX_LEN 80
2275 #define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2277 static inline bool is_valid_name_char(char ch)
2279 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2280 return ch > 0x1f && ch < 0x7f &&
2281 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2284 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2285 unsigned long size, unsigned long arg)
2287 struct mm_struct *mm = current->mm;
2288 const char __user *uname;
2293 case PR_SET_VMA_ANON_NAME:
2294 uname = (const char __user *)arg;
2296 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2299 return PTR_ERR(name);
2301 for (pch = name; *pch != '\0'; pch++) {
2302 if (!is_valid_name_char(*pch)) {
2308 /* Reset the name */
2312 mmap_write_lock(mm);
2313 error = madvise_set_anon_name(mm, addr, size, name);
2314 mmap_write_unlock(mm);
2324 #else /* CONFIG_ANON_VMA_NAME */
2325 static int prctl_set_vma(unsigned long opt, unsigned long start,
2326 unsigned long size, unsigned long arg)
2330 #endif /* CONFIG_ANON_VMA_NAME */
2332 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2333 unsigned long, arg4, unsigned long, arg5)
2335 struct task_struct *me = current;
2336 unsigned char comm[sizeof(me->comm)];
2339 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2340 if (error != -ENOSYS)
2345 case PR_SET_PDEATHSIG:
2346 if (!valid_signal(arg2)) {
2350 me->pdeath_signal = arg2;
2352 case PR_GET_PDEATHSIG:
2353 error = put_user(me->pdeath_signal, (int __user *)arg2);
2355 case PR_GET_DUMPABLE:
2356 error = get_dumpable(me->mm);
2358 case PR_SET_DUMPABLE:
2359 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2363 set_dumpable(me->mm, arg2);
2366 case PR_SET_UNALIGN:
2367 error = SET_UNALIGN_CTL(me, arg2);
2369 case PR_GET_UNALIGN:
2370 error = GET_UNALIGN_CTL(me, arg2);
2373 error = SET_FPEMU_CTL(me, arg2);
2376 error = GET_FPEMU_CTL(me, arg2);
2379 error = SET_FPEXC_CTL(me, arg2);
2382 error = GET_FPEXC_CTL(me, arg2);
2385 error = PR_TIMING_STATISTICAL;
2388 if (arg2 != PR_TIMING_STATISTICAL)
2392 comm[sizeof(me->comm) - 1] = 0;
2393 if (strncpy_from_user(comm, (char __user *)arg2,
2394 sizeof(me->comm) - 1) < 0)
2396 set_task_comm(me, comm);
2397 proc_comm_connector(me);
2400 get_task_comm(comm, me);
2401 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2405 error = GET_ENDIAN(me, arg2);
2408 error = SET_ENDIAN(me, arg2);
2410 case PR_GET_SECCOMP:
2411 error = prctl_get_seccomp();
2413 case PR_SET_SECCOMP:
2414 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2417 error = GET_TSC_CTL(arg2);
2420 error = SET_TSC_CTL(arg2);
2422 case PR_TASK_PERF_EVENTS_DISABLE:
2423 error = perf_event_task_disable();
2425 case PR_TASK_PERF_EVENTS_ENABLE:
2426 error = perf_event_task_enable();
2428 case PR_GET_TIMERSLACK:
2429 if (current->timer_slack_ns > ULONG_MAX)
2432 error = current->timer_slack_ns;
2434 case PR_SET_TIMERSLACK:
2436 current->timer_slack_ns =
2437 current->default_timer_slack_ns;
2439 current->timer_slack_ns = arg2;
2445 case PR_MCE_KILL_CLEAR:
2448 current->flags &= ~PF_MCE_PROCESS;
2450 case PR_MCE_KILL_SET:
2451 current->flags |= PF_MCE_PROCESS;
2452 if (arg3 == PR_MCE_KILL_EARLY)
2453 current->flags |= PF_MCE_EARLY;
2454 else if (arg3 == PR_MCE_KILL_LATE)
2455 current->flags &= ~PF_MCE_EARLY;
2456 else if (arg3 == PR_MCE_KILL_DEFAULT)
2458 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2466 case PR_MCE_KILL_GET:
2467 if (arg2 | arg3 | arg4 | arg5)
2469 if (current->flags & PF_MCE_PROCESS)
2470 error = (current->flags & PF_MCE_EARLY) ?
2471 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2473 error = PR_MCE_KILL_DEFAULT;
2476 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2478 case PR_GET_TID_ADDRESS:
2479 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2481 case PR_SET_CHILD_SUBREAPER:
2482 me->signal->is_child_subreaper = !!arg2;
2486 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2488 case PR_GET_CHILD_SUBREAPER:
2489 error = put_user(me->signal->is_child_subreaper,
2490 (int __user *)arg2);
2492 case PR_SET_NO_NEW_PRIVS:
2493 if (arg2 != 1 || arg3 || arg4 || arg5)
2496 task_set_no_new_privs(current);
2498 case PR_GET_NO_NEW_PRIVS:
2499 if (arg2 || arg3 || arg4 || arg5)
2501 return task_no_new_privs(current) ? 1 : 0;
2502 case PR_GET_THP_DISABLE:
2503 if (arg2 || arg3 || arg4 || arg5)
2505 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2507 case PR_SET_THP_DISABLE:
2508 if (arg3 || arg4 || arg5)
2510 if (mmap_write_lock_killable(me->mm))
2513 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2515 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2516 mmap_write_unlock(me->mm);
2518 case PR_MPX_ENABLE_MANAGEMENT:
2519 case PR_MPX_DISABLE_MANAGEMENT:
2520 /* No longer implemented: */
2522 case PR_SET_FP_MODE:
2523 error = SET_FP_MODE(me, arg2);
2525 case PR_GET_FP_MODE:
2526 error = GET_FP_MODE(me);
2529 error = SVE_SET_VL(arg2);
2532 error = SVE_GET_VL();
2534 case PR_GET_SPECULATION_CTRL:
2535 if (arg3 || arg4 || arg5)
2537 error = arch_prctl_spec_ctrl_get(me, arg2);
2539 case PR_SET_SPECULATION_CTRL:
2542 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2544 case PR_PAC_RESET_KEYS:
2545 if (arg3 || arg4 || arg5)
2547 error = PAC_RESET_KEYS(me, arg2);
2549 case PR_PAC_SET_ENABLED_KEYS:
2552 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2554 case PR_PAC_GET_ENABLED_KEYS:
2555 if (arg2 || arg3 || arg4 || arg5)
2557 error = PAC_GET_ENABLED_KEYS(me);
2559 case PR_SET_TAGGED_ADDR_CTRL:
2560 if (arg3 || arg4 || arg5)
2562 error = SET_TAGGED_ADDR_CTRL(arg2);
2564 case PR_GET_TAGGED_ADDR_CTRL:
2565 if (arg2 || arg3 || arg4 || arg5)
2567 error = GET_TAGGED_ADDR_CTRL();
2569 case PR_SET_IO_FLUSHER:
2570 if (!capable(CAP_SYS_RESOURCE))
2573 if (arg3 || arg4 || arg5)
2577 current->flags |= PR_IO_FLUSHER;
2579 current->flags &= ~PR_IO_FLUSHER;
2583 case PR_GET_IO_FLUSHER:
2584 if (!capable(CAP_SYS_RESOURCE))
2587 if (arg2 || arg3 || arg4 || arg5)
2590 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2592 case PR_SET_SYSCALL_USER_DISPATCH:
2593 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2594 (char __user *) arg5);
2596 #ifdef CONFIG_SCHED_CORE
2598 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2602 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2611 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2612 struct getcpu_cache __user *, unused)
2615 int cpu = raw_smp_processor_id();
2618 err |= put_user(cpu, cpup);
2620 err |= put_user(cpu_to_node(cpu), nodep);
2621 return err ? -EFAULT : 0;
2625 * do_sysinfo - fill in sysinfo struct
2626 * @info: pointer to buffer to fill
2628 static int do_sysinfo(struct sysinfo *info)
2630 unsigned long mem_total, sav_total;
2631 unsigned int mem_unit, bitcount;
2632 struct timespec64 tp;
2634 memset(info, 0, sizeof(struct sysinfo));
2636 ktime_get_boottime_ts64(&tp);
2637 timens_add_boottime(&tp);
2638 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2640 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2642 info->procs = nr_threads;
2648 * If the sum of all the available memory (i.e. ram + swap)
2649 * is less than can be stored in a 32 bit unsigned long then
2650 * we can be binary compatible with 2.2.x kernels. If not,
2651 * well, in that case 2.2.x was broken anyways...
2656 mem_total = info->totalram + info->totalswap;
2657 if (mem_total < info->totalram || mem_total < info->totalswap)
2660 mem_unit = info->mem_unit;
2661 while (mem_unit > 1) {
2664 sav_total = mem_total;
2666 if (mem_total < sav_total)
2671 * If mem_total did not overflow, multiply all memory values by
2672 * info->mem_unit and set it to 1. This leaves things compatible
2673 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2678 info->totalram <<= bitcount;
2679 info->freeram <<= bitcount;
2680 info->sharedram <<= bitcount;
2681 info->bufferram <<= bitcount;
2682 info->totalswap <<= bitcount;
2683 info->freeswap <<= bitcount;
2684 info->totalhigh <<= bitcount;
2685 info->freehigh <<= bitcount;
2691 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2697 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2703 #ifdef CONFIG_COMPAT
2704 struct compat_sysinfo {
2718 char _f[20-2*sizeof(u32)-sizeof(int)];
2721 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2724 struct compat_sysinfo s_32;
2728 /* Check to see if any memory value is too large for 32-bit and scale
2731 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2734 while (s.mem_unit < PAGE_SIZE) {
2739 s.totalram >>= bitcount;
2740 s.freeram >>= bitcount;
2741 s.sharedram >>= bitcount;
2742 s.bufferram >>= bitcount;
2743 s.totalswap >>= bitcount;
2744 s.freeswap >>= bitcount;
2745 s.totalhigh >>= bitcount;
2746 s.freehigh >>= bitcount;
2749 memset(&s_32, 0, sizeof(s_32));
2750 s_32.uptime = s.uptime;
2751 s_32.loads[0] = s.loads[0];
2752 s_32.loads[1] = s.loads[1];
2753 s_32.loads[2] = s.loads[2];
2754 s_32.totalram = s.totalram;
2755 s_32.freeram = s.freeram;
2756 s_32.sharedram = s.sharedram;
2757 s_32.bufferram = s.bufferram;
2758 s_32.totalswap = s.totalswap;
2759 s_32.freeswap = s.freeswap;
2760 s_32.procs = s.procs;
2761 s_32.totalhigh = s.totalhigh;
2762 s_32.freehigh = s.freehigh;
2763 s_32.mem_unit = s.mem_unit;
2764 if (copy_to_user(info, &s_32, sizeof(s_32)))
2768 #endif /* CONFIG_COMPAT */